A Family of One-parameter Subgroups of $\mathcal{O}(S_r)$ Arising from the Variable Change of the White Noise

Вy

Hiroshi SATO*

Summary

Let L_r^2 be the real Hilbert space of square summable functions on the real line and let S_r be the space of rapidly decreasing functions. Then we can define the probability measure μ of the *Gaussian* white noise on the conjugate space S_r^* of S_r .

Let $\mathcal{O}(\mathcal{S}_r)$ be the group of rotation which act on \mathcal{S}_r . Then every element g of $\mathcal{O}(\mathcal{S}_r)$ induces an automorphism g^* on the probability space (\mathcal{S}_r^*, μ) and so every one-parameter subgroup of $\mathcal{O}(\mathcal{S}_r)$ induces a flow on (\mathcal{S}_r^*, μ) .

T. Hida, I. Kubo, H. Nomoto and H. Yoshizawa [1] introduced a certain kind of one-parameter subgroups of $\mathcal{O}(\mathcal{S}_r)$ arising from the variable change by *functions*.

In this paper, we define another kind of one-parameter subgroups of $\mathcal{O}(\mathcal{S}_r)$ arising from the variable change by *distributions* and show that this family contains the *shift*, the *tension* and furthermore *all that commute with the shift*.

1. Introduction

Let $L^2 = L^2$ $(-\infty, +\infty)$ be the complex Hilbert space of complexvalued square summable functions on the real line and L_r^2 be the real Hilbert space consisting of all real-valued functions in L^2 . Let S be the complex topological vector space of rapidly decreasing functions on the real line, that is

Received June 30, 1969.

Communicated by S. Matsuura.

^{*} Department of Mathematics, Kyushu University.

$$S = \begin{cases} \xi(x) \in \mathcal{C}^{\infty}; \\ ||\xi||_{k,p} = \sup_{-\infty < x < +\infty} |x^{p}\xi_{(x)}^{(k)}| < +\infty \\ k, p = 0, 1, 2, 3, \cdots \end{cases}$$

where C^{∞} is the set of all infinitely many times continuously differentiable functions. It is well-known that S is a σ -normed nuclear space with the family of the norms $\{||\xi||_{k,p}; k, p=0, 1, 2, \cdots\}$. Let S_r be the real topological vector space consisting of all realvalued functions in S. Then S_r is also a nuclear space contained in L_r^2 densely, and by Minlos' theorem a continuous postive-definite functional on S_r defined by

$$C(\xi) = \exp\left[-\frac{1}{2}||\xi||^2\right], \quad \xi \in \mathcal{S}_r$$

determines a probability measure μ on S_c^* such that

$$C(\xi) = \int_{\mathcal{S}_{\ell}^{*}} \exp\left[i\langle \mathrm{X},\,\xi
angle
ight] d\mu(\mathrm{X})\,,$$

where $||\xi||$ stands for the norm on L_r^2 and $\langle X, \xi \rangle$ the canonical bilinear form on $S_r^* \times S_r$. We call this probability measure μ the *Gaussian white noise*.

Let $\mathcal{O}(\mathcal{S}_r)$ be a group of rotations on L^2_r and that map \mathcal{S}_r onto \mathcal{S}_r and the restriction of that to \mathcal{S}_r is homeomorphism on \mathcal{S}_r . Then for every g in $\mathcal{O}(\mathcal{S}_r)$, we can define a homeomorphism g^{*} on \mathcal{S}_r^* by

$$\langle \mathfrak{g}^* \mathrm{X}, \, \xi
angle = \langle X, \, \mathfrak{g} \xi
angle, \qquad \xi \in \mathcal{S}_r, \, \mathrm{X} \in \mathcal{S}_r^*$$

and it is well-known that \mathfrak{g}^* is an automorphism on the probability space (\mathcal{S}_r^*, μ) , (see for example T. Hida [2]). By the above correspodence, every one-parameter subgroup of $\mathcal{O}(\mathcal{S}_r)$ induces a flow on (\mathcal{S}_r^*, μ) .

In this paper, we first define a subgroup of $\mathcal{O}(\mathcal{S}_r)$ which comes from the variable change by distributions, then we find a family of one-parameter subgroups of $\mathcal{O}(\mathcal{S}_r)$ which contains the shift and the tension, and finally we show that the above family contains all the one-parameter subgroups of $\mathcal{O}(\mathcal{S}_r)$ that commute with the shift.

Let $\varphi(x)$ be a complex-valued locally summable function on the

167

real line and let $f_{\varphi}(x)$ be an absolutely continuous non-decreasing function defined by

$$f_{\varphi}(x) = \int_{0}^{x} |\varphi(y)|^{2} dy, \qquad -\infty < x < +\infty.$$

We add to $\varphi(x)$ two assumptions as follows.

(A.1)
$$\begin{cases} f_{\varphi}(+\infty) \ (= \lim_{x \to +\infty} f_{\varphi}(x)) = +\infty, \\ f_{\varphi}(-\infty) \ (= \lim_{x \to -\infty} f_{\varphi}(x)) = -\infty, \end{cases}$$

$$(A. 2) \qquad \qquad \varphi(x) \neq 0 \qquad \text{a.e}$$

Then f_{φ} maps the real line onto itself in one-to-one manner, and therefore, the inverse function $f_{\varphi}^{-1}(x)$ is well-defined. Now we define a unitary transformation $g[\varphi]$ on L^2 as follows.

(1.1)
$$\mathfrak{g}[\varphi]\xi(x) = \varphi(x)\xi(f_{\varphi}(x)), \quad \xi \in L^2.$$

Let U(S) be a group of unitary transformations on L^2 the restriction of which to S are homeomorphisms from S onto S, and let \mathcal{U}_S be the set of locally square summable functions $\varphi(x)$ which satisfy (A. 1) and (A. 2) and for which $g[\varphi]$ belong to U(S).

In Section 2, we determine the family of functions concretely. In fact we have the following theorem.

Theorem 1. A function $\varphi(x)$ belongs to \mathcal{U}_S if and only if it satisfies the following four conditions.

$$(S.1) \qquad \qquad \varphi(x) \in \mathcal{C}^{\infty}.$$

 $(S. 2) \qquad \qquad \varphi(x) \neq 0, \qquad -\infty < x < +\infty.$

(S.3) For arbitrary non-negative integers k, p, there exists a positive number r=r(k, p) such that

(1.2)
$$\lim_{|x| \to +\infty} \frac{|\varphi^{(k)}(x)| |x|^{p}}{|f_{\varphi}(x)|^{r}} = 0.$$

(S.4) For every non-negative integer p, there exists a positive number $\rho = \rho(p)$ such that

(1.3)
$$\lim_{|y| \to +\infty} \frac{|f_{\varphi}(x)|^{p}}{|x|^{p} |\varphi(x)|} = 0.$$

Let \mathcal{F} be the Fourier transform on L^2 defined by

(1.4)
$$(\mathscr{F}\xi)(x) = \frac{1}{\sqrt{2\pi}} \int_{-+}^{+\infty} e^{-ix\lambda} \xi(\lambda) d\lambda, \quad \xi \in L^2.$$

Then it is well-known that $\mathcal{F} \in U(\mathcal{S})$. Suppose now a function $\varphi(x)$ in $\mathcal{U}_{\mathcal{S}}$ is Hermitian, i.e.,

$$\overline{\varphi(x)} = \varphi(-x)$$
,

and put

(1.5)
$$\tilde{g}[\varphi] = \mathcal{F}^{-1}g[\varphi]\mathcal{F}.$$

Then $\tilde{g}[\varphi]$ belongs to $\mathcal{O}(\mathcal{S}_r)$.

In Section 3, we first show that \mathcal{U}_S is a group with respect to a product operation \otimes defined by

(1.6)
$$(\varphi \otimes \psi)(x) = \varphi(x)\psi(f_{\varphi}(x)), \quad \varphi, \psi \in \mathcal{U}_{\mathcal{S}},$$

and next, g[φ] is a unitary representation of the group \mathcal{U}_S on L² that is,

(1.7)
$$\mathfrak{g}[\varphi]\mathfrak{g}[\psi] = \mathfrak{g}[\varphi \otimes \psi], \quad \varphi, \psi \in \mathcal{U}_{\mathcal{S}}.$$

Using the above relation, we find two interesting families of one-parameter subgroup of $\mathcal{O}(\mathcal{S}_r)$ which are given in the type (1.5) and contain the *shift* and the *tension* in the terminology of [1]. The exact statements are as follows.

Let \mathcal{T} be the set of all real odd slowly increasing functions, and for every function h(x) in \mathcal{T} define

$$\widetilde{\mathfrak{G}}_{0}(h) = \{ \widetilde{\mathfrak{g}}[e^{ith(x)}]; -\infty < t < +\infty \} .$$

Then $\mathfrak{G}(h)$ is a one-parameter subgroup of $\mathcal{O}(\mathcal{S}_r)$ and we have :

Theorem 5. Let $\tilde{\mathfrak{G}}_0$ be the family of one-parameter subgroups of $\mathcal{O}(\mathcal{S}_r)$ defined by

$$\tilde{\mathfrak{G}}_{\mathfrak{0}} = \{ \tilde{\mathfrak{G}}_{\mathfrak{0}}(h) ; h \in \mathfrak{I} \}$$
.

