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Spectral and Scattering Theory for Symmetric
Hyperbolic Systems in an Exterior Domain
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Kiyoshi MOCHIZUKI*

1. Introduction

The purpose of this research is to treat by means of the
perturbation method the spectral theory and the scattering theory
connected with the exterior problem for symmetric hyperbolic
systems.

The systems which we shall consider are of the form

(1.1)

for x in an exterior domain G of Rn (n>2) and t<=Rl (time), where
f = >/ — 1, u = u(x, t) is a vector valued function whose values lie in
the m-dimensional complex space Cm, and M(x), Aj(x) and B(x) are
mxm matrix valued function such that, for each x in G, M(x) is

positive definite, Aj(x) are Hermitian and ^M&l=i{B(x)-B(x)*}
j=i OX j

(B(x)* denotes the adjoint matrix of B(x)). The boundary 9G of
G is a compact hypersurface of class C2 in Rn. We put the boundary
conditions in the following form : At each point z of the boundary,
let N(z) denote a linear subspace of Cm of constant dimension which
is smoothly varying on 9G. Then we require for all time t that

(1. 2) u(z, t} lies in N(z) at each point z of 9G.

The boundary space N(z) is assumed to be maximally conservative
with respect to L and coercive for L restricted to the ortho-
complement of its null space.
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Throughout this paper, we shall restrict ourselves to pertur-
bations taking place in bounded domains ; i.e., we assume that,
outside of a sufficiently large ball, say for x\>p9 M(x) is the identity
matrix, Aj(x) do not depend on x and B(x) is zero. We write
Aj(x) = Aj (constant) for \x\>p. Then the unperturbed problem
compared with (1. 1), (1. 2) is the initial value problem for the
equation

(i. 3) 4-f = Ljf = 4iM/~

The matrix A\g)= S^yly (fe/r-{0}) is not assumed to be non-

singular. But it is assumed to be isotropic :

(1.4)

The scattering theory for symmetric hyperbolic systems in an
exterior domain is already treated by Lax and Phillips in their book
[12] as an application of their abstract representation theorems,
based on their introduction and study of outgoing and incoming
subspaces of initial data of the problem. However, their theory is
limited to the case when the space dimension n is odd and L is

elliptic; i.e., the matrix A(x9g)=^Aj(x)%j is non-singular for

each x^G and %^Rn— {0}, though condition (1.4) on the unper-
turbed operator L0 is not assumed there.

Condition (1. 4) is very strong. However, there exist several
concrete problems appearing in classical physics which satisfy this
condition (cf., e.g., Wilcox [22]). The Maxwell equations are a
typical example.

We require (1. 4) mainly to give an explicit formulation of the
radiation conditions (see Definition 4. 1). Our formulation differs
from that given by Lax and Phillips, and is based on the work [15]
of Matsumura.^ Once we succeed to define the radiation conditions
attached to the operator L, all the results can be easily treated in
the framework of the theory developed by many authors for the

1) In p.5, 16] Matsmura proved the so-called decay principle for symmetric hyperbolic
systems with constant coefficients in the half space R+.
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wave and Schrodinger equations.
We denote by M^ the Hilbert space of Cm-valued square inte-

grable functions in G with norm

(1. 5)

where f -37 denotes the inner product between f and 17 in Cm. By
assumptions, the operator Ll = M~l(x)L initially defined for smooth
functions with bounded supports in G which satisfy the boundary
condition (1. 2) determines uniquely a selfad joint operator in M19

which we also denote by L1B Our main problem is to prove the
following assertion: Let a- (=1=0) real be not in the point spectrum
of L19 and let vs be the solution in Ml of the problem

(1. 6) L^-Gr + ̂ K = g(x} (£4:0, real)

with g(x)^Ml having bounded support. Then, as £->±0, the limits
v± of vz exist and satisfy, though not in M19 the equation

(1.7) M-\x}Lv±-av± = g(x),

the boundary condition (1. 2) and the radiation conditions at infinity
(the subscripts "4-" and " — " are related with the incoming and
outgoing radiation conditions, respectively). To prove this we can
apply a method developed by Eidus [2] for a generalized Helmholtz
equation, noting the local compactness of the set

which is deduced from the coercivity condition on N(z).
The above assertion derives not only the absolute continuity

of the continuous spectrum of Ll but also the existence of the
distorted plane waves <£?(#, %) = Pv(%)eiX'tJr V$(x. £) solving the
equation

(1.8) M-\x)L®*(x, ?)-TV |f |*±(*, f) = 0

with the boundary condition (1. 2), where Pv(f?) are the projections
in Cm onto the eigenspaces of the matrix A\^) corresponding to
the eigenvalues r v | f | , and Vv~~(#, f ) and FV

+(J^, f) are the scattered
waves satisfying the incoming and outgoing radiation conditions,
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respectively.^ Now we can construct the "wave operators" W± in
the following form :

C&/2]r

where the integrals are taken in the sense of the limit in the
mean, and /(£) denotes the Fourier transform of f ( x ) in MQ=

(1.10) /(£) = (2rcYn/2 (_ne-ix'tf(x}dx = 2 PvJK v=i

We denote by Q0 and Q the projections onto the null space of LQ

and the eigenspace of L19 respectively. Then W± define unitary
operators of (I—Q0)M0 onto (I—Q)M19 and coincide with the wave
operators in the time-dependent formulation, namely

(1. 11) W± = s- lim *''V/*-*'V(/-Q0) ,/->±°°

where /: MQ-^M^ is the "truncation" operator defined by

(1.12) [//](*)=/(*) (

As is mentioned above, our results cover the scattering problem
for the Maxwell equations of the form :

ens) \Mi(x} ° "WN-T ° curll(L13) L 0 MJ,x)\ dt[u2\ ~ [-curl oJ

with the boundary of a perfect conductor. This generalizes results
of Schmidt [19], in which is developed the case where M^(x) = M2(x}
= 1. Our results also have some contact with the work of Wilcox
[22], He considered uniformly propagative systems of the form

(1. 14) M(x)- = }Aj- (Aj : constant)

n 8uin the whole space Rn. Here the operator ^Af - is called to be
;=i dxj

uniformly propagative if

2) Note that the incoming wave Vj7 (#, £) is the incoming solution v+(xt a) of an
equation of type (1.7), and similarly for V$(xt ^).
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(1.15) det [ ± A£j - X/] = ri (rv(£) - x)"v, ±m, = m,
y=i v=i v=i

where T\(f)^0 for any %<^Rn— {0} or TV (£) = (). He assumed that

(1.16) M(*)-/= 0(1* -1) as |*|->oo

and derived the existence of the wave operators W±.3) However,
in his paper, it remains as an open problem whether W± are
unitary. Our results can be applied to solve this problem for a
restricted case (see (1. 4)).

