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Factorizable Representation of Current Algebra

—Non commutative extension of the Lévy-Kinchin
formula and cohomology of a solvable group
with values in a Hilbert Space—

By
Huzihiro ARAKI

Abstract

A notion of factorizable representation is defined and all factorizable
representations of a commutative group of functions as well as those of the
current commutation relations and canonical commutation relations are explicitly
given in the continuous tensor product space (i.e. the Fock space).

The formula for a state functional of a factorizable representation is a
non-commutative extension of the Levy-Kinchin formula in probability theory.

In the course of analysis, the most general form of a first order cocycle of
any solvable group with values in a Hilbert space is determined. Non trivial
cohomologies appear by two entirely different mechanism, namely a topological
one on infinite dimensional space and an algebraic one on a finite dimensional
space.

The immaginary part of an inner product of such cocycle is a second order
cocycle. The condition that it is a coboundary is discussed.

81. Introduction

A factorizable representation has been discussed for commutative
groups of functions and canonical commutation relations [17], [2].
Here we extend this notion to the current algebra, which is of some
interest in elementary particle physics. Given a Lie group G, we
consider, so to speak, a continuous direct product of copies of G,
each associated with a point on a measure space X. In the com-
mutative case, G is the additive group of reals. In the canonical
commutation relations, we take G as the group corresponding to the
Lie algebra of one pair of canonical variables p, ¢ and an identity
operator (times 7). If a unitary representation of the big group is
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associated with a state, which splits up into product of states of the
small group at every points, then the representation can be realized
in the continuous tensor product space defined in [3]. We shall
attempt a determination of the structure of such a representation.

It is shown that a representation is determined by specifying at
each point x of X, a unitary representation @,(g) of G, a first order
cocycle ¢,(g) with values in the representation space of @,, and a
real valued function c,(g) whose coboundary should coincide with
Im (¢(g), $(gz")). The representing operator can be expressed in
terms of Bose creation and annihilation operators as an exponential
of a*(x)a(x), a*(x) and a(x) terms.

All cocycles ¢ for given unitary representation are obtained for
any solvable group G. It is in general a sum of coboundary of a
vector in a space D+ which is somewhat larger than the represen-
tation space, and certain vectors in the adjoint representation space
of G (on its Lie algebra). The problem for a general G can be
reduced to the case of a semisimple G. The cocycles for a semisimple
G are not analyzed.

The problem of finding ¢ for a given @ and ¢ is partially solved.

The general theory is applied to special examples, including the
abelian case, the canonical commutation relations and current algebra
over the rotation group.

§2. Current Algebra

Let X be a measure space and G be a connected Lie group with
a finite dimensional Lie algebra g.

Definition 2.1. The current group C(G, X) of G over X is the
group of all bounded G-valued weasurable functions equipped with
the pointwise group operations. The bounded function means that its
range is contained in a compact subset of G. The measurability
refers to the o—fields Bx of measurable sets in X and the o—field B,
generated by compact sets of G.

Definition 2.2. The current algebra Clg, X) of g over X is the
Lie algebra of all bounded wmeasurable g-valued functions equipped
with the pointwise Lie algebra operations.



Factorizable Representation of Current Algebra 363

For each element 7 of C(g, X) the exponential ¢! of I is the
element of C(G, X) defined pointwise by [e'](x)=¢'*, where the last
exponential is the conventional exponential mapping from Lie algebra
to Lie group.

Definition 2.3. A unitary representation g=C(G, X)—U(g) (a
unitary operator on a Hilbert space D) is called continuous if U(e")

is strongly continuous in the veal parameter t for each fixed 1 in
Clg, X).

Lemma 2.4. Let X(X,) be a characteristic function of a fixed
measurable subset X, of X and let g**? be the function belonging to
C(G, X) which is equal to g on X, and to 1 on X—X,. Then g=G
— U(g**0) is a representation of the group G, which is continuous in
the ordinary sense if U is continuous.

Proof. The group representation property follows from (g,g,)**»
=g *“og ¥ As for the continuity, we use the fact that (a) because
of the representation property U(g)=U(gg, ) U(g,), it suffices to
prove the continuity at g=1, and (b) if 1,---, is a basis of g, (¢,-:*£,)
—¢hli..gbl gives a homeomorphism of a neighbourhood of 0 in R”
and a neighbourhood of 1 in G. By assumption each U(e'%) is
continuous in # and uniformly bounded, where I,x) is equal to I;
on X, and to 1 on X---X,. By using the estimate of the following
general form

IIA@) AE,) @ — A(t,") A() @l
= [[A@)IHIA@E) @ — A, @l +||[[AE)— AR TAE) @,
we have the strong continuity of U(e'h).--U(eln’s) in (¢,---1,).
Definition 2.5. A functional E over C(G, X) is a mapping from
C(G, X) to complex numbers. A triplet of a Hilbert space 9, a
unitary representation U of C(G, X) on © and a cyclic vector ¥ in

O (namely a vector V such that vectors U(g)¥, geC(G, X) span D)
is said to be canonically associated with E if

(2.1) E(g) = (7, U(@)v), g<C, X)

Theorem 2.6. A triplet (D, U, W) canonically associated with a
Sfunctional E exists if and only if E satisfies the following positivity
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condition: E(g;,'g;), i=1, -, m, j=1, -, n, is a nonnegative malrix
for any choice of g;, i=1,--,n from C(G, X). For given E, the
triplet is unique up to a unitary equivalence. The unitary represen-
tation U is continuous if and only if E(g,e'g,) is continuous in the
real parameter t for every fixed g,, 2.=C(G, X) and 1=C(g, X).
The necessity of the conditions for E is obvious. The existence
and uniqueness of the triplet is easily proved by a standard method.
Since U(e®), being unitary, is uniformly bounded, the continuity
of its matrix elements between a total set U(g)¥ implies the weak
continuity of U(e??) itself and hence its strong continuity.

Definition 2.7. A functional E is called an expectation func-
tional if EQ1)=1, the positivity condition is satisfied and E(g, e'’g,) is
continuous in t.

An expectation functional satisfies

2.2) E(g)* = E(g™)
2.3) E@l=1

which immediately follows from the positivity condition with n=2,
g,=1 and g,=g.

The definitions introduced in this section are related to customary
notations in the following way.

If G is taken to be the additive group of real numbers, then
C(G, X) is a vector space of functions. The functional E for such
C(G, X) has been extensively treated in the literature.

If G is the Heisenberg group, namely if g is spanned by three
elements a, lf), i satisfying [Q, ajzi, [a, i]=[/¥\>, t]=0 and if we re-
quire U(eif), for any real valued bounded measurable function f, to
be an identity operator times a number exp z‘gX f(x)dx, where dx is

a measure on X, then we are dealing with a representation of
canonical commutation relations. The last condition may be expres-
sed in terms of the functional E by

2. 4) E(gé/) = E(g) exp zS flx)dz.
In this case, the customary notation is

(2 5) U(eﬁf) = U(f) — it — gifewr ez
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(2. 6) U(eif) = V(f) = =P = gilzorns

If g is a Lie algebra of antihermitian matrices (g:;), then a
standard notation is

2.7 Ule?) = exp >y (0)s (), g(2)e, 2t -

For yeg, the expression r"(x)vyyr(x) is the operator valued distribu-
tion defined through a generator of one parameter subgroup :

2.9) [ @reEns@ds = e

If ¢ is antihermitian, ¢ times this operator is selfadjoint. The
current commutation relation is

2.9 [ @ v, v (»)rap(0)] = - @)Ly, v 1v(x)

which is to be understood as

@10 [r@re@amas, [vonemrimy]
= (v @y, vlv@ @ (2

and holds on a dense set of vectors depending on «,f, and v,f,.
The use of " and » comes from the fact that (2.9) is formally
implied by

(2.11) Lvo(x), ()]s = 8(x—y)
(2.12) Lvo(®), v ()1 = [¥(x), v(9)]e =0

where either + or — commutation relations are assumed, [A4, B,
=AB+BA, [[A, B]_=AB—BA, and they lead to the same equation
(2.9).

