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A Mixed Problem for Hyperbolic Equations
of Second Order with a First Order
Derivative Boundary Condition

By
Mitsuru Ikawa*

§1. Introduction

On the mixed problems for hyperbolic equations of second order,
only the problems with the Dirichlet condition and with the Neumann
condition are studied satisfactorily. Concerning the problems with
the other boundary conditions Agmon [1] contains the results on
more general boundary conditions in the case when the domain is
a half space and the coefficients are constant. And the author showed
the not well-posedness in L’-sense of the problem for the wave
equation with an oblique derivative boundary condition [7].

In this paper we extend the results for second order equations
of Agmon’s paper to the case of variable coefficients and a general
domain.

Let S be a sufficiently smooth compact hypersurface in R” and
let O be the interior or exterior domain of S. Consider a hyperbolic
equation of second order

(1.1) L=%+al(x,t:D)a%—+a2(x,t:D)

a,(x, t: D) = 3 2h,(x, 1) a_?{ +h(x, 1)

7

n 62
a,(x,t: D) = — szla,-,-(x, t)ax o
i= i j

+first order
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where all the coefficients are in BQX(O, 7)) and &, x, )
(7=1,2, ---, n) are real-valued and a,(x, ¢: D) is an elliptic operator
satisfying
(1.2) Sla(xn EE>dE (@>0)
aij(xv 1) = aji(x) t)
for all (x, ¢, ) eQx[0, T]XR" and consider a boundary operator
i) a
1.3 B=_—"——og/s, t)=—+a,s, ¢
1.3 o, ay(s %t a (s, ?)

where 61 is defined by

U;

(1.4) = g vi(s, 2

0
a—vt i 0x; ’
v(s, H=(v(s, 1), -+, v,(s, £)) is a smooth vector defined on SX[O0, 7],
and o,s, ) ((=1,2) is a sufficiently smooth function defined on
Sx[0, T] and o,(s, t) is real-valued.
Our problem is to obtain a function u(x, ) = (H*(Q)) NEHH(Q))

NEHLX(Q))? satisfying

Llu(x, )] = f(x, ?) in Qx(,7T)

Blu(x, t)] = g(s, ©) in Sx[0, T]
1.5) u(x, 0) = u,(x)

22 (x, 0) = (@)
for given inital data {«,(x), #,(x)}, second member f(x, £) and boundary
data g(s, #). We denote this problem by P(L, B). When we want

to treat this problem in L’*-sense it is necessary to pose some condi-
tions on v(s, ) and o,(s, f) that

(1.6) o:(s, < 2 hyls, Do (6)
and o(s,?) is not so far away from the conormal vector (s, f)

=(§:]aljuj, e, 2; a,;v;) of ax,t: D) where v(s)=(v,(s), -, v,(8)) is

1) %B(w), w being an open set, is the set of all C*-functions defined in @ such that
their all partial derivatives of any order are bounded.

2) u(x, t)efy(E) means that u(x, ) is m-times continuously differentiable in # as
E-valued function.



Mixed Problem for Hyperbolic Equations 121

the unit outer normal of S at s This condition will be prescribed
precisely in § 3.

In section 2 the energy inequality for P(L, B) is derived and
in section 3 we prove the existence of the solution by using the
energy inequality and the existence theorem for the case v(s, £) =n(s, t)
proved in [8].

In our treatment the essential point is to derive the energy
inequality for P(L, B). To prove this a certain estimate of the trace
of the solution plays an important role, which follows from only
Lu=f.

The author wishes to express his sincere gratitude to Professor
S. Mizohata and Professor H. Tanabe for their invaluable suggestions
and continuous encouragement.

§2. Energy Inequality

We note some notations which will be used. Let Q be R" or
a domain with a sufficiently smooth compact boundary. <-);,,
denotes the norm of the space H(0Q). For u(x)eH>'(Q) (p=0),
<{u(x)>, 0o means the p-th norm of the trace of #(x) to the boundary
0Q. For wu(x, t) € EYHQ)NEH(H?*T(Q)N---NEXALHQ)) we define
H+1lloa by

2

@.1) e, Bl = 33 (2) ez,

8
ot

p—7, L2
and for g(s, #) €CUH(00)) N EHH?T(0Q)) N -+ NEYUL*(BQ)) K+ >y 00 DY
» a i 2
2 —
2.2) <gls >3 =2 2) e 0> .
It is obvious that

( >3 <a,.,.(x, Ho, )., u))”z

Hj=1 ax, ’ ax_,

gives an equivalent norm in H'(Q) from the condition (1.2). Then
if we put

3) See Theorem 1 of [97].
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@3) [l Dllagy = (33 g;i 6;"7"1_)+ 0 +(2, 29",

for u(x, ) eCUH'(Q)) N EHLA(Q)), there exists a constant M such that
-, B yy<llce, Dl <M, Dl g -

Concerning the vector v(s, f) which is not tangential to S we can
assume without loss of generality that

24) 33 au,(s, DrdsIils) = 2 vils, uils)
holds on Sx[0, T]. Let us set

2.5) b(s, 1 = 21| 3 ausls, D)= vils, D)I*
and

(2. 6) by = sup b(s, 1).