Let us explain briefly the outline of our proof. In § 2 we sum-
marize several assumptions required below, and give a Hilbert space
formulation of the problem. In §3 we consider the unperturbed
problem. We summarize and slightly sharpen results of Matsumura
[15] concerning the elementary solution of L0 — X/. All the dis-
cussions in §3 are used to study the structure of the spectrum of
L!. In §4, after giving a formulation of the radiation conditions,
we derive that the point spectrum <Tp(L^ of L^ consists of isolated
eigenvalue which are of finite multiplicity except the origin 0, and
that the continuous spectrum is absolutely continuous with respect
to the Lebesgue measure showing that the solution of (1. 6) with cr
not in the set o-p(L^{Q} converges as £-*±0 in the class of
functions which satisfy the radiation conditions. In §5 we establish
the existence and certain properties of the distorted plane waves
&*(%> ?)> which provide the eigenfunction expansions associated with
the operator L±. The operators FT* defined by (1.9) are shown
to be unitary operators from (I—Q0)MQ onto (/— Q)Ml\

(1. 17) I-Q = W±Z± and 7-Q0 = Z±W±
 9

where Z± are the adjoint operators of W* given for each f(x)
by

[ f r /2] r
(1. 18) [Z*/ ]A(|) = (2n)-"'2 ^ {&?*(*, & + <H*v , ,(*, ?)} M(x)f(x) dx .

v=i JG

The first relation of (1. 17) gives the expansion formula (generalized
Fourier inversion formula) for Lj restricted to (I—Q)M^ Further,

3) Similar problems have been treated also by Kato [10]] and Ikebe [7].
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(1. 17) establishes the unitary equivalence between L0 and Lt :

(1. 19) L,(I-Q} = W±L0(I-Q0}Z± (Z± = W*-1) .

In § 6 we use (1. 19) to show that W± defined by (1. 9) coincide
with the wave operators in the time dependent formulations. Then
the scattering operator S can be defined as S=Z+W~, and is proved
to be unitary in (/— QQ) MQ. Finally, in § 7 we apply the obtained
results to the Maxwell equations (1. 13) in an exterior domain and
to the uniformly propagative systems (1. 14) in the whole space Rn,

2. Assumptions and the Hilbert Space Formulation
of the Problem

We consider the solution with finite energy (i. e., square inte-
grable in the exterior domain G of R*) of the mixed initial-boundary
value problem

(2. 1) -M(*)— = Lu = J£Aj(x) + B(x)u for
i dt i /-i dxj

(2. 2) u(x, 0) = u0(x) for x<=G ;

(2. 3) u(z, t)^N(z) for z^QG, t^RL .

In the following, we require on the coefficients of (2. 1) and
the boundary space N(z) the following assumptions.

( i ) M(x) is Hermitian, positive definite, and bounded measurable in
x<=G', Aj(x) are Hermitian, and continuously differentiate in
x ; B(x) is continuous in x.

(ii) The differential operator L is formally self adjoint :

fj _M/W = i{B(x)-B*(x)} for each x in G .
y-i Qxj

(iii) Outside of a sufficiently large ball, say for \x\>p,

M(x) = /, Aj(x) = Aj (constant) and B(x) = Q.

(iv) We set A(x, f)= Il^yWfy and A°(?)= g A^y (^Rn), Then

we require that A(z, n(z))9 n(z) denoting the outer normal to 8G
at z, is of constant rank near the boundary, and that A°(^) is
isotropic :
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det A°f)-X/ = H
V=l

/or £#£A %^Rn and XeC1, where we label {rv} /« decreasing
order :

( v ) TA0 boundary 9G &"s contained in the ball { \ x \ < p} . Tfe boundary
space N(z} is maximally conservative with respect to L :

A(z, «(e))£-f = 0 /or each % in N(z) ,

and N(z) is not properly contained in any other subspace of
Cm having this property.

Remark 2. 1. A necessary and sufficient condition for N(z) being
maximally conservative is given by Lax and Phillips C12] (Lemma
2. 1 of Chapter VI). They considered the case where A(zy n(z)} is
non-singular at each point z of 3G. However, their results are
applicable also in our case since we assumed that A(z, n(z)} is of
constant rank near the boundary.

Under these assumptions, it is known (see Lax and Phillips [11],
§ 3) that the differential operator L is essentially selfad joint in the
Hilbert space M=\_L\G)}m with norm

(2.4) ||/|| = { \f(x)\*dx}w
JG

as defined for differentiable functions in Si which satisfy the
boundary condition (2. 3).4) We also denote by L the self ad joint
extension. Then the domain of L is given by

(2. 5) 3)(V) = {f^M; L/e<#, f(z)^N(z) in the strong sense} ,

where the derivative is considered in the distribution sense.
By assumptions (i), (iii) on M(x\ we see that there exists a

positive constant C such that

(2.6) C-2\£\2<M(x)£-t;<C2\Z\2 for each £ in Cm .

Thus, if we put

4) The Hilbert space formulation of the boundary value problem for symmetric first
order differential equations was initiated by Friedrichs [4].
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(2. 7) H/ll , = { \ M(x)f(x)*f(ddxY* ,
JG

then it determines a new norm of [L2(G)]m which is equivalent to
(2. 4). We denote by M^ the new Hilbert space with the norm
defined by (2. 7). Define the operator L^ in M^ by

(2. 8) L, = M~lLy ^(LJ = 3)(L) ,

where M is the multiplication operator given by M(x). Then
obviously Lj is a selfadjoint operator in c^. Thus, the problem
(2. 1), (2. 2), (2. 3) can be written in the following form :

(1.9) 1|^ = LA «|M = ii0e^1.
z dr

In order to study the scattering operator for the group {e*Li*}
with respect to the unperturbed group {eiLJ} we further require the
following assumptions :

(vi) There exists a postitive constant C = C(r\ r) such that

} (for any
jGr'

for all functions f in 3)(L)Q3l(L\ where Gr={x<=G; x <r}>

\\f\\Gr={\ \f(x}\2dx}l/2 and 37(L) denotes the null space of L.
JGr

(vii) M(x) is continuously differentiate in x, and ML— LM defines a
bounded operator in M.

Remark 2. 2. (vi) is a kind of coercivity condition on the
boundary space N(z). In the case when L is elliptic, N(z) is called
coercive in the sense of Aronszajn if the inequality in (vi) holds for all
/ in 3)(L) ([12] ; VI, Definition 2.1 and Lemma 2.2). If L is elliptic
and N(z) is coercive in the sense of Aronszajn, then assumption
(vii) is not necessary in all the following discussions. In our assump-
tion (vi), however, there exists a difficulty that the space
3l(L^ is not equal to 3)(L)Q7l(L) unless M(x) = I, though
= 37(L). (vii) is used only to remove this difficulty.

Lemma 2. 1. Under assumptions (vi) and (vii), there exists a
positive constant C1 = C(r', r) such that
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(2. 10) ]^ ^CMflkor + ̂ LJlkor} (for any P<r'<r)

for all functions f in ^(L^GS^Lj), where \\f\\^Gr

= {\ M(x)f.fdx}*.
JGr

Proof. Note that /e ^(1^)0 37(1 )̂ if and only if Af/e=5)(L)©
3Z(L). Since M(x) and QM(x)ldXj are all bounded in #, it follows
that

< const + II/H

< const

for /e^LJ 037(1^). On the other hand, we have

\\LMf \\Gr<\\MLf\\Gr+\\{LM-ML}f\\Gr,

where {LM— ML}f=Q for \x\>p by (iii). These prove the
inequality of the lemma if we note that M(x) has the bounded
inverse M~l(x). q. e. d.

3. The Free Space Problem

3.1. Motivation.
We consider the reduced equation

to the unperturbed problem (1. 3) in the whole space Rn, where Aj
are mxm Hermitian matrices and -A°(!) = 5] Afc^ %<^Rn, is assumed
to be isotropic (see assumption (iv)).

We denote by MQ = \_L\Rn')~]m the Hilbert space with norm

(3.2)

Then, obviously L0 defines a selfad joint operator in MQJ which we
also denote by L0, with domain

(3. 3)

where /(£) is the Fourier transform of f(x) :
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(3. 4) /(£) = (2n

Since -A°(l) i§ an °dd function of £ , it follows in (iv) that

(3. 5) rv = -rfe_v+1 and m» = mk^+1 .

