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Spectral Representation for Branching
Processes on the Real Half Line

By

Yukio OGURA*

§ 0. Introduction

The spectral theory for the semigroups of Galton-Watson pro-
cesses (G.W.P.'s) was developed by Karlin and McGregor [4] [5].
On the other hand, a continuous state branching process (C.B.P.),
which may be regarded as a continuous version of a G.W.P., was
introduced by Jirina [3] and recently discussed by Lamperti [7],
S. Watanabe [8], etc. The object of this paper is to obtain the
spectral representation theorems for C.B.P.'s similar to those of Karlin
and McGregor for G.W.P.'s. These may be of some interest, since
there are many C.B.P.'s with discontinuous sample functions and
their semigroups are nonsymmetrizable.

In § 1, we obtain a representation (see (1.10)) of a so called
^-semigroup by means of the stationary measure, under the as-
sumption that the extinction probability is positive. In § 2, we shall
prepare several lemmas. The most important one is Lemma 2.4,
which asserts that, under Condition A, the representation of a M>-
semigroup in § 1 turns out to be a spectral representation of the
transition function. In §3, the spectral representation theorem for
sub- and supercritical C.B.P.'s is given. In this representation, only
the discrete spectrum appears which consists of powers of the largest
eigenvalue. In § 4, the critical case is considered. In this case, the
spectrum is continuous. The asymptotic behavior of the semigroup
is also obtained. In § 5, we give a few examples which contain all
diffusion C.B.P.'s.
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§ 1. A Representation of a ^-semigroup

A C.B.P. is a Markov process (xt, Px) on the real half line [0, oo]
with oo as a trap, which satisfies, for every X>0,

(1. 1) Ex(e~xxt} = e-
x^t^

for some \|r,(x)>0. Then it is easy to see that ^(X) has a com-
pletely monotone derivative in X for each £>0, and satisfies the
semigroup property ;

(1. 2) ^,+,(x) = ^i(
Such a {^*M}fs[o,«o is called a ^-semigroup^ and it is equivalent
to give a C.B.P. and to give a ^-semigroup. We shall assume that
\|r,(X) is differentiate in t throughout this paper. (For this, it is
sufficient to assume ^(X) is continuous in t, cf. [8].) Then h(\) =
9i/r,(x)/9f |,=0 has the form

(1.3)

where a, b and c are real constants with a>0, c>0, and n is a

nonnegative measure on (0, oo) with \ (y2/\l)n(dy) < oo (see [8]).

From (1.2), it is clear that

(1. 4) r^M = *GhOO) > ^o(X) - X , X>0 .
dt

Conversely, for a given /z(X) with above properties, the solution ^,(\)
of (1.4) defines a ^-semigroup (cf. [8]).

Now we shall divide C.B.P.'s into three classes as in the case
of G.W.P.'s.

1) W is the class of functions with completely monotone derivatives ;

Jo
w is a nonnegative measure on (0, oo) such that
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Definition 1.1. The function h(\} is called supercritical (subcri-
tical, critical} if /z'(0)>0 or £>0 (resp. /2'(0)<0 and c = Q, resp. hf(ty = Q
and c = Q). A C.B.P. is called supercritical (subcritical, critical} if
its h(\) is so.

Throughout this paper, we shall assume

(1. 5) \ —— converges for a large X.
Jx h(r)

Note that (1.5) implies /z(X)<0 for large X, since h(\) is concave.
Thus, if A(X) is supercritical, the equation h(\) = 0 has unique positive
solution 7. When A(X) is not supercritical, we set 7 = 0 for con-
venience. (1.5) is equivalent to a simple probabilitistic condition
(cf. Remark 1. 1 below).

Lemma 1.1. It holds that

(1. 6) lim ^>(X) = 7 , X>0.

Proof. From (1.4), d-frt(\)/dt is positive (negative) if
), so that i|r,(X) is nondecreasing (nonincreasing) if 0<X<7

(7<X). Hence the limit 7/ = lim ̂ t(\) exists, and Km d\!rt(\}/dt=Q.
f-^oo £->oo

If 7^7, by (1. 4) 0=lim d^t(\)ldt=h(jf}^Q, which is a contradiction.
?->°°

As the case of a G.W.P., a stationary measure for a C.B.P. on
[0, oo) turns out to be trivial (cf. [2] pp. 23—24). So we shall
deal with a stationary measure on (0, oo).