Then we have:

1°) $\tilde{\mathfrak{G}}_{0}$ contains the shift.

2°) For every h(x), h'(x) in \mathfrak{T} , $\mathfrak{S}_0(h)$ and $\mathfrak{S}_0(h')$ commute with each other.

Furthermore we have the following theorem.

Theorem 6. For every function h(x) in \mathcal{D} ,

$$\tilde{\mathfrak{G}}_{\alpha}(h) = \left\{ \tilde{g} \left[\exp\left(\frac{\alpha}{2}t + i \{h(e^{\alpha t}x) - h(x)\}\right) \right]; -\infty < t < +\infty \right\}$$

is a one-parameter subgroup of $\mathcal{O}(S_r)$. The induced flow is isomorphic to the flow induced by the tension

$$\tilde{\mathfrak{G}}_{\alpha}(h) = \left\{ \tilde{\mathfrak{g}}\left[\exp\left(\frac{\alpha}{2}t\right) \right] \right\}.$$

Finally, in Section 4, we show that $\tilde{\mathfrak{G}}_0$ contains all one-parameter subgroups of $\mathcal{O}(\mathcal{S}_r)$ that commute with the shift. In other words, $\tilde{\mathfrak{G}}_0$ is the maximal Abelian subgroup of $\mathcal{O}(\mathcal{S}_r)$ containing the shift.

The author shows his hearty thanks to Professor T. Hida, Professor H. Yoshizawa and Mr. I. Kubo who encouraged him and gave him useful remarks.

2. The Family of Functions $\mathcal{O}_{\mathcal{S}}$

In this section, we determine the family of functions $\mathcal{U}_{\mathcal{S}}$ explicitly. To this end, we prepare several lemmas.

Lemma 1. Let $\varphi(x)$ be a function in $\mathbb{U}_{\mathcal{S}}$. Then the inverse of the unitary transformation $\mathfrak{g}[\varphi]$ on L^2 is given by $\mathfrak{g}[\varphi^{-1}]$ where

(2.1)
$$\varphi^{-1}(x) = \left[\varphi(f_{\varphi}^{-1}(x))\right]^{-1}.$$

Proof. It is not difficult to show that $\varphi^{-1}(x)$ is locally square summable and satisfies (A. 1) and (A. 2).

For every $\xi(x)$ in L², we have

$$(\mathfrak{g}[\varphi^{-1}]\mathfrak{g}[\varphi]\xi)(x) = \mathfrak{g}[\varphi^{-1}](\varphi(\cdot)\xi(f_{\varphi}(\cdot)))(x)$$

 $= rac{\varphi(f_{\varphi^{-1}}(x))}{\varphi(f_{\varphi}^{-1}(x))}\xi(f_{\varphi}\circ f_{\varphi^{-1}})(x) \ .$

On the other hand, we have

$$f_{\varphi^{-1}} \circ f_{\varphi}(x) = \int_{0}^{f_{\varphi}(x)} \frac{dy}{|\varphi(f_{\varphi}^{-1}(y))|^{2}}$$
$$= \int_{0}^{x} \frac{|\varphi(u)|^{2}}{|\varphi(u)|^{2}} du = x ,$$

by the variable change $y=f_{\varphi}(x)$. This means that $f_{\varphi}^{-1}=f_{\varphi}^{-1}$, which implies

$$\mathfrak{g}[\varphi^{-1}]\mathfrak{g}[\varphi]\xi = \xi$$
, for every ξ in L^2 .

In the same manner, we have

 $\mathfrak{g}[\varphi]\mathfrak{g}[\varphi^{-1}]\xi = \xi$, for every ξ in L^2 .

This proves the lemma.

Lemma 2. Let $\varphi(x)$ and $\xi(x)$ be k-times continuously differentiable functions where k is a positive integer. Then, if the function

(2.2)
$$\eta(x) = \varphi(x)\xi(f_{\varphi}(x))$$

is also k-times continuously differentiable, we have

(2.3)
$$\eta^{(k)}(x) = \varphi^{(k)}(x)\xi(f_{\varphi}(x)) + \sum_{\nu=1}^{k} P_{\nu,k-1}[\varphi]\xi^{(\nu)}(f_{\varphi}(x)),$$

where $P_{\nu,k+1}[\varphi]$; $\nu=1, 2, \dots, k$ are given by evaluating the polynomials $P_{\nu,k-1}(z_1, \bar{z}_1, \dots, z_k, \bar{z}_k)$, which are determined independently of the functions $\varphi(x)$ and $\xi(x)$, at $z_1 = \varphi(x)$, $z_2 = \varphi'(x)$, \dots , $z_k = \varphi^{(k-1)}(x)$.

The proof of this lemma is given by an elementary calculation. Using Lemma 1 and Lemma 2, we prove the following lemma.

Lemma 3. If a function $\varphi(x)$ is in \mathbb{U}_{S} , then it satisfies the conditions (S.1) and (S.2).

Proof. Let $\varphi(x)$ be a function in $\mathcal{U}_{\mathcal{S}}$. Then by definition, the $g[\varphi]$ is reduced by \mathcal{S} , and therefore, for every function $\xi(x)$ in \mathcal{S} , the function

(2.4)
$$\eta(x) = (\mathfrak{g}[\varphi]\xi)(x) = \varphi(x)\xi(f_{\varphi}(x))$$

is in S.

We now show that $\varphi(x)$ is continuous. In fact for arbitrary real numbers x, h, we have

$$egin{aligned} \eta(x+h)-\eta(x) &= arphi(x+h)\xi(f_arphi(x+h))-arphi(x)\xi(f_arphi(x))) \ &= igg[arphi(x+h)-arphi(x)igg]\xi(f_arphi(x+h)) \ &+ arphi(x)igg[\xi(f_arphi(x+h))-\xi(f_arphi(x))igg]\,. \end{aligned}$$

By the continuity of the functions $\eta(x)$, $\xi(x)$ and $f_{\varphi}(x)$, we have

$$0 = \xi(f_{\varphi}(x)) \lim_{h \to 0} \left[\varphi(x+h) - \varphi(x)\right] + 0,$$

as h tends to 0. Since ξ in S is arbitrary, we have

$$\lim_{h\to 0} \left[\varphi(x+h) - \varphi(x)\right] = 0.$$

Next we show by mathematical induction that $\varphi(x)$ is arbitrary times continuously differentiable. Since $\varphi(x)$ is continuous, it is sufficient to show that $\varphi(x)$ is (k+1)-times continuously differentiable assuming that it is k-times continuously differentiable.

Since $\eta(x) = \mathfrak{g}[\varphi]\xi(x)$ is in S for every $\xi(x)$ in S, we have (2.3) by Lemma 2. For every x we may choose a function $\xi(x)$ in S such that $\xi(f_{\varphi}(x)) \neq 0$, and we have

(2.5)
$$\varphi^{(k)}(x) = \xi(f_{\varphi}(x))^{-1} [\eta^{(k)}(x) - \sum_{\nu=1}^{k} P_{\nu,k-1} [\varphi] \xi^{(\nu)}(f_{\varphi}(x))].$$

Since $P_{\nu,k-1}[\varphi]$, $\nu=1, 2, \dots, k$, are polynomials of at most (k-1)-times derivatives of $\varphi(x)$ and since, by assumption, $\varphi(x)$ is *k*-times continuously differentiable, the right side of (2.5) is continuously differentiable. Therefore $\varphi(x)$ is (k+1)-times continuously differentiable. This proves (S. 1).

Since $\mathfrak{g}[\varphi]$ is homeomorphism of \mathcal{S} , $\mathfrak{g}[\varphi]$ is also reduced by \mathcal{S} , and we have $\mathfrak{g}^{-1}[\varphi] = \mathfrak{g}[\varphi^{-1}]$ by Lemma 1, where $\varphi^{-1}(x)$ is given by (2.1). Therefore $\varphi^{-1}(x)$ must be in $\mathcal{U}_{\mathcal{S}}$. Applying [S.1] to $\varphi^{-1}(x)$, we have (S.2).

Before stating Lemma 5, we prove the following lemma.

Lemma 4. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be monotone non-decreasing divergent sequences of positive numbers such that

(2.6)
$$\lim_{n \to +\infty} \frac{\beta_n^p}{\alpha_n} = 0, \quad \text{for every positive integer } p,$$

and let β_1 be larger than 1. Let $\{\gamma_n(x)\}\$ be a sequence of functions defined as follows:

(2.7)
$$\gamma_n(x) = \gamma_n(x; \alpha_n, \beta_n)$$
$$= \begin{cases} \frac{1}{\alpha_n} \gamma(x - \beta_n), & x \ge 0, \\ \frac{1}{\alpha_n} \gamma(x + \beta_n), & x < 0, \end{cases}$$
$$n = 1, 2, 3, \cdots,$$

where

$$\gamma(x) = egin{cases} \expiggl[rac{1}{x^2-1}iggr], & |x| < 1\,, \ 0\,, & |x| \ge 1\,. \end{cases}$$

Then $\{\gamma_n\}$ is a bounded sequence in S.