Since B satisfies the condition (1.5)
@7 als, 1) = SV (s, is) —oi(s, £)

is a positive smooth function, and set

(2.8) o, = inf a(s, t).

SxI[0,T]
We state a simple lemma without proof.
Lemma 2.1. Let y(t) and p(t) be positive, and defined on (0, a)
(@>0). If v(t) is summable on (0, a) and p(t) is increasing and

t
7@ <c| V(s)ds+p(®)
holds, then we have
7(8) <e”p(?) .

Energy inequality in the case Q=R". We should like to consider
at first the case when the domain is a half space R"={(x/, x,);
x’€R*, x,>0}. In this paragraph we omit for the simplicity the
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notation Q in (2.1) and 8Q in (2.2). Let N be the first order
differential operator defined by

n ) )
.9 N = — (%, 8) — +h,(x, H)— .
2.9) jZJla,.,(x )ax +h,(x )6t

i
Lemma 2.2. There exists constants C,, C,, C, determined by L

such that for any function u(x, t) €€ H*(R%)) N EHH (RY)) NEHLH(RY))
the following estimate holds :

dZ t 2 t 2 t au 2
. e < ’ 0 1 Az
@10 4 So<u(x, 1)y dt SO<(Nu)(x £)>idt +C So<6t (, 1) dt
+C,([u(x, t)||?ﬂ(t)+ |[ae(x, O)H?g{(o))
t t
+CSSo”u(x, t)“fq{(t)dt‘F So“L[u(x’ t)]“iz(Rg)dt .
Proof. We get by integration by parts for some constant C}

Std tSR" (LuNu+ NuLu)(x', %, t)dx'dx,

= Stdtg dx’(—a,,,, Ou
0 R"-1

ot

+4 Re%‘_, a,,,ax h,,W

— u 2
2Re2h,ax wngp —2hE

ou ou =1 gy |
+ Z VImniipy 0x; —2 ﬁzla”fﬁ}:-

ou =1 u
—2Re a,,,,ax 2 a,,,ax

ou |?
0x,

ou ou
+2Re a,"hnﬁ §>(x’, 0, )

_afyn

Ou =t ou  ou
+SRde’dx,,[( 2Re6t2an]ax 2Re—a

ﬂ”ax
6u ou ou
+h, 57| —2Re Zh, " 9%, 0%,
nl ou ou , g
2 Re S} 0 2 b 2 el 2 V2, 2 )]

— G| e, D113 pat
= J[+IIT+1I1.
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The integrand of I equals

n=l  Qu ou  |ncl ? .
Ayn ¢§1aij5;6x 12 njax ‘Nul
—(“MJ“””)!at " 6x ;o

n=1 _ Qu au
_ZReZhiax Gunpt ’

since it follows from (1.2) that

n=1

a ”112= uEzEj | :‘Zl a”jgilz>d2:g ‘E?
ou

-

52— | N = @ 1) 2
- —q(hn
We have by taking q=22 (ai;+h3)/d?
dz (tn= ou .
1> S > at— | <Nuyat
il ae o s 2 S @),
_go th,,_l x(a,,,,+ 242 (@2 + )~———2——~at )
Put
n—1
> (any + 1)
2.11) C, = sup (a,,,,+h:+2(h;+azn)ﬂ~—2—_—)(x', 0, )
(#,t)eR*-'x[0, T] d

and it follows
1>_S:j_21< > dt—S (NwYdt — 1S:<g—;‘>2dt.

The absolute value of the integrand of I7 is majorated by

Y ou P ,loul Iau [0
2 +2a2, + | A,
= "Jax,;l T2ot) T, Tl
n=l = gy |? ou |* n-1 ou ou
2 Eh]57 +Ihnlann ax 1]6x 6—5\1_,
au |2

6u‘

ox,) + (k. +2)
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Put

(2.12) C,= sup (2(2(1“—!— Eh)/d+|h,,l+2)
R% x[0,T] #i=1

and we have

|11 <C (I, Dy, OllEggo -
Then
t
[P+ (1N Pyt

>4 > at— [y at—c,[ 2 at

0Jj=1
t
—cz(nu(tmﬂ(t,+|lu<0>ng«0)>—cg§ouu(s)ligl(s)ds.
Since N is a first order operator it holds
t t
([ 1vaa it < const. | s ilpds,

thus we get (2.10). Q.E.D.

Lemma 2.3. There exists a constant C, determined by L such
that for amy solution u(x, t)eE(H*(R%))NEHH(RY))NEWLYRY)) of
P(L, B), if

d
2.13 b<—,
2.13) 1

the estimate
2t
@19 Tt 03ar<C, (e, Dl + I, Ol

G N, DNyt + {173, Dt
+ 4S:<g(s, £)Ydt + (C, + 4 BZ)SKS_;‘ (x, ) dt

holds for all t<[0, T], where

B = sup (_—hn_o-l) .
(x,t)eR"-1x[0, T]

Proof. From the boundary condition Bu(x’, 0, {)=g(x’, t) it
follows
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(2.15) (Nu)(x’, 0, t) = g(«/, t)— Z(v —n) (x 0, %)

—(=h,(«', 0, ) —o,(¥/, t)) (x 0, #)

_a'z(x ’ t)u(x , 0, 2),

therefore
<Ny <ailgy +bicuw 1+ 8 1))

+ sup |o,|Xu(x, £)>°} .
0, T]

SX[

By inserting this estimate into (2.10)
L <ute, o1t <a oo, 1+ bicuta, 1
2/ OU 2 2 2
+ B8 @ 1) + sup ||, £)))dt
t 2 t
+ clgo<g_;‘ (x, ) dt + Cagollu(x, 1122

+ [, DiFde+ Clute, D1+ iz, Oy

from which (2.14) follows immediately by taking account of the
condition (2. 13). Q.E.D.

