A Strong Form of Yamaguti and Nogi's Stability Theorem for Friedrichs' Scheme*

Bу

Rémi VAILLANCOURT**

In this paper we derive the Lax-Nirenberg Theorem [3-4] for Yamaguti and Nogi's pseudo-difference schemes of [7] and, as a corollary, we obtain a strong form of Yamaguti and Nogi's Stability Theorem for Friedrichs' scheme for regularly hyperbolic systems. These are new results.

As in [2] and [7] let \mathcal{K} denote the class of $p \times p$ matrices $k(x, \xi) \in C^{\infty}(\mathbb{R}^n_x \times \mathbb{R}^n_{\xi} - \{0\})$, independent of x for |x| > R fixed, and homogeneous of degree zero in ξ .

Lemma (Lax [2]). Every $k \in \mathcal{K}$ can be expanded in a series

(1.1)
$$k(x, \xi) = \sum_{\alpha} k_{\alpha}(x) e^{i \alpha \cdot \xi/|\xi|},$$

where α varies over all multi-indices of integers. The series, and the differentiated series, with respect to x or ξ , converge uniformly for all x, and $|\xi| = 1$.

The *h*-family of operators

$$K_{h}u(x) = \int e^{ix\cdot\xi}k(x,\,\lambda(h\xi))\hat{u}(\xi)d\xi$$

is associated with the symbol $k(x, \lambda(\xi))$ while the Fourier Transform of the adjoint family,

Received May 17, 1969.

Communicated by S. Matsuura.

 ^{*} The work presented in this paper is supported by the AEC Computing and Applied Mathematics Center, Courant Institute of Mathematical Sciences, New York University, under Contract AT(30-1)-1480 with the U. S. Atomic Energy Commission.
 ** Department of Mathematics, The University of Chicago.

Rémi Vaillancourt

$$\widehat{K_{h}^{*}u}(\xi) = (2\pi)^{-n} \int e^{-ix \cdot \xi} k^{*}(x, \lambda(h\xi)) u(x) dx$$

has the symbol $k^*(x_1, \lambda(\xi_2))$. Here the subscripts indicate that the multiplication by the variable x is performed before the differentiation corresponding to the co-variable ξ . We write also $k^{*R}(x, \lambda(\xi))$ for $k^*(x_1, \lambda(\xi_2))$.

The Fourier Transform

$$\hat{k}(\mathfrak{X},\,\xi)\,=\,(2\pi)^{-n}\int e^{-\,i\mathfrak{X}\cdot x}k(x,\,\xi)d\,x$$

of $k \in \mathcal{K}$ exists and has finite L^1 -maximum norm

$$||\hat{k}|| = \int [\sup_{\xi} |\hat{k}(\chi, \xi)|] d\chi < \infty$$

and the L^2 operator norm of K_h satisfies the inequality

 $||K_{h}|| \leq ||\hat{k}||$,

provided we let

$$\hat{k}(\mathfrak{X}, \xi) = \delta(\mathfrak{X})k(\xi)$$
 and $||\hat{k}|| = \sup_{\xi} |k(\xi)|$

for a function $k(\xi)$ independent of x. Now, we represent the Fourier Transform of $K_{k}u$ and $K_{k}^{*}u$ in terms of $\hat{k}, \hat{k^{*}}$ and \hat{u} :

$$\widehat{K_{h}u}(\xi) = \int \hat{k}(\xi - \xi', \lambda(h\xi'))\hat{u}(\xi')d\xi'$$

$$\widehat{K_{h}^{*}u}(\xi) = \int \hat{k^{*}}, (\xi - \xi', \lambda(h\xi))\hat{u}(\xi')d\xi'$$

One sees that K_h is associated with the Fourier kernel $\hat{k} = \hat{k}(\chi, \lambda(\xi))$ while K_h^* is associated with $\hat{k^{*R}} = \hat{k^*}(\chi, \lambda(\xi + \chi))$. Clearly

$$||\hat{k}^{\widehat{*}R}|| = ||\hat{k}||$$
 .

If k is hermitian, $k = k^*$, then K_h^* is associated with $\hat{k}^R = k^*$.

Theorem [5]. Suppose that $p \in \mathcal{K}$, $p(x, \xi) \ge 0$. If $\lambda(\xi) \in C^2$, $\lambda(0) = 0$, and λ , λ_{ξ} and $\lambda_{\xi\xi}$ are bounded, then

$$Re \langle P_h \Lambda_h^2 u
angle \geq -Kh ||u||^2$$
, $u \in L^2_x$

for all h and some constant K.

