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Introduction

It has been recognized that the notion of triple [12] (or monad
[8]) provides a unified simplicial method for defining homology and
cohomology in categorical setting (Godement [15], Huber [19],
Eilenberg-Moore [12], Dold-MacLane-Oberst [8], Beck [5]).

It has been shown that many known, classical or special, (co)-
homology theories of groups, modules and algebras (Eilcnberg-
MacLane [10], Cartan-Eilenberg [6], Hochschild [17], Harrison [16],
Shukla [27], etc.) are triple cohomologies (Barr-Beck [1], Barr [2],
[3], Iwai [20]).

In the former announcement [26], we treated triple cohomologies
viewing them as derived functors (in a functor category) in the
sense of relative homological algebra [11], [25]. Since then such
interpretations have appeared (Dold-MacLane-Oberst [8], Dubuc [9]).
Therefore we will not discuss this subject here.

We will treat the calculation or interpretation of triple co-
homology of an algebra with coefficients in a module [5]. The Oth
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and 1st cohomology groups H° and Hl (the dimension indices in
triple cohomology being one less than usual) were discussed by J. M.
Beck in his dissertation [5]. The purpose of the present paper is
to interpret the second cohomology, H2(A, M), of an algebra A
with coefficients in an ^4-module M as the set of equivalence classes
after Yoneda [29] of two term extensions of A by M (see §3,
Lichtenbaum-Schlessinger [23] or Gerstenhaber [13] for two term
extensions).

Our interpretation appears to be more direct than those through
classical obstruction theory for algebra extensions (MacLane [24],
[10], Hochschild [18], Shukla [27], Barr [4]) and suggests a close
relationship between Hn and n term extensions for n>2 (see §4). In
fact, such an interpretation of Hn has been obtained by A. Iwai, one
of the present authors, and is to appear in his subsequent paper [21].

In the sequel we choose and deal with a specific category, the
category of Lie algebras over a commutative ground ring. The
argument is functorial, at least in substance, so is applicable to
other categories of algebraic systems with tripleable underlying
object functors [5].

The authors are indebted to Dr. Satoshi Suzuki for his critical
reading of the manuscript.

§ 1. Preliminaries

Recall the notion of cotriple [12]. A cotriple G = (G, £, S) in a
category Q consists of a (covariant) functor G : Q-^Q and natural
transformations 8 : G -» IQ (IQ denotes the identity functor) and
8 : G-*G2-GoG satisfying

GG°S = G£°S = 1G (1G denotes the identity natural
transformation) ,

GS°3 - SG°S ,

where £G means the natural transformation defined by

£G(A) = £(G(A)) : G2C4)^G(,4) , for

and similarly for G£, GS, and SG. Triples are defined dually.
A cotriple comes usually from an adjoint pair of functors (S, C7),
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U: G-+G and S : C->0 in the following way. Let S be the left adjoint
of U (notation S— (£7). This means that there exists a natural
equivalence A, between the Horn set functors :

(1. 1) x(C, A) : Homfl (S(C), A) 3 Homc (C,

for CeEobC, A^obQ. Define natural transformations 8 and rj by

(1. 2) £(A) - X-Xli/oo) : SE/CA) — 4 , for Aeobfl ,

?(C) - X(lslc;) : C - US(C) , for CeobC ,

with abbreviation X = X(f7(A), A) resp. x = x(C, S(C)). Then we have

(1. 3) x(P) - U(p)°v(C) , for peEHoma (S(C), 4) ,

with X = X(C, A) and

£SoSv = ls: S->SC/S->S,

It follows that the adjoint pair (S, C7) yields a cotriple (SI7, f,
in fl (dually a triple (C7S, 17, C/£S) in C).

Conversely, given a cotriple (G, 6, S) in fl. It is known ([12],
[22]) that there exist a category C and an adjoint pair of functors
(S, [/), U: G->C, S: C~>fl with SHC7, inducing the cotriple (G, £, S)
as above.