Thus rv=t=0 for each i/ if k is even, and Tcjk+lVz=0 if k is odd. We
denote by Pv(£) (z/ = 1,2 , - • - ,&) the projection in Cm onto the eigen-
space of A°(£) corresponding to the eigenvalue rv | £ | . Pv(£) are
Hermitian matrices obtained by

(3.6) pv(f)

where Fv is a small circle with centre rv | g | . The dimension of the
range of Pv(?) is mv. It follows from (3. 5) and (3. 6) that Pv(f ) is
homogeneous of degree zero and

(3. 7) Pv(-f) - P,_v+1(a

We should remark further that Pv(l) ^re analytic functions of f in

Now the solution of equation (3. 1) with X non-real and f(x) in
MQ can be obtained in the following form :

(3. 8) v\x, X) = (2nYn

Further the set of plane waves {e*x^P^)}v=1}2>...>k provides an
eigenfunction expansion associated with L0. Namely, if we denote
by EQ(a), — oo<a-<ooy the resolution of the identity for L0, then we
have easily from (3. 8) and the resolvent equation that

(3.9)

[A/2]pI (977.vw/2 y1 \
v=i Ja<-r.

(3.10)
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Next we prove a uniqueness theorem which is already es-
tablished in [12] (see Chapter VI, Theorem 1.7) when the space
dimension n is odd.

Theorem 3.1.5) Suppose that a- is in R1— {0}. Let v be a func-
tion in MQ which satisfies

(3.11) (LQ-o-)v = 0 for \x\>p.

Then v itself must be zero for \x\ >p.

In order to show this we use results of Ludwig [14] on the
Radon transform. Let 31 be an operator from 3)^(Rn^ into ^(R1;
L2(Sn^ defined by

(3.12)

Then it is known in [14] (Theorem 4. 9) that 31 is one-to-one bicon-
tinuous map of ^(Rn) into ^(R1; L2(S»-i)) and of 3)(Rn) onto
£)(Rl; L2(Sn^)) n N-1, where N± consists of functions f in 4)1*(Rl;
L*(Sn-J) such that

(3.13) f" ( skY£(a>)f(s, a>)dsda> = 0
J -ooJO M - 1

for all spherical harmonics Y^(co) of degree & and k<£, further
f=0 for \x\ >p if and only if 3l/=0 for \s\ >P.

Proof of Theorem 3.1. Since L0 is a differential operator of
constant coefficient, we can assume that v belongs to <3)°^(Rn}. It
is easy to see that

5) The same result can be proved without assuming that ^4.°(<f) is isotropic. It is
sufficient to assume that Aj are Hermitian, cf., Iwasaki £8], in which is extended
the method of Lax and Phillips [12] to derive the local decay of solutions for
symmetric hyperbolic systems with dissipative and coercive boundary conditions.

6) -2^2(!?
w) is the space of all C°° functions in Rn such that £)*f<=L2(Rn) for every

multi-index a. .0(JZM) is the space of all C°° functions in JR" with compact support.
^~2(JF?1;L2(S l l-1))and 3)(Rl; L*(SH-J) are the spaces of ^(S.-O-valued func-
tions in R1 satisfying the above properties, respectively, where Sw_! is the unit
sphere in R".
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Thus v = 3lv satisfies the equation

(3. 14) (A°(CO)— — -<r\V(s, o>) = 0 for \s\ >P .
I I 35 J

Putting Uv(s, ci)) = Pv(co)£)(s, co), we obtain

n2co)elasrv , s<—p,

= 0 , \s\>p-

Since 2, and hence vv, are in 3)^(Rl ; L2(Sn-.$), we conclude that

0(5, G>) = 2 £v(s, to) - 0 for \s\>p.
V=l

To complete the proof of the theorem it remains only to show that
v^N1-, which can be verified if we follow the same line of proof
as given by Lax and Phillips [12 ; VI. Theorem 2. 7]. Namely, we
infer (3. 13) with / replaced by v inductively from the relation

\J'v(s9 co)dsdco,

that is easily obtained from (3.14). q. e. d.

3.2. Elementary solution of the operator LQ — X.

Let us recall that the matrix A\^) has the following spectral
representations:

b T~» /e*\

(3.15) {A°(%}-

From this we see that for each X non-real, the function
{^(D-X/}-1^773 and behaves like 0(1) as|f|->oo. Hence its
inverse Fourier transform

(3.16) E(x, \} = %

can be defined in Sx' and becomes an elementary solution of the
operator L 0—X :

7) S' is the space of temperate distributions.
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(3.17) (L0-\)E(x9 X) = S(x)I (S(x) is the delta function).

Further, we see that E(x, \)*f(x) defines a bounded operator of MQ

into ^)(L0) since

These imply that E(x— y, X) (X : non-real) is the resolvent kernel

of L0:

(3. 18) [(L0- X)-1/]^) = \RnE(x-y ; \)f(y}dy , /GE^O.

The following results are due to Matsumura [15].

Theorem 3. 2. Let LQ satisfy assumption (iv). Then the

elementary solution E(x, X) of L0— X obtained for each non-real X fty

(3. 16) to £fe following properties :

(1) £(#, X) is an analytic function of (x, X) m (J2M— {0})x

(2) For ^«c^ ^4=0 «^flf arbitrary fixed real o-=t=0, ^fe limits

(3. 19) £(jt;, o- ± 1 0) = lim £(J

:/5^, where the convergence is uniform in every compact set of

Rn— {0}. Further E(x, cr±z*0) are continuous functians of (x, a) in

(JR"-{0})X(JR
1-{0}).

(3) Let O-Q be any real number 4=0. // we choose §>0 and £0>0

sufficiently small, then E(x,a-±i£) behave uniformly in o-e(o-0— S,

and B e[0, £0) like

(3. 20) £(*, er ± i£) = 0( | JP | -(W-1}/2) ^5 | ̂  | -> oo .

Proof. Assertion (1) is obvious. Assertions (2) and (3) are

proved by Matsumura [15 ; Theorems 2. 1 and 2. 2] for a restristed

case (when L0 is elliptic and Wv = l, z/ = l, 2, • • • ,&) . However, the same

method is applicable also in our case. Let us sketch the outline of

the proof. We will only discuss the case of a- > 0. E(x, o- + /£) defined

by (3. 16) can be represented as
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(3.21) ff

fgr-! r
L

Here
\r\<2B

smooth,
|r|>3S,

j r - « r 0 T v v
<KM = 1 smooth.9vW 10 |r-cr0/Tv |>3S/rv,

We have chosen S>0 so small that the supports of all functions
<£v(r) (z^O, 1 , - • - , [^/2]) are disjoint. /„ /2(/2 = 0 if ^ is even) and /3

are continuous functions of x^Rn— {0}, o-e(cr0 — S, <r0 + S) and
£e[0, f0), and are bounded for large \x\ by any power of I/\x\
(see for example Mizohata [17]). On the other hand, /4 is represent-
ed as

Ik/21 f°° T*-1^ (v\

(3. 22) /4 = 2 (2*)-"/2 r 0"W «»(«) rfr ;
v=i j-oo r,,r— X

Without loss of generality, we can assume X'% = xn
a%n' We can

choose the local coordinate fa, ^•••^••-i) at (0,— ,0,±1) such that
^=±{1—2^5} (the Morse transformation). Then, using the
argument given in the appendix of [15], we get

(3. 23) K,(rx] = const

where ^v(^) is estimated for large \x\ as

(3.24) 2
;=i

<
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Substituting (3.23) in (3.22), and putting ^(r} = r^n-l^v(r) and
), we have