114

This particular form of the Lax-Nirenberg theorem is a sharp form of Theorem 3, [7], p. 159; in fact the proof of the latter requires that p be positive definite, p>0.

Corollary [5]. If $\lambda = k/h$ satisfies

(1.2)
$$\lambda \leq \frac{1}{\sqrt{\bar{n}\mu_0}},$$

then Friedrichs' scheme

$$S_h u = \sum_{j=1}^n \left\{ \frac{u(x+\delta_j, t) + u(x-\delta_j, t)}{2n} + \lambda A_j(x) \frac{u(x+\delta_j, t) - u(x-\delta_j, t)}{2} \right\}$$

is stable in the sense of Lax-Richtmyer.

Here μ_0 is the supremum of the spectral radius of the regularly hyperbolic matrix $\sum a_j(x)\xi_j$ over $|\xi|=1$ and all $x \in R_x^n$.

This corollary is a strong form of Theorem¹⁾ 4, [7], p. 162. The latter had only strict inequality in (1.2).

Our corollary follows from the proof of Theorem 4 [7], pp. 162-165, if in the last step of the proof one applies our theorem instead of Theorem 3 [7]. Therefore we need only prove our theorem.

We adapt to the case at hand Friedrichs' proof [1, 6] of the Lax-Nirenberg theorem for pseudo-differential operators.

Choose a smooth *even* mollifier $q^2(\sigma)$ with support in the unit sphere, $|\sigma| \leq 1$, and integral 1,

(1.3)
$$\int q^2(\sigma) d\sigma = 1.$$

Convolve

(1.4)
$$g(x,\xi) = p(x,\lambda(\xi))|\lambda(\xi)|^2$$

with q^2 to obtain the mollified symbol

(1.5)
$$a(x, \xi) = \int g(x, \xi - h^{1/2}\sigma)q^2(\sigma)d\sigma$$
,

which, after the change of variable

$$(1.6) \qquad \qquad \zeta = \xi - h^{1/2} \sigma ,$$

¹⁾ Theorem "3" is a misprint in [7], p. 162.

becomes

(1.7)
$$a(x, \xi) = h^{-n/2} \int g(x, \zeta) q^2 (h^{-1/2} [\xi - \zeta]) d\zeta.$$

Rearrange (1.7) into the double symbol

(1.8)
$$b(\xi_2, x_1, \xi_1) = h^{-n/2} \int q(h^{-1/2} [\xi_2 - \zeta]) g(x_1, \zeta) \cdot q(h^{-1/2} [\xi_1 - \zeta]) d\zeta.$$

Obviously b generates the symmetric operator

$$B_{h}u(\xi) = \int \hat{b}(h\xi, \xi - \xi', h\xi')\hat{u}(\xi')d\xi'.$$

We complete the proof by means of three lemmas.

Lemma 1.1.
$$\langle B_{h}u, u
angle{\geq}0, \ u{\in}L^{2}_{x}$$
 .

Lemma 1.2. $||A_h - G_h|| = 0(h)$.

Lemma 1.3. $||B_h - SyA_h|| = 0(h)$.

This yields the desired result:

$$\begin{split} -Re \langle P_h \Lambda^2 u, u \rangle \leq & \langle (B_h - SyG_h) u, u \rangle \\ \leq & [||B_h - SyA_h|| + ||A_h - G_h||] ||u||^2 \leq 0(h) ||u||^2 \,. \end{split}$$

Proof of Lemma 1.1. Since $b(h\xi_2, x_0, h\xi_1)$ is a non-negative symmetric kernel for each value x_0 of x:

$$\iint \bar{\hat{u}}(\xi_2) e^{i\xi_2 \cdot x_0} b(h\xi_2, x_0, h\xi_1) \hat{u}(\xi_1) e^{-i\xi_1 \cdot x_0} d\xi_1 d\xi_2 \ge 0,$$

integrate with respect to x_0 , change the order of integration and apply Parserval's relation to get

$$0\leq \iint \overline{\hat{u}}(\xi_2)\hat{b}(h\xi_2,\xi_2-\xi_1,h\xi_1)\hat{u}(\xi_1)d\xi_1d\xi_2 = \langle B_h u,u\rangle.$$