Sometimes, one is interested in a locally compact space X and
the group of G-valued measurable bounded functions on X with a
bounded support. The following analysis can be modified to accomo-
date such cases.

§3. Factorizable Functional and Type I Factorization

Definition 3.1. A#n expectation functional E of C(G, X) is finitely
factorizable if
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(3 1) E(gng) = E(g1)E(gz)

whenever the support of g, is disjoint from the support of g,. Here
the support of a function g(x) is the set of x&X for which g(x)=+1.

If {X;; i=1, .-, n} is a partition of the set X into a finite
number of subsets in By, then the subgroup of functions g(x) with
supports in X; may be identified with C(G, X;). C(G, X) is then a
direct product of (mutually commuting groups) C(G, X)), i=1, -+, n.

If we denote the restriction of the functional E to C(G, X;) by
E;, it automatically satisfies a condition for an expectation functional
of C(G, X;). For YeBy and g=C(G, X), let g*¥ denote the element
of C(G, X) which is equal to g on Y and to 1 on X—Y. For a
finitely factorizable functional E and for a finite partition {X;} of
X, we have

(3.2) E(g) = [ E(g"*?).

Theorem 3.2. Let (D, U, V) and (9;, U;, ¥,) be triplets canoni-
cally associated with expectation functionals E and E;, respectively.
Let

(3.3) b-%0, v-gw
3.4) Ufig) = ®UAe), &:<CEG, X)

where @ denotes the tensor product. If E is finitely factorizable,
then (§9, ﬂ', \ff) is unitarily equivalent to (9, U, ¥).

This follows from (3.2) and Theorem 2.6.

For any subset X, of X in By, we consider partition of X into
X, and its complement X{=X,. By the unitary equivalence of
H=9,09, with O, B(9,)R1 defines a type I factor on O, which we
shall write R(X,). Here B(9,) denotes the set of all bounded
operators of 9,.

Theorem 3.3. Let E be finitely factorizable. For any finite
partition {X;, i=1, ---,n}, X;€Bx of a given X,€Byx, {R(X)), i=1,
-, u} is a type I factorization of R(X,) for which ¥ is a product
vector. The operator U(g) belongs to R(X,) if the support of g is
in X, and is factorizable operator with respect to this factorization :
U(g)=IU(g**?), U(g"*?)eR(X).
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This follows from Theorem 3.2 if we consider the partition
{X§, X,, ---, X,,} as a common subpartition of {X,, Xs} and {X;, X},
i=1, -, n

Definition 3.4. An expectation functional E of C(G, X) is said
to be o-factorizable if the following condition is satisfied :
If {X;} is a countable partition of X into measurable sets, then

(3.5) E(e) = TE(g)

where the product converges irrespective of the ordering (the absolute
conver gence).

Definition 3.5. A subset X, of X is called E-null set if X,=Bx
and E(g)=1 for an arbitrary g=C(G, X,). The set of all E~null
sets is denoted by NE.

Lemma 3.6. Let E be a o-factorizable functional. If X,eN%,
X,€Bx and X,c X,, then X,cNE. If X,eNE, then UX,€N% where
the index set is countable. l

Proof. The first statement follows from C(G, X,)cC(G, X).
For the second statement, let X,= UX; and Y,‘=X,-—('L<J_Yj). Since
Y,cX;, Y;=N%. Since X, is the union of disjoint Y;, Definition 3.4
implies E(g)=IE(g,)=1 for all geC(G, X;). Hence X,eN%.

Definition 3.7. The carrier Boolean algebra B% of a factorizable
E is the Boolean algebra obtained from the o field Bx by identifying
any two sets which differ by an addition and a subtruction of E-null
sets.

Definition 3.8. E is called separable if, for any wmeasurable
partition {X,} of X, X, belongs to N% except for a countable number
of «a.

Lemma 3.9. If E is o-factorizable and separable, then BE is a
complete Boolean algebra satisfying a countable chain condition.

Proof. Since By is a o-field (i.e. Boolean s-algebra), BE is also
a Boolean os-algebra because of Lemma 3.6. Next, if X.=Byx is
given for every ordinals p between u, and 1 such that X,DX, and
Xu— X, &EN% for p>v (A—B=ANB°), then u, must be countable,
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This follows from separability because Y.= X, .,— X, NE is mutually
disjoint. Thus B satisfies the countable chain condition. Finally,
let X.=eBx be given. We show the existence of their least upper
bound in B%. We define an ordinal u,, the pair of the set Y. and
an index a(u) for every ordinal p<u, by the transfinite induction
in such a way that Y.eBy, Y.DY, if u>v, Y.—Y,ENE if u>v,
Y,szgume, and X,— U Y.eNE for any «.

w<pty

If this is achieved, u, must be countable and Y, = U Y. is the
Be<fhy

lowest upper bound of {X,} in B%. Let Y, be defined for »<p.
(If w=1, this assumption holds trivially.) Then p must be countable.
Hence UY,=Z.=By. We look for X, such that X,—Z.,&N%. If

247
no such o exists, we set u=pu,. Otherwise choose one such index

a(p) and define Yu=X,uwUZ.. Then Y.€Byx, Y.DY, for u>v.
Further, if y>v, Y.—Y,DY.,—Z.,=X,,—Z.NE and hence Y.— Y,
& NEZ. Then strictly increasing transfinite sequence {a(v); vr<u}l,
uw=1,2, .- must terminate by the axiom of well ordering and we
have the desired result.

Definition 3.10. The discrete spectrum S¥ of E in X is the
set of points x<X such that E(g)+1 for some g=C(G, {x}).
S is countable for a separable E.

Definition 3.11. Let NE be the family of subsets of X obtained
as a union of an E-null set and a subset (including the emply set)
of SE. The carrier Boolean algebra B of the continuous part of
E is the o-field obtained from the o-field Bx by identifying any two
sets which differ by an addition and a sublvaction of sets in NE.
(Another equivalent way is to consider the lattice of Y-S¥, Y=By
modulo null sels.)

Lemma 3.12. B is a complete, continuous Boolean algebra with
countable chain condition. BY% is a direct product of BE and the
countable atomic complete Boolean algebra BY generated by points
of SE.

Definition 3.13. A representation = of a complete Boolean algebra
B by factors is a mapping from Y&B to a factor »(Y) such that
w(Y)=n(Y) and n(UY;)=(U=(Y))".
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Lemma 3.14. Lelt E be a o-factorizable scparable functional,
(9, U, W) be as in Theorem 3.2 and R(Y) be defined as stated after
Theorem 3.2. Then (1) R(X)=R(X,) if X,=X,in BE. For YEBE,
define R(Y)=R(X,) where X, is any set in the equivalence class Y.
(2) YeBE-R(Y) is a representation of a complete Boolean algebra
by type I factors.