Cfe/2] f <*> pir\*
(3. 25) /4 = 2 const | * | -«-wp(ff) __?

v-i J — rr—rvr— (o-±*£)
t*/2]
2 const |*| -<*-wpv(-

Note the relations

(3.26) dr = ±2niY(± \x\}e^±izm

J-°or— (<r±i6)

where Y(p) is the Heaviside function: Y(p) = l if p>0, =0 if p<0.
Then we get

(3. 27) /! + /, = S c?(^, o-, £) I a; | -C"-1

V=l

CA/2]

+ 2rff(*,«r,e)urc
V=l

where

f c*(x, <r, £) = const T^1 ('*' ^'^'
(3-28) ;:"

[ d*(x, a, £} = const r? gTWxw -nf^(p) dp .
J \X\

Since ^v(p):=[2r'^v3(p) is rapidly decreasing in |p|, we see that
c$(x, o-, 6) =-0(1) and d$(x, <r, f) = 0( Jtrj '1) uniformly in a- and 6. On
the other hand, since we have

(3.29) /. =

it follows easily from (3.24) that /3 = 0(|jr| ~cw~1)/2). Summing up we
conclude assertions (2) and (3). q. e. d.

Using relations (3. 21)— (3. 29) given by Matsumura, we can
prove additionally the following estimates of E(x, a-±iG).

Theorem 3. 3. (1) Let CTO, S and £0 be as given in the above theo-
rem, and define the orthogonal projections P+(f) and P_(£) in Cm as
follows :
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(3-30) P±(l)

Then {I—P±(0}}E(x, cr±iS) behave uniformly in o-e(cr0— S, o-0 + 5) and

, £0)

(3.31) {/-

7 is any constant such that 0<y<l, and 8 = x/\x\.
(2) E(x9 <r±/£) are Holder continuous in cr4=0, and we have the

following estimates uniformly in ay cr'e(cr0— S, cr0 + S) and 8 e[0, £0).

(3. 32) | E(x, <r ± is] - E(x, af ± i8) \ < const | x \ ~^/z \<r - a' \ h,

where h is any constant such that 0</z<l, and the "const" is
independent of x (large} and 6.

Proof. In expression (3. 21), we see easily that J19 J2 and /3

are differentiable in o- and their derivatives are also majorized by
any power of 1/\x\ at infinity. Hence we have only to show
estimates (3.31) and (3.32) for /4-/1 + /2 + /3 (cf. (3.25)). Since the
coefficients cf(x, cr, 6) and d^(x, o-, £) are scalar functions, we have
from (3. 27) and (3. 28)

(3. 33) {/-

On the other hand, we have easily from (3. 24)

Since the support of q-,iX(o-) is compact uniformly in x (large), we
have, using Hilfsatz 1. 3 of Friedrichs [3], that

has the following properties:

(3.34) /3(*, <r,£) = 0(|*|-'w

(3. 35) | /,(*, o-, £)- 73(*, o-x, e) \ < const | x

where a' may be any constant such that a'<a. (3.33) and (3.34)
imply (3.31). (3.32) follows easily from (3.35) if we note that I,
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and J2 are differentiate in o- and their derivatives are estimated by
const | x \ ~CM-3)/2. The last estimate is evident since x \ ~\ | x \ — p}\K(p)
is rapidly decreasing in |p| uniformly in x\>l. q. e. d.

Now we return to equation (3. 1). As is shown by (3. 18), this
equation with \ = & + i£ (£^0) has a unique solution

if(x, <r + i£) = \RmE(x-y, <r + ie

for each f^MQ. By (1) and (2) of Theorem 3.2, the limits

v\x, o-±iQ) = lim ( E(x-y, o- + i£}f(y)dy
s-*±o jR

exist for each cr^O, and are distribution solutions of (3.1) with

We can easily verify the following corollary of Theorems 3.2
and 3. 3.

Corollary 3. 1. Let p be any positive number. Then for each
function f ( x ) in MQ with support in the ball Kp={\x\<p}, the
functions

v\x,

satisfy the following asymptotic estimates as \x

(3.36) v\x, a- ± i£) | < C(tfp) | x

(3. 37)

where j is any constant such that 0<7<1, and C(KP} is a positive
constant which is independent of f and 6. Furthery v\x, cr±ie} are
Holder continuous in o-^Q; that is, for each 0-4=0 there exists S>0
independent of 8 such that

(3. 38) | tf(x, <r ± is} - v\x, <?' ± i6) | < C(KP) I x -cw-3)/2 k - a-' I *| |/110§ Kp

if \a — <r'\ <S, where h is any constant such that 0<A<1.

Proof. Inequalities (3. 36) and (3. 38) follow easily from (3. 20)
and (3. 32), respectively. In order to verify (3. 37), we put



236 Kiyoshi Mochizuki

Then, from (3.31), the first term of the second member can be
estimated as Q ( \ x \ ~cw+YV2)ll/l|0,iv On the other hand, since JP±(£)
are smooth in £(=t=0), we have

x l max
\x-y\ \x\

< const \y\l \x\ .

This shows with (3.20) that the second term is estimated by
0(|#|-cw+1)/2)||/i|0>/fp. Thus we have (3.37). q.e.d.

4. The Spectrum of the Perturbed Operator Lx

4.1. Discreteness of the point spectrum and the radiation
conditions.

Suppose that a- (4=0) is real, and let us consider the following
eigenvalue problem in Ml:

Since o-r^O, every non-trivial solution of (4.1) lies in the orthogonal
complement of the null space of L±; i. e.,

(4.2) cp = cp(-,a-}

We have assumed that outside of the ball Kft={\x <p}JM(x) =
and L=LQ. Thus we can write (4.1) in the form:

(4. 3) L<fp(x, <r} — a<p(x> <*•) = 0 for \x >p.

Theorem 4. 1. The point spectrum of ^ consists of isolated
eigenvalues which are of finite multiplicity except the origin 0. Further,
all eigenfunctions corresponding to non-zero eigenvalues are of bounded
supports contained in the ball Kp={\x\ <p}.

Proof. The second assertion is a direct consequence of
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Theorem 3. 1. To show the discreteness of the point spectrum we
use Lemma 2. 1. Let {orn} be a sequence of non-zero eigenvalues
which converges as n-*°° to a finite <r, and let {%>„} be a set of
corresponding eigenfunctions such that

(4. 4) (<pm, <pn\ = \
J

Then, since \\(pn\\i + \\L1<pn\\l<l + sup \<rH , combining inequality (2. 10)

with the Rellich compactness criterion we deduce that there exists
a subsequence {<pn'} of {<pn} which converges to a function <p as

w'_>oo in the sense of L2-norm over any bounded subdomain of
G. On the other hand, we know that the supports of <pn are all
contained in the ball Kp. Thus cpj must converges to 9? in Ml as
ft'-^oo, which contradicts (4.4). q. e. d.

Remark 4.1. If the operator L—a-M(x) (cr^O) has the unique
continuation property, then from the second assertion of the above
theorem we see that the operator L± has no eigenvalue except the
origin 0. However, the origin 0 is somewhat ambiguous ; the
possibility of the origin 0 being an eigenvalue remains even if Lj
is assumed to be elliptic.

Now we give a formulation of the radiation conditions attached
to the operator Lx (cf., [18]).