Proof. It is not difficult to show that each γ_n is in S. Therefore it is sufficient to show that

$$(2.8) \qquad \qquad \sup_{n} ||\gamma_{n}||_{k,p} < +\infty ,$$

for arbitrary non-negative integers k, p.

Since $\gamma_n(x)$ vanishes outside the interval $[-\beta_n-1, \beta_n+1]$, we have

$$\begin{aligned} ||\gamma_n||_{k,p} &= \sup_x |x^p \gamma_n^{(k)}(x)| \\ &\leq (1+\beta_n)^p \sup_x |\gamma_n^{(k)}(x)| \\ &\leq \frac{(1+\beta_n)^p}{\alpha_n} \sup_x |\gamma^{(k)}(x)| \\ &= \frac{(1+\beta_n)^p}{\alpha_n} ||\gamma||_{k,0}. \end{aligned}$$

On the other hand, by assumption, $\alpha_n^{-1}(1+\beta_n)^p$ is bounded in *n*. Therefore we have (2.8).

Lemma 5. If a function $\varphi(x)$ is in \mathcal{O}_S , then it satisfies (S. 3) and (S. 4).

Proof. Let $\varphi(x)$ be a function in \mathcal{U}_{S} . Then by Lemma 3, it satisfies (S. 1) and (S. 2).

First we show (S. 3) by mathematical induction with respect to k. Let k=0 and assume (S. 3) is not true. Then there exists a non-negative integer p such that

$$\overline{\lim_{|x|\to+\infty}} \frac{|\varphi(x)| |x|^{p}}{|f_{\varphi}(x)|^{r}} = +\infty ,$$

for every positive number r. Noting (A. 1) and changing the variable by $y=f_{\varphi}(x)$, we have

$$\varlimsup_{|y| \to +\infty} \frac{|\varphi(f_{\varphi}^{-1}(y))| |f_{\varphi}^{-1}(y)|}{|y|^r} = +\infty \,.$$

Therefore, restricting r to non-negative integers, we can choose a sequence of number $\{\beta_n\}$ such that

$$(2.9) 1 < |\beta_1| \leq |\beta_2| \leq \cdots \leq |\beta_n| \leq \cdots \uparrow + \cdots,$$

and that

(2.10) $\lim_{n \to +\infty} \frac{\alpha_n}{|\beta_n|^r} = +\infty$, for every non-negative integer r,

where

$$\alpha_n = |\varphi(f_{\varphi}^{-1}(\beta_n))| |f_{\varphi}^{-1}(\beta_n)|^p$$

In fact we may choose $\beta_n = 2$ and determine $\beta_n(|\beta_n| \ge |\beta_{n-1}|)$ by

$$|\beta_n|^{-n}|\varphi(f_{\varphi}^{-1}(\beta_n))||f_{\varphi}^{-1}(\beta_n)|^p \ge n, \qquad n=2, 3, \cdots.$$

Put

$$\gamma_n(x) = \gamma_n(x; \sqrt{\alpha_n}, |\beta_n|), \qquad n = 1, 2, 3, \cdots.$$

Then the sequence of functions $\{\gamma_n(x)\}\$ is bounded in S since the real sequences $\{\sqrt{\alpha_n}\}\$ and $\{|\beta_n|\}\$ satisfy the hypothesis in Lemma 4. Therefore the sequence of functions $\{g[\varphi]\gamma_n\}\$ must be bounded in S because $g[\varphi]$ is a homeomorphism of S, while, we have

$$\begin{aligned} ||g[\varphi]\gamma_{n}||_{o,p} &= \sup_{x} |x^{p}\varphi(x)\gamma_{n}(f_{\varphi}(x))| \\ &= \sup_{x} |f_{\varphi}^{-1}(x)^{p}\varphi(f_{\varphi}^{-1}(x))\gamma_{n}(x)| \\ &\geq |f_{\varphi}^{-1}(\beta_{n})^{p}\varphi(f_{\varphi}^{-1}(\beta_{n}))\gamma_{n}(\beta_{n})| \\ &= \frac{\alpha_{n}}{\sqrt{\alpha_{n}}e} = \frac{\sqrt{\alpha_{n}}}{e} \uparrow + \infty, \quad \text{as} \quad n \to +\infty \end{aligned}$$

Therefore $\{\mathfrak{g}[\varphi]\gamma_n\}$ is not bounded in \mathcal{S} , which contradicts to the assumption. Thus (S. 3) is true for k=0.

Assume that (S.3) is true for $k=0, 1, 2, \dots, h$. Then for every $k=0, 1, 2, \dots, h$, and for every $p=0, 1, 2, \dots$, there exists a positive number r=r(k, p) for which (1.2) is valid.

For every function $\xi(t)$ in \mathcal{S} , set $\eta(x) = (\mathfrak{g}[\varphi]\xi)(x) \in \mathcal{S}$ and differentiate it (h+1)-times. Then by Lemma 2 we have

$$\eta^{(h+1)}(x) = \varphi^{(h+1)}(x)\xi(f_{\varphi}(x)) + \sum_{\nu=1}^{h+1} P_{\nu,h}[\varphi]\xi^{(\nu)}(f_{\varphi}(x)).$$

Let s be the maximal degree of the polynomials $P_{\nu,h}[\varphi]$; $\nu=1, 2, \cdots$, h+1, and put

$$r(p) = \max_{0 \le k \le h} r(k, p), \qquad p = 0, 1, 2, \cdots.$$

Since $\eta^{(h+1)}(x)$ and $\xi^{(\nu)}(x)$, $\nu=1, 2, \dots, h+1$, are in S for every non-negative integer p, we have

$$\begin{array}{ll} (2.11) \quad \mathrm{d}(\xi) &= \sup_{x} |x^{p} \varphi^{(h+1)}(x) \xi(f_{\varphi}(x))| \\ &\geqslant \sup_{x} |x^{p} \gamma^{(h+1)}(x)| + \sum_{\nu=1}^{h+1} \sup_{x} |x^{p} P_{\nu,h}[\varphi] \xi^{(\nu)}(f_{\varphi}(x))| \\ &\geqslant ||\eta||_{h^{-1},p} + \sum_{\nu=1}^{h+1} \sup_{x} \frac{|x^{p} P_{\nu,h}[\varphi]|}{1 + |f_{\varphi}(x)|^{sr(p)}} (1 + |f_{\varphi}(x)|^{sr(p)})| \xi^{(\nu)}(f_{\varphi}(x))| \\ &\leqslant ||g[\varphi] \xi||_{h^{+1},p} + \sum_{\nu=1}^{h+1} K_{\nu} \{||\xi||_{\nu,[sr(p)]+1} + ||\xi||_{\nu,0}\} , \end{array}$$

where

$$K_{
u} = \sup_{x} rac{|x^{p} P_{
u,h}[\varphi]|}{1 + |f_{\varphi}(x)|^{sr(p)}}, \qquad
u \!=\! 1, \, 2, \, \cdots, \, h \!+\! 1 \, ,$$

and [z] means the maximal integer not greater than z.

Assume that (S. 3) is not true for k=h+1. Then there exists a non-negative integer p such that

$$\overline{\lim_{|x| \to +\infty}} \frac{|\varphi^{(h+1)}(x)| |x|^p}{|f_{\varphi}(x)|^r} = \overline{\lim_{|y| \to +\infty}} \frac{|\varphi^{(h+1)}(f_{\varphi}^{-1}(y))| |f_{\varphi}^{-1}(y)|^p}{|y|^r} = +\infty,$$

for every positive number r. Therefore, in the same manner as before, we can choose sequences of real numbers $\{\alpha_n\}$ and $\{\beta_n\}$ such that

$$\alpha_n = |\varphi^{(h+1)}(f_{\varphi}^{-1}(\beta_n))| |f_{\varphi}^{-1}(\beta_n)|^p, \qquad n = 1, 2, 3, \cdots,$$

and that (2.9) and (2.10) are valid.

Put

$$\gamma_n(x) = \gamma_n(x; \sqrt{\alpha_n}, |\beta_n|), \qquad n = 1, 2, 3, \cdots.$$

Then by Lemma 4, $\{\gamma_n\}$ is bounded in S. Because of (2.12) and the continuity of $\mathfrak{g}[\varphi]$ $\{(\gamma_n)\}$ must be bounded in S.

On the other hand we have

$$d(\gamma_n) = \sup_{x} |x|^p |\varphi^{(h+1)}(x)| |\gamma_n(f_{\varphi}(x))|$$

=
$$\sup_{x} |f_{\varphi}^{-1}(x)|^p |\varphi^{(h+1)}(f_{\varphi}^{-1}(x))| |\gamma_n(x)|$$

$$\geq |f_{\varphi}^{-1}(\beta_n)|^p |\varphi^{(h+1)}(f_{\varphi}^{-1}(\beta_n))| |\gamma_n(\beta_n)|$$

=
$$\frac{\alpha_n}{\sqrt{\alpha_n} e} = \frac{\sqrt{\alpha_n}}{e} \uparrow +\infty, \qquad n \uparrow +\infty.$$

This contradicts to the assumption and therefore (S. 3) is true for k = h+1. Thus we have proved that (S. 3) is true for arbitrary non-negative integers k and p.