Proposition 2.1. Suppose that the boundary operator B satisfies
(1.6) and

d . a
2.16 b,< % min(1, o).
2.16) < mm( c VC +45 +4/92)

Then for any solution u(x, t)E H*(RY))NEH(H (RY))NEWLXRY)) of
P(L, B) the following energy inequality

@A), Dy + |, <, > dt
<CHlutx, 0ligqo)+ [ 117, DI+ <g s 1))t}

holds for all t<[0, T, where C is a constant determined by L, B
and T.

Proof. The differential inequality
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D, )y <N, Dllgep+11 £, DIF
27 Dllgn S » Dl gty ’

+2Re [, V), 0, H%(w, 0, dx'
follows from Lu= f. The integration of this inequality from 0 to
t gives

t
(2.18) i, By <, Oy + ¢ 10, Dzt

t . £ 5_;‘ ,
+So||f(x, )] dt+2ReSodtS Nugrdx'.

Rn—l
It is essential to estimate the last term. If we use oncemore the
relation (2.15)

2.19) 2ReS:dtSR,, 1Nu P

: s 9 ou
=SodtSRn_12Re{< au,+an,> ugt —(—hy—a) o8
ou

—oglay +g6t}dx

by using <g%—§7“> <b<ud, and (2.7) (2.8)
t t

<S:bo<u(x, t)>1<g—?>dt—2aosz<g—?>zdt
2 a8 at+2{ <> (> at
5“05 < “ dt+4b°S Culx, D)>idt
+Ms wyrdt+ 2 S<g>2dt
Then it follows from (2. 18)

llu(x, t)llzé,{(,)+EOS:<<u(x, £)> %t

<llue, Olizyoy | 171 at -+ T, 0112yt

4) See, for example, the proof of Lemma 2.2 of [8].
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(5 % 50)5 < > dt+ S {g>*dt + const. S <uy'dt

@b" +é )So<u<x, Hidt,

0

inserting the estimate (2. 14)

2 ¢ 2 4 2 / ! 2
<, Oy § (1171 2 <+ )t e { s, Dl

() () e gt
+ Clllu, )2y + 1w, Oliggop + | 11, DIFde
+ 4S:<g>2dt +(Cotd ,GZ)S:<Z—;‘>2dt } .
When the inequalities
dz(‘“’g te >c2<1—e0

4 (4B 2
dz( +8,)(CH48) <=6,
hold for some &,>0, namely

d . ( a, o, )
2.20 b,< = b A ol N I
(2.20) <Sy™We Veram

by choosing a suitable constant C’ we get
e, Dliggey+ | <, £)>2dt
<l Oliygoy+ |11+ <g>dt+ [ e, Bllgt]
from which (2.17) follows by applying Lemma 2.1 by taking as
o) = €Iz, Oliygoy+ [ (17 1F-+<2dt)
¥®) = 1@, Dy + | <utx, y>1at.

It is necessary to hold (2.14) and (2.20) simultaneously and (2.16)
satisfies the both conditions. Q.E.D.
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Proposition 2.2. Suppose that (2.16) holds. For any solution
u(x, ) ECHH (RY))NE(H (RN E(LX(RY)) of P(L, B), if

Blu(x, )] = g(s, ) e H'(R* % (0, T)) ,

then the trace of wu(x,t) to R**x(0,T) is in H*(R" % (0, T)) and
the following energy inequality holds

t
@20 s, DllE+ [ <utx, >0t

<C{liucx, O)llz+

.
() +

o\t
Proof. At first let us assume that not only u(x, f) but also

(x,) and 68—”(.17 H (j=1,2,---,n—1) belong to EHY(RY))

ﬂ81(H‘(R ))DSZ(LZ(R )). The differentiation of (1.5) with respect
to ¢ gives

}6_”@, o)\jz +If G Ol

)

Ll > )dt}

L[g_? = ”] = —Lilu(x, )1+ fi(x, 1)
B[Z—T; (x, t)] = —B/i[u(x, )]+gi(x, 1),

from the additional assumption Proposition 2.1 can be applied to
g?u(x, ), then we have

@.22) ] %‘(x, t)H;{(t) + S:(g—?(x, ) dt

C{| 24, 0 o+ §.01—Liluta, 01+ 74w, D

(= Bilutx, 0]+ g/, H>)dt} .
By the same manner we get

@2 |2 @ D) gy | (2 ! 0y dt

<cf[gt o]y i

+ =By, [u(x, )]+ 6%’5 (e f>>2)df}

— L. [u(x, 07+ 2L (x,
! 0x;
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for j=1,2,---,n—1. Remark that [|Li[u(x, §)]II*, [IL7,[u(x, £)1IF,
{Bi[u(x, t)1)* and <BZ;[u(x, t)])* are estimated by const. |||u(x, £)|||3
and that from Lz=f we have

(2.24) ) (x, t)“ const( N

i+ 7Fm |

ax 6x ox0r, t).}

¥ (fgg‘(x O +HIrDIE).