Definition 4. 1.8) Let f(x) be a Cm -valued function defined for
large \x\. Then f is said to satisfy the incoming radiation condi-
tion if it satisfies the following properties :

/(*) = 0(! x | -™2) (7 > 0),
(4. 5),

and f is said to satisfy the outgoing radiation condition if it satisfies
the following properties:

8) The radiation condition plays a role of a boundary condition at infinity in the
problem (4. 9) or (4.13) given below. So we may have several different formula-
tions of the radiation condition. In fact, our formulation differs from that given
by Lax and Phillips C12J where they restrict the behaviors of functions at infinity
by introducing the initially incoming and eventually outgoing subspaces.
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= *
where P±(£) are the projections in Cm defined by (3. 30).

Remark 4.2. The functions if(x,<r + i6) and v\x,o--iS) (£>0)
in Corollary 3. 1 satisfy the incoming and outgoing radiation condi-
tions, respectively.

It is obvious that every L2-eigenfunction of Lx corresponding to
a non-zero eigenvalue satisfies both the incoming and outgoing
radiation conditions since it is a function of bounded support.

We denote by 3)loc(L^ the following class of functions :

(4.6) 3)loc(L^ = {/e[L
for any r>p} ,

where 0r(s) is a C°° scalar function such that

(4.7) <«•

and we denote by Lljoc the operator acting in S)loc(L^ defined by

(4. 8) Lltloef = LJ locally on S)

Lemma 4. 1. For a non-zero real number <r, if there exists a
non-trivial solution <p(x, a) in <£ioc(L^ of the equation

(4.9) (A./oc-<09> = 0,

which satisfies the incoming or outgoing radiation condition (4. 5)±,
then the solution cp belongs to M19 and hence this a- is an eigenvalue

of L*.

Proof. We have only to deal with case when <p satisfies the
incoming radiation condition. We put Gr = {x e G ; I x \ < r} (r > p).
Then using the Green formula we get

0 -
JGr
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Since

cS3^v(^)es3^(---^7) = P+(^)@P-(-^T) =

and

it follows that

[&/2] f / r
= 2X PJ

v=i J U I = r V | t f

r \ _
--- <p(x)-<p(x)dS, = /,-/, ,

v-i l«l=r

where

by (4. 5)_, , where Sr^{|^ =r}. Hence we get noting J1=J2

\ \<p(x) 2dSx = |p+(JL)^)ir
Jw- r M^r /

< const /1 + 0(I^I"1"Y) ^ 0( ^I-1^).

Since 7>0, this proves that <p(x) belongs to M^ q. e. d.

4. 2. Absolute continuity of the continuous spectrum.

Let Vs = Vs(x, <r) be the solution in M^ of the equation

(4. 10) L^g - (<r + f £) z;E = /(AT) (o-, 8 e 121 - {0}) ,

where f ( x ) is any function in Ml with compact support in Gr(r>p).
Let /Sr(5) be the function given by (4.7), and put i0e = £ r( |#|)fle .
Then ws is in c^0 and satisfies the equation
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(4. 11) L0Ws-(<r + i£)Ws = 4/3/(\x\)A0(-2-)vt(x9 a) .
I \\X\J

/5/ means the derivative of j3r and is a function with support in
r<5<r + l. Thus, as was studied in §3, vt(x, a-) can be expressed
for \x >r + l in the form:

(4. 12) v,(x, (r) = 4

if we note that vs = ws for |#|>r + l.
In the following of this section, we shall derive that the limit

v± as £->±0 of vz exists in the class of functions which satisfy the
radiation conditions (4. 5)± if or is not an eigenvalue of L1? and satisfies
the equation

(4. 13)± Llf loev± - <rv± = f ( x ) .

Following Eidus [2 ; Theorem 4], we introduce the Hilbert
space JC^S (S > 0) of functions/ in Mlt loc such that (1 + | x \ )"cl+S)/2/(A;) e
MM where the inner product and the norm of JC1+8 are defined
respectively by

' r f * and i/i^ = n/'/i1ft-
Definition 4. 2. A set V of functions in JC1+S is said to be non-

dissipating if given any a>0 there exists a positive constant R=R(d)
such that

(4-15) supj^

Lemma 4. 2e L^ V be a set of functions in 3)(L^QJl(L^ such
that

(4.16) sup{|/|1+s+|L]/|1+6}<-o0
/GEF

// V f"5 non-dissipating, then V is pre-compact in JCl+8: For
sequence {fn}dV there exists a subsequence {fn'} and f^JC

such that
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(4.17) !/„'-/ 1 I-HT-O

(4. 18) [Li. /„(/„'-/), £l+s->0 /o

Proof. From (4. 16) and (2. 10), we see that V forms a bounded
set in [^(GvXP (r>#).9) Every bounded set in [S^(Gr)T is pre-
compact with respect to its weak topology, and to the L2-norm over
Gr by the Rellich compactness criterion. Thus the lemma is proved
if we note inequality (4. 15). q. e. d.

Remark 4. 3. In case the operator L is elliptic and the coerci-
vity condition on N(z) is taken as in Remark 2. 2, the above
assertion holds for any set V in JC1+S satisfying (4. 15) and (4. 16).

Lemma 4. 3. Let VE be the solution of (4. 10) with a fixed <r,
and put V={v,\Q<8<l} (or = {0e ; 0>£ >-!}). // V is bounded
in Mltioc, then V forms a non-dissipating bounded set in JC1+5.
Further, if the limit v+ (resp. #_) as £-^ + 0 ( — 0) of vz exists in
<4ti,ioc> then v+(v-} satisfies (4.13) and the incoming (outgoing) radia-
tion condition at infinity.

Proof. Since vs is expressed by (4. 12) for | x | large, it follows
from Corollary 3. 1 that

Thus, if ||0g||lfGr is bounded, then vs^JC1+s and satisfies (4.15) with
R independent of 6. Further, if the limit v+ exists, then by (4. 12)
it can be expressed for \x large in the form

(4.19) v+(x) = -
\y\

As has been already mentioned in Remark 4. 2, the right member
of (4. 19) satisfies the radiation condition. q. e. d.

We can now prove the following theorem.

Theorem 4. 2. Suppose that a-^<rp(L^ U {0} and f ( x ) is any func-

9) Sl
Lz(Gr} is the space of all functions such that D*/&L2(Gr), \a\<l, with norm:

l*l<i
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tion in M^ which vanishes for \x\>r(>p). Then, as £->±0, the
solution vs of equation (4. 10) tends in JC^s, i. e., in the sense of the
local energy norm, to the solution v± of equation (4. 13)± satisfying the
radiation condition (4. 5)±.

Proof. (Cf ., Eidus [2] ; Theorem 4) We carry out the proof
for the case of £>0. We first establish the fact that {v? ; 0<£<1}
forms a bounded set in JC1+S. If we assume the contrary, then
l^eji+s-*00 for some sequence £„-> + 0. We put t J e =|0 B r+8#s (below
we shall omit the index «). Then |fl |1+8 = l and

(4. 20) Lj)t = (o- 4- *£) 0e + \v, rfa/ •

Thus |£ s | i+s+ IA^s l i+8 is bounded in £, and thus by Lemma 4.3
{fle} is non-dissipating. Let Qx denote the projection onto 37(1^),
and put f)e = ue + Q1f)e. Then by (4.20) Q,v,= v,\ r+

1sQi//(o- + /£), and
hence ->0 in JC1+S as £-^ + 0. These imply that the set V={ue}
satisfies the conditions of Lemma 4. 2. Thus, it follows from (4. 20)
and Lemma 4. 2 that there exists a solution u+ of

such that M + | H 8 = 1, if we note that 0e|f+6-*0 (£-^ + 0)a On the
other hand, Lemma 4. 3 asserts that this u^ satisfies the incoming
radiation condition. It follows from Lemma 4. 1 that o- must be an
eigenvalue of L1? and this contradicts our assumption on a-. Thus
we have proved the inequality

Using this inequality, we apply the same argument to {v£} as was
applied to {tJj. Then we find that we can select a subsequence
{Vzn} from the 0e, where £M-> + 0, which converges in JC1+S to some
function v+ of the form u+ — o-~lQ1f satisfying (4.13)+ and (4.5)+.
Since o- is not in <rp(L^ U {0} , in view of Lemma 4.1, we see that
not only does vsn-^>v+ as £M-^ + 0, but also vs-+v+. This proves the
theorem. q. e. d.