Definition 1. 2. A nonnegative measure n(E) on (0, oo) is called
a stationary measure for a C.B.P., if it satisfies

(1. 7) n(dx)Pt(x, E] = 7t(E), £e JC(0, oo),2
Jo+

and 0<?r(X)<oo for sufficiently large X, where we set

Lemma 1. 2. There is a stationary measure, whose Laplace trans-
form is given by

2) JC(0, oo)(JC [0, oo)) is the class of all Borel measurable sets in (0, «>) (resp. [0,
with compact closures.
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(1-8)

TT(X) satisfies

(I. 9)

Proof. First, we shall show that TT(X) in (1. 8) is completely
monotone. By (1.8), -7r/(\) = (l/\)(l/i/r(x)), where
Since 1/X is completely monotone, it is enough to show that
(>0) has a completely monotone derivative ([1] p. 417). But this
follows from the equality

, (1.4) implies -T -4^ = f, that is
MOU/ZT

Next

(1. 9) TT(^ ,(X)) - 7r(X) + f , X > J.

Since

{0}),
o + o + o+

and

X*f {0}) = li
JO+

by Lebesgue's convergence theorem, we obtain (1. 7) from (1. 9).
q.e.d.

Since — °°<h'(ry)<Q, lim7r(X)=oo by (1.8). Hence ?r(X) maps
X*Y

(7, oo ) onto (°°, 0) monotonously, and the inverse function 0(w) of
TT(X) maps (0, oo ) onto (°°, 7) monotonously. Moreover $(w) is real
analytic on (0, °o), since TT(X) is completely monotone on (7, oo) and
so real analytic there.

Proposition 1. 1. The semigroup ^(X) has the representation

(1. 10) ^,00 = #0*00

Hence, we have

(1. 11) Px(xt = 0)>0 ,

Proof. (1. 10) is obvious by (1. 9). (1. 11) follows from (1. 10),
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since Px(xt = Q) = e~x*t^ where ^(oo) = lim^(X), and ^(oo) = $(/)<°°.
\->°°

Remark 1.1. We have seen that (1.11) follows from (1.5).
The converse is also true. Indeed, if (1.11) is true for some £0>0,
^^(°°)<00 an(i so Hm\/r,(oo)<oo since i/r,(oo) is decreasing function

t->°°
in /. Thus lim\|rXx)<lim\|r^(oo)<oo> which implies that h(\) is

t->°° f->°°
negative for large X (cf. Lemma 1.1). Since ^,0(°°) is larger than
the largest solution of h(\) = Q, we have

^ c\) —

Proposition 1. 2. Le/ cr(0} fe ^fe ̂ ^5/ hitting time for the state 0.
Then we have

(1.12) P>io}<cxO = *-*'.

Proof. Since \|rs(oo)<oo for 5>0, Lemma 1.1 implies

(1. 13) lim ̂ (°°) = lim ̂ C^00)) = T •
/->°o ^->oo

Hence (1. 12) follows from (1. 1) and the fact that the state 0 is
trap. q.e.d.

Since lim iK(°°)= °°» (1-13) means that \K(°°) maps (0, oo) onto
t + o

(7, oa ) as a function of t.

Proposition 1. 3. A stationary measure for a C.B.P. is unique
up to a constant multiple.

Proof. Let nQ(E} be a stationary measure. Then for X>y and
£>0 such that TTO(X) and 7r0(^(°°)) converge, we have from (1. 7) that

(1. 14) *oOhM) = ^oM+ WX00)) -
Since \|rX°°) maps (0, oo) onto (7, oo), there exists a positive number
t0 such that 7r0(^/o(oo)) converges. Setting x = i|r,o(oo) and /=/0 in
(1.14), we see that ^0(^0(

c^)) = ^o(^f0(^fo(
00))) = 2^0(^,o(oo)) converges.

