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A Family of One-parameter Subgroups
of 0(<5r) the Variable

of the White Noise

By

Hiroshi SATO*

Summary

Let Lr be the real Hilbert space of square summable functions
on the real line and let Sr be the space of rapidly decreasing func-
tions. Then we can define the probability measure ^ of the Gaussian
white noise on the conjugate space <S? of Sr.

Let O(S,) be the group of rotation which act on Sr. Then
every element g of 0(<5r) induces an automorphism g* on the pro-
bability space ((5?, 11) and so every one-parameter subgroup of O(Sr)
induces a flow on (<5?, //-)•

T. Hida, I. Kubo, H. Nomoto and H. Yoshizawa [1] introduced
a certain kind of one-parameter subgroups of O(Sr) arising from
the variable change by functions,

In this paper, we define another kind of one-parameter subgroups
of O(Sr} arising from the variable change by distributions and show
that this family contains the shift, the tension and furthermore all
that commute with tlw shift.

I. Introduction

Let L2 = L2 (— ̂ , H- oo) be the complex Hilbert space of complex-
valued square summable functions on the real line and L2

r be the
real Hilbert space consisting of all real-valued functions in L2. Let
S be the complex topological vector space of rapidly decreasing
functions on the real line, that is
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vS = \\t\\k. p= SUP
-oo -

= Q, 1, 2, 3,

where C°° is the set of all infinitely many times continuously
differentiable functions. It is well-known that S is a cr-normed
nuclear space with the family of the norms {||£|Uf/, ; k, p = Q, 1, 2, •••}.
Let Sr be the real topological vector space consisting of all real-
valued functions in S. Then Sr is also a nuclear space contained
in L* densely, and by Minlos' theorem a continuous postive-definite
functional on Sr defined by

determines a probability measure //, on <5? such that

C(f) =

where ||f|j stands for the norm on L? and <X, £> the canonical
bilinear form on S?xSr. We call this probability measure //, the
Gaussian white noise.

Let O(3r) be a group of rotations on L? and that map Sr onto
Sr and the restriction of that to Sr is homeomorphism on Sr. Then
for every g in O(Sr}, we can define a homeomorphism g* on S* by

and it is well-known that g* is an automorphism on the probability
space (<S?, /A), (see for example T. Hida [2]). By the above corres-
podence, every one-parameter subgroup of 0(Sr) induces a flow on

In this paper, we first define a subgroup of O(Sr) which comes
from the variable change by distributions, then we find a family of
one -parameter subgroups of O(Sr) which contains the shift and the
tension, and finally we show that the above family contains all the
one-parameter subgroups of O(Sr) that commute with the shift.

Let (p(x) be a complex-valued locally summable function on the
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real line and let f<p(x) be an absolutely continuous non-decreasing
function defined by

fv(x) = {* \v(y)\*dy , -«><*<+00.
Jo

We add to cp(x) two assumptions as follows.

•>(+°°) (= lim/,(*)) = +00 ,
(A' ' ,(- °°) ( = Km /,(*)) = -

X-+-00

(A. 2) 9>(*)=l=0 a.e.

Then fv maps the real line onto itself in one-to-one manner, and
therefore, the inverse function f^\x) is well-defined. Now we define
a unitary transformation cj[<p] on L2 as follows.

(i. i) aMK*) = ?«(/*(*)) > ?^L2 .

Let £/(<S) be a group of unitary transformations on L2 the
restriction of which to S are homeomorphisms from S onto <5, and
let ^U^ be the set of locally square summable functions q>(x) which
satisfy (A. 1) and (A. 2) and for which g[>] belong to U(S).

In Section 2, we determine the family of functions concretely.
In fact we have the following theorem.

Theorem 1. A function <p(x) belongs to LU^ if and only if it
satisfies the following four conditions.