Proof. If YeNE, then the corresponding 9y is one dimensional
and (1) follows from Theorem 3.2. As long as the finite Boolean
operations are concerned, Y BE—>R(Y) is a representation of the
Boolean algebra B% by type I factors, due to Theorem 3.2. Hence
the only point to be proved is whether (LC{R(XO,))”zR(%JXw) for

arbitrary X,. Because of the countable chain condition, it is enough
to see this for countable number of mutually disjoint X,.
Let X,=(UX,)® and adjoin O into the index set. Consider (D,
@

U, ¥.) corresponding to the restriction of E to C(G, X.) and con-
struct the incomplete infinite direct product = 9. containing ¥=
@W¥.. Because of Definition (3.4) (b), II(¥., U.(g.)¥.) is absolutely
convergent, and hence QU.(g.)¥.=9. Hence RU.(g.)=TU(g) also
exists as a unitary operator on 9. Moreover (¥, U(g)¥)=E(g).
Hence (§9, U, ¥) is unitarily equivalent to (9, U, ¥) of Theorem 3.2.
Furthermore, clearly fQ,L:Q(@M)@( Q‘% 1,) and $=9.0(Q 9,) corres-
Ve vou

pond to R(X.) and the related decomposition of the Hilbert space.
Hence R( U X,)=R(X)Y=( y R(X,))".

Definition 3.15. The set of Y&BY such that R(Y) is one
dimensional is denoted by BYLE. The corresponding support S¥= is the
maximal element of BYE (defined as a subset of X modulo E-null
sets).

Lemma 3.16. BSE is a complete Boolean sublattice of BSE. If
YeBYE, Y,cY, Y,€BE, then Y, BYE
Proof. The first part follows from Lemma 3.14 and the second

part from Theorem 3.2.

Definition 3.17. The carrier Boolean algebra of the continuous
tensor product part of E is the o field obtained from BE by idenii-
fying any two sets which differ by a finite number of additions and
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subtractions of E-null sets, sets in BSE and sets in BYE. (Another
way is to comsider the lattice of Y— S¥—SYE, YEe By modulo E-null
sets.) It is denoted by B$E.

Lemma 3.18. Let E be a o—factorizable separable functional, (9,
U, W) be as in Theorem 3.2 and R(Y) be defined as stated after Theorem
3.2. (1) B% is a direct product of B, B4® and BLE. (2) g=C(G,
S¢E)—E(g) is a character of the group C(G, S¥&) and the correspond-
ing Hilbert space is one dimensional, (3) YeBYE—R(Y) is a faithful
representation of the complete Boolean algebra BSFE by type I factors.

Proof. (1) follows from Definition 3.11, Lemma 3.12, Definition
3.15, Lemma 3.16 and Definition 3.17. (2) follows from Definition
3.15. (3) follows from Lemma 3.14 and Definition 3.15.

§4. Realization of the Unitary Representation in the Fock Space

We now analyze the structure of the unitary representation U(g)
and obtain a concrete realization in terms of creation and annihilation
operators in the Fock space. First we separate out the discrete part.
If x=S¢, then U(g), geC(G, {x}) is a cyclic continuous unitary
representation of the group G and we have

4.1) D = 0.0{®9.}
4.2) U(g) = U(g)®{®@U.(g(x))}

where ¥ in ® runs over all points in S$. Thus the discrete part

x

is reduced to the study of continuous unitary representation of the
Lie group G, which we do not have to study any further. We shall
now turn our attention to the continuous part . and U.. To simplify
the notation we omit the c, in other words, the discrete part is
assumed to be absent in the following discussion.

Next we can separate out the character part. Any geC(G, X)
is decomposed as g=g.g,, supp g, CS¥, supp g,CcX—S¥. Then
U(g)=U(g,)U(g,) where U(g,) is a character of the group C(G, S¥).
A typical example of a character of C(G, S¥) is given by

exp | log X.(g(x)) du(x)
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where X, is a character of G depending measurably on x and p is
a measure.

As long as the Hilbert space structure is concerned, U(g,) is a
multiple of identity. In the present paper, we concentrate our
attention to the continuous tensor product part and hereafter omit
the superfix ¢T (which is equivalent to assuming that the S%F part
as well as the discrete part are absent).

For continuous tensor product part, the analysis of the continuous
complete Boolean algebra of type I factors [3] reveals the following
structure. O is an exponential of a Hilbert space €. There exists
a faithful representation of the complete Boolean algebra BE by
projections on €: YeBx—P(Y), P(Y)=0 if and oaly if R(Y)=1,
that is YeNE%. The most general forms of a product vector and a
bounded product operator on  are known.

We start with the analysis of the projection valued measure
P(Y) on %.

Lemma 4.1. Therc exists a countable partition of X into mutually
disjoint X,=Bx and positive continuous measures du, such that

4.3) 8= @{Lz(Xn’ dl‘n)®mn}
4.4 P(Y) = @{P.X,NY)®1}

where WM, are Hilbert spaces of distinct dimensions and P, (Z) is a
multiplication operator of the characteristic function of Z.

Proof. First, we find a vector X such that (X, P(Y)X)>0 for
every YEBy, €€ N%. For this purpose, take arbitrary unit vector
¥, and find the largest projection P(Y,) such that P(Y,)¥,=0. Next
pick up a unit vector ¥, from P(Y,)¥ and find largest projection
P(Y,) such that P(Y,)¥,=P(Y,)¥,=0. Continuing in this way by
a transfinite induction, we have a strictly increasing sequence of
projections 1—P(Y,) which exhausts S:lgP(Yw)(l—P(Ywﬂ)):l.
(Y,=X.) By the countable chain condition, oco0 is a countable ordinal.
By construction, P(Y)¥,=0 for all a<a, implies P(Y)=0. Let
a—n(a) be a one to one mapping of the ordinals «<ea, to natural
numbers. Then X=3n(a)"'¥, has the desired property.

To find a decomposition of the required type, we construct
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Xy, Zy, &,) for every ordinals a<a, by a transfinite induction in
such a way that (1) =%, 2) {P(Y)X,; Y=Bx} generates <,,
(3) P(Z,) is the largest projection of the form P(Y’), vanishing identi-
cally on {BQSB}L’ 4) (X,, P(Y)X,)>0 if Y—Z,&N%. Note that

8,19 for a%B and (3) imply P(Z;)<P(Z,) for S<a and P(Z,)%,
=0. For the construction, assume (Xg, Zz, ¥s) be given for B<a.
Define P(Z,) by (3). Use the previous construction of X to define X,
as a unit vector in {ﬂ@ Lo}t satisfying (4). Define &, by (2). This

procedure is possible unless {P¥}+=0. If the last equation holds,
p<a

we set a=a, and we have (1).
To reach the form of (4.3) and (4.4), define P(Y,)=P(Z,)— Vv
p<e

P(Z;). By the complete Boolean property of B%, Y,=Bx exists and
by the countable chain condition, P(Y,)+0 only for a countable
number of a=a,, n=1,2,---. Set X,=X,,. Wehave >P(X,)=1,
P(X,)P(X,)=0 for n+m, and =L, £,=P(X,)Q. Because of the
property (4), P(Y)X3+0 for Yc X,, YeeN§ where we define Xz=
P(X,)Xs for B<ca,. We have ¢,=@P%; where £ is generated by
P(Y)X3. Since two measures (X7, P(Y)X7) and (X3, P(Y)Xp) are
equivalent, we have derivatives of one with respect to the other:
A(x)= (X1, P(dx)XD)/ (X, P(dx)X3). Then ¢§ESA(x)‘/2P(dx)X'§ satis-

fies (#5, P(Y)gpD)—(pt, P(Y)g). Since X3—|A(x)*PAx)gh, G is
generated by P(Y)ps and P(Y) on all ¥ with » fixed are unitarily
equivalent. Writing u,(Y)=(X1, P(Y)X}) and 8;=28,(X,, du,)Res,
‘.Ut,,zﬁggn {ces}, PE=1Req(||es]|=1), we have (4.3) and (4.4).