Repeating this argument, it is clear that ^(^n^C00)) converges for
each integer n. Hence TTO(X) converges for each X>7 by means of
(1.13), so that (1.14) is valid for \>y.

Setting \ = ̂ (oo) in (1.14), we have ^o(^+5(
00))==^o(^(00)) +

^o(^(°°))- Hence, by the continuity of ^X°°) n0(tyt(°o)') = ct for some
c>0. Therefore, by (1.14)
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(1-15) #o(^00) =

for some c>0. Differentiation of (1. 15) at t = Q implies TTO(X)/Z(X) = c,

whose solution with lim7ro(X) = 0 is unique, and is given by CTT(X).
x->°°

Therefore it^=C7t, where n is the stationary measure of Lemma 1.2.
q.e.d.

§ 2. Some Lemmas

In this section, we prepare some lemmas which will be used
for the spectral representation theorem later.

Lemma 2.1. Let &e[0, oo). Then we have a signed measure
%u(dx) on JC[0, oo ) satisfying

(2. 1)

(2.2) e-*\gu (dx) <.
Jo

where \%U\(E) is the total variation of %u on E.

Proof. Since un(\} is completely monotone in X>7, and the
functions cosher and sinh^: are absolutely monotone, the functions
cosh^7r(X) and sinhw^(X) are completely monotone on X>7. Hence
we have nonnegative measures ? J(Z£) on JC[0, oo) satisfying

u
2

Setting ?J(E) = K(E)-K(E), we have (2.1) and (2.2).

Lemma 2. 2. £„(£) /s a eigenmeasure of Pt(x, E), in the sense
that

(2. 3) \~Udx)Pt(x, E) = *-»'£,(£), Ee JC[0, -).
Jo

Proof. By (1. 9) and (2. 1),

(2.4) e-^*^3

By (2. 2) and (1. 1)

(~Pt(x,
Jo
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Hence by Fubini's theorem, we have

(2. 5) <Hc*,cx» = [°e~xy r%H(dx)Pt(x, dy} ,

(2. 4) (2. 5) and the uniqueness theorem of Laplace transforms ([9]
p. 80) implies (2. 3).

The same arguments for the function 9(w) is not always clear.
So we shall proceed with some assumptions for a while.

Condition A. For each x<^[Q, oo), there is a signed measure
) on [0, oo )f satisfying

(2. 6)

(2.7) -'Wrf.OfX00, «;>/„,

for some £0>0> ivhere \<j>\E(x) is the total variation of <£.(#) on E.

We shall set ®w(x)= I e~wu \ <j> \ du(x). Then the second assumption

is :

Condition B. Condition A is satisfied. Furthermore, for each

(2. 8) ,(*> dy)®w(y)<°o , W>t19
Jo

for some t^>tQ, which may depend on t.

Lemma 2. 3. // (jri) satisfies Condition B, $E(x) is an eigenf unc-
tion of Pt(x, dy\ in the sense that

(2. 9) \ Pt(xy dy)4)E(y) = \ e~ut^du(x],
Jo JE

Proof. Since the representation (1.10) of -^(X) implies tyt(

*)>

[°Pt(x, dy) [° e—'fajiy) = e~x^^
Jo Jo

But by Condition B

\~Pt(x, dy} r^^l^l^) = \~Pt(x, dy)^w(y)<oo9 w>tl.
Jo Jo Jo
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Hence, Fubini's theorem and the uniqueness theorem of Laplace
transforms imply (2. 9).

Lemma 2.4. // &(tu) satisfies condition A, Pt(x, E) admits a
spectral representation

(2. 10) Pfc, E] =

E^ JC[0, oo).

Proof. Fix a time t>t0. Then there exists a positive number
L such that t — 7c(\}>tQ for all X>L. Hence

ri*i*.(*)'~*rif«i(rf^ X>L-Jo Jo Jo

Thus the integral in (2. 10) converges absolutely. Moreover, we can
use the Fubini's theorem, so that (1. 10) implies

e-^Pt(x, dy) = e-*<

Jo Jo

By the uniqueness theorem of Laplace transform, we have (2.10).