(S.I)

(S.2)

(S. 3) For arbitrary non-negative integers ky p, there exists a positive
number r = r(kyp) such that

(1.2) lim
^

(S. 4) For every non-negative integer p, there exists a positive number

P~p(P) such that

(I. 3) lim = 0 .
^ f
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Let £F be the Fourier transform on L2 defined by

(1. 4)
V27T J- +

Then it is well-known that £?e £/(£). Suppose now a function <p(x)
in ^U^ is Hermitian, i.e.,

and put

(1.5)

Then §[>] belongs to
In Section 3, we first show that ^U^ is a group with respect to

a product operation ® defined by

(1. 6) (<P®+)(X) = ?(*>K/*W) , <p, ^e^ ,

and next, g[<p] is a unitary representation of the group Ciyt5 on L2

that is,

(i. 7) sMsM = gD?®^] , ^ * e ̂  .
Using the above relation, we find two interesting families of

one-parameter subgroup of O(Sr] which are given in the type (1. 5)
and contain the shift and the tension in the terminology of [1].
The exact statements are as follows.

Let 2" be the set of all real odd slowly increasing functions,
and for every function h(x) in 3 define

Then (&(/*) is a one-parameter subgroup of 0(Sr] and we have :

Theorem 5. Let &0 be the family of one-parameter subgroups
of O(Sr) defined by

1°) (B0 contains the shift.
2°) /w ^^rv A(^), K(x) in 3, CS0(//) ^^rf ®0(^0 commute with each
other.

Furthermore we have the following theorem.
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Theorem 6. For every function h(x] in 2,

is a one-parameter subgroup of O(Sr). The induced flow is isomor-
pltic to tlie flow induced by the tension

Finally, in Section 4, we show that &Q contains all one-parameter
subgroups of 0(Sr) that commute with the shift. In other words, ©0

is the maximal Abelian subgroup of O(Sr} containing the shift.
The author shows his hearty thanks to Professor T. Hida,

Professor H. Yoshizawa and Mr. L Kubo who encouraged him and
gave him useful remarks.

2, The Family of Functions CUS

In this section, we determine the family of functions ^^ ex-
plicitly. To this end, we prepare several lemmas.

Lemma 1. Let <p(x) be a function in V^. Then the inverse of
the unitary transformation g[<p] on L2 is given by gC^"1] where

(2.1) <p'\x) = M/VW)]-1 -

Proof. It is not difficult to show that <p~\x) is locally square
summable and satisfies (A. 1) and (A. 2).

For every £(#) in L2, we have

On the other hand, we have

f lor(X\- (fv(x) Jy
J f J *P\ ) — I

Jo

I 7 \ / I f i l l V

l^(«)l ! ~ '
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by the variable change y=fv(x). This means that fvl=f<P-1
9 which

implies

= £ > for everY ? in L2
 0

In the same manner, we have

SM^O'1]!; = £ i for every f in L2 .

This proves the lemma.

Lemma 2. Let <p(x) and %(x) be k-times continuously differentiable
functions where k is a positive integer. Then, if the function

(2.2) *(*) = ?•(*)£(/;(*))

is also k-times continuously differentiable, we have

(2. 3) ,<*>(*) = <p<*>(x%(ff

where Pv.^+iE^]; z> = l, 2, • • • , & <zr£ g/00w fry evaluating the polynomials

P\k-\(z» %i> • • • , -2:*, «*)i wAicA <2r^ determined independently of the func-
tions <p(x) and f(jtr), a^ ^i = ^(^), z2=<p'(x), • • • , ^* = ^c*~1)(^)-

The proof of this lemma is given by an elementary calculation.
Using Lemma 1 and Lemma 2, we prove the following lemma.

Lemma 3. // a function q>(x) is in ^^ then it satisfies the
conditions (S. 1) and (S. 2).

Proof. Let cp(x) be a function in V^. Then by definition, the
g[<p] is reduced by S, and therefore, for every function %(x) in S,
the function

(2. 4) ?(*) = (flMf )(*) = *(*)«/,(*))

is in J.
We now show that <p(#) is continuous. In fact for arbitrary

real numbers x, h, we have

By the continuity of the functions ^(jc), %(x) and /<^(^), we have
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0 = ?(/,(*)) lim [>(*+A)-<?(*)]+ 0,
A-H)

as // tends to 0. Since f in S is arbitrary, we have

<(x)~ = 0.

Next we show by mathematical induction that cp(x) is arbitrary
times continuously differentiable. Since <p(x) is continuous, it is
sufficient to show that p(x) is (& + l)-times continuously differentiable
assuming that it is &-times continuously differentiable.