From now on we assume that all categories considered are
pointed (i.e. have zero objects) with kernels and all functors are also
pointed (i.e. T(0) = 0), unless otherwise stated.

Given an adjoint pair of functors U : Q-+G and S : C->fl with
S—\U which induces a cotriple G = (G, 6, S) in fl. There is naturally
defined a simplicial object G*={GH; n>0\ in the category of endo-
functors: fl-»Q, with GM = G / l41 = Go — oG((w + l)-fold iterated com-
position of G) and

<?; - GW-' : Gfl -> G,,., , Q<i<n (face operator),
Si = G^'SG""1 : G;, -> G|H1 , 0</<« (degeneracy operator).

Here we have the usual commutation rule :

(V-V (i<j)
£*8' = identity (i=j or j
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with abbreviations £{ = £n and SJ=Si. For any object A in Q the
corresponding simplicial object G#(A)= {Gn(A) ; n>0} in fl is called
the standard simplicial complex over A associated with the cotriple
G. And the augmented simplicial complex GJj.(A)= {Gn(A) ; n>— 1}
with natural augmentation £(A):G0(A)-^G^(A) = A9 le, the sequence

£ 6"
- - - - - GH(A) T G.-^A) • ..... E| Gt(A) U G0(A) - A ,

£n

together with degeneracy operators, is called the standard simplicial
resolution of A,

The following lemma is a slight modification of Theorem in [20].

Lemma 1. 4* Suppose that U(A) is an abelian group object in C

for every object A in fl. Then the augmented chain complex UG*(A)

with differential dH(A) = ̂  (-l)'WCA) («>0) and augmentation U£(A)
z=0

is acyclic. Precisely, there exists a contracting homotopy sn(A) :
UGn(A)-*UGnn(A) («>-!) such that U8oS_l = l and

Proof. Define morphisms tn(A): UGm(A)->UGm(A) and uu(A) :
UG,u(A)-+UGm}1(A), for Q<n<m, as follows:

t0 = 1 , w-.! = 0, ^o = 0

(1.5) ^ - (l-US°£l)(l~USl£2) - (l-f/S^1^) (

Then we have

orf, (| = 0)
Us1' ot —

(1.6) " I 0 (0</<«)

Now define morphisms -nn(A) = -nUGn(A) : UGn(A) -> f/Gw+1(A), which
satisfy



Triple Cohomology of Algebras and Two Term Extensions 271

(i=o)
(1.7) U,-^-1 (0<i<»+l)

- 1 .

. r i
Q7) =: )

U,-^-1

o^ - 1 .

Using these we get the required contracting homotopy :

Note that all these tw unj rjn and sn are natural transformations of
functors G->C.

For later use, we give the following variant of the above lemma
which will be similarly proved.

Lemma 1. 9. Suppose that there is given another category & and
a functor U' : C^C' such that U'U(A) (but not U(A)) is an abelian
group object in & for every object A in G. Then the augmented

chain complex U'UG%(A) with differential dn(A) = ^i(-l}
iUfUei(A)

i=0

(«>0) and augmentation U'U6(A) is acyclic.
For the purpose of defining cotriple cohomology, we first fix

an object A in Q and consider the comma category (G, A) [5]. By
definition an object in (G, A) is a pair (B, 7) of an object B in G
and a morphism 7 : B-^A in G, and a morphism (B, y )-»(/?', 7') is
such a commutative diagram :

B -¥-» B'

A /7'

A

An object (B, 7) in (G, A) will be offen denoted by B-^A or simply
by B. Note that the comma category (G, A) is not pointed for
A^pO, but has kernels and the terminal object A = (A, IA).