Next we show (S. 4). If $\varphi(x)$ is in \mathcal{U}_S , then by Lemma 1, $\varphi^{-1}(x) = [\varphi(f_{\varphi}^{-1}(x))]^{-1}$ is also in \mathcal{U}_S . Using (S. 3) for $\varphi^{-1}(x)$ with k=0 and with any non-negative integer p, we can choose a positive number $\rho = \rho(p)$ such that

$$\lim_{|x| \to +\infty} \frac{|\varphi^{-1}(x)| |x|^{p}}{|f_{\varphi}^{-1}(x)|^{p}} = 0,$$

and therefore we have

$$\begin{split} &\lim_{|\lambda| \to +\infty} \frac{|x|^{p}}{|\varphi(f_{\varphi}^{-1}(x))| |f_{\varphi^{-1}}(x)|^{p}} \\ &= \lim_{|x| \to +\infty} \frac{|x|^{p}}{|\varphi(f_{\varphi}^{-1}(x))| |f_{\varphi}^{-1}(x)|^{p}} \\ &= \lim_{|1| \to +\infty} \frac{|f_{\varphi}(x)|^{p}}{|\varphi(x)| |(x)|^{p}} = 0 \,. \end{split}$$

Thus we have proved the lemma.

Theorem 1. A function $\varphi(x)$ is in \mathcal{U}_S if and only if it satisfies (S. 1), (S. 2), (S. 3) and (S. 4).

Proof. The necessity of $(S, 1) \sim (S, 4)$ is derived from Lemma 3 and Lemma 5. We prove only the sufficiency. Suppose that $\varphi(x)$ satisfies $(S, 1) \sim (S, 4)$. By $(S, 1) \varphi(x)$ is locally square summable, and for every $\xi(x)$ in S we have

$$(\mathfrak{g}[\varphi]\xi)(x)=arphi(x)\xi(f_arphi(x)){\in}\mathcal{C}^{\circ\circ}.$$

Next we show that $f_{\varphi}(x)$ satisfies (A.1). We begin by proving the following condition:

(S. 2') There exists a positive number γ such that

(2.12) $\inf_{x} (1+|x|^{\gamma}) |\varphi(x)| > 0.$

To prove (S.2'), it is enough to show that there exists a positive number γ such that

(2.13)
$$\lim_{|\lambda| \to +\infty} |x|^{\gamma} |\varphi(x)| > 0.$$

Assume that (S. 2') is not true. Then for every positive number r we have

(2.14)
$$\lim_{|x| \to +\infty} |x|^r |\varphi(x)| = 0.$$

Observing the relation

$$|f_{\varphi}(x)| \leq |f_{\varphi}(y)|, \quad \text{if } \quad 0 < x \leq y \text{ or } y \leq x < 0,$$

together with (2.14), we have for every positive number r,

$$\varlimsup_{|x| \to +\infty} \frac{|f_{\varphi}(x)|}{|x|^{r}|\varphi(x)|} \geqslant \varlimsup_{|x| \to +\infty} \frac{\min \left(f_{\varphi}(1), |f_{\varphi}(-1)|\right)}{|x|^{r}|\varphi(x)|} = +\infty .$$

This contradicts to (S. 4) and hence (S. 2') is true.

Using (S. 3) with k=0 and $p=[\gamma]+1$, we can choose a positive number r=r(0, p) such that

$$\overline{\lim_{|\lambda|\to+\infty}} \frac{|\varphi(x)| |x|^{p}}{|f_{\varphi}(x)|^{r}} = 0.$$

Noting (2.13), we have

$$\lim_{|y|\to+\infty}|f_{\varphi}(x)|=+\infty.$$

Thus (A. 1) is proved.

Our next step is to show that $\mathfrak{g}[\varphi]$ is reduced by S and is continuous in the topology of S. Lemma 2 proves that for every non-negative integer k

$$\mathfrak{g}(\llbracket \varphi \rrbracket \xi)^{(k)}(x) = \varphi^{(k)}(x)\xi(f_{\varphi}(x)) + \sum_{\nu=1}^{k} P_{\nu,k-1}\llbracket \varphi \rrbracket \xi^{(\nu)}(f_{\varphi}(x)) .$$

Let $S^{(k)}$ be the maximum degree of the polynomials $P_{\nu,k-1}[\varphi]$, $\nu=1, 2, \dots, k$, and let $r(p), p=0, 1, 2, \dots$, be the maximum of the (S. 3) positive numbers $r(\nu, p), \nu=0, 1, \dots, k$, where $r(\nu, p)$ is selected in (S. 3) for $\varphi(x)$. Then we have for arbitrary non-negative integers k, p,

$$\begin{split} &||\mathfrak{g}[\varphi]\xi||_{k,p} = \sup_{x} |x^{p}(\mathfrak{g}[\varphi]\xi)^{(k)}(x)| \\ &\leqslant \sup_{x} \left\{ |x^{p}\varphi^{(k)}(x)\xi(f_{\varphi}(x))| + \sum_{\nu=1}^{k} |x^{p}P_{\nu,k-1}[\varphi]\xi^{(\nu)}(f_{\varphi}(x))| \right\} \\ &\leqslant \sup_{x} \frac{|x|^{p}|\varphi^{(k)}(x)|}{(1+|f_{\varphi}(x)|^{r(k,p)})} (1+|f_{\varphi}(x)|^{r(k,p)})|\xi(f_{\varphi}(x))| \\ &+ \sum_{\nu=1}^{k} \sup \frac{|x|^{p}|P_{\nu,k-1}[\varphi]|}{(1+|f_{\varphi}(x)|^{r(p)s(k)})} \sup_{x} (1+|f_{\varphi}(x)|^{r(p)s(k)})|\xi^{(\nu)}(f_{\varphi}(x))| \\ &\leqslant C_{0}\{||\xi||_{0,[r(k,p)]+1}+||\xi||_{0,0}\} + \sum_{\nu=1}^{k} C_{\nu}\{||\xi||_{\nu,[r(\varphi)s(k)]+1}+||\xi||_{\nu,0}\} , \end{split}$$

where

$$egin{aligned} C_{\scriptscriptstyle 0} &= \sup_{x} rac{|x^{p} arphi^{(k)}(x)|}{1 + |f_{arphi}(x)|^{r(k,p)}}, \ C_{\scriptscriptstyle
u} &= \sup_{x} rac{|x|^{p} |P_{\scriptscriptstyle
u,k-1}[arphi]|}{1 + |f_{arphi}(x)|^{r(p)s(k)}}, &
u = 1, 2, \cdots, k. \end{aligned}$$

Thus we have proved for arbitrary non-negative integers k, p,

$$||\mathfrak{g}[\varphi]\xi||_{k,p} \leqslant C_0\{||\xi||_{0,[r(k,p)]+1} + ||\xi||_{0,0}\} + \sum_{\nu=1}^k C_\nu\{||\xi||_{\nu,[r(p)s(k)]+1} + ||\xi||_{\nu,0}\},$$

which means that $\mathfrak{g}[\varphi]$ is reduced by S and continuous in the topology of S. By Lemma 1 and the above estimation, it is enough to show that (S. 3) is valid for $\varphi^{-1}(x)$. We show it by mathematical induction with respect to k.

In case k=0, put $r(0, p) = \rho(p)$ where $\rho(p)$ is given by (S.4). Then we have

$$\lim_{|x|\to+\infty} \frac{|\varphi^{-1}(x)| |x|^p}{|f_{\varphi^{-1}}(x)|^p} = \lim_{|x|\to+\infty} \frac{|x|^p}{|\varphi(f_{\varphi}^{-1}(x))| |f_{\varphi}^{-1}(x)|^p}$$
$$= \lim_{|x|\to+\infty} \frac{|f_{\varphi}(x)|^p}{|\varphi(x)| |x|^p} = 0,$$

and therefore (S. 3) is valid.

Suppose (S. 3) is valid for $\varphi^{-1}(x)$ in the cases where $k=0, 1, \dots, h$, that is, for every pair of non-negative integers k, p; $k=0, 1, \dots, h$, $p=0, 1, 2, \dots$, there exists a positive number r(k, p) such that (2.9) is valid for $\varphi^{-1}(x)$. Then we have only to show that (S. 3) is valid for k=h+1.

From (S. 1) and (S. 2) we have $\varphi^{-1}(x) = [\varphi(f_{\varphi}^{-1}(x))]^{-1} \in \mathcal{C}^{\infty}$ and a simple calculation proves

$$(2.15) \qquad \qquad \varphi^{-1}(x)\varphi(f_{\varphi^{-1}}(x)) = 1 \ .$$

Differentiating the both sides of (2.17) (h+1)-times, Lemma 2 shows that

$$arphi^{-1(h+1)}(x)arphi(f_{arphi^{-1}}(x)) + \sum_{
u=1}^{h+1} P_{
u,h}[arphi^{-1}]arphi^{(
u)}(f_{arphi^{-1}}(x)) = 0 \,,$$

and therefore

$$\varphi^{-1(h+1)}(x) = -\sum_{\nu=1}^{h=1} \varphi^{-1}(x) P_{\nu,h}[\varphi^{-1}] \varphi^{(\nu)}(f_{\varphi^{-1}}(x)).$$

Let s be the maximum degree of the polynomials $P_{\nu,h}[\varphi]$; $\nu=1, 2, \dots, h+1$, and let r'(p) be the maximum of the positive numbers r'(k, p); $k=0, 1, \dots, h$.

