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Local Decay of Solutions for Symmetric
Hyperbolic Systems with Dissipative
and Coercive Boundary Conditions
in Exterior Domains

By
Nobuhisa IwASAKI

§0. Introduction

P. D. Lax and R. S. Phillips approached the scattering theory
for wave equation or symmetric hyperbolic systems with conserva-
tive and coercive boundary conditions by time-depended methods
in their book “Scattering Theory”. We have seen whether the
methods in this book are applicable to other cases or not. If
the interest is restricted to local decay, they are applicable to
solutions for symmetric hyperbolic systems with dissipative and
coercive boundary conditions when the dimension of space-like > 3.
We report this here.

We consider the following mixed problem in QX [0, o)

0

u(x, t)+ C(x)u(x, t)
ox;

%u(x, ) = Au(x, t) = i‘{ A;(x)

O By u(®, £)] 50 = 0

u(x, 0) = f(x)

where Q is an exterior domain with compact C’-boundary in
R* (n>3), A is a symmetric dissipative and elliptic first order
differential operator on Q, A is of constant coefficient and C(x)=0
out of a bounded set of Q, moreover, A holds the unique continu-
ation theorem and B(x) is dissipative and coercive with respect to
A. Then, the solution #(x, f) of (0.1) is given by the contraction
semigroup U(?) on L*(Q) like u(x, )=U@)f if f is in L*(Q). We
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shall prove that
limU@)f =0 in L7,.(0)

except for static solutions though the operator norm of U(f) on
L*Q)=1. This property is called local decay or decay principle.
This is deduced from the followings ;

1) A has no point spectrum on imaginary axis except for origin.

2) The set of functions in #: {U(t+s)f, 0<s<oo} is precompact
in the space of uniformly bounded continuous .£?_ .(Q)-valued
functions.

1) follows from Lemma 4 in §2.3, 2) is Lemma 5 in §2.3 and we
can deal abstractly with the proof of local decay from 1) and 2).
We show this in §1 which is an extension of Appendix 2 of P. D.
Lax and R. S. Phillips [9] to the case of contraction semigroup.
The main theorem of this paper is Theorem 8.

T. Ikebe [4], M. Matsumura [12], K. Mochizuki [16], [17],
G. Schmidt [21] and C. Wilcox [22] are the works concerned with
existence of wave operator, local decay, limiting amplitude and
eigenfunction expansions for symmetric (hyperbolic) system (general
or special). There are many works of these problems for wave
equation or Schrddinger operator. For example, we can give [2],

(31, [5], [6], [71, [91, [101, [13], [14], [15], [18], [19], [20].

§1. Contraction Semi-group and Local Decay

1.1. We begin by extending the classical result for one parameter
group of unitary operators.

Let X and X’ stand for a reflexive Banach space and its dual
space, respectively. Let U(f) be a strong continuous one-parameter
semi-group of contraction operators on X and A be the infinitesimal
generator of U(f). Moreover, let B, .,[F] stand for the space of
F-valued functions, which are continuous and bounded, having the
uniform convergence topology on [0, ), where F is a closed subset
of some locally convex topological vector space. Particularly, when
F=C, we denote it by By, .,(=B,«[C]).

We define the subset N («) of B, ., by
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Ny(u) = {ps); [0, )2t = UE+35)u, fH>EC; s€[0, )},
where u=X and feX.

Theorem 1. We assume that A has no point spectrum at ioeC
for any real number w, and that N (u) is a pre-compact set of By .
Then,

im g,(t) = 05 p)=<U, f>.
Proof. Let us put lim sup|e,#)|=a. We can choose a se-

quence {f;};,.., which diverges to infinity as i—oo, such that
lim | ()| =a and {p:,(t)} is a Cauchy sequence in B, ., because

N (u) is a compact set of B, .,. Let the continuous function ®(¢)
€B,.., stand for the limit function of {p,(#)}. Then,

1.1.1): ®@) can be extended to an almost periodic function on
(_OO’ +°°)'

Because, we can find a subsequence {s;} in an arbitrary sequence
of real numbers {r;} which diverge to infinity such that {D(f+s,)}
is a uniformly convergent sequence of functions in ¢ in the following
sense, that is,

1.1.2): for anmy positive number & there exists a positive integer N
such that, if j>i>N, then

sup |D(t+s,)—D(E+s)| <€, (5:<s,) .
_.T‘- 1<

In fact, if we take a proper subsequence {s;} of {r;}, {@,(#)} is a
Cauchy sequence in B, ., and s;<s; for i<j. And we may take a
subsequence {#;} of {#;} such that s;<#/. On the other hand it holds
that

[P +s,)—PE+5) | <@ (t+5;)—DP(t+s))]
+ !¢t,’(t+si)—q>(t+si)i =+ |(psj(t+t;)_¢s,(t+té)l .

Here, if j>i>N for some large integer N, the first and second
terms of the right hand side are bounded by &/3 uniformly on
t+s;>0 by the definition of ®(¢) and the third term is bounded by
&/3 uniformly on ¢+#,>0, that is, on £+s;>(0 by the way of choice
of {s;}. This means (1.1.2).
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From the property (1.1.2) we can conclude that &®(f) is an
almost periodic function in ¢ on [0, o), that is, if we set

m(€) = {s=0, | D(E+s)—2()| <&},

m(€) is relatively dense in [0, o). Since almost periodic function on
[0, =) can be extended uniquely to the almost periodic functions on
(— o0, + ), we have (1.1.1).