S U
An adjoint pair C-^G->C induces canonically an adjoint pair

S U
(C,U(Ay)^>(Q,A)-+(C,U(A)) which will be denoted by the same
symbols S and U as before, and similarly for the induced cotriple
G = (G, £, S), G = SU, § = SvU. Note that Gn(A) is regarded canonically
as an object in (G, ̂ 4) with the unique morphism Gn(A)->A expressed
by a composition of face operators.
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Now denote by Ab the category of abelian groups aod let
T : (G, A)->Ab be a contravariant functor. Then we have a cochain
complex TG*(A)={TGn(A)i «>0} with differential d*CA)=2 (-1)1'
x T£'"CA). Its derived groups HH(TG*(A)) are, by definition, the
cotriple cohomology groups of A with initial group H\TG*(A}}= T(A).
For example take an abelian group object Y->A in (G, A) and define
a functor T: (fl, A)-*A6 by T(X) = Hom,Q}A,(X, Y). Then we have
the cohomology groups H&A, Y) = H"(TG*(A)) with H&A, Y) =

§ 2e Lie Algebras and Cetriiples

Let K be a commutative ring with unit which we fix as ground
ring. By a K-Lie algebra we mean a K-module T with a /f-bilinear
product [X j] e F such that

= o

for ^y jy, ̂ er. By a Y -module for a Jf-Lie algebra r we mean a
K-module M with left operation of r on M such that [_x, y~]m =
xym—yxm for x, y^T, meM

Let J? be category of all K-Lie algebras with obvious morphisms,
and rJlt be the category of all IP-modules, Then every abelian
group object in the comma category (J7, F) is known to be of the
form of the split extension T*M of r by a T-module M This may
be called also the idealization of a F-module M and is defined as
a direct product r x M of ^-modules with bracket product

(2. 1) [(*, m\ (y, n)1 = (l>, J], xn-yni)

for #, jyer and m, n^M, With the injection ;;z->(0, m) and the
projection (JIT, m)-^^, and regarding M as an abelian Lie algebra,
we have a split exact sequence

in X (also in (_£ r)).
Denote by Ab(^C, T) the full subcategory of (£, r) formed of all

abelian group objects. Then we have an equivalence of categories
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Ker
Abu; r)^=±rjiz;

e
where Ker denotes the kernel functor and Q(M) = F*M [5].

For a F-module M and an object (L, 7) in (J7, F), a K-derivation
(or simply derivation} f : L~->M is defined as a Jf-linear map such
that

(2. 2) /[*, j] = ?(*)/( JO - 7(jO/(*) -

The set of all such /^-derivations / : L-^M forms an abelian group
denoted by DerM(L, 7) (or simply by DerM(L)), and it defines the
derivation functor DerM : (J°? F)->Ab. As is well known, there is a
canonical isomorphism

(2. 3) DerM(L) ~ Homu> r;(L,

Now we consider the cotriple cohomology #£(F, ®(M)) =
H"w(DerMG*(F)) with respect to a cotriple G in (J?> F) as defined at
the end of gl. For brevity we occasionally denote ff£(F, 0(Af)) by
#£(F, M) (or //"(F, M)) and call this the n~th cohomology group of
F £t>i//z coefficients in M.

To calculate explicitly H£(\\ M), we shall choose some typical
cotriples G in X. Take J? for G in the preceding section. Let C
be either one of the following pointed categories : 1) the category

KDJL of Jf-modules, 2) the category S of pointed sets (i.e. sets with
base points and base points preserving maps) and 3) the category
Sx of pointed sets with multiplications. More explanation is needed
for the last category. An object in Sx is a pointed set (X, #0) with
multiplication (may be non-associative) XxX-^>X such that x0'X =
^"jt'o^^o for any x^X and a morphism /: (X, ^0)->(F, yQ) is a
multiplication preserving set map.

According to each of the above cases 1), 2) and 3), C will be
also denoted by C,- (i = l, 2, 3). Let [/,- : -T-»Cf- be the underlying-
object functor. It is clear that the Uf are faithful and known to be
tripleable in the sense of Beck [5] for all the above cases of C.
The left adjoint Sf- : Gi—^X of Uf will be given as follows in respec-
tive cases.

In case Ci = KJ\l, S1 is given by the functor L described in
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that is, for a K-module M, S^M) = L(M) is the quotient K-Lie algebra of
the free non-associative algebra A(M)=M+M®M+(M®M)®M-\-M®
(Mg)M)H — by the two-sided ideal generated by elements of the form
m®m and m^fa^m^ + m^fa^m^ + m^fa^m^ for m, m^M.