§ 3. A Spectral Representation with Discrete Spectrum

In this section, we shall deal with a C.B.P., whose h(\) satisfies

(3.1) A'(7)<0, and h(\) is analytic at 7.

When a C.B.P. is supercritical, (3.1) is automatically satisfied : when
it is subcritical, since h'(fy} = h'(Q}<0 holds automatically, the only
assumption is that h(\) is analytic in some neighbourhood of \ = 0.

Lemma 3.1. Let fji = -h'(j}. Then (3.1) implies that A(\)
= g~M*cX) is analytic at 7 and

Proof. By (3.1),

1
h(\} p(X —7)

where g^(x) is analytic at 0 and ^(0)^0. Therefore, if X is suf-
ficiently near to 7,
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where g(x) is analytic at 0 and g'(x) = g^(x}jx. Hence A(\) =
(X-yX^-^ is analytic at 7 and A'(y) = e*co)>0.

Since A(ty) = 09 Lemma 3.1 implies that the inverse function
B(v) of A(\) is analytic on a neighbourhood F(0) of 0, and B(0) = y.
Defining functions {(^(tf) ; &=0, 1, 2, •••} by

(3. 2) f] 0^(*y - e~*B™ , ^e 7(0),
*=0

we have :

Theorem 3. 1. L^ (3. 1) be satisfied. Then, 1) ^(tf) is an
ei gen function of Pt(x, E) corresponding to the eigenvalue e~ktLt,
2) Pt(x, E} admits a spectral representation

(3. 3) Pt(x, E} = 2 0^>-*w?U£) , t>t0,
fe=0

£e JC[0, oo).

Proof. First we shall show 2) by checking Condition A in § 2.
Since TT(\)= -logyl(X)/M by the definition, d(w) = B(e~luo) for ^>/0 ,
where /0 is a positive number such that *T^o<EF(0). Hence (2.6)
follows, in which <j>E(x) is given by

(3.4)

(2. 7) is obvious, since

Next we shall show 1) by checking Condition B in §2. Fix a
positive time t. Then the ordinary successive approximation method
shows that \Jr,(x) is regular on a neighbourhood C7(y) of 7 by means
of (3. 1) (cf . [8]). Hence e~**t™ is analytic on U(<y), and therefore

(3. 5) \°Pt(x, dy)e~xy = g-*V»< oo , xe £7(7).

Since J3(0) is analytic at 0 and B(Q) = ry9 B(v} has the Taylor's ex-
pansion B (v) = 7 + 2 ^ i ̂  r • So
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-H* I ,.(*) = 2 !**,(*) I «-*"
*

Hence, taking tl so large that 7 — 21^- e -^^[/(y), we have (2,8)
by (3. 5). '*'

Remark 3.1. If A(\) is defined and analytic until its value
goes down to — 1, t0 in (3. 3) may be taken to be 0. Indeed, if so,
B(v) is analytic on ( —1, 1), (note that lim A(X) = 1), and $(w) = B(e~*w}

is analytic on w>Q.
Especially; if A(X) is analytic on X>y 0 , where y0 is the other

solution of /z(X) = 0 (if it exists),3) then A(\) satisfies the condition:
Indeed, in this case A(\) is analytic on X>y0 and lim A(\) = — °°.

Remark 3. 2. ^k^(x) = ̂ x x (a polynomial in x with the degree K).
This follows immediately from

H 4>Mvk = e~**x exp (-x E bjVi)

and the fact that bl = B/(0) =
Note that in our case, the representation (1. 10) of ^(X) turns

out to be

(3. 6) ^t(\) = B(e~^A(\}) , for large t.

Proposition 3. 1. // (3. 1) is valid, then

(3.7) ^,(x) = y + e-":̂  + 0(*-2'*), as t-*<*>9A'(j]
or equivalently

(3. 8) Ex(e~^xt) = e"** - xe'"* A^e'"X + 0(g-2ftf) , as t -+<*>,
Af(j)

where Q(e~ZM) is uniform in \>j — 8 for some £>0. Furthermore it
holds that

(3. 9) P>(0}
T

Proof. Since B(v) is analytic at 0,

3) This condition is always satisfied, if /z(/0 is supercritical with c=Q.
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B(v) = 7 + B'(0)v + Q(v2) , v-+ 0.