By the same argument as above, it is not difficult to show that

0 8 (*» fJL}-*v±('> cr) as £-*±0 and /*-><r. Thus, if we choose the
interval \ay b~] such that any point of <rp(L^ U {0} is not in {a, 6],
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then, as £->±0, vs(*9<r) tends in JC1+S to v±(*,<r) uniformly with
respect to o-e[<z, &]. This implies that 0±(- ,o-) are continuous

functions of o-e[<z, 6] with values in JC1+8-

Corollary 4.1. L^ ^(cr) (— oo<a-<oo) be the resolution of the
identity for the operator L±. Suppose that [#, b~\ is as given above.
Then for any f in M^ with bounded support E^er)/, o-e[<z, 6], is
absolutely continuous with respect to the Lebesgue measure :

(4.21) (E^.)/) = L_{^(., er)-i;_(., a-)} in JC1+8 .
acr ZTTZ

Proof. (4. 21) follows from the integral representation of the
resolvent and the Stieltjes inversion formula since ve(*,a-)

= (Ll — o- — i8)~1f converges as £-»±0 to v±(- , <r) uniformly with
respect to o-e[#, Z?]. q. e. d.

Finally we remark that the following theorem can be proved
by the same line of proof given by Eldus [2 ; Theorem 5] (cf., also
Remark 4. 3) :

Theorem 4. 3. Suppose that the operator L is elliptic and in-
equality (2.10) holds for any f in 3)(L^. Then 0+(- ,o-) are Jf3H5-
valued Holder continuous functions of a-^.\_a9b~\, where \a, b~\ is any
interval as given above, i. e., there exist positive constants C and
hf «A<1) such that

(4.22) | *;+(•, (L)-V+(', o-)\,+8<C \fjL-o- h/ for any p, <r in [a, 6].

5. Eigenfunction Expansions

The main results of this § and the next § 6 can be treated in
the framework of the theory developed by many authors for the
Schrodinger and the wave equations in an exterior domain (cf.,
Shizuta [21], Ikebe [5, 6], Shenk [20], and Lax and Phillips [12, 13]).

5.1. Distorted plane waves.
We first establish the existence and properties of distorted waves

{Vv(#, f;X);i/ = l ,2,-",£} defined for #eE<5, ^Rn and!mX>0(or
ImX<0). These results will enable us to show that the distorted
plane waves
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(5 2) V±(x ?) = V (#, £ ; T v | J j

are a complete set of generalized eigenfunctions for
Let a(x) be a C°° scalar function such that

1 for \x\<p

0 for

Consider the following equation in t

(5.4) (L,

where we put

(5.5) *v0(*,?) = />v(f )*'*•*,

and the matrix valued function ^v is said to be in Ml if its each
column or row vector is in M±. Since Lj equals L0 for \x\ >p and
(L0—rv | | |)Ov = 0, it follows that the right side of this equation has
its support in the ball { |# |<p + l}. Thus, for each X non-real
there exists a unique solution 1Ir

v = 'lJr
v(-, f; X)^^!^) of this equation.

Further, according to Theorem 4. 2, the limits

¥„(*, f ; cr=FiO) = Km Vv(x, | ; cr + ff) = ^(JC, f)
E->TO

exist if a is not in <rp(L^ U {0}, and satisfy the incoming ( —) and
outgoing ( + ) radiation conditions, respectively.

We put

(5.6) V*(x, f ; X) = ¥v(*, |; x)-a(^)Ov°(^, f).

Then we can summarize the properties of Fv as follows:

Lemma 5.1. For each X non-real Vv(-, £ ; X) (i/ = l, 2 ,-
Mi-valued bounded, continuous functions of %<^Rn— {0}.
fe ««jy interval in Rl-[_<rp(L^ U {0}]. Tfe^ Vv(-, f ; a±i6) are
valued bounded, continuous functions of %<=Rn— {0}, <re[<z, i]
£ e [0,1). FMrffer F- - V*(x, f ; o- -}- iO) (Fv

+ - 7V(*, f ; a- -
^fe incoming (outgoing) radiation condition.

Proof. The assertion is already proved for M?v(-,
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Since a has its support in \x\<p + l and <£?(#, g) are bounded,
continuous in x^Rn and ge/2w— {0}, we conclude the lemma noting
(5. 6). q. e. d.

We put

(5. 7) ®v(x, g ; X) = ®°(x, |) + V*(x, £ ; X)
(*, g ; X) .

Then, since (1 — a) OS satisfies the boundary condition (2. 3), we have
easily from equation (5.4) that <3>v(«, g; \}<^<£ioc(L^ and

(5. 8) (L,, /oc - X) ®v = (rv | g - X) M-1"*!

taking into account that M(x) = I for |jc >p. Finally note that the
distorted plane waves <£?(#, f) (i/=t= (^ + l)/2) can be defined by (5. 1)
for any %(=Rn such that T V | £ is not in <rp(L^ U {0} and satisfy the
equations

(5.9) (/i.ioC-Tjfi)c|>± = 0.

5. 2. Generalized Fourier inversion formula ; the expansion
theorem.

Let f ( x ) be any function in [_Co(Rn)']m and let X be non-real.
Define the following transforms of / :

(5.10)

Because of the summability of /(g) and (5.8) we have
and

(5. 11) (LMOC

On the other hand, since

it follows that W^Ml if we note that KeJ^ for X non-real.
&

Thus, noting that 2 AOO =/(#), we have from (5.11)
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(5. 12) (A-xr'M-1/'/ = ± (L1-x)-1M-vy,
V=l V=l

For / in [C?(A)]M(A the interior of 8G), they imply that

(5. 13) 2 W,(x, X ; /) = 0 for jc in G

since X non-real cannot be an eigenvalue of Lx.
Now, put R1(\) = (L1 — X)"1 (X non-real). It follows from the

resolvent equation that

(5. 14) ({R^ + iS^-R^-ie}}/, g\ = 2i6(R1(<r±i6)f, R1

for /> g in c#i, where (-, «)i denotes the innerproduct in M^ and the
function M1/2Rl(<r±i£)f and Ml/2Rl(o-±i8)g have been extended to
the interior domain A to be zero. We consider the Fourier trans-
forms of these functions. We have for h, f in [_Co(Rn)']m

, X ; h\f\ =

x, g ;

Since (W,(-,\\ h\f\ = (h, [M^X)/],,)105 by (5.12), it follows that

(5.15) P.(g)[Af^(X)/]A(g) = (2^'n'\ \ 3>*(x,S;\)M(x)f(x)dX.
T v I I - X J G

We define the transform /v(|, X) of functions / in [Cr(G)]m by

(5. 16) /,& X) = (2^)-2/"

Then, from (5. 14) and (5. 15), we have using the Parseval equality

(5. 17) ( {Sfr + i6) - Rfc - ,'£)} /, g\

for /, ^r in [C?(G)]'B.
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Let E^o-) (—°o<o-<oo) denote the resolution of the identity
for L!- For any interval [>, b~} in Rl — [a-p(Ll)\j{Q}'] we have

(5. 18) ({Em-E,(a)}f, g\= - l i m c^^ + ̂ -^o-^)}/, g\d<r.