Since y(x) = Q\jtp]l;(x) is in S for every %(x) in <S, we have (2.3)
by Lemma 2. For every x we may choose a function %(x) in 3
such that £(/?(#)) =1= 0, and we have

k

Since Pv,k-&<P~\, v = l, 2, • • • , k, are polynomials of at most (k — l)-times
derivatives of <p(x) and since, by assumption, cp(x) is &-times con-
tinuously differentiable, the right side of (2.5) is continuously
differentiable. Therefore <p(x) is (k + l)-times continuously differen-
tiable. This proves (S. 1).

Since Q{_<P~\ is homeomorphism of S, g[<p] is also reduced by
S, and we have cj^Drf^sD^"1] by Lemma 1, where <p~\x) is given
by (2.1). Therefore <p~l(x) must be in V^. Applying [S. 1] to
<P~\x), we have (S.2).

Before stating Lemma 5, we prove the following lemma.

Lemma 4. Let {an} and {/3n} be monotone non-decreasing diver-
gent sequences of positive numbers such that

(2. 6) lim ^ = 0, for every positive integer py

and let /3l be larger than 1. Let {jn(x)} be a sequence of functions
defined as follows:

(2. 7) 7„(#) = 7n(x 5 an 9 /3»)
1

an

an
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where

(expf-^-l, \x\<l,
7 ( X ) = \ U2-U

10, \x\>l.

Then {jn} is a bounded sequence in <S.

Proof e It is not difficult to show that each <yn is in <S. Therefore
it is sufficient to show that

(2.8) supllyJU.^ + oo,
n

for arbitrary non-negative integers k, p.
Since jn(x) vanishes outside the interval [ — /3n — 1, /3w-fl], we

have

(H-/3J* sup] %?'(*)

On the other hand, by assumption, orirXl + ySJ* is bounded in n.
Therefore we have (2. 8).

Lemma 5. // a function <p(x) is in CUS, then it satisfies (S. 3)
and (S.4).

Proof. Let <p(x) be a function in <Uc9. Then by Lemma 3, it
satisfies (S. 1) and (S. 2).

First we show (S. 3) by mathematical induction with respect to
k. Let & = 0 and assume (S. 3) is not true. Then there exists a
non-negative integer p such that

f
\f,(x)\r

for every positive number r. Noting (A. 1) and changing the variable

by y=f<f(x)) we have

HE = +00.
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Therefore, restricting r to non -negative integers, we can choose a
sequence of number {f3n} such that

(2.9) K l f t K I & K - < I / S J < - t + -,
and that

(2. 10) lim a" = + co 9 for every non-negative integer r,«•*+- i /3nr
where

«„= l<X/,-X/3J)ll/,-W >•

In fact we may choose /3W^2 and determine j3u(\ /3H\ > 1^8,,-J) by

Put

7«(*) = 7,,(*; \/^, I /?„!), w = l, 2, 3, ••• .

Then the sequence of functions {yn(x}} is bounded in cS since the
real sequences {\/a~,,} and {I/3J} satisfy the hypothesis in Lemma 4.
Therefore the sequence of functions {gC^o^} must be bounded in
S because 9^95] is a homeomorphism of S, while, we have

»llo^ = sup \xp<p(x)<Yn(f<p(x))\

v ane e

Therefore {g[</>]yw} is not bounded in cS, which contradicts to the
assumption. Thus (S. 3) is true for k = 0.

Assume that (S. 3) is true for k = 0, 1, 2, ••• , h. Then for every
k = Q, 1, 2, ••• , h, and for every /> = 0, 1, 2, ••• , there exists a positive
number r=r(k, p} for which (1.2) is valid.

For every function %(t) in <S, set ^(x) = (^(p~]^)(x}^S and differ-
entiate it (A + l)-times. Then by Lemma 2 we have

Let 5 be the maximal degree of the polynomials PV,/,C^] I *> = !, 2,
ft-rl, and put
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Since tfh+1\x} and fv)(*)> i/ = l, 2, — , A + l, are in S for every non-
negative integer p, we have

(2. 11) d(f ) = sup | * V*+15 (*)£(/„ (*)) I
#

> sup i *v*+ioo i +2 sup i x*p, *
sup

where

and [^] means the maximal integer not greater than z.
Assume that (S. 3) is not true for & = A + 1. Then there exists

a non-negative integer p such that

>

\y\r

for every positive number r. Therefore, in the same manner as
before, we can choose sequences of real numbers {aj and {j3n}
such that

an = i9>"+1W(fl.))l 1/^08-) I*, n = l, 2, 3, .- ,

and that (2. 9) and (2. 10) are valid.