On the other hand these inequalities are evident:

@.2) Il DllE< const([[ (x,

),

Lulx, H>i< const</au(x t)> + Z —_(x, t)>j

e, D+ |

+ <Lu(x, t)>>f) .

Therefore by substituting into (2.19) the estimates (2.22) (2.23)
(2.24) and using the above remark we get for some constant C’

M, DI+ || <ute, 12t

<ciimc, 0N+ £, i+ [ 01, Dl

n—1|| 2
+ 51y, t)“ +<Lg, £)>dt
j=1 axJ

+ [, Byzae}

It is evident that
e, OV < const (Jux, OV + | 2, 00|+, O)IF)
1, ol <2 T(1f s, o+ 1|2, 0] at)

Then it follows that for some constant C”>0
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e, D+ <ae, B3t

<Cllut, I+ ]l%x 0)[[ +IIf G, Ol
5 (15 J

+ [l t>|nzdt} :

+<Lg, H)y>idt

from this (2.21) is derived only by the application of Lemma 2.1
by taking

o(®) = " {lut, )l + Ha-”u 0)”2+Hf(x, olf

S

v(#) = llluz, t>||[z+§o<<u<x, t)>>§dt.

(x, t)“ + g, > >dt}

To complete the proof it is necessary to remove the additional
assumption on the regularity of u(x, ). For this purpose let us use
the following mollifier with respect to («/, ¢):

Let ¢(/) be a positive C~-function with a support contained in
[—2, —1] such that

Slgo(l)dl —1.
Define a mollifier @+, . for o(x, t)eEN(H(RY)) by
v, ) = (@ae, O, %) D
= | ot =) T g3 00, 2, )

where @;(/ )=%—cp(§>. Then for any non-negative multi-index

o’=(ay, -, a,_,) and non-negative integer j

(2) (.2) w neerar @

For w(x’, )e&(L(R"")) we define @5, ,, by the same manner, and
we have for any j and o’
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(2 (2) i, teexwr.

Applying @sx,  to (1.5) we get

Llus(x, 8)] = fi(x, 1) — (Csu)(x, £)
Blus(x, 1)1 = g(«', 1) — (Tse)(+', £)

where

(Canw, ) = [a, p @s £: DY1 2 +-[pay, il £ D)

), ) =[ s, 0 (2

ou
51)—,: + a'2>]u + [gps(i,’t) , a',] —Eg

for [0, T—25,]. Since guﬁ(x £) (j=1,2,--,n—1) and %(x, )

are in EYH*(RY)NEHH (R +))ﬂé’z(Lz(R )), the result obtamed under
the additional condition is applicable, then

@20 s, DG+ <o, > at

<C{jlustx, 0>;12+1|a”8<x, 2+2|If.s(x, oll

+2$0( 7
+20(Ca)(x, Ol +250(U%(x,

Evidently it holds that for ¢&[0, 7—6,] (8,>0)

C <), ¢>>>f)dt} .

O Vuw, ) —— (L) ute )| (j=101,2
or 2-j ot 2—j
@YY o (@Y () 0] e

<<g8(x/: t)>>1 - <<g(x/’ t)>>1

when 8 tends to zero. Moreover we have

@.27) 1(Csu)(x, )| — 0
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@. 28) S”(

% (C)(x, 1) “+ ij “é%. (C0)(, 1) H+ <<(T‘5u)>>f>dt

-——ﬁo
when & tends to 0. These proofs are essentially same as the
estimates of commutators in the proof of Proposition 2.6 of [6].
With the aid of (2.27) (2.28) the passage to the limit of (2.26)

when §—0 gives the required inequality for #(x, ). Thus the proof
is completed. Q.E.D.

Energy inequality in the case when 0 =S is compact. Let us
define the functions c,(s, #) (j=1,2) on SX[0, T] by

(2 29) C1(S, t) = Mz:l aij(s, t)y"(s)”i(s)"'(gh,-(s, t)vj(s))z
* {(z',i:l a; (s, )vi(s)v;(s)) +( ?él hy(s, tyv (s))}
X .i—x (hals, t)2+(i a; (s, v ;(s))")/d*

(2.30)  als ) = 2{( 3 als O+ 2 s, 1)/d

IS s, Bri(s)| +1}

1=1

2.31)  als, t) = g hy(s, D (s)—a(s, £).

Remark that Z"Hia,-jyj—vilz, ﬁhiu,- and these functions are
i=1 =1

i=1
invariant under any orthogonal transformation of variables, and the
condition (2. 3) is conserved under any transformation of variables.