Hence (3. 7) follows from (3. 6). (3. 8) follows from (1. 1) and (3. 7).
Since limA(X) = l, and B(e~Mv) is continuous in v at v = \ if t is

\~>°°
sufficiently large, we have ^,(°°) = B(e~^) by (3.6). Hence (3.9)
follows.

§ 4. A Spectral Representation with Continuous Spectrum

In this section, we shall examine a C.B.P., whose h(\) satisfies

(4.1) A(x) = \l+pg(\), where 0<p<l and g(\) is

analytic at 0 with g-(0)^0.

Of course (4. 1) is satisfied only when A(X) is critical. Since A(X) is
concave, #(0)<0, and we set a=-g(G) and /8 = g/(0)/2. Then if X
is sufficiently near 0,

A(\)= -aX

where ^(X) is regular at 0 with gi(0) = £i(0) = 0. Hence

where g2(\) is regular at 0 with £2(0) = #5(0) = 0, so that

_---logx+£3(x)),

i i i i
if

where g3(\) and g"4(X) are regular at 0 and c is a constant.
As Karlin and McGregor [5], we shall show that for each suf-

ficiently small p>0,

* 1W0P*
(4. 3) | l-e-*™\ <1^- , Re w>t0.

\w\

To make the situation clear, we shall divide it into two cases.

Lemma 4.1. // (4.1) holds with l/2<p<l, then (4.3) holds.
The proof is the same as in [5] Lemma 5. But we shall prove

for completeness.
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Proof. Choose an £ satisfying 7r(l—p)/2p<£<7i:/2, and set

D(p,6) = { X ; 0 < | X <p,

Then it is enough to show that for each sufficiently small p,
a) 7r(x)(l -e-**)| <Mep* for all \<=D(p,£), b) n(\) is univalent on
D(p, £), c) TT(X) maps Z)(p, £) onto a domain containing a right half-
plane Re^>^0 .

Assertion a) follows immediately from (4. 2). The substituation
z = l/\p maps D(p, £) univalently onto

A(p, £) -

It is therefore sufficient to show that

\
if /> = !,

i f i
a

(4.4)

where q=\lp, is univalent in A(p, £) and maps it onto a domain
containing a right half -plane.

From (4. 4) it follows that

for some L>0. Suppose that z19 z2 are distinct points of A(p, £)
such that ty(z^) = (z^. Then

(4. 5) 0 =

From the geometry of A(p, £), it is clear that there is a constant
.ST, depending on £ but not on p, such that for any distinct points
zl9 zz of A(p, £) there is a path F lying in A(p, £) and jointing ^, z2

such that

With this choice of the path of integration we have
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and hence if p is sufficiently small (4. 5) is impossible, so ty(z) is
univalent in D^p, 8}.

The mapping w = ̂ r(z) sends the boundary of A(p, £) onto a
continuous curve in the ^-plane. When z-^oo on the ray
(7T/24-£), inspection of (4.4) shows that R e w - » — oo, im^
since p(?r/2-i-£)>7r/2. Similarly when z->°° along the ray
— X^/2-f £), we have Rew->—°°, Imw-+ — °°. It follows that the
image of /^(p, £) contains a right half -plane.

Lemma 4.2. // (4.1) fe?Ws with 0</><l/2, /few (4.3)
for the analytically continued function $(w}.