Put
7n(x) = 7n(X', VOn, I @n I ) , «=1, 2, 3, — .

Then by Lemma 4, {yw} is bounded in S. Because of (2. 12) and
the continuity of g[^>] {(%,)} must be bounded in S.

On the other hand we have

d(7w) = sup IsH^'WI I %,(/,(*)) I

= sup I/^WKI^1^/,-1^))! I7.WI

> I/^GSJI'I^^C/^OS-))! I r.08.) I

= C^_ = VOn^ +oo? ^f +°°-
Vane e
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This contradicts to the assumption and therefore (S. 3) is true for
k = hjrl. Thus we have proved that (S. 3) is true for arbitrary
non-negative integers k and p.

Next we show (S. 4). If cp(x) is in fUc5, then by Lemma 1,
y~l(x) = {_y(fv\x)}~]-1 is also in ^ Using (S. 3) for <p~\x) with
k = Q and with any non-negative integer p, we can choose a positive

number p = p(p] such that

lim

and therefore we have

lim -

= lim

•-VrYH ! f -ifrM'(p \X)J I \J<P \XJ I

I r \P

w->+°

= lim '* = 0
'"•>'~i9>(*)i i(*)r

Thus we have proved the lemma.

Theorem 1. A function <p(x) is in V^ if and only if it satisfies
(S. 1), (S. 2), (S. 3) and (S. 4).

Proof. The necessity of (S. 1)— (S. 4) is derived from Lemma 3
and Lemma 5. We prove only the sufficiency. Suppose that <p(x)
satisfies (S. 1)~(S. 4). By (S. 1) <p(x) is locally square summable, and

for every %(%) in S we have

Next we show that/v(^c) satisfies (A.I). We begin by proving
the following condition :
(S. 20 There exists a positive number 7 such that

(2.12) i

To prove (S. 20, it is enough to show that there exists a positive
number 7 such that

(2.13) lim |*

Assume that (S. 20 is not true. Then for every positive number r
we have
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(2.14) Jim |*|r|9>(*)l = 0.

Observing the relation

\f<p(x)\<\f*(y)\, if U<x<y or

together with (2. 14), we have for every positive number r,

US !/•(*)! ^ i— min (/,(!), |/,(-l)|)_ + 0 0 o

w-*+~ \x\r\ p(x) i i*i->+°° i x r i ?>(*) i
This contradicts to (S. 4) and hence (S. 20 is true,

Using (S. 3) with k = 0 and P=\JY~] + 19 we can choose a positive
number r=r(Q,p} such that

TIE .
(/„(*) |-

Noting (2.13), we have

lim |/,(jr) | = + oo „
M-> i «»

Thus (A. 1) is proved.
Our next step is to show that olj^Q is reduced by S and is

continuous in the topology of S. Lemma 2 proves that for every
non-negative integer k

Let ScA° be the maximum degree of the polynomials Pv^
v = l, 2, ••• ,k, and let r(p), p = Q, 1, 2, ••• , be the maximum of the
(S. 3) positive numbers r(v, p\ z/ = 0, 1, ••• , k, where r(yy p) is selected in
(S. 3) for <p(x). Then we have for arbitrary non-negative integers k, p,

+ s u p

k
2'

v i
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where

Thus we have proved for arbitrary non-negative integers k, p,

which means that g[<p] is reduced by S and continuous in the
topology of S. By Lemma 1 and the above estimation, it is enough
to show that (S. 3) is valid for <p~\x). We show it by mathematical
induction with respect to k.

In case &=0, put r(0,p} = p(p) where p(p) is given by (S. 4).
Then we have

lim \*\
) I

\<P(X)\ \x

and therefore (S. 3) is valid.
Suppose (S. 3) is valid for <p~\x) in the cases where & = 0, 1, ••• , A,

that is, for every pair of non-negative integers ky p ; & = 0, 1, ••• , A,
^ = 0, 1, 2, ••• , there exists a positive number r(&, p) such that (2. 9)
is valid for <p~\x). Then we have only to show that (S. 3) is valid
for k = h + l.