Now, using that the generator A has no point spectrum on the
imaginary axis, we prove that ®(f)=0. From the mean ergodic
theorem there exists v, X which is the limit vector of

# [Tty uar

0
as T—oo in the strong topology and which satisfies that
e U, =v,,
that is,
v,€D(A) and Av, = iov,.
Hence v, must be zero vector. From the above all Fourier coef-
ficients of the almost periodic function ®(), (i.e.)

3 i T —io —_ H T —iw
LLIE T So e () dt = <£1+r2 ?L So e tU()udt, >

are zero. Hence we conclude that ®({)=0 from the uniqueness
theorem of almost periodic functions for their Fourier coefficients.
By the construction of ®(f) this shows that

a = lim|p,(t)| = ®0) = 0.
The proof is complete.

Remark. In the above proof of Theorem 1 we have used “non-
existence of point spectrum of A on imaginary axis” only to prove
that

(1.1.3) lim ST<e'i“"U(t)u,f>dt —0.

Hence we have the following corollary.

Corollary 1. N,(w) is a compact set of B .., and (1.1.3) holds
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for any real o, then lim p(f)=0; @@)=U@)x4, .
Let

Bf) = liminf [KUDS, &1, fEX, g&X'.

Theorem 2. The following i) and ii) are equivalent.

i) The generator A has no point spectrum on the imaginary axis.
il) For any feX and geX', B,(f) is zero.

Proof. It is easy to show that ii) implies i). In fact, if A
has iw as a point spectrum, there exist f&X and g X such that
{f, g>=+0 and U(t)f=e™'f. This shows B,(f)=I|<{f, g|=+0, in the
other words, contradicts to the proposition ii).

Let us prove that i) implies ii). We fix f an element of X.
Then, the set {U(#)f, 0<f{<oo} is included in the subspace of X
which has a countable base because U(#)f is continuous in # in the
strong topology of X. Hence we assume that X has a countable
base in the proof of this theorem. Let G={g,},-.... be a countable
base of X’ and G, be the unit sphere of the finite dimensional
subspace of X’ generated by {g, ---, g,}. And put

8,(f) = liminf {sup |[<U®)S, £>1}
and
8(f) = sup  8,(f) =1lim3,(/).

From the definition of 8(f) there exists the increasing sequences of
real numbers {f;} and of integers {n;} which satisfy that

lim [sup [<U()f, g>11 = 8(f),

where lim #;=lim n;=co, and ||U(%,)f|i<||f|| because U(¥) is a con-
traction semi-group. From the compactness of bounded sets in the
weak topology of X, we can find the subsequence {#;} of {f;} such
that the sequence of vectors {U(¢;)f} converge to an element ¢ of
X in the weak sense. We denote such a subsequence by {¢;} again.

Let us prove that

(1.1.4) 3(p) = 8(f).
If we fix t&[0, o), there exists I(n, & t) for £>0 such that
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sup KU@)p, g>| = sup [(UE+1)f, >l —¢  i=1n, & 1),

because U(¢f) is a continuous operator in weak topology and G, is
finite dimensional. If 7—oo, this shows that

sup [<U@#)p, g7 = 8.(f)—¢.
Since ¢ and ¢ are arbitrary, §,(@)>6,(f). We have that
8(p) = 8(f) -

Next we prove that

(1.1.5) llpll < 8(f) .
For any £>0, there exists N such that

llell < sup [<p, g7 +€,
and there exists I(V, &) such that

gseglloVKq), 2>l S;gg [KUENf, gl +€&,  i=I(N,¢)
< sup [KUW)S, g>| +€,  n=N,

because G,DOG, when n>N.

From the way of choice of {f;} and {u;}, if we put n=n; and
make ¢ tend to infinity, the right ‘hand side of the above inequality
is replaced by &8(f)+&. Thus we have (1.1.5).

Since ||@||>8(p), (1.1.4) and (1.1.5) mean that

(1.1.6) llpll = 8(p) = 8(f) -

From this, we can prove that the subset ®= {U(f)p, 0<f{<o} is a
precompact set of X in the strong topology. In fact, U(f)p is
continuous in f in the strong topology and @ is precompact in the
weak topology. Therefore it is sufficient to prove that, if {U(¢,)p}
is a convergent sequence in the weak topology, {U(¢,)p} is a con-
vergent sequence in the strong topology, where {f,} is a sequence
of real numbers which diverges to infinity. Let ¢ be the weak
limit of {U()}, ie.,

¢ =w—limU@E)p .
Then
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lpll= 1Tl =141l = sup sup |<9, &>
>8(p) = llpll  from (1.1.6).

Thus, we have that lim ||U¢)ell=Igll-

Applying the resonance theorem, we have the strong convergence
of {U(t;)p} to ¢. This means that @ is precompact in the strong
topology. Let N(p) stand for the set of all functions in ¢: Ut +5$)p,
where s denotes an arbitrary real non-negative constant. N(p) is
the subset of B, ., X]. Combining the compactness of & and the
contractility of U(#) (i.e.) |[|U(#)||<1, we conclude that N(p) is a
pre-compact subset of B .,[ X]. Particularly, for any geX’ N, (p)
is a pre-compact subset of 3B ... Applying Theorem 1, <@, g>
must be zero, that is, @ must be zero vector. This is nothing but
8(f)=0 because 8(f)=||p||. In the other words, it holds the pro-

perty ii) because DG,, generates X’. The proof is complete.
n=1

1.2. To bring the previous result into a handier form for
applications.

Let H be Hilbert space and F be Fréchet space where H is
densely injected into F. We denote the inner product of H by (,)
and the norm of H by ||-||. Moreover, we assume that the follow-
ing “Condition A” is satisfied between H and F.