Then, considering that (S. 3) is valid for $\varphi(x)$, we have for every non-negative integer p and for $r=r(\nu, 0)$ which is found in (S. 3) for $\varphi(x)$,

$$\begin{split} &\lim_{|x| \to +\infty} \frac{|\varphi^{-1(h+1)}(x)| \, |x|^{\, p}}{|f_{\varphi^{-1}}(x)|^{\, q}} \\ &\leqslant \lim_{|x| \to +\infty} \sum_{\nu=1}^{h+1} \frac{|x|^{\, p} |\varphi^{-1}(x)| \, |P_{\nu,h}[\varphi^{-1}]| \, |\varphi^{(\nu)}(f_{\varphi^{-1}}(x))|}{|f_{\varphi^{-1}}(x)|^{\, q}} \\ &\leqslant \lim_{|x| \to +\infty} \sum_{\nu=1}^{h+1} \frac{|x|^{\, p+r} |\varphi^{-1}(x)| \, |P_{\nu,h}[\varphi^{-1}]|}{|f_{\varphi^{-1}}(x)|^{\, q}} \cdot \frac{|\varphi^{(\nu)}(f_{\varphi}^{-1}(x))|}{|x|^{\, r}} = 0 \,, \end{split}$$

where q = r'(p + [r])(s+1). Therefore (S.3) is valid for k=h+1.

Thus we have proved the theorem.

In Theorem 1, we determined \mathcal{U}_S by the conditions on $\varphi(x)$ and $f_{\varphi}(x)$. It is preferable to determine \mathcal{U}_S by conditions only on $\varphi(x)$. Unfortunately we have not succeeded in this direction, but we have the following propositions.

Proposition 1. Let $\varphi(x)$ be a function for which the following condition is valid:

(S. 2'') There exists a positive number $\gamma < \frac{1}{2}$ such that

(2.16)
$$m_{\varphi} = \inf_{x} (1 + |x|^{\gamma}) |\varphi(x)| > 0.$$

Then $\varphi(x)$ is in \mathcal{U}_S if it is a slowly increasing function, that is, it is infinitely many times continuously differentiable and for every nonnegative integer k, there exists a positive number $\tau = \tau(k)$ such that

(2.17)
$$\lim_{|x| \to +\infty} \frac{|\varphi^{(k)}(x)|}{|x|^{\tau}} = 0.$$

Proof. Let $\varphi(x)$ be a slowly increasing function for which (S. 2'') is valid. We have to prove $(S. 1)\sim(S. 4)$ for $\varphi(x)$, however, (S. 1) and (S. 2) are evident from the assumptions.

For every real number x, $(|x| \ge 1)$, we have

Family of One-parameter Subgroups of $\mathcal{O}(\mathcal{S}_r)$

$$egin{aligned} &|f_arphi(x)| \,=\, |\int_{_0}^x |\,arphi(y)|^2 dy| \ &\geqslant \left|\int_{_0}^x (1+|y|^{\,\gamma})^2 |\,arphi(y)|^2 rac{dy}{(1+|y|^{\,\gamma})^2}
ight| \ &\geqslant m_arphi^2 \left|\int_{_0}^x rac{dy}{(1+|y|^{\,\gamma})^2}
ight| &\geqslant rac{m_arphi^2 |\,x|}{(1+|x|^{\,\gamma})^2} \ &\geqslant rac{m_arphi^2}{4} \,|\,x|^{1-2\gamma}\,, \end{aligned}$$

where γ is a positive number given in (S. 2"), and therefore

(2.18)
$$|f_{\varphi}(x)| \ge \frac{m_{\varphi}^2}{4} |x|^{1-2\gamma}, \quad \text{if} \quad |x| \ge 1.$$

On the other hand, since $\varphi(x)$ is slowly increasing, there exists a positive number $\tau = \tau(0)$ such that

$$(2.19) M_{\varphi} = \sup_{x} \frac{|\varphi(x)|}{1+|x|^{\tau}} < +\infty ,$$

and we have for every real number x,

$$(2.20) |f_{\varphi}(x)| = \left| \int_{0}^{x} \frac{|\varphi(y)|^{2}}{(1+|y|^{\tau})^{2}} (1+|y|^{\tau})^{2} dy \right| \\ \leqslant 4M_{\varphi}^{2} |x|^{1+2\tau} \,.$$

For arbitrary non-negative integers k, p, put

$$r=r(k,\,p)=rac{p+ au(k)}{1-2\gamma}\,.$$

Then we have from (2.20) and (2.19)

$$egin{aligned} &\lim_{|x| o +\infty} rac{|arphi| \ |x|^{\ p}}{|f_arphi(x)|^{\ r}} \ &= \lim_{|x| o +\infty} rac{|arphi^{(k)}(x)|}{|x|^{\ au(k)}} egin{aligned} &rac{|x|^{\ p+ au(k)}}{|f_arphi(x)|} egin{aligned} &rac{|x|^{\ p+ au(k)}}{|f_arphi(x)|^{\ r}} \ &\leqslant \lim_{|x| o +\infty} rac{|arphi^{(k)}(x)|}{|x|^{\ au(k)}} inom{4}{|x|^{\ au(k)}} inom{4}{|x|^{\ au(k)}} = 0 \ . \end{aligned}$$

Thus we have proved (S. 3), while, for every non-negative integer p, put

$$ho(p) = \gamma + (2 + \tau(0))p$$
.

Then we have from (2.18) and (2.22)

$$\begin{split} \lim_{|x| \to +\infty} \frac{|f_{\varphi}(x)|^{p}}{|x|^{\rho} |\varphi(x)|} \\ & \leq \lim_{|x| \to +\infty} \frac{(4M_{\varphi}^{2})^{p} |x|^{(1+2+\tau(0))p}}{|x|^{\gamma} |\varphi(x)|} \\ & \leq (4M_{\varphi}^{2})^{p} [\lim_{|x| \to +\infty} |x|^{\gamma} |\varphi(x)|]^{-1} \lim_{|x| \to +\infty} \frac{1}{|x|^{p}} = 0 \,. \end{split}$$

Thus we have proved (S. 4).

Conversely we have the following proposition.

Proposition 2. If a function $\varphi(x)$ is in \mathcal{U}_S , for which there exists a positive number $\tau = \tau(0)$ such that (2.19) is true, then it is a slowly increasing function.

Proof. Let $\varphi(x)$ be a function which satisfies the hypothesis of the proposition. Then by Theorem 1, $\varphi(x)$ satisfies $(S. 1)\sim(S. 4)$ and by the estimation (2. 19), we have (2. 20). Therefore from (S. 3) and (2. 20), we have for every non-negative integer k,

$$0 = \lim_{|x| \to +\infty} \frac{|\varphi^{(k)}(x)|}{|f_{\varphi}(x)|^{r(k,0)}}$$
$$\geqslant \lim_{|x| \to +\infty} \frac{1}{(4M_{\varphi}^2)^{r(k,0)}} \cdot \frac{|\varphi^{(k)}(x)|}{|x|^{(1+2\tau)r(k,0)}}.$$

Thus we have proved the proposition.

Summing up Proposition 1 and Proposition 2, we have the following theorem.

Theorem 2. Let $\varphi(x)$ be a function for which (S. 2") is true and assume that there exists a positive number $\tau = \tau(0)$ such that (2.19) is true. Then $\varphi(x)$ is in \mathbb{U}_S if and only if it is a slowly increasing function.

Corollary. Let $\varphi(x)$ be a function such that (2.23) $|\varphi(x)| \equiv 1$.

Then it is in U_S if and only if it is a slowly increasing function.

3. One-parameter Subgroups of $\mathcal{O}(\mathcal{S}_r)$

In this section, we first show that $\mathcal{U}_{\mathcal{S}}$ is a group with the product operation \otimes defined by (1.6). Then we proceed to discuss

two interesting families of one-parameter subgroups of $\mathcal{O}(\mathcal{S}_r)$ which contain the shift and the tension.

Lemma 6. The correspondence between $\varphi(x)$ in \mathcal{U}_{S} and $g[\varphi]$ in $U(S_r)$ is one-to-one.

Proof. It is evident that the constant function 1=1(x) is in $\mathcal{U}_{\mathcal{S}}$ and $\mathfrak{g}[1]=\mathfrak{I}$. Therefore we have only to show that if for a function $\varphi(x)$ in $\mathcal{U}_{\mathcal{S}}$, $\mathfrak{g}[\varphi]=\mathfrak{I}$, then $\varphi(x)\equiv 1$.

Let $\mathfrak{g}[\varphi] = I$ and let $\xi_N(x)$ be a function in \mathcal{S} such that $\xi_N(x) = 1$ where $-N \leq x \leq N$, $N = 1, 2, 3, \cdots$. Then we have

$$\mathfrak{g}[\varphi]\xi_N(x) = \varphi(x)\xi_N(f_{\varphi}(x)) = \xi_N(x), \qquad N=1, \, 2, \, 3, \, \cdots,$$

and therefore

$$\varphi(x) = 1$$
, $\max[-N, f_{\varphi}^{-1}(-N)] \leq x \leq \min[N, f_{\varphi}^{-1}(N)]$.