If dimensions of some M’s coincide, we lump together those X,
for which M, has the same dimension and obtain (4.3) and (4.4)
where s have distinct dimensions. Q.E.D.

Next we analyze a product unitary operator.

Lemma 4.2. A most general umitary product operator in a
continuous tensor product is givem by

(4.5) W, ¢, Q) = e 397 T(~Qg, Q, ¢)

where Q is a unitary operator on &, commuting with all P(Y), YE By,
¢ is a vector in &, c is a real number and T(\r, Q, ¢) is defined in
Theorem 5.3 of ref. [3]. It satisfies
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(4. 6) W, ¢;, QIW(c,, b,, @)

= W(c,+c,—Im (¢,, Q2), @FP,+¢b,, QQy)
4.7 W(c, ¢, Q) exp ¥ = g ¥»Hie+@® exp QW — o)
(4.8) Q, W(c, ¢, Q)Q) = g Twortic

Proof. The general form of bounded product operator is given
by kT, @, ¢) where %k is a number, @ is a bounded operator on €
with [|Q]|<1, commuting with all P(Y), Y and ¢ are vectors in 2
and ¢+Q*Jr is in the domain of (1—Q*®) 2. The last condition is
equivalent to the requirement that T, @, ¢)* T/, @, ¢) be a
bounded operator and is automatically satisfied if the unitarity re-
quirement is satisfied. The latter is given by

1= k"T(, @, $)*T(I, Q, ¢) = [k *T($p+Q*yr, Q*Q, ¢+ Q¥y) et
1= k"I, Q DT, Q, d)* = [kI"T(r+Q, QQ¥, Y +Q) e,

Since # T, @, ¢')=1 implies &#'=1, J'=¢'=0, @'=1, we obtain the
following necessary and sufficient condition for the unitarity :

QO*=Q*Q =1, V= —Qp, |k]>= e @»

The rest of the lemma follows from ref. [3].
(In terms of annihilation and creation operators, T(yr, @, ¢) can be
written formally as

T(\b‘y Q, (IS) = g gla*log @aj e(rfua)‘)

Lemma 4.3. If lim W(c,, ¢,, @,)=W(c, ¢, Q) holds in the weak

operator topology, then limexpi(c,—c)=1, lim||¢p,—¢ll=0, and
lim Q,=Q in the strong operator topology.

Proof. From (4.7), we have
(4. g) (e®, W(c, é, Q)e¥) = g B I +icd (W)= (2.Q P+ 2QY) |

By setting ¥w=®=0 and separating the absolute value and phase,
we have

(4.10) lim {|¢,[[* = {Ig[I®
(4. 11) limexpi(c,—c) =1.

By setting ®=0, taking sufficiently small ¥ so that |(¢,, V)| <n=,
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[(¢p, ¥)| <7z and using (4.10) and (4.11), we obtain

4.12) lim (¢,, ) = (¢, ¥).

Together with (4.10), this implies lim ||/¢,—¢||=0. By setting ¥ =0
and using small ®, we have

(4.13) lim (9, @,¢,) = (P, ¥¢).

Finally, by using small ® and ¥, and substituting previous results,
we have

4. 14) lim (@, ., %) = (D, Q¥).

Because @, and @ are unitary, this implies lim @,=¢€ in the strong
sense. Q.E.D.

We now concentrate our attention to the subgroup C,(G, X) of
C(G, X) consisting of elements g*¥> where g&G which is considered
as a constant element of C(G, X) in the notation g*¥> and X(Y) is
a characteristic function of YeB%. For each fixed Y, we have a
continuous unitary representation of G

(4' 15) gEG'_)U(gx(Y)) = W(C(g’ Y)» ()b(g’ Y): Q(g’ Y))

where the continuity follows from Lemma 2.4. The relations among
quantities with varying Y are given by

(4. 16) Qg Y) =P(Y)Q(g, X)+1-P(Y),
(4.17) (g, Y) = P(Y)o(g, X).
From

(4.18)  E(g¥™) = exp {—%@(g, X), P(Y) (g, X)) +ic(g, Y)}
we have

(4.19) GicE Y — [ gi¢& Y,

n

where {Y,} is a countable partition of Y and the product must
converge irrespective of the ordering.

Theorem 4.4. (4.15) gives a continuous unitary representation of
G for a fixed Y, if and only if (1) Q(g, Y) is a continuous unitary
representation of G, (2) g—d(g, Y) is a continuous mapping satisfying
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(4. 20) $1,Y)=0,

(4.21) Qg Y)*¢(g, Y) = d(g8:» Y)— (g, ¥)
and (3) g—e“¢ Y is a continuous mapping satisfying
(4. 22) expi{c(g,,Y) +c(g, Y)—clgg.,Y)

+Im [¢(g, Y), o(gz", Y)I} = 1.

If © is spanned by U(g**)Q, then {¢(g, Y)} must span L. If
{¢(g, Y)} spans &, then spaces M, in (4.3) are separable.

Proof. The first half is an immediate consequence of (4.6) and
Lemma 4.3. ((4.20) follows from (4.21).) From (4.7) and (4.21),
U(g*¥)Q is a multiple of

(4.23) exp —Q(g Y)¢(g, V) = exp (g™, ¥)

which is in exp®, where €, is the space spanned by all ¢(g, Y).
Therefore ¥,=%¥ is necessary in order that {U(g*¥)Q} spans 2.
Finally, to prove the separability of It,, we note that G is separable
and hence has a countable dense set {g,}. By continuity, {¢(g,, Y)}
generates ¥. Let Ey be the projection on the subspace spanned by
¢(g,, Y), n=1,---, N, YeByx. E, commutes with P(Y) by construc-
tion. Let &, be the subspace generated by (1—E,_)¢(g,, Y). Then
L=, and each &, is cyclic for {P(Y)}. Let P(Y,) be the largest
P(Y) vanishing on £,. (Y, defined up to a set in N%.) Define
Pm,EZfI P(Y;©) where (c) indicates Y; or Y,°* and the summation
runs over all possibilities such that the number of Y;© is exactly 7.
Define X,zgm‘le,(l—Em_l)cp(gm, X). This has the property of
Xs in Lemma 4.1 except some of X, here can be 0. Since its total

number is countable, dim ", is finite or countably infinite. Q.E.D.

Definition 4.5. Lel © be a Hilbert space, G be a group, and
Q(g), gG be a continuous unitary representation of G on 9. An
D-valued continuous function $p(g) of g=G is called a cocycle of first
order if it satisfies

(4.24) P(g2) — P(8.) +Q(g)* P(g) = 0
The set of first order cocycles is denoted by Z'(G, D). If



376 Huzihivo Avaki

?(g) = Q(@*-1)Q

for an QE9, then ¢ is called a coboundary. They are denoted by
B'(G, 9).

We shall study ¢(g, Y) in a separate section. The representa-
ting operator for a general element of C(G, X) can be obtained from
that of C,(G, X) if we introduce the following additional continuity
assumption.