From (S.I) and (S. 2) we have ^"1W = M/^1(*))]"1eC00 and a
simple calculation proves

(2. 15) <p-\x)<p(f,-*(x)) = 1 .

Differentiating the both sides of (2. 17) (/i + l)-times, Lemma 2 shows
that

V —1

and therefore
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Let 5 be the maximum degree of the polynomials P*th[<p]', i/ = l, 2,
, and let r'(p} be the maximum of the positive numbers

= 0,l, • • * , / * .
Then, considering that (S. 3) is valid for <p(x), we have for every

non-negative integer p and for r=r(v,Q) which is found in (S. 3)
for <p(x),

lim I

l i m a 1 • — ' • • /r—
|*|_^ooV=l |/<p *W

where ^ = r/(/> + [r])(5 + l). Therefore (S. 3) is valid for A? =
Thus we have proved the theorem.
In Theorem 1, we determined ^U^ by the conditions on <p(x)

and f<p(x). It is preferable to determine V^ by conditions only on
<p(x). Unfortunately we have not succeeded in this direction, but we
have the following propositions.

Proposition 1. Let <p(x) be a function for which the following
condition is valid'.

(S. 2") There exists a positive number 7<-^ such thatz*

(2.16) m<f = inf(l+|*|») |9>(*)|>0.
x

Then <p(x) is in V^ if it is a slowly increasing function, that is, it
is infinitely many times continuously differentiate and for every non-
negative integer k, there exists a positive number r=r(k) such that

(2.17)

Proof. Let <p(x) be a slowly increasing function for which

(S.2") is valid. We have to prove (S.1)~(S.4) for <p(x), however,
(S. 1) and (S. 2) are evident from the assumptions.

For every real number x, (\ x \ ̂  1), we have
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|/,(*)| = \\* \<p(y)\*dy\
Jo

s: dfy

where 7 is a positive number given in (S. 2"), and therefore

(2.18) !/„(*) !>* I *r«, if

On the other hand, since cp(x) is slowly increasing, there exists a
positive number r=r(0) such that

(2.19) M<p = sup:

and we have for every real number x,

(2.20) \j

For arbitrary non-negative integers k, p, put

Then we have from (2. 20) and (2.19)

lim <P\

= lim

Thus we have proved (S. 3), while, for every non-negative integer
P, put

Then we have from (2. 18) and (2. 22)
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!/,(*)!*lim
\X\'\<P(X)\

p[_ lim | x |71 (p(x) | ] 1 lim = 0 .
!*|HM°° 1*1->-!«« j x \p

Thus we have proved (S. 4).
Conversely we have the following proposition.

Proposition 2* // a function <p(x) is in V^ for which there
exists a positive number T = T(O) such that (2. 19) is true, then it is
a slowly increasing function.

Proof. Let cp(x) be a function which satisfies the hypothesis
of the proposition. Then by Theorem 1, <p(x) satisfies (S. 1)—(S. 4)
and by the estimation (2.19), we have (2.20). Therefore from (S. 3)
and (2.20), we have for every non-negative integer k,

O ^ l i m l^*)l1*1-"-!/,(*) rc*-°>
^ lim

Thus we have proved the proposition.
Summing up Proposition 1 and Proposition 2, we have the

following theorem.

Theorem 2. Let <p(x) be a function for which (S. 2") is true and
assume that there exists a positive number T = r(0) such that (2.19)
is true. Then <p(x) is in V^ if and only if it is a slowly increasing
function.

Corollary. Let <p(x) be a function such that

(2.23) \<p(x)\=\.

Then it is in CUS if and only if it is a slowly increasing function.

3o One-parameter Subgroups of O(Sr)

In this section, we first show that ^U^ is a group with the
product operation ® defined by (1. 6). Then we proceed to discuss
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two interesting families of one-parameter subgroups of O(Sr} which
contain the shift and the tension.

Lemma 6. The correspondence between <p(x) in ^U^ and g[<£>] in

r} is one-to-one.