Thus, by letting $N\uparrow+\infty$, we have

$$\varphi(x) \equiv 1$$
, $-\infty < x < +\infty$.

Theorem 3. U_S is a group with respect to the product operation \circledast .

Proof. For every $\varphi(x)$, $\psi(x)$ in $\mathcal{U}_{\mathcal{S}}$ and every function $\xi(x)$ in \mathcal{S} , we have

$$egin{aligned} & \mathfrak{g}igg[arphi]\mathfrak{g}igg[\psiigg]\mathfrak{g}igg(x) &= (\mathfrak{g}igg[arphi]\psi(\cdot)\xi(f_\psi(\cdot)))(x) \ &= arphi(x)\psi(f_arphi(x))\xi(f_\psi\circ f_arphi(x)) \ &= (arphi \otimes \psi)(x)\xi(f_\psi\circ f_arphi(x)) \ . \end{aligned}$$

On the other hand we have

$$egin{aligned} f_\psi \circ f_arphi(x) &= \int_0^{f_arphi(x)} |\psi(y)|^2 dy \ &= \int_0^x |arphi(y)\psi(f_arphi(y))|^2 dy \,, \end{aligned}$$

and therefore

(3.1)
$$f_{\psi} \circ f_{\varphi}(x) = f_{\varphi \oplus \psi}(x) .$$

Thus we have

(3.2)
$$\mathfrak{g}[\varphi]\mathfrak{g}[\psi] = \mathfrak{g}[\varphi \otimes \psi].$$

It is evident that the function $(\varphi \otimes \psi)(x)$ satisfies (A. 1) and (A. 2), and that, from (3.2), $g[\varphi \otimes \psi] = g[\varphi]g[\psi] \in U(S)$ holds, therefore $(\varphi \otimes \psi)(x)$ is in \mathcal{U}_S for every φ , ψ in \mathcal{U}_S .

Since $\mathcal{U}(S)$ is a subgroup of the unitary transformation group on L², and since the correspondence between $g[\varphi]$ and φ is one-toone by Lemma 6, it is not difficult to prove the associative law.

Finally by simple calculations we can easily show that

$$(\varphi \otimes 1)(x) = \varphi(x)$$
,

and

$$(\varphi \otimes \varphi^{-1})(x) = 1$$
,

where $\varphi^{-1}(x)$ is defined by (2.1). Thus we have proved the theorem. Now we define three subgroup of $\mathcal{U}_{\mathcal{S}}$ as follows.

$$\begin{aligned} \mathcal{U}_{\mathcal{S}}^{+} &= \{ \varphi \in \mathcal{U}_{\mathcal{S}} \,; \, \varphi(x) \text{ real positive} \} \,. \\ \mathcal{U}_{\mathcal{S}}^{*} &= \{ \varphi \in \mathcal{U}_{\mathcal{S}} \,; \, |\varphi(x)| \equiv 1 \} \,. \\ \mathcal{U}_{\mathcal{S}}^{*} &= \{ \varphi \in \mathcal{U}_{\mathcal{S}} \,; \, \varphi(x) = \overline{\varphi(-x)} \} \,. \end{aligned}$$

Lemma 7. For every φ in U_S there exists a unique element φ^+ in U_S^+ and a unique element φ^e in U_S^e such that

$$(3.3) \varphi = \varphi^e \otimes \varphi^+.$$

In other words, U_{S} is expressed as the product

$$(3.4) \qquad \qquad \mathcal{U}_{\mathcal{S}} = \mathcal{U}_{\mathcal{S}}^{\epsilon} \otimes \mathcal{U}_{\mathcal{S}}^{+} \,.$$

We call φ^e and φ^+ the argument part and the polar part of φ , respectively.

Proof. Put $\varphi^{e}(x) = \varphi(x) / |\varphi(x)|$ and $\varphi^{+}(x) = |\varphi(x)|$. Then they are the required.

Remark. The decomposition (3.4) is not a direct product. In fact, if $\varphi = \varphi^e \otimes \varphi^+$ and $\psi = \psi^e \otimes \psi^+$ where φ^e , $\psi^e \in \mathcal{O}_S^e$ and φ^+ , $\psi^+ \in \mathcal{O}_S^e$, then we have

$$egin{aligned} &(arphi \otimes \psi)(x) = arphi^e(x)arphi^+(x)\psi^e(f_{arphi^+}(x))\psi^+(f_{arphi^+}(x))\ &= (arphi^e \otimes (\psi^e \circ f_{arphi^+})) \otimes (arphi^+ \otimes \psi^+) \ . \end{aligned}$$

Hence, we have

$$(3.5) \qquad \qquad (\varphi \circledast \psi)^+ = \varphi^+ \circledast \psi^+.$$

$$(3.6) \qquad \qquad (\varphi \otimes \psi)^e(x) = \varphi^e(x)\psi^e(f_{\varphi^+}(x))$$

Lemma 8. Let $\varphi(x)$ be a function in $\mathcal{U}_{\mathcal{S}}$. Then $\tilde{\mathfrak{g}}[\varphi]$ is in $\mathcal{O}(\mathcal{S}_r)$ if and only if φ is in $\mathcal{U}_{\mathcal{S}}^h$ where $\tilde{\mathfrak{g}}[\varphi]$ is defined by (1.5).

The proof is easy.

Here we consider one-parameter subgroup of $\mathcal{O}(\mathcal{S}_r)$ given by type (1.5). If for a subset $\{\varphi_t; -\infty < t < +\infty\}$ of $\mathcal{O}_{\mathcal{S}}, \{\tilde{\mathfrak{g}}[\varphi_t]\}$ is a one-parameter subgroup of $\mathcal{S}(\mathcal{S}_r)$, then by Lemma 8 $\varphi_t \in \mathcal{O}_{\mathcal{S}}^h$, $-\infty < t < +\infty$, and we have

(3.7)
$$\begin{cases} \tilde{\mathfrak{g}}[\varphi_t] \tilde{\mathfrak{g}}[\varphi_s] = \mathcal{F}^{-1} \mathfrak{g}[\varphi_t] \mathcal{F} \mathcal{F}^{-1} \mathfrak{g}[\varphi_s] \mathcal{F} \\ = \mathcal{F}^{-1} \mathfrak{g}[\varphi_t] \mathfrak{g}[\varphi_s] \mathcal{F} = \tilde{\mathfrak{g}}[\varphi_{t+s}], \qquad -\infty < t, \ s < +\infty, \\ \tilde{\mathfrak{g}}[\varphi_0] = \mathrm{I}. \end{cases}$$

From (3.7) and Lemma 6, we have

$$(3.8) \qquad \begin{cases} \varphi_s \oplus \varphi_s = \varphi_{t+s}, \quad -\infty < t, \ s < +\infty, \\ \varphi_0 = \mathrm{I}, \end{cases}$$

that is, $\{\varphi_t\}$ is a one-parameter subgroup of \mathcal{V}_S^h . Conversely, it is evident that every one-parameter subgroup $\{\varphi_t\}$ of \mathcal{V}_S^h determines a one-parameter subgroup $\{g[\varphi_t]\}$ of $\mathcal{O}(\mathcal{S}_r)$. Therefore, to obtain a one-parameter subgroup of $\mathcal{O}(\mathcal{S}_r)$, it is enough to obtain a one-parameter subgroup of $\mathcal{O}(\mathcal{S}_r)$, it is enough to obtain a one-parameter subgroup of \mathcal{O}_S^h related to the given subgroup by the formula (1.5).

Let $\{\varphi_t\}$ be a one-parameter subgroup of \mathcal{U}_S^h for which (3.8) is valid. Then by Lemma 7, the relation (3.8) is decomposed into the following two relations.

$$\begin{array}{l} (3.9) & \left\{ \begin{array}{l} \varphi_t^+ \otimes \varphi_s^+ = \varphi_{t+s}^+ \,, \qquad -\infty < t, \ s < +\infty \\ \varphi_0^+ = 1 \end{array} \right. \\ (3.10) & \left\{ \begin{array}{l} \varphi_{\cdot}^e(x) \varphi_s^e(f_{\varphi_t^+}(x)) = \varphi_{t+s}^e(x) \,, \qquad -\infty < t, \ s < +\infty \,, \\ \varphi_0^e(x) = 1 \end{array} \right. \end{array} \right. \end{array}$$

where φ_t^* and φ_t^+ are the argument part and the polar part of φ_t , respectively. Therefore, to obtain a one-parameter subgroup of $U_S^{h_+} = U_S^h \cap U_S^+$ and then, corresponding to it, we must solve the equation (3.10) in $U_S^{he} = U_S^h \cap U_S^e$. However, we have not yet succeeded in obtaining a general method to find a one-parameter subgroup of $U_S^{h_+}$, but at

present we know two such subgroups from T. Hida, I. Kubo H. Nomoto and H. Yoshizawa [1]. One of them is the *trivial*

$$(3.11) \qquad \qquad \varphi_t^+(x) \equiv 1 \, ,$$

and the second is the tension

$$\varphi(x) = e^{(\alpha/2)t}$$

where α is an arbitrary real number not vanishing.