Proof of Lemma 1.2. By (1.3) and (1.5),

$$\hat{a}(\mathfrak{X},\,\xi)-\hat{g}(\mathfrak{X},\,\xi)=\int ig[\hat{g}(\mathfrak{X},\,\xi-h^{1/2}\sigma)-\hat{g}(\mathfrak{X},\,\xi)ig]q^{2}(\sigma)d\sigma\;.$$

To find a bound for $|\hat{a} - \hat{g}|$ note that $\hat{g}_{\xi_{\mu}}(\chi, \xi)$ exists and is uniformly Lipschitz continuous in ξ with Lipschitz bound $\hat{k}_{\mu}(\chi) \in L^1$. This follows from the representation (1.1) for $p(\chi, \xi)$ and the conditions on λ . A Taylor expansion of $\hat{g}(\chi, \xi - h^{1/2}\sigma) - \hat{g}(\chi, \xi)$ in $h^{1/2}\sigma$ yields

116

the estimate

$$\begin{split} |\hat{a}(\mathfrak{X},\,\xi) - \hat{g}(\mathfrak{X},\,\xi)| &\leq h^{1/2} |\sum_{\mu} \hat{g}_{\xi\mu}(\mathfrak{X},\,\xi) \, \int \sigma_{\mu} q^2(\sigma) d\sigma \\ &+ h \sum_{\mu} \hat{k}_{\mu}(\mathfrak{X}) \int |\sigma|^2 q^2(\sigma) d\sigma \,. \end{split}$$

The term involving $h^{1/2}$ is zero since q^2 is even. Since $\int |\sigma|^2 q^2(\sigma) d\sigma \leq 1$, and $\sum \int \widehat{k_{\mu}}(\chi) d\chi < \infty$, Lemma 1.2 follows.

Proof of Lemma 1.3. By (1.7), (1.8) and (1.6) $A_h + A_h^* - 2B_h$ is associated with

$$egin{aligned} \hat{a}(\chi,\,h\xi) + \hat{a}(\chi,\,h\xi + h\chi) - 2\hat{b}(h\xi + h\chi,\,\chi,\,h\xi) \ &= \int \hat{g}(\chi,\,h\xi - h^{1/2}\sigma) igg[q(\sigma + h^{1/2}\chi) - q(\sigma)igg]^2 d\sigma \,. \end{aligned}$$

Thus,

$$egin{aligned} &|\hat{a}+\hat{a}^R-2\hat{b}|\leq \sup_{\xi} ||\hat{g}(\mathfrak{X},\xi)|\,|\mathfrak{X}|^2higl[\sum_{\mu}\int\int_{0}^{1}&|\partial_{\sigma_{\mu}}q(\sigma+eta h^{1/2}\mathfrak{X})|\,deta d\sigmaigr]^2\ &=Ch\sup_{\xi}|\hat{g}(\mathfrak{X},\xi)|\,|\mathfrak{X}|^2\,. \end{aligned}$$

Integration with respect to χ yields Lemma 1.3:

$$||\hat{a} + \hat{a}^R - 2\hat{b}|| = 0(h)$$
.

This completes the proof of the theorem.

References

- Friedrichs, K. O., Pseudo-Differential Operators, An Introduction, Lecture notes with the assistance of R. Vaillancourt, Courant Inst. Math. Sci., New York Univ., 1968, 208 pp.
- [2] Lax, P. D., The L_2 operator calculus of Mikhlin, Calderón and Zygmund, Mimeographed lecture note, Courant Inst. of Math. Sci., New York Univ., 1963, 17 pp.
- [3] Lax, P. D. and L. Nirenberg, On stability for difference schemes: a sharp form of Gårding's inequality, Comm. Pure Appl. Math. 19 (1966), 473-492.
- [4] _____, A sharp inequality for pseudo-differential and difference operators, Proc. Symp. on Singular Integrals, Amer. Math. Soc. 10 (1967), 213-217.
- [5] Vaillancourt, R., Pseudo-Translation Operators, Thesis, New York Univ., 1969, 113 pp.
- [6] _____, A simple proof of Lax-Nirenberg Theorems, Comm. Pure. Appl. Math., to appear.
- [7] Yamaguti, M. and T. Nogi, An algebra of pseudo-difference schemes and its application, Publ. RIMS Kyoto Univ. Ser. A, 3 (1967), 151-166.