Theorem 1. Suppose that

d . als, ) als, £)
(2.32) b(s, )< min (1’ 1/ f (s, 1)’ Vs, H)+4als, 1) )

holds on Sx[0,T]. For any solution u(x, t)eC:(H*(Q))NE(H (Q))
NEHLHQ) of P(L, B), if

Llu(x, )] = f(x, HeH'(Qx (0, T))
Blu(x, t)] = g(s, H)eH'(Sx (0 1)),

the trace of u(x,t) to Sx(0,T) is in H*(Sx (0, T)) and the energy
inequality
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t
(2.33) e, D+ || <utx, >3t
c{iutx, Ol w2, 0, +lIf, Ollize
’ 2, L@ ot ’ 2,L2(Q) ’ L@

+[lare i+ <g6 0> 901}
holds.

Proof. For any s,=S there exists a neighborhood U of s, in R”
and a smooth function +r(x) such that

grad ‘l’(x) | x=sq D(So)

and r(x)=0 is an equation of UNS. From the above remark we

may assume »(s,)=(0,0, ---, —1). Let us define a transformation ¥
from U onto some domain in R” by
= Y (x)

Vi = X;—S; (Z=1’2: "';n—'l):
evidently we have
vQNU)cRY
(SN U)CoR:
\P(So) =
When a solution u(x,#) of P(L, B) has its support contained in

QNU)X[0, T], the function #@(y, ¢#) defined by a(y, {)=a(¥(x), )
=u(x, ) satisfies

2. 34) { 2?‘ y,01=7051

a(y, t)] = g(v/', 1)
where

7 o 0 |, " 0
L=Z (im0 012
]Z]l "8, dy, j;l "8y;/0t
n 2 n n—1
(Fa T S, 0 O clly

i i qij—i—
i U 0x;0x;0y2 W= T 0x,;0y,09, "';‘ 70,0,
+first order

n—1

5=

+ 5o

1

—?——a' 2—I—az.
x; 0,

9y, ‘ot
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Since (grad v)(s))=(0,0, ---, —1) and »(¥, 0)=(0, 0, ---, —1), by taking
account of the continuity of grad«, 0(s, f) and «a(s, ) we have for
some neighborhood U, of s, and 7/>0 that

sup by, 1)
& HETW N80, 7]
SR O o S inf a(y, 2
’ {sup c(Y, 1)’ V/sup e, (¥, £)+4 sup a(y, £

where b(¥, t) and &;(y, t) denote the quantities for L and B defined
by (2.5), 2.29) and (2.30). Therefore when only the solutions
with the support contained in (U,NQ)X[0, T"] are considered, we
can say that L and B satisfy the condition (2.16) and Proposition
2.2 can be applied for (2.24), then the energy inequality (2.21)
holds for #@(y, t), therefore (2.33) also holds for u(x, ).

Let {®,}7., be a partition of unity of a neighborhood of S such

that Z ®7=1 in a neighborhood of S and the support of ®(x) is

contained in a neighborhood of a point s;&S with the above
properties.

Put u(x, £)=® ;(x)u(x, ), then

Llu(x, 1)] = @ (®)f(x, ©)—LL, ©,;]u(x, t)
B[”j(x, t)] = <I>j(s)g(s, t)_[Br (Dj]u(sy t)
and we get for t[0, T]

t
@35 gt DllEa+ | <, t>>>z,s dt

<C i@ Ol v+ | 2 0,
1,7, O—TL, @,Jutx, O
+ (e, r, n-TL @l 0t <8~ 1B, @107 Jdt ]

here C; is determined by L, B and ®;. And for (1— i D))" u(x, t)
(2.33) holds since its support does not joint with S. By summing
up (2.35) and using

WILL, ®;]ulll, < const |[zl]],
K[B, @;]Ju>,< const ||l«ll],,
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we have

e, DIl 0§ <oz, 33 50t

2

+11/(x, O)llz2a

1, L%

<C{liutz, Ol ot |2z, 0

[+ <godde+ [ lmizat)

and by applying Lemma 2.1 we get (2.33) for t<[0, T¢] where
¢=min Tj. From the uniform continuity of the functions which

determin T, there is no difficulty to show that (2.33) holds for all
te[o, T].

§3. Existence of the Solution

Hereafter assume that Q is a domain with a compact boundary.
We state the theorem of existence of the solution.

Theorem 2. Suppose that the condition (2.32) holds. For any
initial data {u,(x), u,(x)} € H}(Q) X H(Q), second member f(x,t)e
H'(QO, T)) and boundary data g(s, t)e H'(SX (0, T)), if the com-
patibility condition at t=0 of order O

(3.1) 2 3)=.(s, O @)+, ) = g(5, 0
is satisfied, then there exists a solution u(x,t) of P(L, B) uniquely
in E(H*(Q)) N E(H(Q)) N ELLHQ)).

At first let us prove
Lemma 3.1. Let

W= _ o‘1g +o,
ow,

ot
-9 _ alﬁ +o,
0z, ot

be two boundary operators which satisfy (2.3). Assume that for
P(L, W) the energy inequality (2.33) holds with a constant C and that
the existence of the solution is already known. If

3.2) sup (3 [v,(s, ) —wi(s, )<L =5
sx[0, 71 i=1 C
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holds for &,>0, then the existence of solution of P(L, Z) follows.