Condition A. There exists a countable set of bilinear forms
{p;:7=1,2,---} on F satisfying the following conditions (1) and (2).
Q) Ap;(H)=lp,(f, £)I# 7=1,2, -} are semi-norms of F.

(2) for any f<H, it holds that

PA)<pu(AIFIL sup p,(F)=IIfII-

Remark 1. From the Condition A it follows immediately that,

setting o,(f, 8)=(f, g8)—p,(f, &) for f, gEH, o (f, g) are non-negative
bilinear forms on H and that o;(f)=[c,(f, /)] have the semi-
norms property, i.e.,

o (af +bg) < |alo;(f)+|blo(g).

Remark 2. If we set H=IL*Q) and F=I’, (Q), this pair
satisfies the Condition A.
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Let U(¢) be a contraction semi-group on H (¢>0), i.e., ||U®)|<1,
A be the infinitesimal generator of U(¢), D(A) be the definition
domain of A and M(f) be the motion of f, i.e.,

M(f)= U(‘)fe—@m,m)[H] .

Condition B. The set of motions {M(U(s)f), for 0<s<oo} is
precompact in B, ..[ F].

Condition C. The subset {U(f)f, 0<{< oo} of H is precompact
in F.

Remark 3. Condition B implies Condition C.

Remark 4. If the set {fD(A); ||f||+||Af]||<1} is precompact
in F, then all elements of H satisfy the Condition C.

Let K be the closed subset {f; ||f||<1}c H. We introduce the
following symbols.

K stands for the set K whose topology is equivalent to the

strong topology of H.

K, stands for the set K whose topology is equivalent to the

topology of F.

K, stands for the set K whose topology is equivalent to the

weak topology of H.
Then, K5, Kr and K, are complete in each topology. The topology
of K is stronger than the topology of K and the topology of K
is stronger than the topology of K, i.e.,

(1.2.1) KscKpcKy.
It is clear from the Condition A that K;C K,. Using (2) of the
Condition A and Remark 1,

So—j(f)o-j(g)+pj(f)Pj(g)
<[Iflle{g)+p ()&l

This means that a Cauchy sequence of K is a Cauchy sequence of
Ky because for a fixed geH limo;,(g)=0. Thus K,C Ky, and

since it is clear that K5 and K are complete, K, is also complete.
From (1.2.1) we conclude that
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1.2.2) Bro,e [KslC By [KrlC By, [ K] .

Remark 5. If 7 is a bounded linear operator on H, T is
continuous in the weak topology of H. Hence, if T is a contraction
operator, T is a closed operator on K. Particularly, if T is
restricted on a subset E of Ky whose image by 7, TE, is precom-
pact in Kp, T is continuous on E (in Kz).

Theorem 3. A has no point spectrum on imaginary axis if and
only if it holds the proposition that, if (and only if) f<H satisfies
the Condition B,

lim p(U)f) =0 for all j.

Proof. We may assume that ||f||<1. Then, U(t)e B, [ Ksl,
and the Condition B means that {M(U(s)f) 0<s< oo} is precompact
in B, ., Kr], that is, in B, .,[Ky] from (1.2.2). Therefore for a
fixed geH, N, (f)={p.)=UE+3)f, 8By 0<s<co} is pre-
compact in B, ..,.

Applying Theorem 1,
(1.2.3) lim g,(f) = 0.

Now, we put 8].=1i133 sup p,(U(t)f). Then, there exists the Cauchy
sequence {U(t,)f} ;;1 Ky such that 8,:%313 p;(Utyf) and lklfil fp=o0
from Remark 3. If we denote the limit vector of {U(f,)} as k—oo
by %, then &;=p,(#) and 11»19{1 Yt =|kF where o)=U®E)f, k). On
the other hand, ligl J#)=0 from (1.2.3). Thus % must be zero
vector, that is, o j:O. The “if” part of this theorem is clear.

The proof is complete.

If we assume the precompactness of the set {U(#)f} in F, we
have the similar result as Theorem 2. We put

&(f) = sup {lim inf p,(U®)S)} .

Theorem 4. A has no point spectrum on imaginary axis if and
only if it holds the proposition that, if f satisfies the Condition C,
then &(f) must be zero.

Proof. We assume that ||f]|<1. Considering the precompact-
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ness of the set {U(f)f} in F, there exist sequences of real numbers
{t;} and {pn} which diverge to infinity and satisfy that, for >N,

(1.2.4) | (Ut )= ()] <%,

and that {U(¢,)f} is a Cauchy sequence in K. Therefore, there
exists ® = K such that ®=1im U({,)f in K. Considering that U(s)
k>

is continuous on E; E= {\MU(s)—U(s,))f; IM] =£1/2, 0<s,, 5,< oo}
c Kr (Remark 5) and (U(t,)—®)/2€E, when we fix €>0, s and p,
we can take ¢ and constant C,, such that

py(UEe+8)f—UE)P) < Coppp(Ut) f — D) +E.
Thus

P UED) = p,(Ut+8)f)— Cosppa(Ulte) f — D) —E.
If we make k tend to infinity, the second term converges to zero.
Since & is arbitrary, we have that

p,(U(s)®) > lim inf p (U(#) f), that is,
&@) =e(f) .
On the other hand, ||®||=1lim p,(®)=&(f) from (1.2.4). This implies
by

&(@)=&(f) = ||@f|=lim ||[UF)P||=6(®P),  that is,
(1.2.5) &) = [|@]] = [|UODI] .