Proof. It is evident that the constant function 1 = 1(#) is in
cUg and g[l] = I. Therefore we have only to show that if for a
function <p(x) in ^U^, g[0>] = I, then <p(x) = 1.

Let g[£>] = I and let %N(x) be a function in S such that gN(x) = l
where -N^x^N, N=l, 2, 3, — . Then we have

(*) = vWZMW) = ?ArWi N=l, 2, 3,

and therefore

<p(x) = 1, maxC-Ar^-X

Thus, by letting A^f +°°, we have

Theorem 3. V^ is a group with respect to the product opera-
tion ®.

Proof. For every <p(x), ty(x) in ^U^ and every function %(%) in
<S, we have

(*)f (/*«>/»(*))
On the other hand we have

and therefore

(3. 1) f+0fvW =

Thus we have

(3.2) flMflM =
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It is evident that the function (<p®^}(x) satisfies (A. 1) and (A. 2),
and that, from (3.2), g[<?®^] = gMg[^]ecU(cS) holds, therefore
(P®T]T)(X) is in CUS for every <p, -\]r in cUtS.

Since ^(S) is a subgroup of the unitary transformation group
on L2, and since the correspondence between g[<p] and q> is one-to-
one by Lemma 6, it is not difficult to prove the associative law.

Finally by simple calculations we can easily show that

and

where q>~\x) is defined by (2. 1). Thus we have proved the theorem.
Now we define three subgroup of CUS as follows.

reai positive} .

Lemma 7. For ey^ry 9> /« ^,5 ^fer^ exists a unique element (p+

in Vg and a unique element <pe in ^^ such that

(3. 3) <p = <pe®<p+.

In other words, Ug is expressed as the product

(3. 4) <US = <&&<{]$ .

We call cpe and g>+ the argument part and the polar part of <p,
respectively.

Proof. Put <pe(x) = <p(x)l | <p(x) | and <p+(x) = | <p(x) | . Then they
are the required.

Remark. The decomposition (3. 4) is not a direct product. In
fact, if <p = cpe@cp+ and i|r = -\|re®ip where <p\ i/^e^Uj and <p+,

we

Hence, we have

(3. 5)
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(3. 6)

Lemma 8. Let <p(x) be a function in cUtS. Then §[95] is in
if and only if <p is in *U^ where §[<£>] is defined by (1.5).

The proof is easy.
Here we consider one-parameter subgroup of O(Sr) given by

type (1.5). If for a subset {<pt\ — oo<^< + oo} Of CUS, {§[>*]} is
a one-parameter subgroup of S(Sr), then by Lemma 8

oo? and we have

(3.7)

9l>o] = I -

From (3. 7) and Lemma 6, we have

(3.8)

that is, {(pt} is a one-parameter subgroup of Vg. Conversely, it is
evident that every one-parameter subgroup {<pt} of ^U^ determines
a one-parameter subgroup {g[<^]} of O(Sr). Therefore, to obtain a
one-parameter subgroup of 0(<Sr), it is enough to obtain a one-para-
meter subgroup of *U^ related to the given subgroup by the formula
(1. 5).

Let {<pt} be a one-parameter subgroup of <U^ f°r which (3. 8)
is valid. Then by Lemma 7, the relation (3. 8) is decomposed into
the following two relations.

(3 10)

where <p\ and 95^ are the argument part and the polar part of ^,
respectively. Therefore, to obtain a one-parameter subgroup of
Ul

s, we first obtain a one-parameter subgroup of cUJ^r = cU!l
sr\cU^

and then, corresponding to it, we must solve the equation (3.10) in
cU^ = cU^ncU^. However, we have not yet succeeded in obtaining
a general method to find a one-parameter subgroup of CUJ1^, but at
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present we know two such subgroups from T0 Hida, I. Kubo EL
Nomoto and H. Yoshizawa [1]. One of them is the trivial

(3.11) ?>?(*) = 1,

and the second is the tension

(3.12) <p(x) = *•>**

where a is an arbitrary real number not vanishing.
To solve the equation (3.10) corresponding to the trivial and

the tension, we assume the continuity of <pt(x) in t for every fixed
real number x.

