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The Principle of Limiting Amplitude for
Symmetric Hyperbolic Systems

in an Exterior Domain

By

Kiyoshi MOCHIZUKI*

This paper is a supplement to the previous paper [2], in which
we have treated the eigenfunction expansions and the scattering
theory for symmetric hyperbolic systems in an exterior domain.
The notation and the terminology of the preceding paper will be
used freely.

Let 9G be a bounded closed hypersurface of class C2 in Rn (n>2\
and G the domain exterior to 3G. Consider the following mixed
initial-boundary value problem for hyperbolic system.

(x, t) = g(XyM for
dt y-i dxj >

u(x, 0) = UQ(X) for x^G
u(z, t)^N(z) for t>0,

Here //, (^0) is a real number, i = \/^l, u(x, t) and g(x) are vector
valued functions whose values lie in Cm, and M(x) (measurable), Aj(x)
(smooth) and B(x) (continuous) are mxm matrix valued, bounded
functions. The boundary space N(z) is a linear subspace of Cm of
constant dimension which is smoothly varying on 9G. Our aim is
to derive the limiting amplitude principle ; that is, we shall obtain
the asymptotic behavior of solutions of the above problem.

The assumptions which we require below are summarized as

( I ) M(x) is positive definite. L = — \^ A Ax) — 4- B(x)] is formally
i I y=i dxj J

self -adjoint in M = {_U(G)Jn.
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(II) For x\>p (large) M(x) = I, Aj(x)==Aj (constant) and B(x) = 0.
n

(III) A(x9^) = ̂ Aj'(x)^j- is non-singular for each x^G and

"-{()}, and A\^ = A^j is isotropic:

det[>l0(£) -\7] = n(Tv |g!-A,)B%, m,--=m, r,>r,t>...>rk.
V=l V=l

(IV) N(z) is maximally conservative with respect to L at each point
z^dGy and is coercive for L in the sense of Aronszajn (see
[1], VI, Definition 2. 1).

Remark 1. The above assumptions are stronger than those
supposed in [2] since we require that A(x, f) is non singular. This
with the coercivity of N(z) derives the Holder continuity of the
spectral density for Ll = M~l(x)L ([2]; Theorem 4.3), which plays
an important role in our proof.

We denote by M^ the Hilbert space of square integrable functions
in G with norm

( 2 )

which is equivalent to the usual L2~norm. Consider the problem
(1) in MI. Under the above assumptions, the differential operator

8 }Aj(x) - + B(x)\ uniquely determines a selfadjoint oper-
i dXj '

ator ^ in M^ Thus the problem (1) with g, u0 in Ml can be written
in the following form :

( 3 ) _!_ d^~LlU = 4- M-'frteW", u(x, 0) - u.(x) .
i dt i

It has been shown in §4 of [2] that under the above assumptions
the point spectrum <rp(L^ of Z^ consists of isolated eigenvalues which
are of finite multiplicity except the origin 0. Further, all eigen-
functions corresponding to non-zero eigenvalues are of bounded
supports contained in the ball { x\<p}. Thus, if the differential
operator L—orM(x) has the unique continuation property, then L2

has no eigenvalue except the origin 0. We should remark, however,
that the origin 0 is somewhat ambiguous ; the null space 37CLJ of
Lj may or may not be empty, and if the latter is the case, then it
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remains as a problem whether the dimension of 5^7 (LJ is finite or
infinite.

We have derived also that if a- (real) is not in <rp(L^ U {0} , then
for any / in M± of bounded support there exists the limit #_, . ( •> °")
as £— >±0 of #(•, <r + i8) = (Ll — a- — i£)~lf satisfying the equation

(4) (Aitoc-<0i;±=/

and the radiation conditions at infinity (see Definition 4. 1 of [2]).
More precisely if we suppose that the interval [<2, ft] does not contain
any point of o-^(L1)u{0}, then 0 ( - , o - + i£) tends as £ -»±0 in the
sense of local energy norm to 0 _ + ( - , < r ) uniformly with respect to
a- e [a, 6], and %(«,o-) is Holder continuous in a- with exponent
//(0<&<1). Thus, if we denote by E^cr) (— ooo<oo) the resolution
of the identity associated with L1? then it follows that

(5) - ^(cr)/-- {?;,(- , < r ) - !>_(•> <r)} for o-<El>, ft]
fler 27Z7

and is Holder continuous in the sense of local energy norm.
We can now state the theorem as follows :

Theorem, Suppose that //, (real) does not belong to o-p(LL) U {0}
and let g be any function 'with bounded support such that M~lg is
in {/— Q}c^!, where Q is the projection onto the eigenspace of LL

corresponding to non-zero eigen-values. Denote by u(x, t) any solution
of the inhomogeneous equation (3) whose initial values UQ(X) are also
in {I— Q}Mv Then as t tends to infinity ue~itLt tends to w^(«, <r) + w
in the local energy norm, where w^ is the solution of (4) with 0- = ^
and f=—M~lg satisfying the outgoing radiation condition, and w is
some function in

Remark 2. The same theorem is already proved by Lax and
Phillips in their book [1; Chapter VI, Theorem 2.4] in the case
where M(x) = I, the space dimension n is odd and A(x, £) is non-
singular for each x^G and %^R"— {0}. In [2], however, it is not
assumed that A0(g) is isotropic.