Since {U(¢)®} is included in the closure of {U(#)f} in K, {U(t)®}
is precompact in K5, too. We now prove that ® satisfies the condi-
tion B. To do so, it is enough to show that

(1.2.6): if the sequence {U(t;)®} is a Cauchy sequence in Kp and
{t;} tends to infinity as i—oo, then it is a Cauchy sequence
in K.

Because, U(¢) is a contraction semi-group and strong continuous in £.
From (1.2.5), for €>0 there exists N and T such that for >N
and 1>T
o (U@BD) = |UBP||— p(UR)P)<E .
Hence
1u)@— U )|
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<o, (UE)@— U))@))+ p(Ut)2— Ut )®)
<o, (U(E)®) +0,(UE,)P)+ p,(Ut;)P— U(¢,)P)
<&te+e,

if we make ¢ and j be sufficiently large. This shows (1.2.6), that
is, @ satisfies the Condition B. Hence, we can use theorem 3 for
®. We conclude that ® must be zero vector, that is, &(f)=0. The
“if”” part of this theorem is clear. The proof is complete.

We know of the contraction semi-group that there exists the
strong limite of %—STe"""fU(t)udt as T—oo and except for countable
real numbers ’

T .
lim 4 g e Utyudt = 0.
T > 0
We now denote by (w;, @;) the countable pairs of real number and
vector such that
T
lim S e it Utyudt = a,;+0.
Tyoo 0
Moreover, we have that
o T
S ller<tim 4 {"|U@wirat,  (A—io)a,=0; a,&D(A)
and Ut) (S a) = X e~ra, .
ji=1 j=1

Hence, if we put Puz_mz1 a;, P is a projection on H, i.e. P?=P and
p=

the range of P coincides with the closure of the subspace consisted

of eigenvectors whose eigenvalues are on imaginary axis.

On the other hand, in the proof of Theorem 3, we can replace
the assumption that A has no point spectrum on the imaginary axis
by the assumption that for any real o

lim STe“"‘”U(t)u dt = 0.
T oo 0

Therefore, applying Theorem 3 to f—Pf, we have the following
Theorem.,

Theorem 5. If f satisfies the Condition B, then
lim p (U f—U@)Pf) =0  for all j.

Here U(t)Pf is nothing but a H-valued almost periodic functions in t.
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Corollary 5. If {UQ®)f} is precompact in H, then
lim [[U®) f— URFrll=0.

§2. Applications to Solutions for Symmetric Hyperbolic
Systems with Dissipative and Coercive
Boundary Conditions

2.1. Existence and regularity of solutions.
We consider the mixed initial-boundary value problem for hyper-
bolic system of the form:

——u(x, t) = E A; (x) u(x, H+CE)ulx,t); (x,8)eQ x[0, o)

@114 i, 1) € Bx) . (x,£)=0Q X [0, o)
u(x, 0) = uy(x) ; xEQ

in the product space of a z-dimensional domain Q with compact

C’~boundary and [0, o). Here, we assume that A and B satisfy
the following conditions where

2.1.2) A= g A(x) 6—%+C(x) .

Condition I. A is a formally dissipative operator, that is,

i) A; are kxk Hermitian-symmetric-matrix-valued functions of
class #'cC.

i) C+CH*— 256_ ,<0, req.

Condition II. A is a uniformly elliptic operator, that is,
IiAjEj,' >6|&|, >0 for any non-zero real vector (£,), where & is
=1
independent on x (.

Conditien III. B(x) are maximal non-positive, that is, the matrix
A,(x) is non-positive over B(x), i.e.,

uA,u <0
for all #(x) in B(x), x€0Q, and B(x) are the maximal subspace in
C* satisfying such a property, where An(x)=i] A;(x)n;(x) and

(n,(x)) is the outer normal to the surface 0Q at x<0Q.
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Condition IV. B(x) are coercive with respect to A, that is,
BN é&E)={0}, for any non-zero real vector (£;) such that Z’Eﬂ":o’
where &(E) are the subspace spanned by the root-vectors ]of M(g)=
A;lji]l A;E; whose eigen-values have the negative real parts.

We now mention the results deduced by the above conditions.
From Conditions II and IV, we have the coercive estimate for
usH'(Q) and u|,nEB;

@.1.3) H%ul. < Const {||Aul|+ !} ,

where H'(Q)) stands for the vector-valued square integrable functions
with square integrable first derivatives. We denote by D(J) the
functions which are elements of H'(Q) and satisfy the boundary
conditions (i.e.) #|,q=B. From Conditions I, II, III and IV, we have
that the differential operator (A —A) is one to one and onto map
from D(A) to L?(Q) for any positive number A and satisfies the
estimate ;

lul] < %—H(x—A)uH.