In case C2 = S, S2 is given by S2(X, x0) = LF(X, x0) where F(X, x0)
= K(X)/K(x0) is the free K-module generated by the set X with
identification x0 = 0.

In case C3 = c$x, the functor S3 is given as follows: Let (X, x0)
be an object in S*. Construct first the free K-module F(X, x0) as
above and introduce in it a unique K-bilinear multiplication induced
from the multiplication of X. Then the K-Lie algebra S3(X, XQ} is
defined as the quotient of the non-associative ff-algebra F(X9 x^)
by the two-sided ideal generated by elements of the form x-x and

The corresponding cotriples G and the cohomologies H^(Y, M)
will be denoted by Gf and //7(r, M) in respective cases i = l, 2, 3.

We remark that Hf(T, M) is the Hochschild cohomology [17]
and H$(F, M) is related to the cohomologies of Dixmier [7] and
Shukla [28]. It is known in [5] and [1] that

for / = 1,2, 3, where ExJ(r, M) aenotes the set of all isomorphism
classes of singular U{- split extensions of r by M in X, The bijec-
tive correspondence Hl^Exl becomes an isomorphism of K-modules
if we introduce a suitable Baer sum in ExJ(r, M).

To conclude this section, we are situated in the following com •
mutative diagram
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where U and U'f are the forgetful functors and S' is the left adjoint
of [/'.

§ 3. Two Term Extensions and Main Theorem

Let M be a F-module which may be regarded as an abelian
/f-Lie algebra. By a [/-split exact sequence in X we means a
sequence in X of which transformation by U is split exact (in C).

Definition. By a two term extension of r by M ivith respect to
the underlying object functor U{ we mean a C7f— split exact sequence
in X (« = 1,2,3):

where XQ operates on X^ in the following way :

(3. 1) <p2(<Po(x)iri) = x-<Pz(iri) >

(3.2) <PI(X-U) = [*, 9>i(w)],

(3.3) <PI(U)-V = [_u, v\

for x<=XQ, m^My u,v^Xlr Moreover, in the case / = 3 (i.e. C = S X ) ,
we put an extra condition : there exists a set map fi : XQ~>Xl such
that

(3, 4) <f>$ = 1 - a^ ,

3(^) for

where a : r^X0 is a morphism in ^Sx satisfying 9^0- = 1 (the existence
of such a map a- is ensured by the [/-split ness of the sequence (e)\

The totality of all such two term extensions of r by M with
respect to U{ form a category 6{ of which a morphism (e)-*(e?} is given
by a commutative diagram :

where <^0 and (pL are morphisms in X compatible with the operations
of X0 and Y0 on Xl and ^ (i = l, 2, 3). To extensions (e) and (e7)
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are called equivalent (notation (0)^(0')) if they are connected by a
sequence of morphisms of both directions : e.g.,

(e) = (*„) - fo) - (<?2) — • - (O - (*0 .

The set of all equivalence classes of two term extensions of T
by M with respect to the underlying object functor £/,- is denoted
by Ex?(r,M) (1 = 1,2,3).

Now we can state our main theorem.

Theorem 3. 5* There is a bijective correspondence

/or each / = !, 2, 3.
The proof of this theorem will be given in §5.
We remark that, for an object L in J7, the underlying /f-module

£/i(L) and the underlying set t/2(L) are clearly abelian group objects
in K3tt and S respectively, but U3(L) is not so in <SX , which is the
reason why we need the exceptional condition (3. 4) in the definition
of two term extensions with respect to £/,.

§ 4. Standard Two Term Extensions

Take any one of the cotriples £?,- in (X, r), / = !, 2, 3, as before.
The standard simplicial complex G*(F) over r induces the under-
lying chain complex of /^--modules, denoted by the same notation

G*(r), with differential rf« = 2 (-l)f'£f'(r) («>1) and the augmented
f=0

complex GJ(F) is acyclic by Lemma 1.4 in cases G = KJfL or 6", by
Lemma 1.9 in case C = SX,

Let M be a T-module. G"(r) operates naturally on M via the
canonical morphism G"(r)~»r (see §1), so that Mis considered as
a G"(r)-module for every n>0.