Proof. Assume that {u,(x), #,(x)} = H*(Q)x H*(Q) and the given
data satisfy the compatibility condition for Z, namely

3.3 5%’”0(-75) —a3(s, Qu(x) +0,(s, Oue(x) = £(s, 0).

Let us construct #(x, 1) eE(H*(Q)) N EHH Q)N EWL(Q) (7=1,2, --+)
successively by the following way : #®(x, ) be the solution

L[u®G, ] = £, D
WLu G, 5] = g H—(2 — L Ju

0z, Ow,
uP(x, 0) = uy(x)

ag—:’<x, 0) = u(x),

its existence is assured by the assumption that the existence of the
solution of P(L, W) because the compatibility condition for W is
satisfied from (3.3), and g(s, t)—<_a_6_ — aa—> u,(x)es H'(S x (0, T)).
Ry w;
We can define #“(x, t) for j>2 succesively by the formula
Llu?(x, £)] = f(x, ?)
BLu (@, 1 = (s (2~ 2 Jusin, 1
0z, ow,
l u?(x, 0) = uy(x)

(€]
6‘6‘; (x, 0) = (%)

since from #Y V(% )| sxprnEH(SX (0, T)) and the compatibility
condition for W is satisfied.

The sequence uP(x,t) (j=1,2,---) converges in EUH*(Q))
NEWH Q) NELULHQ)), indeed
L[u(j+1)_u(j)] =0
. . ) 0 . .
W GHD (D] — _<_____ () 7,G-1)
[u u9] o, 8w,>(u u7)
@™ —u)(x, 0) = 0

a—at-(u<f“>—u<f>)(x, 0) =0
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for 7>2 and the application of the energy inequality gives
t
T, £) —uP(x, t)llli,g+s LU D(x, 1) —uP(x, 1)>3 s dt
0

<cf¢(2 - %)(u@(x, D, 1)) _at

0z,

t n
<[\ 33 lwi—z P <uPw, H—u™(x, 31 dt
0f=

from (3.2)
<(1—60)S:<<u‘f)(x, £)—u(x, )2 s dt .
Thus we get for all j>2
w2, =2, Dllat | <u™, H—uP, 3% dt
<const (1—¢&)7,

which assures the convergence of u”(x, t) in EUH*(Q))NEHH (Q))
NELL*HQ)). Denote its limit by #(x, ¢) then we see from the passage
to the limit of (3.4) that u(x, ¢) satisfies

Llu(x, )] = f(x, ?)

Wluts, 1 = g =2~ 2 Jucs, 1

u(x, 0) = u(x)
%%®=%M-

This shows that u(x, ¢) is the required solution.

For {u,(x), u,(x)} = H*(Q)X H'(Q) if we get sequences {u,.(x),
(X))} eH¥ Q)X H*(Q) and gu(s, ) eH*(S % (0, T)) (k=1,2, --) such
that

ok (1) —(5, ONtn(2) (5, Oon(x) = (s, 0)
and
Ugp —> U, in H*Q)
Uy —> U, in H'(Q)
g—>g in H'(Sx(0, T))

when k increases infinitely, there exists the solution #“®(x, #) of



Mixed Problem for Hyperbolic Equations 139

Llu®(x, 5] = f(x, t)
Z[ude)(x’ t)] = gk(S, t)
u(k)(xy O) = uok(x)

€]
6;; (&, 0) = w,4(x)

from the just obtained result. And by applying the energy inequality
for u®—u™, we have for any k, m

(e, =™, D+ | <u®w, H—umG, >4 dt
[
< {C o) — hom (), 50+ 0148 — ) 20

t
| <auts, D—guls, D315 an.
0

We see the convergence of u®(x,?#) in &E(H*(Q)) N EHH(Q))
NEF(L*Q)) and the passage to the limit of (3.5) when k—co proves
that the limit of #®(x, f) is the required solution for {u, #,} and g.

Now let us see the existence of sequences with the above pro-
perties. It is evident that there exists sequences {p., p.:} EH(Q)
X H*(Q)) and g.(s, )= H*(S x (0, T)) such that

Dor(x) = uy(%) in H*Q)
Dir(x) = u(x) in HYQ)
gi(s, t) — g(s, t) in HY(Sx(0,T)).
Then

Qk<s) = ‘a_g‘pok<x)_°'1(s’ 0)p1k(x)+0'2(8, O)pok(x)_gk(s7 0)

is in H*™/*(S) and <g.(s)>y, tends to zero when k increases infinitely
since {,, #,} and g satisfies the compatibility condition (3.3). Let
Q be the interior domain and 7,(x) be a solution of a boundary

value problem
(—A+A7e(x) =0 in Q
(3.6)

<£ 4o, 0)>rk(x) —gi(s) on S.

When 1, is sufficiently large (3.6) has a unique solution in H3(Q)
and the following estimate holds
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17612, 22> <cOmst {gi(s)>Yz -
Then if we define {u,, .} by
Uk = Dort 74
Ui = Dir
{tor, #;x} and g, are the required ones. When Q is an exterior
domain, take a sphere S, containing S in its interior and denote by

Q, the domain surrounded by S and S,. We define r.(x) as the
solution of

(—A+A)7(x) =0 in Q
(5 0,5, O i) = auls)  on S
<6%0 +a,(s, 0))rk(x) =0 on S,.