Proof. Let us use the notations in the previous proof. Also,
let J?(p, £) be the image of D^p, £) by the function -\]r(z)/ap in (4. 4).
Then the previous proof shows

(4. 6) 6(w) = -

and Q(w) is regular on the domain, maps it onto D(p, £). In this
case however J?(p, £) does not contain a right half -plane. So we
shall take a new £0>0 such that p(7t/2 + 6Q)>7t/2. For this £0, the
previous argument shows that \^(z}/ap is univalent also in the
domain A(p, £0) and maps it onto a domain R(p, £0) containing a
right half -plane. Hence ty~l(apw} is regular on R(p, £0), and maps
it onto D^p, £0), so that fi(w) in (4. 6) is analytically continued on the
domain R(p, £0), and maps it onto D(p, £0) (= {X ; 0< |X| <p}). Let
0(w) = reie, 0<r<p, | (9|<7r/2 + £0. Then, (4. 4) with (4. 6) shows that

apw = e— + c + ~ei^-™g,(rpeip«} .
rP YP

Hence, we have

sup (l~e-x^w)}w\
i«eRCP,E0)

< sup I (1 - e-*
re*)(?— + c + — ̂ l-*»gt(rW)} | / ap

o<r<p \ rp rp '
!0K*/2 + s0

<Mepx .

Theorem 4. 1. Let (4.1) be satisfied. Then the transition func-
tion Pt(x, E) admits a spectral representation
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(4. 7) Pt(x, E) = 1- r/9,,(*)«-»«-'o>f „(£)</« , t>t0,
Jo

, oo), £EE JC[0, oo),

where @u(x) is in L2(0, &°) as a function in u. Moreover if p=l, @u(x}
is an ei genf unction of Pt(x, E) when u is a continuity point of fiu(x).

Proof. From (4. 3), it follows that the integrals

are uniformly bounded. Hence by appealing to the Paley-Wiener
theorem ([6] p. 131) we deduce that

(4. 8) 1 -*-'«»> = e-wue^u(Bu(x}du , Re
Jo

where f)u(x) is in L2(0, oo) as a function in u. Hence (2. 6) in Con-
dition A holds with

(4.9) $du(x) = Sdu(0)-e^/3u(x)du.

Take an r>tQ. Then Schwartz's inequality shows that

Hence (2. 7) follows, and Lemma 2. 4 implies (4. 7) since £„(£) =
by (2. 1).

To show the latter assertion, note that (4. 8) is written as

1_ g--«V42*,-.3 = f "g-Wg-^-'o'-yg.x^rfu , f >/0,
Jo

and hence by ParsevaFs equality and (4. 3)

r>tQ.— ,
2(r-/0)

So for w>r>tQ, Schwartz's inequality with (4.9) shows

t( \ " e-^'-'o5" |
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where M' is a constant independent of x. Since A(X) is analytic at
0 by the assumption, we have

(4.11)

for sufficiently small p>0. (4.10) and (4.11) imply (2. 8) in Condi-
tion B. Hence by Lemma 2. 3, we see that $du(x) is an eigenfunction
of Pt(x9 E). The desired assertion follows immediately from (2. 9)
and (4.9).

Remark 4.1. If g(\,) in (4. 1) is a constant, then /„ in (4. 7)
may be taken as 0. Indeed, in this case, the radius p in Lemmas 4.1
and 4.2 can be taken as oo, and if !/2</><l, T]T(Z) maps A(°°, £)
onto a domain containing the right half-plane Re w > 0, and if
0<p<l/2, &(w) can be analytically continued to a domain containing
the right half-plane. Hence by the same arguments as in Lemmas
4.1 and 4.2, we have (4.3) for Rew;>0, obtaining (4.7) for t>0
(cf. Example 3 given below).

Proposition 4.1. // (4.1) holds, then

1 ^ /3 log / _ 7E(\) + c, 0/ (log m ,_.,
. ( | \Jl I , JJ — JL,

(4.12) ^(X)= a t^ ""^^l / ] L ^v
— __iL_Z__M_ - | -0f—_V—1, 0<^<1,

«5 ^->oo? z^fere 0( ) are uniform in \>K for each K>0, an^
ar, /3, ^, c <2re constants given in the proof of Lemma 4. 1 and
cl= — (/3 log tf + g"3(0))/a2. /^ words of semigroups, (4.12) means

(4.13)

| ^2 , Q
2ct2/2

P=l,

i_,/_J^_«^OOi^c)+o(_Lvi),
\(apty> (apt)q+l / \^h 2 f*/

as /-»°°. TAe asymptotic behavior of the probability Px(cr{l>}<t} as
/->oo zs g-/z;ew «/50 fry (4.13) wzY/z TT(X) replaced by 0.