A derivation 2-cocycle /eDerM(G3(r)) is a /f-linear map /: G3(r)
->M and f [ _ x , y } = xf(y)-yf(x) for *, j/eG3(r) and rf*/=/rfa =
0:G4(F)~>M. Two such cocycles / and /7 are D-cohomologous
(notation f ^ f f ] if there exists a derivation o> : G2(r) — > M and cod2

D

=/-/'•
Given a derivation 2™cocycle /eDerAf(G

J(F)). We shall construct
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a Jff-Lie algebra Ef as follows. Put G1(r) = Ker (£] : G2(r)->G(F)).
Let Gx(r) x M be the direct product of If-Lie algebras (M being an
abelian Lie algebra). Let / be the ideal of G^r) x M generated by
elements of the form (-t^dzyy f ( t 2 y ) } for jeG3(r) (see (1. 5)). Define
Ef to be the quotient JfC-Lie algebra G^r) x M//. Then Ef has a
set -presentation N(T)xM, where N(T) = Ker (8 : GCT)- >r). To see
this, we define set maps

TT : G,(r) x M -> /V(F) x M
mid

by
?r(x, m) = (d^, m-t-f(x))

and
K(H, m} = (n, m)

respectively, where x = 'nrl(x) for x^UGn(T) (see (1.7)).
Direct calculations show that

n/) = (0, 0) ,
TT%T = identity ,

nnd
/fOTr = identity mod /.

It follows that n induces a canonical one to one correspondence
Ef^N(T) x M as set.

Denote by («, m) an element of Ef for n^N(T) and meM in
this presentation. Then the 7C-Lie algebra structure of Ef is given
explicitly by

(4. 2) k(n, ni) = (kn, km-\-f(kn)), for
(A ON f~ / \ /^ NT fV ~

where we used the notation

(4. 4) x = i7H(*) CE UGn, t(F)

for xe=UGn(T) (see §1, (1.7)).

Remark. If C = KD1L, then E7-/V(r)eM (direct sum) as K-
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module. If C = ^x, then (4.3) reduces to

[(«i> ^i)> (»2> ^2)] = ([>i> «2], 0).

Define morphisms i:M-+Ef and (p:Ef-+G(r) by *(w) = (0, m)
and 9?(w, m) = n respectively. Then we have a [/-split exact sequence
in X\

(4. 5) (^): 0 — M-^> £7 ^ G(r) -> r — 0

which will be called a standard two term extension of r by M (with
respect to the underlying object functor U: X->C). By (4.3) M is
contained in the centre of Ef. G(r) operates on Ef by

(4. 6) x(n, m) = ([>, «]

so that we have

(4. 7) i(xni) = xt(m) ,

(4. 8) <p(xu) = lx, <p(

and

(4.9) <p(u)v = [«, »]

for jceG(r), m<=M and
Further we have the following commutative diagram of .fir-

modules :

(4. 10) G4(r) ̂  G3(r) i2 G2(r) - G(r) ~> r -> o

J 1'y v

o ~> M - Ef

where a is a canonical /T-linear map G2(T)~>Ef given as follows.
Using the canonical decomposition (see Lemmas 1.4, 1.9)

x , for

we define a by

(4. 11) a(x) = (dlX, A*) .

Then we can verify that a is /f-linear.

Proposition 4« 120 TA^ K-linear map a satisfies
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^[*> y} = £Qx-a(y}-ely-a(x) for x,

Proof. The right-hand side will be computed by using (4. 10),
(4. 1^3) as follows :

(4. 13) ?xa(y)-£y-a(x) = (dfe, y}, mL

where

Since / is a derivation, we have

°*,

where t, = 1 - S°f x : G2(r) -> G2(r) (Cf. (1.5)). Therefore m. + iw, is
written as /(g) for a certain element £eG?(r), and a direct culcula-
tion shows that d2% = d2s1[_x, y^\. Since/ is a cocycle and GJ(F) is
acyclic as above, we obtain

(4. 14) m, -h m2 = /(£ ) =/5, [^, j] .