Hence, putting

(5.19) A±(?)=/v(?,Tjf|

we have easily from (5. 17) and (5. 18)

(5.20) ({EM-E^a}}/, g\ =

if

where Kv(a, b)= {|; 0<TV |£ <&} if 0<^<&, and ={f
-TV ^|<6} if 0>6>«:. These imply that fo r / in [C^(G)]m, each
/*(£) is in \L\K^(a, b))"]m and can be extended by continuity to
an isometry of {E^fy-E^a)}^ into P^}[_U(Kv(a, £))]m. Further,
if we note that o-p(LJ forms a discrete set in Rl, then it follows
easily from (5. 20) that

(5.21) (/, g\ =

for /> ^" in (I—Q)Mv where Q denotes the projection onto the eigen-
space of L! corresponding to the all eigenvalues.

Summing up we can now state the following expansion theorem.

Theorem 5. 1. The distorted plane waves {<£?(•, £) ,
— {0}, v^F(k + l)/2} form a complete set of generalized eigenf unctions
of L! restricted to (I—

(1) Put Z± = 2(^?+^1-v+i), where

(5. 22) [

± w aw isometry of (I-Q}M^ onto ^H±d(I-QQ}JiQ=M0G
Jl (L0). Tfe adjoint operator W± of Z± is an isometry of JH± onto



248 Kiyoshi Mochizuki

Ik/21

an (I-Q)Si^and is given by W±= 2 (W* + W^_v+v=i

(5. 23) [ W] (x) = (2nYn/2 \Rn *?(*, I)/(E) « ,

integrals (5. 22) rarf (5. 23) f w f fe ̂ ^^ of the limit#fe int
in the mean.

(2) The expansion formula of an arbitrary function f in Ml

can be obtained as follows :

(5. 24)

[A/2]

= 2

(3) fe(I-Q)3)(LJ if and only if each £,'/?(£) (?
«'« P->,(£)M0. We have the following diagonal representation of

(5.25) [(/-

Proof. We have already proved assertions (1) and (2). Asser-
tion (3) follows easily from the relation

JG

which is easily verified by use of (5. 9), and the fact that rk_^+1= — TV.
q. e. d.

5. So Orthogonality of the eigenf unctions.

Theorem 5. 2. The range Jtt± of each Z± is equal to (I—Q^MQ.
Namely the following formula holds for any f ( x ) in MQ.

(5. 26) E(/-

Proof. We have only to show that Pv
This can be proved by the same argument as given by Ikebe [5].
Put



Spectral and Scattering Theory 249

Sf(x) =

where \ = <7 + i£, £>0. Since sp-* Wv
+£= Wv

+/- WJZJ ̂ 7=0 in
as p->°o, we have easily

J
J«"

0 = lim

where D is an arbitrary bounded domain in G, and [#, ft] is an
arbitrary interval in (0, oo). Thus we get

= 0

for almost every positive r. Define the function

u(x, r)=\ e*-*P&)&(®dSt = \ - V^(x,
J T V l f i = r W T V l £ | = r

Then u(x9r) is everywhere defined in Rn and satisfies (L0— TV

= 0. On the other hand, the third member shows that u satisfies
the outgoing radiation condition (Lemma 5. 1). Hence, by Lemma
4. 2, u must be in MQ. However, since L0 has no eigenvalue except
the origin 0, we conclude that u(xy r) must vanish identically, and

hence that g(x)= \ u(x, r}dr = Q. q. e. d.
Jo

The formulae (5. 34) and (5. 26) imply the unitary equivalence
between L0 and Lj :

Corollary 5.1. (/— Q)L^ is unitarily equivalent to (/— Q0)L0:

(5.27) (7-0)1* = W^I-QJL^ , where Z± = W±* = W

6. The Wave and Scattering Operators

For — oo<^<oo We define the operator W(t): MQ-^Ml by

(6. 1) W(t) = e'VJe- 'V(7- Q0) ,
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where /: MQ-^M^ is the truncation operator defined by

(6.2) [//](*)=/(*)

The strong limits as £-^±oo of W(f) are, if they exist, called the
wave operators. Our first aim in this § is to show that the wave
operators exist and are equal to W± given in the preceding section.

Lemma 6.1. As t->±°°y e~iLQf(I—Q0} converges to zero in the
sense of local energy norm : Let G' be any bounded domain in Rn.
Then

(6. 3) lim 1 1*~ M/- Go)/ Ike' = 0 for any f in MQ .
t-*±°°

Proof 8 The lemma is easily proved by use of the Fourier in-
version formula and the Riemann-Lebesgue theorem (cf . Ikebe [6]).

q. e. d.
The following result is due to Wilcox ([22] ; Theorem 6. 1).

Lemma 6. 2.11} Let j(x) be a Hermitian matrix valued function
which is bounded measurable in x and vanishes for sufficiently large
\x\. Then for any g in [_Co(Rn)~]m, \\jLQe±{L^g\\Q is integrable in
t0<t<oo

Using the above two lemmas, we can prove the following
theorem :

Theorem 6. 1. W± coincide with the wave operators for the pair
L0, L1 in the time dependent formulation, i. e., we have

(6.4) W± = s-limW(t).
t->±°°

Proof. We set

(6. 5) W(t) = *'V(1 - pr)Je- 'V(/- Q0) +

where ftr = / 3 r ( \ x \ ) (x^G) is the real valued scalar function given
by (4. 7). Since eiLi* is unitary in M» we have for any / in MQ

11) In Theorem 6.1 of [22] it is not assumed that LQ is isotropic and 7- has compact
support. It is sufficient to assume that L0 is uniformly propagative and r(#)
behaves like 0(l* |~*) C£>1) at infinity.
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(6. 6)
<const ||e-'V(/-Qo)/llo,Gr+i^O (as f-»±oo)

by Lemma 6. 1. Thus our problem is reduced to showing that

(6. 7) I-Q, = s-lim Z^t) = s-lim e'VZ±/8r/g-'V(/-Q0) >

where we have used the formulae (5. 26) and

which easily follows from the fact that the unitary equivalence
between L0(/-Q0) and Ltf-Q) is established by Z-=W±*. Since
Zf can be represented in the Fourier spaces as [Z^g]A(f) = g^(£)e

A

Pv(£)M0, it is sufficient to show that

(6.8) A = (27r)-"/

/C

for any / in MQ and i/=+=(* + l)/2. Set h = (I-QQ)f. Choose r>p + l.
It follows from (5. 1) that

where we have used the fact that M(x)=I for |^|>p. Since
#v.i(£, 0 = -P,(e)e~'Tl'l*"te we have

(6. 9) (2nYn

On the other hand, we have
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(6.10)

by the Parse val equality and Lemma 6. 1. It remains to prove that

(6.11) lkxo'[7Vj3||0->0 asf-»°°.

From (5. 6) we have

Pr(\x\)V+(x, f) = /3,(!*!)^v(*,£; T V | £ | -«'0)=,9r(l*l)¥v+(*, ?)

since a/9r=0 (note that a(x) is defined by (5.3)). Substitute this
in the defining equation of tX.sdf* *)• Then it follows that

&.,(?, 0 = (2^)-B/2[ ¥+*(*, £)/9r( 1*1 )[«-"**](*)<**

Since the functions in the right member of (5. 4) have their supports
in {|*|<p + l}, we have

I*
noting that Lt = L0 for x\>r(>p). Thus

= lira i(27r)-fl ^*(JT, | ; rj 1 1 - i£) 7(*)(L0- rv | f j - ^-'[g
s->+o JG

= - lim (2*-B'2 ¥*(*, f ; TV | f [ - «£) 7(jc) x

x ~eKr*w+*x'-ne-'L*'h(x)ds dx .