(Refer to P. D. Lax and R. S. Phillips [8] and [9] for the precise
discussions for these properties.)

Let 1 stand for the closed operator attached to A on L*Q)
with D(A) as definition domain. Then, the following lemma holds
from the above fact applying the Hille-Yosida’s Theorem.

Lemma 1. A is an infinitesimal generator of a contraction
semi-group.

We denote by U(¢) the contraction semi-group generated by A.
Then, it holds for f=D() that

%U(t)fz JAU®)f and U@®)feD().

This equation means the mixed initial-boundary value problem (2.1.1)
and U@#)f is its solution.

2.2. The case in a bounded domain.

In this section 2.2, we assume that the domain Q is a bounded
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domain. Using the coerciveness of ., Rellich’s Theorem and Remark
4 in 1.2, we have that {U(#)f} is precompact in L*(Q). Consider-
ing Corollary 5, we immediately have the following conclusion.

Theorem 6. If (2.1.1) satisfies Conditions I, II, I1I and IV and
Q is a bounded domain, then there exists the projection P on L*(Q)
such that :

i) UQR)f is a unique solution of (2.1.1) with the initial data f.
i) UQ@)Pf is an almost periodic solution of (2.1.1).
iif) Hm ||U@)f — UOFS || £2q)=0.

Corollary 6. We assume that A-+iu is a system holding the
unique continuation theorem (u is real) and that (2.1.1) satisfies
Condition I, II, III and IV. Moreover, we assume the stronger
Condition V. Then any solution UE)f of (2.1.1) decays as t— in
L3Q), ie.,

111;1}3 “U(t)f”_[z(g) =0.

Here the Condition V is the followings ;

Condition V. (A4, B) is strictly dissipative, that is, the following
i) or ii) holds:

i) If =B and Sanu-Anua’S=0, then there exists an open set » of

9Q such that #=0 on w.
ii) There exists a point x, of Q such that C +C*—§; 687.Aj is a
negative matrix at x,. ’

Proof of Corollary. Since the range of P coincides with the
subspace spanned by eigenfunctions of 4 on _£?(Q)) whose eigen-
values lie on imaginary axis, it is enough to prove the following
lemma.

Lemma 2. We assume that A—iu holds the unique continuation
theorem and satisfies Conditions I, III and V. If (A—ip)u=0, uec
D(A) and p is real, then u must be zero.

Remark. In this lemma it is irrespective for Q to be bounded
or unbounded.

Proof. It holds that
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0 = Re (A—iu)u, u)
= L @+ A%, )+ Re | u-Auds,
2 30

where A* is the formal adjoint operator of A. Since A+ A* is non-
positive matrix and S u-A,udS is non-positive, too, ((A+A*)u, u)
and S u-A,udS must aﬁe zero. Thus, there exists an open set w, in
oQ ora:n open set w, in Q such that #=0 on o, or #=0 on w, from
Condition V. Using the unique continuation theorem we conclude
#=0 on Q. The Lemma is proved.

2.3. The case in an exterior domain.

In this section 2.3 we assume that A is a constant coefficient
differential operator without term C at the exterior of some bounded
domain, that is, the form
A 0

o,

A:

n
j=

(Remark. we call this condition Condition VI.) and that the dimen-
sion of x-space is not less than 3 and Q is an exterior domain.

2.3.1. Solutions of systems of constant coeflicients in free space.
We consider the equation of the form

gu = Au
(2.3.1) ot
u|t=0 :f’

where A is of constant coefficients in whole space R”. Since A
defines the self-adjoint operator .4, on .L? with H' as its definition
domain, we can express by the strong continuous one-parameter
group of unitary operator of _L?: Uy(f) the unique solution of the
initial value problem for (2.3.1) with initial data f like U/(?)f.

We denote the orthonormal eigenvectors and their eigenvalues
of symmetric matrices :

A) = LA,

with parameter & of real vectors by ;) and 7,%), i=1, -, &,
respectively, where
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71(5)272(5)2 27—k/z(§)>0 ’
'Yk/z+j(f) = ')’la/z-—j+1(—g) and Tk/z+j(§) = _Tk/z-j+1(_§) .

We denote by N the subset of _L*(S,_,) consisting of the functions
which have the form :

S @) vi), wES..,

where _L?(S,_,) is the space of square integrable functions valued in
C* on S, , and i (w) are scalar-valued functions. Let f(x) be an
element of .[? f(f)=§f( f) be Fourier Transform of f and ¢;(o, )
be the scalar products of f(sw) and 7 (o) ;

(,b]-(O', (1)) =f(o‘co)-'y]-(m), ]:1) '"Jk,

where we introduce polar coordinates £=cw, cER' and oS, ;.
Then we can define the operator ® from L*=_L*(R") to L*(R', N),
which is the space of N-valued square integrable functions on R',
such that

n=1 n-1_rn=17 kl2
#(f) = oo T TS 0,0, 0)7,(0)
and @ is unitary map. In fact,
11 = LA

k +o0 s
=3[ a1 19400, @ 1de
=1JdS, 0

ji=1

k

~
~

gs deiZIG-l"-llqu(a_’ w)lzda

J n—1

= (Te0n1tdeds,

n—1

1i

because ¢;(o, ©)=¢;_;.(—0c, —w). Conversely, if we correspond
d(o, o) L*(R', N) to g(x) such that

gx) = FPE);

g e (=] 3 =] | £

@ = 181579121559y 121, B )+ (- 1P - 1e1, - )
y f(1e37) ( el /).
Then, g(x) belongs to £? and ¢(o, ®)=P(g). Moreover, to make
clear the properties of solutions of (2.3.1), we define the operator
9, from functions in (s, ) to functions in x by the form:
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7.0 =G| (22 o, w)do
Sn-1\1 as
where A(s, w) is an element of C*(R', N) which is the set of N-

valued C~-functions in s€R'. Then it holds the following properties
for 4,: if heCy(R', N)