Corresponding to the trivial, the equation (3.10) becomes

(3.13)

Noting that <pe
t(x) is in ^g and |<p?(#)| =1 for every (t,x), we can

define a real function

(3.14) H(£, x) = — log cpl(x), — °° </ < °° ,
i

such that H(0, x) = 0 and that R(t, x) is continuous in t for every
fixed x. From (3.13) we have

*,0 =

and because of the continuity of R(t, x) in

H(f, x) = th(x) , -

where h(x) is a real function equal to H(l, x). Thus we have

(3.15) <p'(x) = exp [ith(x)~] , - oo </< + oo .

Since ^*(J»T) is in ^U^, by Corollary of Theorem 2, it must be
an Hermitian slowly increasing function. And, it is easy to show
that <pl(x) = exp [ith(x)~\ is an Hermitian slowly increasing function
if and only if h(x) is a real odd slowly increasing function. Con-
versely, if h(x) is a real odd slowly increasing function, then it is
evident that the one-parameter set defined by (3.15) is a one-para-
meter subgroup of CU^.
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Summing up the above, we have the following theorem.

Theorem 4. Let {<^(#) ; — oo<£< + oo} be a one-parameter set
of functions with the trivial polar part, that is, <pt(x) | =1, and assume
that for every fixed x, <pt(x) is continuous in t. Then it is a one-
parameter subgroup of <Uj if and dnly if <pt(x) is of the form

(3. 16) <pt(x) = exp [ith(x)~\ , - oo < t < + °o ,

where h(x) is a real odd slowly increasing function.
We note the following : Let 2 be the set of all real odd slowly

increasing functions. Then for every h(x) in 3 we have a one-para-
meter subgroup {exp \_ith(x)~\ ; — °°<t< + °°} of ^U^ and therefore
a one-parameter subgroup ®0(A)= {§[exp [ttfi]~] ; — oo <£< + 00} Of

0(3,).

Theorem 5. Let ©0 be the family of one-parameter subgroups of
O(Sr) defined by

Then we have :
1°) ©0 contains the shift.
2°) For e00ry A(JC), /^(JT) m 3, ©0(A) <^^rf ©oC*7) ^^ commutative.

Proof. Put /*(*)=-*, then ®O(-A:)= {§[^~^]} is the shift. In
fact, for every £(#) in L^ we have

where |(\) = (3'|)(\).
On the other hand, if h and h! are in 2, then for every real

number t, s, we have

§[*»*] g[V'*']
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Thus we have proved the theorem.

Remark. The family ©0 arises from the variable change by
distributions. In fact, for any function h(x) in 3, we have

where Th is given by the Fourier inverse transform of eith as a distri-
bution and * stands for the convolution.

Next, we solve the equation (3. 10) corresponding to the tension
(3. 12). In this case, the equation (3. 10) becomes

where <pe
t(x)y — o°<^<4-°°, is in <U^. Hence we have

(3. 18) <pi(e«x) = 2?±i^) , -oo<^5 < + oo
^?W

and therefore <pi(x) is continuous in (/, x). Then we can define a
real function H(/, jf) by

(3. 19) H(f, jf) - — log <p*(x) , - oo </, ^< + oo ,
i

such that H(0, x) = Q and that H(/, AT) is continuous in (t, x). Accord-
ing to (3. 17), we have

Since <p?(^) is Hermitian, we have

(3.21) H(f, x) = -

and since <p*(x) is slowly increasing in x for every fixed t, H(t, x)
is also slowly increasing and we have from (3.21)

dX2k ' x=o

Conversely, if we find a solution H(£, x) of (3. 20) for positive x
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which is slowly increasing in x > 0 and satisfies conditions as follows

(3.23) lim — H(£, #) = 0 , k=Q, 1, 2, ••-
*->+<*> Qx2k

then we can extend it to the whole line by

H(f , 0) = 0 ,
(3 24) 1 H(f, x)= -H(f, -x), x<0.

It is easy to see that

(3.25) <p't(x) = exp liR(t, x)-]

is a solution of (3.17). Therefore, we solve the equation (3.20)
only for positive x.

Set

(3.26) G(f, y) = H(f, O» -

Then we have from (3.20)

(3.27) .
I G(0, y) = Q.

Further, setting y=0, we have

« O«N / G(t' °) + G(5' V = G(t+s> °)'(o. Zo) s
I G(0, 0) = 0 .