To solve the equation (3.10) corresponding to the trivial and the tension, we assume the continuity of $\varphi_t(x)$ in t for every fixed real number x.

Corresponding to the trivial, the equation (3.10) becomes

(3.13)
$$\begin{cases} \varphi_t^e(x)\varphi_s^e(x) = \varphi_{t+s}^e(x), \\ \varphi_0^e(x) \equiv 1. \end{cases}$$

Noting that $\varphi_t^e(x)$ is in \mathcal{O}_S^{he} and $|\varphi_t^e(x)| \equiv 1$ for every (t, x), we can define a real function

(3.14)
$$H(t, x) = \frac{1}{i} \log \varphi_t^e(x), \quad -\infty < t < \infty,$$

such that H(0, x) = 0 and that H(t, x) is continuous in t for every fixed x. From (3.13) we have

$$\left\{\begin{array}{ll} \mathrm{H}(t, x) + \mathrm{H}(s, t) = \mathrm{H}(t+s, x) , & -\infty < t, s < +\infty ,\\ \mathrm{H}(0, x) \equiv 0 \end{array}\right.$$

and because of the continuity of H(t, x) in t,

$$\mathrm{H}(t, x) = th(x), \qquad -\infty < t < +\infty,$$

where h(x) is a real function equal to H(1, x). Thus we have

$$(3.15) \qquad \varphi_t^e(x) = \exp\left[ith(x)\right], \qquad -\infty < t < +\infty.$$

Since $\varphi_t^e(x)$ is in \mathbb{U}_S^{he} , by Corollary of Theorem 2, it must be an Hermitian slowly increasing function. And, it is easy to show that $\varphi_t^e(x) = \exp\left[ith(x)\right]$ is an Hermitian slowly increasing function if and only if h(x) is a real odd slowly increasing function. Conversely, if h(x) is a real odd slowly increasing function, then it is evident that the one-parameter set defined by (3.15) is a one-parameter subgroup of \mathbb{U}_S^{he} . Summing up the above, we have the following theorem.

Theorem 4. Let $\{\varphi_t(x); -\infty < t < +\infty\}$ be a one-parameter set of functions with the trivial polar part, that is, $|\varphi_t(x)| \equiv 1$, and assume that for every fixed x, $\varphi_t(x)$ is continuous in t. Then it is a oneparameter subgroup of $\bigcup_{i=1}^{n}$ if and only if $\varphi_t(x)$ is of the form

(3.16) $\varphi_t(x) = \exp\left[ith(x)\right], \quad -\infty < t < +\infty,$

where h(x) is a real odd slowly increasing function.

We note the following: Let \mathcal{D} be the set of all real odd slowly increasing functions. Then for every h(x) in \mathcal{D} we have a one-parameter subgroup $\{\exp[ith(x)]; -\infty < t < +\infty\}$ of $\mathcal{D}^{h}_{\mathcal{S}}$ and therefore a one-parameter subgroup $\mathfrak{G}_{0}(h) = \{\tilde{g}[\exp[ith]]; -\infty < t < +\infty\}$ of $\mathcal{O}(\mathcal{S}_{r})$.

Theorem 5. Let $\tilde{\mathfrak{S}}_0$ be the family of one-parameter subgroups of $\mathcal{O}(S_r)$ defined by

$$ilde{\mathfrak{G}}_{_{0}}=\{ ilde{\mathfrak{G}}_{_{0}}(h)\,;\,h\!\in\!\mathcal{I}\}$$
 .

Then we have:

1°) \mathfrak{B}_0 contains the shift.

2°) For every h(x), h'(x) in \mathfrak{T} , $\mathfrak{S}_{0}(h)$ and $\mathfrak{S}_{0}(h')$ are commutative.

Proof. Put h(x) = -x, then $\tilde{\mathfrak{G}}_0(-x) = \{\tilde{\mathfrak{g}}[e^{-itx}]\}$ is the shift. In fact, for every $\xi(x)$ in L^2_r we have

$$g[e^{-itx}]\xi(x) = \mathcal{F}^{-1}g[e^{-it\cdot}]\mathcal{F}\xi(x)$$

= $\mathcal{F}^{-1}[e^{-it\cdot}\xi(\cdot)](x)$
= $\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{ix\lambda}e^{-it\lambda}\xi(\lambda)d\lambda$
= $\xi(x-t)$, $-\infty < t < +\infty$,

where $\tilde{\xi}(\lambda) = (\mathcal{F}\xi)(\lambda)$.

On the other hand, if h and h' are in \mathcal{D} , then for every real number t, s, we have

$$\begin{split} \tilde{\mathfrak{g}} \begin{bmatrix} e^{ith} \end{bmatrix} \tilde{\mathfrak{g}} \begin{bmatrix} e^{ish'} \end{bmatrix} \\ &= \mathcal{F}^{-1} \mathfrak{g} \begin{bmatrix} e^{ith} \end{bmatrix} \mathcal{F} \cdot \mathcal{F}^{-1} \mathfrak{g} \begin{bmatrix} e^{ish'} \end{bmatrix} \mathcal{F} \\ &= \mathcal{F}^{-1} \mathfrak{g} \begin{bmatrix} e^{ith} \bigoplus e^{ish'} \end{bmatrix} \mathcal{F} \\ &= \mathcal{F}^{-1} \mathfrak{g} \begin{bmatrix} e^{ith+ish'} \end{bmatrix} \mathcal{F} \end{split}$$

$$= \mathscr{F}^{-1}\mathfrak{g}[e^{ish'}]\mathfrak{g}[e^{ith}]\mathscr{F} \ = \tilde{\mathfrak{g}}[e^{ish'}]\tilde{\mathfrak{g}}[e^{ith}] \,.$$

Thus we have proved the theorem.

Remark. The family $\tilde{\mathbb{G}}_0$ arises from the variable change by distributions. In fact, for any function h(x) in \mathcal{D} , we have

$$ilde{\mathfrak{g}}[e^{ith}]\xi = \mathrm{T}_h * \xi, \qquad \xi \in \mathcal{S}_r,$$

where T_h is given by the Fourier inverse transform of e^{ith} as a distribution and * stands for the convolution.

Next, we solve the equation (3.10) corresponding to the tension (3.12). In this case, the equation (3.10) becomes

$$(3.17) \qquad \begin{cases} \varphi_t^e(x)\varphi_s^e(e^{\alpha t}x) = \varphi_{t+s}^e(x), \quad -\infty < t, \ s < +\infty, \\ \varphi_0^e(x) \equiv 1, \end{cases}$$

where $\varphi_t^e(x)$, $-\infty < t < +\infty$, is in \mathcal{Q}_S^{he} . Hence we have

$$(3.18) \qquad \qquad \varphi_s^e(e^{\omega t}x) = \frac{\varphi_{t+s}^e(x)}{\varphi_t^e(x)}, \qquad -\infty < t, \ s < +\infty$$

and therefore $\varphi_t^e(x)$ is continuous in (t, x). Then we can define a real function H(t, x) by

(3.19)
$$H(t, x) = \frac{1}{i} \log \varphi_t^e(x), \quad -\infty < t, \ x < +\infty,$$

such that H(0, x) = 0 and that H(t, x) is continuous in (t, x). According to (3.17), we have

(3.20)
$$\begin{cases} H(t, x) + H(s, e^{\alpha t}x) = H(t+s, x), \\ H(0, x) \equiv 0. \end{cases}$$

Since $\varphi_t^e(x)$ is Hermitian, we have

(3.21)
$$H(t, x) = -H(t, -x), \quad -\infty < t, x < +\infty;$$

and since $\varphi_t^e(x)$ is slowly increasing in x for every fixed t, H(t, x) is also slowly increasing and we have from (3.21)

$$(3.22) \quad \frac{\partial^{2k}}{\partial x^{2k}} H(t, x) \Big|_{x=0} = 0, \qquad k=0, 1, 2, \cdots, -\infty < t < +\infty.$$

Conversely, if we find a solution H(t, x) of (3.20) for positive x

which is slowly increasing in x > 0 and satisfies conditions as follows

(3.23)
$$\lim_{x \to +\infty} \frac{\partial^{2k}}{\partial x^{2k}} H(t, x) = 0$$
, $k = 0, 1, 2, \cdots, -\infty < t < +\infty$,

then we can extend it to the whole line by

(3.24)
$$\begin{cases} H(t, 0) = 0, \\ H(t, x) = -H(t, -x), & x < 0. \end{cases}$$

It is easy to see that

(3.25)
$$\varphi_t^e(x) = \exp\left[i\mathrm{H}(t, x)\right]$$

is a solution of (3.17). Therefore, we solve the equation (3.20) only for positive x.