¢ (o, »)), when # is odd,

2.3.2 h) = )
( ) gn( ) {(l)—l(}o’]_llzh(o-’ w)) , when # is even;

(o, ©) = \/Lz_” Sf:eff31z(s, 0)ds = Fop, (h(s, )

and
@33) (£ L[(F2)FT0]) = @@, K.,
where
h(s, o), when » is odd
K = —
(BB, ©) {Eﬁ'((,)(o-lal W Fo(h)(s, ),  when n is even.

Moreover, if J®(f)el’ (R, N) and %, (Jo(f))eC>(|s|<R, N),
then

(2.3.4) fx) = T(Fo(JO(f)), in [x|<R,
[, when 7 is odd
where o) = { |a| P 2D(f), when # is even.

We now define the closed subspace D_ of _[? by the closure of
functions which are represented as the form:

(2.3.5) &) = g, {(% %)[%J_E"T_IJ A, w)}

where /(s, ) is an element of C5(R', N) whose support is contained
in Rl=(—oco, 0]. Then we have the property that, if feD_,
U)f=0 at |x|<—£-Cpyyy Cmin= min inf 7,(¢), because, if f(x) is

1<i<k/2 Ig1=1
represented as (2.3.5), U/(#)f is represented as the form:
UOf = G35 | Tifro— @)t 0)7,(0)do;
> 1 90\[%]
s = (5 ) i, 000,

i

and that, if feDZ, from (2.3.3),
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{_CFQ,)(cID(f))(s, w) =0, at s<0, when # is odd,

Feolola|*D(f)) =0, at s<0, when # is even.
Therefore, when # is odd, if fD%, then
U@Bf=0 at |x|<C,nt.
When # is even, if feDiNH'2 from (2.3.5)
Tl 0| PR(F) = | - Feololo| DN, 0)ds at s<0,

then

UBf = €3 [gfra—m @)t wr@do  at |xi<Cots

) 1 his, w)ds, >0

hi(s, ©) = Fepx(ola| 7 D(f))-75(w) .

Applying the Schwartz’s inequality to this expression, we have

25, @) = at,|

2 Hf”%/z__ . .
’Uo(t)fl SIsrl(cmml_“_’x})n__ly at cmxnt>lxl ’

£ 1 = IICIEL )@
Putting the above in order, we have
Lemma 3.

) If feD_, U®)f=0 at |x|>—Count.
2) When n is odd, if fED:,

U®f =0 at |x|<+Copt.
When n is even, if feDtN HY?,

, £ 12 |
U1 S Bugg— L at 15 <Cot.

Theorem 7. If f=0, at |x|>p,
when n=odd, U()f =0 at |x|<C.t—p),
LA 113/

(ComlE—p)— 2 1)"™
at 2] <Cnu(t—p).

when n=even, |U(t)f|*<p,

Proof. This is clear because we can show that U/(p)f belongs
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to D+ and ||f|l,,=|U#)f |l by Fourier Transform.

Next, we show a lemma which means that any operator attached
to A on .L*-space in exterior domain has no point spectrum on
imaginary axis except for zero.

Lemma 4. If u is square-integrable in |x| >R and satisfies the
equation ;

(A+ip)u =0 in |x|>R
where u is a non-zero real number, then uw must be zero in |x|>R.

Remark. In this Lemma it is not necessary for A to be non-
singular (i.e.) elliptic. It is sufficient to assume that A is symmetric.

This lemma has been shown in P. D. Lax and R. S. Phillips [9]
Chapter 6 when the dimension of x-space # is odd. This is proved
in the same way when it is even, too. In order to prove simply
we use the result of D. Ludwig [117] on the Radon Transform.

We define R, operator from 9,z to D,2(LS,_,)) by the form:

(Rof)s) = Feo(c” Mo, +)):
Wo, w) = Feo(f)o @), cER', 0ES,

Lemma (Ludwig). R, is a one-to-one, onto, bicontinuous operator
from Dz to Ry(D 1) D (LAS™) and from D to DLHS* NN,
and u=0 in |x|>R if and only if Ru=0 in |s|>R, where we
define that f<DL(S"™)) is contained in N if f is an even function
in (s, w) and satisfies that

So_gm Ss”_lskf(-?, ); Y(w)dsdo = 0

for all spherical harmonic Y,(w) of degree | when k<I+(n—1).

Where 9,z is the space of functions of L* in xR”, every
derivative of which belongs to L* and 9,2(L*S""")) is the space of
LS, _,)-valued functions in s€R' satisfying this property. 9 is
compact support C=-functions and 9D(LXS,,_,)) is L¥(S"')-valued 9D-
functions.

Remark. R, which we define here is equal to (%)il_ R in

D. Ludwig [11]. So we have a little modified the necessary and
sufficient condition.
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Proof of Lemma 4. We may assume that # belongs to 9,2
because we may put #=0 in |x|<R and we can convolute the
mollifier to « since the differential operator is of constant coefficients.