It is easy to see that

||A||0<const

Thus we have only to show (6. 11) for h in a dense domain of
(/-Qo)c^0, that is, we can put h=L0g, where g is in [Co(/Zn)]m.
Since, with 7 as in Lemma 6. 2,

is integrable in tQ<t<°° by Lemma 6.2, we finally obtain
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3(., t) =

where we have used the fact that M^(#, %)=~<&°(x, £) + <I>^(#, £) on
the support {r< |#| <r + l} of 700- Hence we conclude that

lk'xo*[7Vj3||0< const f \\je-iL°sL0g\\0ds-*Q (as *-> + oo),
j ̂

proving (6.11). q. e. d.
Now the scattering operator S acting in MQ is defined to be

(6.12) S = Z+W~ = W+~1W .

Theorem 6. 2. S is unitary on (I—Q^)MQ and is per mutable with
L0. Further, for any function f in (I—Q)Ml there exist two functions
f+,f~ in (/-Q0)H0 such that

(6.13) /+ = s/",

and

(6.14) lim \\e~iLJf - Je^'f^ = 0 .

Proof. The first assertion is obvious since W~ : (I—Q^)MQ->
(I—Q)MlyZ

+\ (I—Q}Mi~>(I— Q^MQ are unitary, and since L0S
= Z'rW~L0 = SL0 by (5.27). The second assertion is a direct con-
sequence of Theorem 6.1 if we set f± = Z±f. q. e. d.

7. Examples

7.1. The Maxwell equation in an exterior domain.

We consider the Maxwell system

TMW o ]JL[V1 [ o curr
[ 0 M2(*)J 3t UJ L-curl 0 .

in an exterior domain G in R3, and we require the following boundary
conditions:

(7.2) For each z of the boundary 9G, u^z) + au2(z) is parallel to
the normal n(z) to the boundary, where a is a given constant.



254 Kiyoshi Mochizuki

We put

VM&x) 0 1 T T 1 T 0 curl
(7.8) _ _„

L 0 M2(#)J * [~~curl 0

Here Mv(#) (i/ = l,2) are 3 x 3 matrix valued functions satisfying the
following

Conditions- (1) M^(x) #r# Hermitian, and postitive definite.
(2) Afv(#) <zr0 C* -class functions of x, and Mv(x) = I for x\

large.
(3) Mv(x] curl — curl Mv(#) tffe/m0 bounded operators in [L2(G)J.

Remark. (3) is satisfied if Mv(#) are diagonal : Mv(#) = mv(x)I,
where m*(x) are C2-class scalar functions.

Under the above conditions on (7.4), we can verify that the
system (7. 1) with (7. 2) satisfies all the assumptions (i~~vii) given
in §2.

It is known by Schmidt ([18], Appendix 4 of [15]) that the
boundary condition (7. 2) satisfies assumptions (v) and (vi). Assump-
tion (i~~iv) and (vii) are evident since we have

(7. 4) det [ A°(?) - X] = X2( 1 1 1 - X)2( |

(cf., Courant and Hilbert [1]).
Hence all of the preceding results can be applied to the system

(7. 1), (7. 2). Namely, let L0 be the Maxwell operator in the whole
space R3 and L be the same operator in the exterior domain GdRz

with the boundary condition (7.2), and put L1 = M~l(x)L. Then L0

and L! determine the selfadjoint operators in the Hilbert spaces
<ftQ=[L2(R*)J and ^ = [L2(G)]6, respectively, where the norm of Ml

is defined by
1/2

GM(x)f(x)-f(x

And we can prove the following theorem.

Theorem 7. 1. The wave operators W± for the pair L0, Z^ exist
and are represented as

(7. 5) [ TF±/](*) = (2nY3'2 \Ra {**(*, ?) + «*(*, £)} /(I
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where <£>?(#, £) (z/ = l, 3) <zr0 £fe distorted planewaves solving the equa-
tion

(7.6) (Lli/o. + (-ir+15 '4lEl)*v±(-, f) = 0 (* = 1, 3) .

unitary operators from (I—Q^MQ onto (I—Q)M^ where Q0

is the projection onto the null space 37(L0) of LQ and Q is the projec-
tion onto the eigenspace of Lx corresponding to the all eigenvalues of
L! Hence the scattering operator S defined to be

(1. 7) S - Z+ W~, Z+ = PF+* - W+~l ,

becomes unitary operator on (L~QQ}M0. It is obvious that

(7. 8) QQMQ

In the case that M^l(x) = mv(x)I9 we can say more:

Theorem 7. 2. L± has no eigenvalue other than the origin 0.

Proof,, First note that

(7. 9) div [f^(jO/i(*)] = div [iff2U) /,(*)] = 0
if /={/„ /J belongs to 3)(L^QJl(L^.^ Suppose that cr real
and consider the equation

(7.10)

Put M(jr)^ = i|r={^r1> ^J. Then it follows from (7.9) that

(7. 11) div ih = div i/r2 = 0 ,

and from (7. 10) that

(7.12)

where N(*, a-) is a matrix valued function having a bounded support.
Applying L0-fcr to (7.12) and noting (7.11), we finally get

where $i(-, cr) is also of bounded support. Since cr2^0 and
this implies that i|r = 0. q. e. d.

12) Cf. the lemma of Appendix 4 of [12].
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To 2. First-order systems in the whole space.

We consider the system

/T io\ 1 Ti(7. 13) __ 0
2 Qt i /-i 9#y

in the whole space J£M (»>2). We assume that M(x) satisfies as-
sumptions (i), (iii) and (vii), and that A°(%} is isotropic (i. e., satisfies
(iv)). Then it is obvious that L0 in MQ = [U(Rn)~\m and Ll = M'1(x)LQ

in MI = [L2(JFO]m are both self ad joint, where the norm of M^ is
defined by

Under the above assumptions (1. 13) becomes a restricted case
of uniformly propagative systems developed by Wilcox [22], Kato
[10] and Ikebe [7]. They derived the existence and properties of
the wave operators W± for the pair L0, Lx. However, it remains
unsolved whether W± are unitary.

We can solve this open problem, though our conditions are very
strong compared with theirs, applying the preceding results to
equation (7. 14). For this aim we have only to show the following
lemma :

Lemma 7.1. For any 0<r'<r, there exists a positive constant

C=C(r',r) such that

(1. 14) ± O

Proof. Since

(7. 15)

we have only to show the inequality (7.14) for f=
where

First we choose g in [C^Cff")]1*. Then, since
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g(£)9 it follows that \JJ*g^\(x) = — TjA£v(*)- Let a(#) be
a C00 scalar function such that a(x) = l for jce/JCr/ and =0 for
x^Rn—Kr. Then we have

where the "const" depends only on a(x) and Dja(x) (Dj = i
j = l,-"9ri). Since [CSTCR'O]™ is dense in J®(L0), we get (7.14). q.e.d.

This lemma, with the assumptions on M(x) and A\g), shows
that all the results in §§ 5, 6 can be applied to the operator L^ cor-
responding to (7.13). Thus W± are shown to be unitary operators
from (/—Q0)^o °nto (I—Q}M^ by use of the completeness and the
orthogonality of the generalized eigenfunctions (Theorems 5.1 and
5.2), and of an explicit construction for W~± in terms of these
expansions (Theorem 6.1).
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