Definition 4.6. The functional E(g) is called uniformly conti-
nuous if it is comtinuous with respect to the uniform topology on
C(G, X). The uniform topology on C(G, X) is defined by neighbour-
hoods Ng(g)=1{g'; g'(x)g(x)'CN for all x} where N is a neighbour-
hood of 1 in G.

Theorem 4.7. An expectation functional ¥(g) is uniformly con-
tinuous if and only if the vepresentation U(g) canonically associated
with E is strongly continuous with respect lo the uniform topology
of C(G, X).

Proof. The if part is obvious. For the only if part, we note
that given a compact K in G and an open neighbourhood 9t of 1 in
G, there exists a neighbourhood %’ of 1 such that {x3¥x7'; x=K}
cN. (Take a compact neighbourhood N, of 1 for each x= K such
that 2N, x'cN. Then consider the set K, of all ye K satisfying
Ny 'cRN. K, is an open covering of K and hence there exists a
finite number of K, covering K. Take 9 to be the intersection of
N, for the finite number of x.) Hence if E(g) is uniformly conti-
nuous, then E(g,gg,) for a fixed g, and g, is continuous in g. From
this U(g) is weakly continuous on a dense set. Since it is unitary,
it is strongly continuous. Q.E.D.

§5. Form of Expectation Functional

Theorem 5.1. Let B be a continuous complete Boolean algebra
of equivalence classes of subsets of X salisfying the countable chain
condition and let F(g, Y) be a complex valued function of g=G and
Y < B% satisfying the following condition ;

(1) F(ggi, Y)—F(g, Y)—F(g;", Y)=H(g:, g;;Y) (mod 2ni)
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(2) H(g:, g;;Y) is continuous in g; and g, for each YeB%.

(@) H({,g;Y)=H(g1;Y)=0

(4) Y—H(g:, g;; Y) is complex finite measure on the complete
Boolean algebra B% for each fixed g; and g;.

(5) H(gi, g;;Y) is a positive semidefinite matrix for any fixed g;,
i=1, -+, N, and Y.

(6) exp F(g, Y) is continuous in g.

(7) If {Y;} is a countable partition of Y, exp F(g, Y)=Ilexp F(g, Y;).

(8) Re F(g, Y)=Re F(g™, Y). '

Then there exists a continuous tensor product =e2, Q=¢" and a

continuous unitary representation g*—U(g*¥) of the subgroup C,(G, X)
such that

(5. 1) E(g"®) = (Q, U(g“")Q) = ",

Conversely, any separable o-factorizable functional over C(G, X)
with no discrete spectrum is of this form when restricted to C G, X).

Proof. We first prove the converse part. Let U(g*¥°) be given
by (4.15) where @, ¢ and ¢ satisfy (1), (2), (3) of Theorem 4.4
and are o-additive in Y, mod. 2z for ¢. We compute E(g*¥)=

@, U(g*™)Q) in terms of c(g, Y), @(g)=Q(g, X), ¢(g)=¢(g, X) and
P(Y). We have

(5. 2) E( g’““) = g F@1P(YIb@N+ic@ )

and hence define
5.3) Flg, Y) = —%@s(g), P(Y)p(g)) +ic(g, V).

ef®Y> is continuous in g for fixed Y by Lemma 2.4. We also have
eF@Y=E(1)=1. Because we have a freedom of adding an integral
multiple of 27z to ¢(g, Y), we set c¢(1, Y)=0. Then F(1, Y)=0.

From (4.20) and (4.21), we have ¢(g™', Y)=—Q(g, Y)¢(g, Y). Hence
the unitarity of Q(g, Y) implies (8). Next we compute

(5.4) G(gi, g3 Y) = F(gigy, Y)—F(g:Y)—F(g7'Y).

From the unitarity of @(g) and equation (4.17), we have
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(5.5) IIP(Y)Lp(g:8) — () 11" = [[P(Y) Q(g.)*b(g)II*
= [|Q(g)*P(Y) p(g)I*
= [[P(Y)p(g)II" .
Hence

+(4(g2), P(Y)d(g,)) = 2Re (¥(£.8.), P(Y)(g2)) -

Setting g,=g;, & =g:g7", we have
(5.7 Re[F(g:87", Y)—F(g:, Y)—F(g;, Y)]

= Re (¢(g), P(Y)$(g)) -
By setting g;=1, we have Re F(g™", Y)=Re F(g, Y). Hence
(5.8) Re[F(g:g7", Y)—F(g, Y)—F(gi", Y)]

= Re (¢(g), P(Y)(g)) .
Next we consider (4.22). We have
(5.9) (&g Y)—c(g, Y)—clg, Y) = Im ($(g), P(Y)d(gz"))
modulo 2z. Hence, we obtain modulo 2z
(5.10) Im[F(g:g5", Y)—F(g:, Y)—F(gi", Y)]

= Im (¢(g), P(Y)o(g)).
Combining (5.7) and (5.10), we have
(5.11) F(g:igi" Y)—F(g, Y)—F(g7', Y) = (6(g:), P(Y)(g))

modulo 27i. By taking H(g;, g;; Y) to be the right hand side, we
have the properties (2)-(5) for H.

Now let F and H be given. We introduce the free complex
linear space K, over BEXG, denoting a general element by

(5.12) S e, ¥(Y,, ), Y,=BE £,5G.
We introduce an inner product by linearity and
(5 13) (T(Yl’ gl), \P(Yz» gz)) = H(gl’ 82> Y1m Yz) .

After identifying all elements with O norm as 0, we obtain a
prehilbert space. We denote its completion by €. We define ¢(g),
(g, Y), P(Y) and Q(g) by
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(5.14) P(g) =¥(X, g), clg,Y)=ImF(g Y)
(5.15) P(Y)¥(Y, g)=w(YNY, g
(5.16) QERY(Y, g) =Y, g'g)—v(,g").

First we note that ¢(1)=0, because |[¥(X, 1)|’=H(, 1; X)=0. By
linearity, we want to extend P(Y) and Q(g) to a dense subset.
Because of (4) and (5), P(Y) brings 0 always to O and hence the
linear extension is possible. Further (4) and (5) imply that P(Y) is
bounded. From the definition, we see P(Y)*=P(Y) and P(Y)*=P(Y).
Namely P(Y) is a projection. (4) then tells us that Y—>P(Y) is a
projection valued measure.

From the continuity of H(g;, g,; Y) in g; and g;, we see that
Y(Y, g) is strongly continuous in g. Hence ¢(g) and Q(g) are
strongly continuous in g.

For Q(g), the structure of H and the definition (5.16) of @ imply

(6.17)  (Q(9)¥(Y,, g2), Q&)¥(Y,, 2))

= (\P(YZ’ gzg_l)_\y(sz g_l)r \P(Yn glg_l)_\y(Yl? g—l))

= H(g,g", g8 Y.NY)—H(g" &g Y.NY)

—H(gg™ g Y.NY)+H(g" g Y.nY)

= F(g.g1, Y.NY)—F(gr', Y.NY)—F(g, Y,NY)

= (T(Yw gz), W(Ylgl)) .
Here we have used F(1, Y)=0, which follows from (1) with g;=1
and (3). (5.17) holds up to 2n=i, n=0, +1, ---. However, the con-
tinuity of Q(g) implies z=0. Hence Q(g) can be extended to the
whole space as an isometric operator by linearity and continuity.
From the definition Q(g,)Q(g.)=@(g.g.) holds on a total set ¥(Y, g)
and hence on all vectors. Since Q(1)=1, Qg™ Q(g)=Q(g)Q(g ) =1.
Hence Q(g)™' exists, which implies that Q(g) is unitary. Further
Q(2)*=Q(g™"). By definition Q(g) commutes with all P(Y). Since
ReF(1,Y)=0, (5.13), (5.15) and (8) imply (¢(g), P(Y)p(g)) =
—2Re F(g,Y). If we define U(g*¥) by (4.15), (4.16) and (4.17) with
d(g, X)=o¢(g), Q(g, X)=Q(g), then the equation (5.1) is satisfied.