Since Q, is compact, we have a unique solution 7,(x) = H*(Q) and the
estimate

[l7&(2)1[5, 120> <const {gi>%/, .

Let u(x) be a C~-function such that supp (u(x))Cinterior of S, and
w(x) equals 1 in a neighborhood of S. Then wu(x)7,(x) is in H*(Q)
and ||u(x)7,(x)|], tends to zero when % increases infinitely. There-
fore if we take uy, u,, as

Uo(%) = p(x)74(x) + Do)
U1 (X) = Pip(%),

these are the required ones. Thus the proof of lemma is completed.

Now we prove Theorem. At first remark that when o(s, £)
=un(s, t) the existence of the solution is already proved (Theorem 1
of [8]). Let B,(»=[0, 1]) be the boundary operator defined by

B, =

R .
on,

0
~ T A~ )T 9. ’t_+2)t'
on, 61},) 7 (s )at 75 )
Since for any »<[0, 1] P(L, B,) satisfies the condition (2.32), then
the energy inequality (2.33) for P(L, B,) holds for any »<[0, 1],
moreover the constant C can be taken independently of ». Since

the existence of the solution for P(L, B,) is assured, by applying
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Lemma 3.1 by taking W=B, and Z=B, for 1[0, &] (0<s,,< %)
we see the existence of the solution for P(L, B,) for »<[0, &]-

Now apply Lemma 3.1 once more by taking W=B, and Z=B, for
ne[&,, 26,], the existence of the solution for P(L, B,) for n€[§,, 2&,]
is proved. Step by step for any 7n<[0, 1] the existence of the
solution for P(L, B,) is assured. Thus we get the existence of the
solution of P(L, B).

§4. Regularity of the Solution

The solution of P(L, B) becomes regular according to the
regularities of the initial data, second member and the boundary
data. Since this equation is hyperbolic the given data must satisfy
the compatibility condition of higher order. Suppose u(x, f)
EEI(H Q) N E(H Q) N EUH Q) N EHLA(Q)), then
T (x,0) = —a(x, 0: D)% (x, 0)—ax, 0: D)ulx, 0)+/(z, 0)

= —a,(x, 0: D)u,(x)—a,(x, 0: D)u,(x)+f(x, 0).

On the other hand the differentiation of Bu= g with respect to ¢ gives
ou )
B2, )|+ Blutx, 51 = /65, 1)

and if we put =0 and substitute the above relation #,, #,, g and
f should satisfy

4.1) guxx)—al(s, 0)(— a,tt, — auy+ £ (%, 0))

0

+0—2(S: 0)“1“"(8_?)’) uo—(01)2=0u1+(62);=0u0 = g/(s» O) .

¢/ t=
We say that u,, u,, f, g satisfy the compatibility condition of order
1 if (3.1) and (4.1) hold. The compatibility condition of higher
order can be defined by the same manner :

Definition 4.1. The data {u,, u} € H™*(Q)x H""'(Q), g(s, t)
eH”?(Sx (0, T)) and f(x, )e H™ " (Qx (0, T)) are said to satisfy the
compatibility condition of order m when
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@2 SNE) o ets, DY

F(ols, Uy} = g, 0)
=0

holds for p=0,1,2, .-, m where u,(x) (p=2) is defined successively by
the formula

@3 u,@ = % (P, ?)e@ 0: Dtypi+alx, 0: Dy}
+f*(x, 0).

Theorem 3. When the given data satisfy the compatibility
condition of order m the solution wu(x,t) of P(L, B) belongs to
EXH™ Q) N EH™ Q) N -+ NEFH(LHQ)).

If we use the following lemma, the proof is completely same as
that of Theorem 2 of the previous paper [8].

Lemma 4.1. Suppose that u(x, ) E(H*(Q)) satisfies
a,(x, t: D)u(x, D eEHH(Q))
(2 ~outs, &)tz neexE=(S)
ov

t

where p and k are non-negative integers, then
u(x, H)eCHH?™(Q)) .

One can also prove this lemma by the same way as that of
Lemma 3.5 of [6] (page 604). The difference is only that the
boundary operator of the previous paper is 8/dm,+o, and that of
this case is 0/0v,+0o,. But since the a priori estimate of an elliptic
operator

ol er <K {llaGr, £ Dl + ol

2
+<8%: +a,(s, 1) w2> +1/z}

b4

holds, we get Lemma 4.1 by the same proof.

§5. Dependence Domain

One of the important properties of Cauchy problem for
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hyperbolic equations is the existence of a dependence domain. This
means that a hyperbolic equation is an equation of propagation
phenomenon with a finite velocity. Concerning the mixed problems
for hyperbolic equations the existence of a dependence domain is
not a trivial fact deduced from the results of Cauchy problem. As
indicated by R. Hersh [4] if we set some boundary condition a
mixed problem for the wave equation has an infinite velocity.

Our actual problem P(L, B) has a finite velocity.