The operator 51,, has the properties that
~ a 6 ~
ﬂ -— = ,'—cg{o .
(2F) = oo Bl
Therefore, 7= R,(u) satisfies the equation :

(2.3.6) (A(w)aa—s+m>ﬁ(s, =0, |s|>R,

Alw) = 2] Ao,

because (A-+ip)u=0, |x|>R. Since there exists A(w) such that
A(w) A(0)A(w) = A(w), (2.3.6) implies that

A(w)i(£s, 0) = ¢r®R-=irdw), A()i@(+R, w), where s>R.

U(s, w) belongs to D 2(L*S,..). Alw)i(s, »), also, belongs to
D;2(LXS,_,)). Thus, A(w)i(s, o) must be zero in [s|>R. From
(2.3.6) (s, o) must be zero because p=+0. We have shown that
i(s, o) is in DLXS,_,). If we put f= (A(w)éagw,ﬁ)a, then 7 belongs

to D(L¥S,-,))NN. Since p=+0, we can use the induction in %k to
show that # belongs to N, because

Sgskf- Yidsdo — Sgksk—lA(m)a- Y,dsdeo+ip Sgs”ﬂ- Y, dsde

where v-Y,=@,Y, v,Y,, ---), v=F, 4 or A(w)d. It is clear from the
definition that # is even in (s, w). Thus, we conclude that #(x)=0
in |x| >R from the Lemma (Ludwig).

2.3.2. The decay of the solution for mixed-boundary value prob-
lem in exterior domain.

Here, we take L*(Q) as H and L%, (Q) as F in 1.2, If we
assume Condition VI and that Q is an exterior domain, we shall
show that U(#)f satisfies the Condition B using Lemma 3 and that
U(t)f decays locally applying Theorem 3, because there is Lemma
4, where U(#)f is a contraction semi-group which corresponds the
initial data f to the function at # fixed of solution for mixed problem
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(2.1.1) which we defined in Section 2.1, that is, which satisfies the
Condition I, II, III and IV.

Lemma 5. If U{) is the above, QCR" (n>3) is an exterior
domain and (2.1.1) satisfies Condition VI, then the set of motions
M(U(s)f) for 0<s<oo is precompact in By, . (L"), for every
e L¥Q), namely, f satisfies Condition B as F=_L? ().

Proof. Since there is the contractility of U(#), it is sufficient
to prove it only for f’s which form a dense subset in .£%(Q). So we
assume that f is with compact support and belongs to the definition
domain of 1: 9D(A), that is, belongs to H'(Q2) and satisfies the
boundary condition on 9Q. So we have that

2.3.7)  Const [[U®f || e < IAUGF | pzey+ UGBS I
<IAF I gy + 1 | pagey -

We now fix such a f. We may assume that the support of f is
contained in {|x|<p}NQ where p>p, and A is the constant coefficient
differential operator discussed in 2.3.1 in {|x|>p,} which is con-
tained in Q. Then, it is clear that f is orthogonal to every element
of D="=Uy(—p,)D. when we suppose that f is an element of L% R")
by putting f=0 in Q°. Because g=0in {|x|<p} if g&D", p,=p/Cin,
from Lemma 3. Moreover, we can prove that U(f)f have a same
property, namely,

(2.3.8): Ul)f belongs to (D=h).
In fact, we have the duality such that
U@)F> &)y = (F» U —Dg)_rarry
because, if gD, then, g L%Q) and it holds that
U(—1t)g = Uld)*g

from uniqueness of the dual operator U(f)* which give solutions of
the hyperbolic system with some dissipative boundary condition.
Since U,(—1#)g is an element of D_, too,

(U(t)f’ g)IZ(Q) = (f, Uo(_t)g)l'z(Rn) =0.
By using the Rellich’s theorem it is clear from (2.3.7) that {U(¥)f,
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0<t< oo} is pre-compact in L7 (Q).
We shall prove the following inequality: If we give €>0 and
p’s then there exists p’” such that for all s, # and 7>0

(2.3.9) ]]U(-r+s)f—U(-r+t)f||ﬁ(!xlgp,)
<3||U(s)f— U(t)foz(mgpv)"'e .
In order to show this we take a C~-function X(x) such that |X(x)]|
<1, X(x)=1 in [x|>p and X(x)=0 in {|x|<p,} and we consider
the following one.
(2.3.10) UFr+s)f—Ur+t)f
=U@ A—=X@N{UE) - U@ 1}

+LUMX@x){U(S)f — U@ S} —Xx) U(n)X(x){U(s)f — U#)f } ]

+X@) U (MX(®){U(s) f—U@) S} .
L?*-norm of the first term of the right hand side of (2.3.10) is

bounded by |[A1—Xx){U(s)f—U{)f}||. So, we have that for all
s, ¢t and 7>0

(2.3.11) U A =X@N{UE).S — U@ S }HI 20
<NUSS=UBS N r2x) <) -
Since U(s)fe(Dzh)*, Xx)U(s)fe(Dz)t. So U(p)X(x)U(s)f (D) .
Thus, from Lemma 3 we have
(2.3.12) XU XEUE) | o121 <
S“Uo(T)X(x)U(S)fHIz(Ix]Sp')
0, when # is odd
<

||X(x) U(S)le/z _pm—l , at P,<Cmin(T_P1) ,

n -1
(Cmin T— P - P,>(n >z
when # is even.