The function ¢(g, Y) is o-additive in Y mod 2z by (7). It

satisfies (4.22) due to (5.14), (1), (5.13) and (5.15). It is continuous
in g due to (6). Thus U(g*¥) is a continuous unitary representation
of C,(G, X). Q.E.D.
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We remark that the absolute value part of (7) is a consequence
of other assumptions. We also note that Im F(g,Y)=—Im F(g™, Y)
mod 2z follows from (1) and (5).

In the rest of this section, we rederive the form of the func-
tional E(g) in the preceding theorem by an elementary method under
the assumption that the functional is given by

(5. 18) E(e) - exp | F(g®)du() .

Here F(g) is assumed to be continuous in g, F(1)=0 and 4 is a
continuous positive finite measure on X.

Lemma 5.2. Let A;;,
(exp cA;;) is positive semidefinite for all positive c if and only if A

is hermitian and PAP is positive semidefinite where P‘fzsi"—%—'

i,7=1, -, m, be a mairix. The matrix

Proof. (1) The sufficiency: We have

(5.19) exp cA;; = e”(efi)* (exp c(PAP);;)(e%),
where

(5. 20) o = —%gjj A;; (real),

(5.21) B; = % 1Ay

Hence

(5. 22) 2 xf(exp cA;))x; = e 2] y¥ (exp c(PAP);,)y,;
where

(5.23) Y, = x,;6%.

By Lemma 8.2 of [3], the positive semidefiniteness of (PAP);;
implies the same for exp ¢(PAP);;. Therefore we have the positive
semidefiniteness of exp cA;; from (5.22).

(2) The necessity: Let Px=x, namely 3 x,=0. Then

(5.24) ; x¥A; . x. = 16131 ¢ D xFetiin; >0.

7 07
Since P is a projection, we have the positive semidefiniteness of
PAP.
It follows that B;,=expc(PAP);; is hermitian. Since f(c)=
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>lexpcA;; must be real, a=—(c/#*)f’(0) is real. Since exp cA;;=
B;;exp (a+v;+3;) is hermitian, where v;,=(c/n)> A;;; we have

vf=B;+2nzi. From the continuity in ¢, we have n=0. Hence

A;j=a+v;+B;+(PAP);; is hermitian. Q.E.D.
We now consider

(5.25) E(g"¥) = exp F(g)u(Y) .

By the Lemma 5.2, the positivity condition for E implies

(5. 26) ZJ] **F(g:g7)%; >0

whenever >1x,=0. Let 4,7=0,1,---,n, g=1, x,= —i}x,-. Then we
have t

(5.27) > 2 F(gig7) %, (2 a9 2D F(g7) %,

—> wFF(g)(3) %) > 0.

i

Namely F(g;g7")—F(g;,)—F(g7") is positive semidefinite.

Conversely, assume that F(g;g7’, x)—F(g;, x)—F(g7', %), i,j=
1, .-, n is positive semidefinite for any {g;}, » and x. By setting
n=1, x,=1, we have F(1, x)=0. Let p be a finite positive measure
on X. Then

(5.28) F@) = [Few), ndu®), geCX, G)

have the property that H(g;, g,)=F(g;g7")—F(g;)—F(g7") is positive
semidefinite and F'(1)=0. Then, for any x; satisfying >'x;,=0, we
have

(5. 29) 21xtH(g;, g,)%; = 2 x¥F(g:87)x,;>0.

Hence E(g;g;") is positive semidefinite and E(1)=1. In particular,
if F(g, x) is constant in x, we have the positivity for (5.18).

§6. Standard Examples for ¢(g,Y)
To analyze ¢(g, Y), we introduce the following spaces.

Definition 6.1. Let h(f) be a function of the class 9) such that
its Fourier transform /Z(?\)zge"‘"h(t)dt satisfies p(0)=0, 1>7(\)>0,
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Jor »=+0 and }’(0)%0. Let I; be a linearly independent basis of g,
and

6. 1) K — SYK(), K(I) = 1—SQ(e”) K#)dt .

Let K=S°3»E(d)») and K be the inverse of the mapping K'? from
(1—EOT)E into <.

The space D* is the range of K™ in ¥ equipped with the
topology induced by a new norm |jy||.=!K*"y| and D* is the
completion of D*. The space D, is the largest subspace of ¥ on
which Q(g)=1 for all g.

Lemma 6.2. D* as a topological linear space does not depend
on the choice of h and {l;}. D, is the eigenspace belonging to the
eigenvalue 0 of K. (Q(g)—1)V for any g=G and V¥ belongs to
D™ and

(6.2) Q- Il < d(g) [I¥]|

where d(g) does not depend on V. For every ¥, ||(Q(g)—1)¥|_—0
as g—1.

Proof. We first characterize a vector in the range of K(I,)“
Consider the spectral decomposition of one parameter family of
unitary operators

(6.3) Qe = [endE ).
Then
(6. 4) KO = |[1-E01dER)

By assumption 1— %(A)>0, where the equality holds only at A=0,
1—2(\)—1 as A—c and of order A? at A=0. Hence a vector v is
in the domain of K(I)™*” if and only if SX_Zd(\#, EM\)J)<co. In
particular (Q(¢"') — 1)y is in the domain of K(I)"** because A ~?|e* —1J?
is a bounded function of A. We also know that K(I)y-=0 if and
only if QM=+ for all ¢£. Next, since all K(I,)>0, we have
K>K()).

Now we see that the eigenspace of K belonging to the eigen-
value O is the intersection of the same for K(I;) and hence consists



Factorizable Representation of Curvent Algebra 383

of yr such that Q(e" )=+ Since ¢’ generates G, we have proved
the assertion on D,.

Next we prove that (Q(¢f“)—1)y- is in D~. Since K(I,)>0, we
have (o, Kp)>(p, K(I,)p) for any . Hence |[K(,)"K p,|’<|lp,|
where ¢,=K"’¢p. Hence K(I;)?’K™*” has a bounded closure with
norm=<1, which we denote by R;. The domain of R; is D;*. If T
is a bounded linear operator and S is a linear operator with a dense
domain, then (TS)*=S*T* ([5] p.297). Since the ranges of K(I;)”*
and K™** are contained in D;%, we consider the restrictions 7=
K{I,)”*|D,> and S=K 21 D;* on the space D,*. Then

Rip = (TS)*p = KPK(L)
for p= D, where R} is the adjoint of R; on D;t. Therefore,
K72 K1) 9l < llell

for p=D,/ . Since K(I,)?p=0 for @p=D,, we see that K(I,)'*p for
any ¢ is in the domain of K * and the above inequality holds.
Since

(6.5) () = sup 2(1—cos IA) (1—A(N)) "< oo,

p,=[Q(e")—~1]y for any v is in the domain of K(I,)"*2. Hence
setting @,=K(I,)""p,, we see that ¢, is in the domain of K * and
(6.6) [QM) —10v[12 = 1K V| < IK(L) | < p(t)| W0 I[* -

Any geG can be written as a product &1 .../ N) where [(p)
is of the form t,l,,, for some i(p). Then, writing g(p)=e!®) ... N
and g(N+1)=1, we have

6.7 Q@) —10% = 3TH{REP) ~1}Q(g(p+ D),
(6.8) R~ Tl < {23 pt, Y7} 1w

We thus have proved that {Q(g)—1}v=D_ and the equation (6.2).
Near g=1, we may take i(p)=p (running over a basis) and g—1 is
equivalent to {f,}—0. As {—0 and ¥, —v, §,(y)=|K(,) " [Q™)
=17 =0 and §,(yr) <p®||lVrs—r|| +8,(y)—0. Hence (6.7) implies
1(Q(g)—1)p||.—~0 as g—1 for every 4 in L.