The proposition follows from (4. 13) and (4. 14).
We have thus assigned canocically the standard two term exten-

sion (ef) to each derivation 2-cocycle / : G3(r)— >M
We show that the extension (ef) belongs to G{ (see §3). This

is clear in case of G = K3TL or S by (4.6—8). In case of C = ^x, we
define a set map B : G(T)-*Ef by

Then, we have, by (1.7)

cp/3

and by Prop. 4. 12

/3[>, y} = ^[^T

so that the condition (3.4) is satisfied.

Proposition 4. 15. // derivation 2-cocycles f and f are D
cohomologous (f^f'}, then we have (ef}~~(ef'}.
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Proof. Suppose that //=/+o>J2 for a derivation co : G2(F)->M
Define </> : Ef->Eff by

, ni) = (n, m — a>(n)

Then </> is a (bijective) morphism (in J?) and commutes with the
operations of G(F) on Ef and Ef'. We have thus a morphism
(£/)—>(£/) in the category <?,• of two term extensions of "F by M
(see §3).

Remark. In a parallel way as above, we can define what to be
called the standard n term extension (ef) of F by M for derivation
^-cocycle /: Gn+l(T)^M («>2) as follows.

Define first the Moore subcomplex G#(F) of the chain complex
G*(r) of ^-modules by

(4. 16) G0(F) = G(F) ,

Gk(T) = n Ker (£• : G*+1(r) -> G*(F)) for k > 0 .
»=i

Then Gk(T) is an ideal of Gk^(T) and we have a commutative
diagram of /^-modules :

-H> GW|1(F) - GW(F) ->-..- G2(F) - G(F) -> F -> 0

(4=17)

-
where

(4.18) /

are retractions and define a chain equivalence G*(r)^6*(r).
Now let Gn^(T)xM be the direct product of /f-Lie algebras

(M being an abelian Lie algebra). Let / be the ideal of G^-^F) x M
generated by elements of the form ( — tn^dn(y\f(tny)} for jyeG;*hl(r).
Define £ /=Sw_1(r)xM/7 to be the quotient Jf-Lie algebra. Then
Ef has a canonical set presentation Ntt-2(T)xM9 where Nn-2(T) =
Ker(6°: G,_2(F)->Gw_3(r)) for n>3 and J/V0(r) = j!V(r) = Ker(£ : G(F)—F)
as before. Using this set presentation, we can give the jFT-Lie algebra
structure of Ef explicitly by the same form of formulas as in (4.1),
(4.2) and (4.3) (in fact, we have only to replace N(T) by
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Then we have a t/-split exact sequence (ef) in X\

i y ~ £° £° - £
(4.19) 0 -> M- Ef - GM-2(r) --..-> G0(r) -> F - 0

which we call a standard n term extension of r by M with respect
to the underlying object functor U.

Similarly as in (4.10), we have the following commutative
diagram

I J 1 £

G"' xr) -* G" ' '(r) -" G»(r) -^ CH- J(r) - - - - - -' C(r) -> r
(4-20) / a tn.

v
„ „

o - M -> £7 G|i.,(r)->.--G0(r)->r
where a. is the canonical If-map Gn(T)->Ef explicitly given by

(4. 21) a(x) = (t^d^x, fsn-iX) *

§ 5. Proof of Theorem 3e 5

In the last section we have defined a map <£ : fl"?(r, M)->
Ex?(r, M) (/ = !, 2, 3) (see Proposition 415). We shall prove the
following two propositions of which the first asserts the ontoness of
^ and the second one asserts <E> to be 1-1.