Therefore, we have that, at 7>p'/C ;. +pi,

||the third termllﬂ(lxi<p,)

<

Const

Cp—To )m_l)/z-Hle, when # is even
1 min

{ 0, when # is odd
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because ||X(x)U(s)f |l,,<Const ||U(s)f|,<Const ||f||,, that is, there
exists 7, such that for 7>7,

(2.3.13)  [X@UOXE{UE) S~ UBSH| g1 < y<E/2 -

Next we estimate the second term. We operate %—A to the second
term=/I,(r). We have that

<£— A> I,(7)

ot
= AX)-UMXx){UE) f-Ut)f} = G(7):
AX) = ZA,-aax'X(x), in Qx[0, )

and I,(7) belongs to D(A). So that,
1) = =)L)+ | Ur—o)G(o)do .
This implies the estimate that

WO 2121 < )
<||L)il LR

SHIZ(TI)HIZ(R”)+51 HG(O')“-[z(Rn)dO' .

Since A(X)=0 at |x| >p, we can take p’=p in (2.3.12) and we have
that at o>2p/C

0, when # is odd,
”G(O')“Iz(Rﬂ)ﬁ Const

(o'—zp/c )(n..1)/2”f|| ) When n iS even.

Since we here assume #>3,
0, n=odd

' HG(rr)Ilfz(Rn)dchi | 1
Sn Const || f ], = 2p Coy T , m=even

at 7, 7,>2p/C

This means that there exists =, such that for 7>,
(2.3.14) WL gy < LI gy +€/2

On the other hand, U(¢f) has the finiteness of the dependence domain
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such that
NU®8N L2151 > R+ Conatt n ) <18l r2(g 21 > R} ) -

In |[x]|>p, G(@)=0 and I,0)=Xx){1—-Xx)}{U@s)S—-U@Ef}=0.
Therefore, we have that I,(r,)=0 in |x|>p+T,, namely,

1112(7'1)||£2(R”) = ”Iz(Tl)”,[Z(lxISp+Cmaxn) :
2.3.15) (LI gy =<201US).S = U fll_r2( 12| < o+ 2Cemaxrs) -

Because I(r) = Ulm)X(x){Us) f— U@ f}
—X(x) Uy(r)X(2){UES) - U S},

and U(¢) and U,(¢) have the finiteness of dependence domain such that

(2.3.16) “U(t)glliz({lx}<R}n.Q)£“g“.fz({lxlSR+Cmaxt}nsz)
10O 1215 <Ry < N8cx(151 <R+ ot
From the above estimates (2.3.11), (2.3.13), (2.3.14) and (2.3.15)

we have that if 7>max {7, 7.} and p”>p+2C_,,7, it holds (2.3.9).
Moreover, when 7<max {7, 7.} =7,, if we use (2.3.16), we have that

U@ (UGS f = U 2121 < 07)
SNUE)S —=UR) SN2 12] < 0 + Conanrs) -

So, we conclude (2.3.9) for all 7>0.

We have defined the mapping M from the subset S={U(s)f,
0<s< oo} of L%, () to the subset of Motions {M(U(s)f), 0<s<oo}
of By e(L0e(@) by

M(g) = Ult)g, ge&S$

which is a .7, (Q)-valued function in £. Then the inequality (2.3.9)
means that M is extendable to a continuous mapping on Sc 7%, (D).
Therefore, {M(U(s)f), 0<s<co} is precompact in B, .,(-L%..(2))
because S is compact itself. The proof is complete.

Lemma 5 shows that Theorem 3 or Theorem 5 is applicable to

the solution of (2.1.1) in the case of exterior domain, namely, we
can conclude the following theorem.
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Let U(t) be a semi-group such that U(¢) f represents the solution
of (2.1.1).

Let JI be a subspace of L*(Q) such that

Jl = the closure of Range ./
= the closure of Range (U(1)—1I)

— {5 lim§ | U® st = 0.

Theorem 8. If the mixed problem (2.1.1) in exterior domain
contained in R™ (n>3) satisfies Conditions I, I1, I11, IV and Condition
VI and if A—iu holds the unique continuation theorvem for real u,
then the solution U(t)f has a limit in L%, (Q) as t—oco and its limit
g is a static solution of (2.1.1.) belonging to L*(Q)), that is, Ult)g=g.
Particularly, if f&Jl, then the limit is zero. Moreover, if we assume
Condition V, then, Jl coincides with L*(Q)).

Proof. From Lemma 5, U(¢) satisfies the condition of Theorem
5 if we take H=_*(Q) and F=_?,(Q). So, we have the projection
P on _L*Q);

Bim (| U)f = UOPS || a1 <3y = O

and considering Lemma 4 we have that the Range P must coincide
with J] because there is no eigenvalue of A on imaginary axis
except for the origin. In fact, let u=_£*Q)) be an eigenvector with
eigenvalue iy of 1 where p is real, the Lemma 4 shows that «
must be identically zero at |x|>p, for some real p,. Since it holds
the unique continuations theorem for A—iu, # must be identically
zero on ). For the last part of Theorem from Lemma 2 :u=0 is
not an exceptional point. This is that Range P=J/=_%Q). The
Theorem is proved.
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