Finally we prove that different choices of % and {I;} give the
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same D*. Let p,(f) and K,(I) be the p and K(I) with %=1, d.,(2)
be the d(g) with %, and {[}}, K,=>'K,(I!) where v=1 and 2. For
o= {Q(")—1}+, we have

(6.9) KT 0|l < dy(e)lIpl] -

Choose an a satisfying 0<a<2r/t and define E,=E([ —a, a]). Then
R=QEN—1)"K,()'"?E, is bounded and hence |q|l=[IRK, () p|l <
1R | K,(D)p|| if E, =+ and Epy=0. If v runs over (E,—E,)%,
then @=(Q(")—1)y runs over Z, times the domain of K,(I)™2
(Note that E® is orthogonal to the domain of K,(I)"*?.) Hence we
have

(6. 10) KT KDy < c(D)|@|

for ®=K,(I)""”?p, which runs over (E,—E)% If ®=EQ, then the
left hand side of (6.10) is O and hence (6.10) holds trivially.

Next consider y in (1—E,)®. If Ais a closed operator and v,
is a sequence of vectors in the domain of A such that |[Ay,|i<a
for all # and lim r,=+», then - is also in the domain of A and
[lAyr||<a due to the weak sequential compactness. If yr(f) is measure-
able in ¢, \[r=g\[r(i)dt converges strongly, ||Ay(f)||<a(f) and Sa(t)dt
< oo, then r is in the domain of A and !le}ngSa(t)dt. By using
this, we integrate (6.9) relative to A,(¢)df where d(I)ESdl(e”) h(t)dit
<oco. We have [[Ki”’K,(Dv|l <dO)|l|. If we set @=K,(I)"*), @
runs over (1—E,)® when + runs over (1—E,)¢ and |[J| <[|K,([)™
X (1—E)|l ||®||. Hence (6.10) with a new constant c(I) holds also
for such &.

Thus we see that K72 K,(I)'* is a bounded operator. Taking
adjoint, we see that

(6.11) KD Kiel|l < a()llell

for any @ in the domain of K% Setting Ki’p=+r, we have

(6.12) W, Ko (DY) < a(l)’(yr, Kiyr)
where & D,". By adding this equation for I=12 =1, ---, we have
(6.13) W, Kr) < a,(¥, Ky¥r)

for some constant @, and for any +r in the orthogonal complement
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of D,. Since D, is the 0 eigenspace of both K, and K,, an addition
of vectors in D, to v» does not change the inequality (6.10) and we
have K,<qK,. Similarly, we have K,<a,K,. Hence D~ is the same
for v=1 and 2. From K,<q¢,K,, we have

(6. 14) KKl < allyl®

for y€K¥?8. Since K3?% span D, K¥?K;'* is bounded on D,

Namely, |(KY%p, K7'")) | <ai’®||@l| |lVr|| for any + in the domain
of K7 and any @. Hence (Ki¥2p, K3 )= (X, ¥) for some X in D/,
satisfying ||X||<a3?*||@|l. Since K¥%g is in D, we have X=K;*K}?p
and hence [[K;"?Ki’p||<a;?|lp|| for any @. Therefore

(6. 15) Kz |l < a3 Ky ||
for any v <=K¥*®, Similarly
(6.16) KT || < a®]| Kz ||

for any y=K3*®. Since the domain of K3“?K1? is &, the domain
of K;*? contains K¥*® which is the domain of Ki“2 Similarly the
domain of K3 contains the domain of K3 and hence the two are
equal. Thus D* and its topology does not depend on the choice of
h and [;. Q.E.D.

Remark. In our preceding proof of the statement that K(I,)"’p
is in the domain of K '?, we have actually provcd that for any
bounded self-adjoint operators satisfying A=B=0, the range of A"
contains the range of B2

It is also possible to obtain D* by the following procedure.
Introduce a family of seminorms |[y||,=||K()"*|| to D;t where |
runs over all elements in the Lie algebra. This defines a locally
convex topology on D,t, which actually coincides with the topology of
D*. The completion of D,- with respect to this topology gives D “.

Lemma 6.3. Let © be a Hilbert space, G be a locally compact
group, Q(g) be a continuous wunitary represemtation of G on O, and
d(g) be a D-valued function on G satisfying (4.24).

Q) If ¢(g) is weakly measurable (i.e. (Yr, p(g)) is measurable
for every ) and is locally essentially bounded (with respect to in-
variant measures on G), then ¢(g) is strongly continuous.
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(2) If |lp(g)l! is measurable, then ¢(g) is locally bounded.
(3) If ¢(g) is weakly measurable and O is separable, then
llp(Q)l| is measurable.

Proof. (1) First, we show that ¢(g) is strongly continuous at
g=1. By setting g =1 in (4.24), we have ¢(1)=0. Hence this
amounts to proving lim ||$(g)||=0.

Let N be a bounded neighbourhood of 1 such that [|p(2)||<R
for almost all g in N. Let N, and N, be neighbourhoods of 1 such
that N,N,cN. Let f be a continuous function with support in W,

such that S flg)dg,=1 and geN,. From (4.24), we have

6.17) (@) = [[Aag) AW, $e)da,
+|[1-Q@1v, $(e)dsfe),

where dg, is the right invariant measure on G. Hence

(G $@) <RIl | 1 g.g)—Ag) dg+ Il I[1-Q@* 14l

where ¢=S¢>(g) J(g)dg, which converges weakly due to the measur-

ability and essential boundedness of ¢(g) on the bounded support
of continuous f. This then implies |({r, $(2))][l¥||*—0 as g—1
uniformly in v». Namely {|¢(g)i|—0.

From (4.24), we have [|¢(g.g)—¢(&)lI=Ip(g)ll. Hence ¢(g) is
strongly continuous at any geG.

(3) This is obvious from [[p(g)I’=>1|(r;, ¢(g))|* for a count-
able orthonormal basis ;. /

(2) Let n(g)=!lp(g)|]. It is measurable, 0<7(g)<co and
(6.18) (&) +7(&) = 1(g &) = |7(8)— (&) |

due to (4.24). Let A be a bounded measgrable subset of G, v(A)
be a right invariant measure and

(6.19) £, a) = v({geA; 2(g)<a})/v(d) .

Since g’'=A, 7(g’)<b implies 7(g’g)>7(g)—b by (6.18), we have
(for b=7(g)—a)

(6. 20) E(Ag a) <1—EA, 7(g)—a).
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If M is a sufficiently small neighbourhood of 1, then the invariant
measure of the complement of Ag in A can be made smaller than
given £>0 for every g&9. Then

(6.21) E(Ag a) = EA, a)—¢€[v(A).