Proposition 5» 1. G«;0« rt ^o ferwi extension (e) in 8{ (f = 1, 2, 3).
///er^ exists a derivation 2-cocycle f : G3(F)-»M such that (ef]
in Si*

Proposition 5a 28 // (ef)->(e)<—(e/} in <?,• (/ = !, 2, 3), ^/^w / and
ff are D-cohomologous (i.e. f and f determine the same cohomology
class e£T?(r, M).

Proof of Proposition 5. 1. Given a two term extension (e)^.6i :

CD0 (£>i fpn

(e): 0 — M^X^ XQ->T-Q

wliich is C//- split exact sequence in X and XQ operates on Xl as in
(3.1), (3.2) and (3.3) with additional condition (3.4) in case of
G6 = S\

There exists a morphism a-: f7(r)-*C7(X0) in C with ^>0cr = l, so
that o- determines a unique morphism r = \~'i((r} : G(T)->X0 in J? by
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(1.1). Then we have

Define the idealization Xi>*Xl of X0-module X^ That is, X0^X1

is the direct sum of X0 and ^ as /it-module and the bracket product
is given by

(5. 3) [(*, u\ (y, v)~] = (lx, y}, [>, v] + x-v-y-u)

for x,

We have a morphism /3 : U^-^U^) in C such that

in case of G = KJ(L or S. In case of C = c$x, we must take such a
as in (3.4).

Now define a morphism p' : UG(T)-^U(X^X^ in C by

(5. 4) px(#) = (TT?^, ^r^) = (a-<pQrx, /3rx) for

This determines a unique morphism p : G2(r)-»-Xo*-Xi in X.

Lemma 5. 5. The morphism p : G2(T}~>X^ XL is expressed by

where g : G2(T)->X1 is K-linear and satisfies :

cp,g = rd,

and

8\.x>y} = rG°x.g(y)-T£l

for x,y^G2(T}.

Proof. Define two morphisms /9n, (9] : X^X^^X^ in X by

and

0\x, u) = x

Then using (1.3), we have

and
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Using again (1.3), we conclude that

ff°P = r£°

and

0'p - rsl,

as morphisms G2(r)->X0 in X. The lemma follows from these pro-
perties of p.

Returning to the proof of Prop. 5.1, consider the following
commutative diagram:

1 J £.

G 3(r) -^ G2(r) -i G(r) -* r -> 0

where f=<p21gd2 is a derivation 2-cocycle by Lemma 5.5. We have
now a morphism (ef)->(e) in (?,-:

(e.f): 0 -> M-^ Ef %- C(T) -> T -> 0

(e) : 0 -* M-* ^ - 0 - T -» 0
% "Pi <Po

where ^: Ef-^-X^ is a morphism in _£ denned by

<J>(n, m) = fpe(m) + g(n) q. e. d.

Proof of Proposition 5.2. Suppose that there is given a com-
mutative diagram.

(ef) : 0-> M-^ Ef
(^>G(T)->T-^0

i ! 1* IT
4, | 4, ;

(e) : Q^M^X,^ X0 -

> M-» ̂ - G(D - T - 0

Define a morphism p': U^-^^X^X,) by
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Then p' determines a unique morphism p : G(T)-^XQ^Xl in J7,

Lemma 5. 6a The morpliism p is expressible in the form

p(x) = (r(x\ co(x)) ,

where co : G(T)-^X1 is K-linear and satisfies :

cp^co = T' — T

and

6>[>, y\ - T>(x)*o>(y}-T(y}.o)(x) , for x, jyeG(r) .

The proof is similar as in that of Lemma 5. 5 and hence ommited.
Now consider a jST-linear map

(5. 7) co, = ^ar - c/ja ~ cod, : G2(r) -> Xl ,

where a7 : G2(r)-^£>/ and a : G2(T)-*Bf are defined in (4. 11). Then

9^ = rfcp/af — rcpa--(r/ — r)dl = 0,

Therefore ^ is regarded as a map : G2(r)-*M A straightforward
calculation shows that

This means that co, : G2(r)-^M is a derivation. And clearly we have

that is, co1d2=f—f. q, e. d.
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