Proof. Let /> = ! first. Then by virtue of (4.2),
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(4.14) 6(w) = — (1 - 0(w) log $(w) + 0(w)g3($(w)),
aw

Since d(w)-*Q (w->°°), (4.14) implies

w -> oo?
aw \M;

which with (4.14) shows

(4.15) 0(w) = -^+0 ^-^ , w - oo.
aw; \ w /

Substituting (4.15) into (4.14), we have

w w

and hence, by (1. 10) we obtain (4. 12) for p=l.
When 0<p<l, (4.2) implies

apw \ apw \w

and the similar arguments show (4.12) for 0 < p < 1. The rest
assertions are easily obtained as in the proof of Proposition 3.1.

Remark 4. 2. The higher approximations may be obtained by
the same methods.

Remark 4. 3. If we assume

A(X) = — a\1+p(l + o(l)), X ̂  0,

instead of (4.1), we have

j^

^' X) ~ (apt)9

§ 5. Examples of the Representation

Example !„ A(X)= -a\l+p + b\J a, 6>0, 0<p<l. A(X) is super-
critical and satisjfies (1.5). The positive solution 7 of h(\)=0 is
(ft/0)*, where tf = l/A ^(X) in (1.8) is

;
pb
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and the stationary measure is

pb\ai tr(pi)
Since ^= — hf(j}=pb, A(\) in Lemma 3.1 is

A(\}= 1- — , X>0.
a\p

Hence,
k f b\f h \l rPt'1

(5. 1) t»(dx) = S ( , )( --) -/=i \ / /\ fl /

The inverse function 5(i;) of A(X) is

Hence, if we let

(5.2) Pv.*W
k=Q,

$kv.(x) is given by

(5.3) £**(*) = «-** 2 n^v fe».
fe + .-. + A ^ f t V=l ' V

or *

When ^ = 1, the corresponding C.B.P. is a diffusion corresponding to
the backward equation

(5.4) = ax tdt dx2 dx
(cf. [7]), and %kf(dx), $kv.(x) in (5. 1) and (5. 3) are

-Y", jfe=0,

where Lf'(^) is the Laguerre's polynomial. Hence
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Pt(x, E\ {0} ) = 2 <t>»k(x)e-k" tf ( y]m(dy} , t>0,

where ^k(x} = (-bxe~^x / a^Lfl^bx / a) and m(dx) = e*xdx/ x. m(dx} is the
canonical measure of the diffusion process.

Example 2. h(\) = a(\ + (b/ d)q}l+p 4- b(\ + (&/ a)9), a, 6 > 0, 0 < ̂  < 1
and q=l/p. In this case A(0)-0, h'(0)=-pb<0. Hence, A(X) is
subcritical. /?(X) satisfies (1.5), and the smaller solution — y0 of

) = 0 is -(bjd)q. Moreover,

and the stationary measure is

n(dx}= !-^V

and <f>kp(x) are

= s
= 2 n

V=l

where P^jk(x) is that of (5. 2).
When ^=1, the C.B.P. is a diffusion with the backward equation

(5.5) 3u= d^u_bxdu
Qt dx2 dx

and the transition function admits the spectral representation

Pt(x, E\ {0} ) = 2 $\(x)e-k» ( <ti(y)m(dy) , t>0,
fe-1 JE\{Q]

where <j>0
k(x} = (-bx/a}L?l1(bx/a} and m(dx) = e~^xdx/x. m(dx} is the

canonical measure for the diffusion process.

Example 3. A(X)= -a\1+p, a>Q,Q<p<l. This is the simplest
case of (4. 1).

£(X) = --!-, X>0,
pa\p
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paT(P)

When p = l, the C.B.P. is a diffusion process with the backward
equation

/r_ ~v du 32u(5-6) dt=ax&'
and the transition function has the spectral representation

Pt(x, E\ {0} ) =

where <l>u(x) = \/xjaji(\/4ux/a)^ and m(dx) = dx/x. m(dx} is the can-
onical measure for the diffusion.
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