Set

(3.26)
$$G(t, y) = H(t, e^{ay}), \quad -\infty < t, \ y < +\infty$$

Then we have from (3.20)

(3.27)
$$\begin{cases} G(t, y) + G(s, t+y) = G(t+s, y), \\ G(0, y) = 0. \end{cases}$$

Further, setting y=0, we have

(3.28)
$$\begin{cases} G(t, 0) + G(s, t) = G(t+s, 0), \\ G(0, 0) = 0. \end{cases}$$

Set

$$g(t) = \mathrm{G}(t, 0)$$
 , $-\infty < t < +\infty$,

then by assumption g(t) is continuous and we have from (3.28)

(3.29)
$$G(t, y) = g(t+y) - g(y), \quad -\infty < t, \ y < +\infty.$$

Finally, setting $y = \frac{1}{\alpha} \log x$, we have

$$\begin{split} \mathrm{H}(t, x) &= \mathrm{G}\left(t, \frac{1}{\alpha} \log x\right) \\ &= g\left(t + \frac{1}{\alpha} \log x\right) - g\left(\frac{1}{\alpha} \log x\right) \\ &= g\left(\frac{1}{\alpha} \log e^{\alpha t} x\right) - g\left(\frac{1}{\alpha} \log x\right) \\ &= h(e^{\alpha t} x) - h(x) , \qquad -\infty < t < +\infty, \ x > 0 , \end{split}$$

where $h(x) = g\left(\frac{1}{\alpha} \log x\right), x > 0.$

The problem to characterize the class of the h(x) is still open but we have the following proposition.

Proposition 3. For every function h(x) in \mathcal{I} ,

$$\varphi_t^e(x) = \exp\left[i(h(e^{\omega_t}x)-h(x))\right], \quad -\infty < t < +\infty$$

is a solution of the equation (3.17) in \mathcal{U}_{S}^{he} .

The proof is easy.

Combining the above solution and the polar part of the tension (3.12), we have the following theorem.

Theorem 6. For every function h(x) in \mathcal{D} ,

$$\tilde{\mathfrak{G}}_{a}(h) = \left\{ \tilde{g} \left[\exp \left(\frac{\alpha}{2} t + i \{ h(e^{\alpha t} x) - h(x) \} \right) \right]; -\infty < t < +\infty \right\}$$

is a one-parameter subgroup of $\mathcal{O}(S_r)$. The induced flow is isomorphic to the flow induced by the tension

$$\tilde{\mathfrak{G}}_{a}(0) = \left\{ \tilde{\mathfrak{g}}\left[\exp \frac{\alpha}{2}t \right]; -\infty < t < +\infty \right\}.$$

Proof. It suffices to prove the latter part of the theorem. In fact we have for every t

$$\tilde{g}\left[\exp\left(\frac{\alpha}{2}t+ih\{(e^{\alpha t}x)-h(x)\}\right)\right]$$
$$=\tilde{g}\left[e^{-ih(x)}\right]\tilde{g}\left[e^{(\alpha/2)t}\right]\tilde{g}^{-1}\left[e^{-ih(x)}\right],$$

and hence

$$\begin{split} \tilde{\mathbf{g}}^* \bigg[\exp \bigg(\frac{\alpha}{2} t + i \{ h(e^{\omega t}x) - h(x) \} \bigg) \bigg] \\ &= \tilde{\mathbf{g}}^{*-1} \big[e^{-ih(x)} \big] \tilde{\mathbf{g}}^* \big[e^{(\omega/2)t} \big] \tilde{\mathbf{g}}^* \big[e^{-ih(x)} \big] \,. \end{split}$$

This proves the theorem.

Example. Put $\alpha = 1$ and h(x) = x. Then for every $\xi(x)$ in S_r we have

$$igg(egin{aligned} & \left(egin{smallmatrix} & \left(e^t x - x
ight)
ight) \end{bmatrix} \xi igg)(x) \ & = e^{-(t/2)} \xi(e^{-s} x - e^{-t} + 1) \ , \qquad -\infty < t < +\infty \ . \end{aligned}$$

4. One-parameter Subgroups of $\mathcal{O}(\mathcal{S}_r)$ Which Commute with the Shift

In this section, we appeal to the following well-known theorem to prove that all one-parameter subgroups of $\mathcal{O}(\mathcal{S}_r)$ that commute with the shift are found in $\tilde{\mathfrak{G}}_0$.

Theorem 7. Let \mathcal{D} be a Hilbert space and let $\{U_t\}$ be a continuous one-parameter unitary group in \mathcal{D} with the resolution of the identity $\{E(\lambda)\}$ of simple spectrum. Then for every continuous oneparameter unitary group $\{V_t\}$ which commutes with $\{U_t\}$, there exists a real measurable function $h(\lambda)$ such that

(4.1)
$$V_t = \int_{-\infty}^{+\infty} e^{ith(\lambda)} dE(\lambda) , \quad -\infty < t < +\infty .$$

Let $\{S_t\}$ be the shift on L_r^2 , $\{E(\lambda)\}$ be its resolution of the identity and let $\{V_t\}$ be a continuous one-parameter unitary group on L_r^2 which commutes with the shift. Then we can extend them naturally to the operators on the complex Hilbert space L^2 . We again denote them by the same notations.

It is well-known that the shift is of simple spectrum and hence Theorem 7 is applicable. Therefore there exists a real measurable function $h(\lambda)$ for which (4.1) is valid.

Furthermore put

$$(4.2) \qquad \qquad \widetilde{E}(\lambda)=\mathscr{G}E(\lambda)\mathscr{G}^{-1}\,, \qquad -\,\infty\,{<}\,\lambda\,{<}\,{+}\,\infty\,,$$

Then for every measurable set Δ , we have

$$(4.4) \qquad \qquad (\widetilde{E}(\Delta)\xi)(x) = \chi_{\Delta}(x)\xi(x) , \qquad \xi \in L^2 ,$$

where $\chi_{\Delta}(x)$ is the indicator function of the set Δ .

Proposition 4. A continuous one-parameter unitary group $\{V_t\}$ on L^2 commutes with the shift if and only if there exists a real measurable function $h(\lambda)$ such that for every $\xi(x)$ in L^2

(4.5)
$$(\tilde{V}_t\xi)(x) = e^{ith(x)}\xi(x), \quad -\infty < t < +\infty,$$

where $\{\tilde{V}_t\}$ is defined by (4.3).

Proof. Let $\xi(x)$ be an arbitrary function in L^2 and put

$$\Delta_{n,\nu} = \left\{\lambda; \frac{\nu - 1}{n} < h(\lambda) \leq \frac{\nu}{n}\right\},\$$
$$\nu = 0, \pm 1, \pm 2, \cdots,$$
$$n = 1, 2, 3, \cdots.$$

Then we have from (4.1), (4.2) and (4.3)

$$\widetilde{V}_t = \int_{-\infty}^{+\infty} e^{ith(\lambda)} d\widetilde{E}(\lambda)$$
$$= \lim_{n \to +\infty} \sum_{\nu = -\infty}^{+\infty} e^{it(\nu/n)} \widetilde{E}(\Delta_{n,\nu}) =$$

and according to (4.4)

$$\begin{split} || \widetilde{V}_{t}\xi - e^{ith}\xi ||^{2} \\ &= \lim_{n \to +\infty} \sum_{\nu} || e^{it(\nu/n)} \widetilde{E}(\Delta_{n,\nu})\xi - \widetilde{E}(\Delta_{n,\nu})\xi ||^{2} \\ &= \lim_{n \to +\infty} \sum_{\nu} \int_{\mathcal{A}_{n,\nu}} |e^{it(\nu/n)} - e^{ith(\lambda)}|^{2} |\xi(\lambda)|^{2} d\lambda \\ &\leq \lim_{n \to +\infty} \sum_{\nu} \frac{1}{n^{2}} \int_{\mathcal{A}_{n,\nu}} |\xi(\lambda)|^{2} d\lambda \\ &= \lim_{n \to +\infty} \frac{1}{n^{2}} ||\xi||^{2} = 0 , \end{split}$$

for every $\xi(x)$ in L². Thus we have proved the proposition.

Theorem 8. A one-parameter subgroup $\{V_t\}$ of $\mathcal{O}(S_r)$, which is strongly continuous on L^2_r , commutes with the shift if and only if there exists a function h(x) in \mathfrak{I} such that

$$(4.6) V_t = \tilde{g}[\exp(ith(x))], \quad -\infty < t < +\infty.$$

Proof. The sufficiency is obvious and we show only the necessity.

Let $\{V_t\}$ be a one-parameter subgroup of $\mathcal{O}(\mathcal{S}_r)$ which is strongly continuous on L^2_r and commutes with the shift. Then we can extend it naturally to a one-parameter subgroup of $U(\mathcal{S})$ which is at the same time continuous one-parameter unitary group on L^2 and we denote it again by the same notation. Furthermore define $\{\tilde{V}_t\}$ by (4.3). Then, according to Proposition 4, we have $\tilde{V}_t = g[e^{ith(x)}]$ where h(x) is a real measurable function and therefore

$$(4.7) V_t = \tilde{g}[e^{ith(x)}], \quad -\infty < t < +\infty.$$

Finally, applying Theorem 4, we see that the function h(x) must be in \mathcal{D} .

References

- Hida, T., I. Kubo, H. Nomoto and H. Yoshizawa, On projective invariance of Brownian motion, Publ. RIMS Kyoto Univ. Ser. A, 4 (1968), 595-609.
- [2] Hida, T., Stationary stochastic processes, White noise, Lecture note, Princeton Univ., to appear.