Proof of the theorem,, First we give an expression of the
solution of equation (3). Since Ln is selfad joint, it is not difficult to
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see that (3) has a unique solution for each g and UQ in M^ Further,
with the aid of the Laplace inversion formula, the solution takes the
form

for a sufficiently large a>0. Note the relations

iX)-1 = P — ̂ r-dEXo-) - 4 (V'Wdf (Re X-
J - °° cr + /X /Jo

where ^(cr) (~oo<cr<oo) denotes the resolution of the identity for
Lj. Then we have

On the other hand, we have

1 ra+ioo \t foo -j

/. = s4 r^-r-^X -i
ZTTI J*-i<x>\ — tp, J-°°cr-\-i

5 °° _ 1 f^ + foo \jf

^(o-)Af-1^-^ - - -f - -rfX .
2ni J*-i<*>i\ — iLX + G — i(T

e
Since - — is an analytic function of the variable X

(X — z

except at the points \ = ifi and = — £ + iV (£>0), using the Cauchy inte-
gral theorem and considering the residues for X =
we have for an arbitrary af>£

27T/ J«- '-f(X — «

Summing up, we have the following expression of the solution
for t>Q.
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(6) «(.,/) = f" efdE^u,
J — 00

-0,'t foe /-co ,'Tf

+ e- - dE1(a-)M'lg - - - dr
-2nJ— J - o o T

!

o° xjC-BHo1;* _ .,!>*
?— — — e— dE

-°° (T — iL-\-i£

where a1 is any positive constant and the limit is taken in the
strong sense in M^.

It is obvious that the second term of the right member tends
as /->oo to zero in the sense of ^-norm. Thus our problem is to
know how the first and third terms behave for t large. For this
purpose we use relation (5) which holds for any / in Si^ with
bounded support.

The first term can be divided as follows :

+ ( e^
J[-r,r]- Vef

where r >0 is chosen sufficiently large so that \\E1( — r)uQ\\l +
||{/— £i(r)}tt0lli<£/5 for given any £>0, e0 is a neighborhood of the
origin and et (1=1, 2, ••• , Nr) are neighborhoods of non-zero eigen-
values a- 1 of L! such that |o-/ <r. Since we assumed that u0 is in

, it follows that

if we choose ^ sufficiently small. Further, if we put wl={E1(-i-0)
— £i( — O)}MO, then w^Jl(L^ and it follows that

for a sufficiently small eQ. On the other hand, there exists a function
/ in [QT(G)]W such that IN0-/lli<^/5. For ^(o-)/, we can use
relation (5) to obtain
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Since every local energy norm of 0+(-, cr) — # _ ( • , o-) is bounded con-
tinuous in o-, it follows from the Riemann-Lebesgue theorem that
for any bounded subdomain G' of G

f ,<£/5
i,G

i
oo

^(^(o-X
— 00

tends to w1 as t^^ in the sense of the local energy norm.
Next we consider the third term of the right member of (6).

-ew (" — -
J-oofl- —

= lim g" dE^M^g- e^(L, - p + f £) -1 M -*

where

and the limit is taken in the sense of local energy norm. By the
same reasoning as above, we see that every local energy norm of

S x,C-e i z'0"^
_f -- r-dE^M

-°°(T — fJL + l£

•7/j C /y(~s I z"tTli?

^-lim -* - -^(-
/^ *->-io J[-y,r]-u e / Cr — fjL-^-18

becomes as small as we wish if we choose r sufficiently large and ct

sufficiently small, where w2= {E1(
JrQ) — El( — Q)}M~lg and (p = w^~W-y

taking into account that //, (we can assume that —r<^<r) is not
in \jet. On the other hand, if we note that

lim lim \ — da = 0

for any interval e which includes the origin, then we have

r e(-*+i*)t
lim lim \ -- -^C'* cr)^cr
/->-°° s-^+o J[-^,r]- u e /cr — jji + iS

= lim _ y - ' g e^Wcr + lim

where ^ is an interval in [ — r, r]— \jef which contains the point //
and e= {a~ fj, ; a-^e}. Noting that <p( - , o - ) is Holder continuous in
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cr, we can use again the Riemann-Lebesgue theorem to show that
/ tends to wj //, as £-^ooo Thus we see that the third term of the
right member of (6) tends to eitljtW- + w2l ̂  as £->oo in the sense of
the local energy norm. The proof is now complete.

Remark 30 As we see in the proof, the Holder continuity of

— E-fa}/ in cr is used only to estimate the term containing g(x).
do-
Thus, if g(x) = Q, we do not require that A(x, £) is non-singular (i.e.,
we can replace (III) by assumption (iv) in [2]) to derive the theorem.
The above theorem asserts the local energy decay of solutions if

Remark 4. The local energy decay of solutions has been es-
sentially proved in [2] by Theorem 6.2 since obviously eiL<tf~ tends

1 n 3to zero as /->oo in the local energy norm, where LQ = — 2 ^- / - is

the unperturbed operator acting in MQ = \L2(Rn)~]m and/
is determined uniquely from the initial data UQ.
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