Let n\(x, £: &), n(x, £: £) be the roots of the characteristc equa-
tion of L

M2 (x, DEA— 31 ay(x, DEE; = 0
for (x, H)eQ %[0, T] and ¥=R”. Denote

(5° 1) 7\‘max = mSlllP 12 ly\‘i(x’ ¢ E) ' .
(x.yeax[0,r]

For x,=Q we denote by C(x,, f,) the backward cone with a vertex
(x,, t,) defined by

{(x’ t); Ix_xol = X’max(to_t)} ’
and by A(x,, f,) the interior of C(x,, ¢, .

Theorem 4. There exists a smooth positive function (s, t) on
SX[0, T determined by L. Suppose

d . a(s, t al(s, t
®.2) bls, HH<as, t)’Z moin (1’ chgs, t;’ Ve(s, t)(—|—4)a(s, t)2>
holds on SX[0, T]. Let u(x,t) be a C-solution of P(L, B) defined
in Ay, t)NQX[0, TD. If wuy(x), u(x) arve zero in A%, t,)
N{Q, t=0}, g(s, t) is zero in A(x,, t)NSX[0, T, and f(x, t) is zero
in A(x,, t)NQXLEO, TN, then u(x, t) is identically zero in A(x,, t,)
N@QxI0, T.

Proof. We use the method of sweeping out of F. John. Define
for 0<O<NLLE

(5.9) P, 1) = (n—t)—xl VAT AR,

max

and
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(5.4) Col%,, 1) = {(xa 1); @olx, t) = 0} .

If the local uniqueness of the solution, especially near the boundary,
is shown under the condition (2. 23), it suffices to show the following:
After the change of variables

v = ?79(27, t)
¥ =x
(1.5) transformed into

where #(x’, ¥')=u(x, t). Then the condition (2.32) corresponding to
Ly, B, will be satisfied for all 8= (0, M..t2) when (5.2) is fulfiled.
Let

@ = (1423 i(, 1070 — 31 a,(x, 1220 0%0)
= 0x; i 0x; 0x;

and we have for all §(0, An.2) and (s, H)eSx[0, T]

Dy(s, 1) <=(0, 8) @< +).

By applying (2.29) (2.30) and (2.5) we have ¢ (s, £:0) (i=1,2) and
b(s, t: 0) for L, and B, are given by

c(s, t: 0) = @yt é
e

12

@, (5, Do+ D5 (2 (s, .Y
=

1

+®o—2{(,~,‘i‘1 a; s, t)vivj)z'F(jélhi(s: Dv,)*

ST (s, B2+ (3) (s, D))
X =1 di; 1 }

cy(s, t:0) = 2@;1{(;1:161,.,@, 1)+ }_]1 hi(s, £)/d
T éhi(s, Do} +2
b(s, t: 0) = ®7%(s, t)

and we set
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ay = @y (a—|v—n])
dg = q)g—ld .
It is necessary to hold

B do . ao(s, t) (s, £)
1 ad 2 9
®ab(s, )<=, min (1’ ch(s,t:a)’ Vs, ¢ 0)+40£3>

for all 0= (0,n,axf). Indeed from the explicit forms of these quanti-
ties the existence of the smooth positive function (s, #) is derived,
in fact

. d, . o o
inf D, =% min 1,4/ o 9—>>0
020, Ann ) 4 ( ¢,(0)” V¢,0) +da?

Then it suffices to show only

Lemma 5.1. (Local uniqueness near the boundary). Let u(x, f)
eC? defined in a meighborhood of (x,,t,) where x,S. If u(x,?)
satisfies

[ w(x, £) = g;—’(x, £Yy=0 for xeVn{t=t, o}
l B[u]=0 for (s, )eVN(S %[0, T])
Llu]=0 in VN E©Qx(©O, 7))
for some neighborhood V of (x,, t,), then u(x, t) is identically zero in

a neighborhood V(' V) of (x,, t,).

Proof. We can assume (x,, f)=(0, 0). After the Folmgren
transformation

¥ =x
Vo=|x|"+t
a(x’, t) = u(x, t)
L[al=0 in FVN@Qx(, T)))
Blal=0 in F(VN(ESx[0, TI)

where
-9 fow, t){z";zoz za, 2y
ot” = 7 ot oxt
_‘gl ”8x’6 }+(ﬁrst order)
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7 0 ( i 0
B = —\{ — U,’ ,'+ ~——+ 2
o0, vk to) g, e

(D == (1+ iZh,-x,-— 2 aijx,-xj) .

By extending #@(x’, #) by zero in the outside of {(x’, #'); |x’|*>t,
F=0NQx(0, T) ax,¥)eE(H Q) NE(H Q) NELLHQ)) and satis-
fies L[#]=0 in Qx (0, k) B[#]=0 in Sx[O0, k,] for some k,>0 and
iz, 0)=g-;—‘(x’, 0)=0 in Q. Then L, B satisfy the condition (2.32)

if x is sufficiently small, therefore for some k,>0 (k, <k, the energy
inequality (2.33) for L and B holds for ¢&(0, #,). This shows that

a(x,

t') is zero in QX% (0, k) from which it follows that u(x, ) is

zero in a neighborhood of (x,, £,).
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