Set

then by assumption g(t) is continuous and we have from (3. 28)

(3.29) G(t,y) = g(t+y)-g(y), -™<

Finally, setting y= — logx, we have

H(f, x) = G(t, —logx)
\ a I

= g(t + — log *) - ^r(— log x]
\ a 1 \a /

= g(— log eatx}-g(±- log
\a / \a

= h(eatx)-h(x) , -°°<t< + °°, x>0,
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where h(x) = g( — log x \ x>0.
\a '

The problem to characterize the class of the h(x) is still open
but we have the following proposition.

Proposition 3. For every function h(x) in 3,

<P*(x) = exp [i(h(e*'x) - A(*))] , -

is a solution of the equation (3. 17) in *Ug.
The proof is easy.
Combining the above solution and the polar part of the tension

(3. 12), we have the following theorem.

Theorem 6. For every function h(x) in 3,

is a one-parameter subgroup of O(Sr)- The induced flow is isomor-
phic to the flow induced by the tension

®.(0) =

Proof„ It suffices to prove the latter part of the theorem. In
fact we have for every t

[exp(-|

and hence

This proves the theorem.

Example. Put a = l andh(x} = x. Then for every %(x) in Sr

we have
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4. One-parameter Subgroups of O(Sr} Which
Commute with the Shift

In this section, we appeal to the following well-known theorem
to prove that all one -parameter subgroups of O(Sr) that commute
with the shift are found in @0.

Theorem 7. Let £> be a Hilbert space and let {Ut} be a con-
tinuous one-parameter unitary group in «£> with the resolution of the
identity (£(X)} of simple spectrum. Then for every continuous one-
parameter unitary group {Vt} which commutes with {Ut}, there exists
a real measurable function h(\} such that

(4. 1) Vt = [+ V*x>rfE(X) , - co <f < + oo .

Let {St} be the shift on L?, (£(X)} be its resolution of the
identity and let {Vt} be a continuous one-parameter unitary group
on Lr which commutes with the shift. Then we can extend them
naturally to the operators on the complex Hilbert space L2. We
again denote them by the same notations.

It is well-known that the shift is of simple spectrum and hence
Theorem 7 is applicable. Therefore there exists a real measurable
function h(\) for which (4. 1) is valid.

Furthermore put

(4. 2) E(X) = ffEMff-1 , - oo < x < + oo ,

(4.3) Vt = ^FVtEF~1
y -

Then for every measurable set A, we have

(4. 4) (£(A)f )(*) = %A (*)f (*) ,

where %A(#) is the indicator function of the set A.

Proposition 4. A continuous one-parameter unitary group {Vt}
on L2 commutes with the shift if and only if there exists a real
measurable function h(\) such that for every %(x) in L2

(4. 5) ( ?,£)(*) = eith^(x] , - co < t < + oo ,

where {Vt} is defined by (4.3).

Proof. Let %(x) be an arbitrary function in L2 and put
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n n

v = 0, ±1, ±2, - . . ,
w=l, 2, 3, •-.

Then we have from (4.1), (4.2) and (4. 3)

Vt =

= Hm 2

and according to (4.4)

lim 2 II^C
«-> + oo V

lira 2 ( , | e"™* - eftK*> | 2 1 f(\) | zd\
«-> + «> V J^«,v

for every %(x) in L2. Thus we have proved the proposition.

Theorem 8. A one-parameter subgroup {Vt} of 0(Sr), which is
strongly continuous on L?, commutes with the shift if and only if
there exists a function h(x) in 3 such that

(4. 6) Vt = §[exp (#*(*))] , - oo < t < + oo .

Proof. The sufficiency is obvious and we show only the
necessity.

Let { Vt} be a one-parameter subgroup of O(Sr} which is strongly
continuous on L? and commutes with the shift. Then we can extend
it naturally to a one-parameter subgroup of U(S) which is at the
same time continuous one-parameter unitary group on L2 and we
denote it again by the same notation. Furthermore define {Vt} by
(4. 3). Then, according to Proposition 4, we have Vt=§\_eitKx^~} where
h(x) is a real measurable function and therefore

(4. 7) Vt = §|V' *w] , - oo < t < + oo .
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Finally, applying Theorem 4, we see that the function h(x) must be
in 3.
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