If 7(g) is locally unbounded at g=1, there exist g;, 7=1,2, --- such
that g,&M and lim 7(g;)= + 0. By n(g)<oc, we have lim £(A, b)=1.
b>o

Hence (6.20) and (6.21) imply, when g; is substituted into g, £(A, a)
—&/v(A)<0. This contradicts with lim £(A, ¢@)=1. Hence 7(g) is
locally bounded at g=1.

From the first equation of (6.18), sup 7(gg) <sup 7(g)+7(g).
geN =N

Hence 7(g) is locally bounded at any g,G. Q.E.D.

Lemma 6.4. If D", then KyrD~. The closure of this
mapping is a unitary mapping from D+ onto D~. The sesquilinear
form (yr, p)g for D™, p=D~ can be extended to r&=D* and it
gives the duality between D' and D~. Here (,)g is the inner product
in €.

Proef. By definition, |[y|%3=|K"*||*=|K ?Kyr|*= ||Ky||2 for
any D" (=D;4). Hence K is isometric and defined on a dense
set D" in D*. Further, KD* is dense in D~. Hence the closure of
K is a unitary mapping from D~ onto D~. For y=D*, D™, we
have (K, ¢)_= (Y, p)g. Since D is self-dual with respect to ().,
KD*=D" is dual to D* with respect to (,)g. Q.E.D.

We note that for any operator A which maps D~ into D™, we
can define A* as an operator on D* by (A*y, p)e= (Y, Ad)g for
yeD*, p=D-. This definition coincide with A* in € if y» is in D".

Lemma 6.5. For each ¥=D*,
(6.22) 6(g) = [R(g*—1]¥
is in Z\G, D).

Proof. By (6.2), Q(g)—1 is a bounded mapping from ¢ into
D~. The dual of € and D~ with respect to (,)q is € and D*. Hence

Q(g)*—1 can be considered as an adjoint of Q(g)—1 which must be
a bounded mapping from D* into €, with the norm bounded by
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d(g). Since (Q(g)—1)D,=0, (Q(g)*—1)D~_1.D,. Further,

(6.23) Q&) -1Q(g) = Q& &)—1D— Q) -1

and hence (4.24) holds. By Lemma 6.2, we have, for any YD,
and ®<¥,

([(Q()*—1]1Y, @) < ||¥], I[€(&)—1]®].—0

as g—1. Therefore ¢(g) is weakly continuous at g=1. Then ¢(g)
is weakly continuous at any g by (4.24). We already know the
local boundedness from ||p(g)l|<d(g)||¥|l.. (It also follows from the
weak continuity.) By Lemma 6.3 (1), ¢(g) is strongly continuous.
Q.E.D.

Let H be a connected invariant subgroup of a Lie group G,
G=G/H, H, be the commutator group of H, H, be the maximal
compact subgroup of the connected abelian group H/H, and K=
(H/H)/H,. Let (g), g=G be defined by 7(g)h=ghg™* for he H and
(@k=[[7(g)k]] for k=[[A]lleK (heH, [h]leH/H,). Then for
he H, (%) is the identity on K and hence we can define 7(g)=7(g)
on K for g=gHeG. Let y(¢) be a measurable function $¢=G/H
with values in G such that y(1)=1 and g=+(g)H. Let

(6 24) a(éu éz) = [[V(éxg/\'z)—l'}'(él) '}'(gAz):I] .
Let k(@)=[[v(g) ’g]] where g=G, g=gH. Then
(6. 25) (g, &) = k(g g){7(&) " k(g) '} k(g)™

where g,=gH, g,=g,H. From this, the following equality can easily
be checked by using the commutativity of elements in K:

(6.26)  alg, &) aldd:, &) g, £:8) = (&) aléy, &) .

Hence o determines a cohomology & in H*G, K). Let ay, and a.,
be the «a corresponding to two choices v, and «, for . Then

7.(8)7g)'€H and hence 8(g)=[[7.(8)'7.(&)]] is a K-valued
measurable function. We have

6.27)  an(é, &) = anléi, £){58(4:8,) (7(£)778(4))"8(g) '} .

Hence & docs not depend on the choice of v and is determined by
G. We write as &(G).
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If K, is a 7(G) invariant connected subgroup of K and &(G)+K,
is a 0 cohomology in K/K,, we shall call K, as an annihilator. In
this case, there exists K/K, valued measurable function §,(g) on 65,
of which [a,,(g,, £)] for a given v, is the coboundary: [a,,(g,, )]
=08,(£,8)[7(£)78.(4) " 18.(g)7". Then w,(g)=7.(g)3.(¢) satisfies
[ayz(g/«“ £1=0.

Theorem 6.6. Lei G be a Lie group, H be a connected invariant
subgroup of G, G=G/H, g be the coset containing g=G, H, be the
commutator subgroup of G, H, be the maximal compact subgroup of
H/H,, [%] be the coset containing he H, K=(H/H,)|H,, [[1]] be the
coset containing [K1€H/H,, 7(g) be the representation of G on K
induced from the inner automorphism of G, v(g) be a G-valued
measurable function on G such that ¢=v($)H and v(1)=1, a8, &)
= [[7(&.8) v 7@ 1], &(G) be the cohomology class of o in
HZ(G, K), which is independent of v, K, be an annihilator for f((é),
[k] be the coset in K/K, containing kK, and v, be a choice of v
satisfying Loy (&, &)1=1 for all g, 8,6, which exists.

Let Y be the Lie algebra of the comnected abelian group K/K,,
uw be a (G) invariant nonnegative hermitian form on ¥ -+if/, €. be
the quotient of ¥ -+it’ by vectors of vanishing p-norm, and ¢,(g)=
log [[[v.(g) " g11l )

Further let Q,(8) be a continuous unitary representation of G on
a Hilbert space €, and ¢,(3)=Z'(G, L,BL,).

Let
(6. 28) ¢ =0,0%, Qg =T)DR),
(6.29) d(2) = da(g)+du(8) -

Then Q(g) is a continuwous unitary representation of G, Q(g)=1
for geH, and $(g)eZ'(G, ).

Conversely, any such Q(g) and $(g) is of this form, i.e., the
representation space can be decomposed as a divect sum of Qg)
invariant subspaces 2, and Ly, each of which is as described above.

Proof. Since A/K, is connected, commutative and contains no
compact part, the exponential mapping from {’ onto A/K, is one to
one and onto. Hence ¢,{(g) is defined for all g. By the invariance
of p, 7(g) is unitary. The equation (4.24) for €, part follows from
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(6.25) and [y, (g, £&)1=1. 7(g) is continuous by construction. The
continuity of ¢ follows from (6.28) and the measurability of ¢ due
to Lemma 6.3.

We now prove the converse part. For k= H, we have from

(4.24)

(6. 30) P(g) = Pp(gh)—p(h) .
Further
(6.31) Q(@)*p(h) = p(hg)— ()

= ¢(gg  hg)—(g) = ¢(g hg)
Let ¥, be the subspace spanned by ¢(%), ke H. Then

(6.32) Q@) (k) = p(ghg™) = d(r(&)h)

on this space. Hence it is invariant under Q(G). Let L=9¢,0%,,
d(2)=i(g)Dps(g). Then ¢p4(h)=0 for A= H. From (6.30), we have
o (g)=oi(gh). Namely ¢j(g) depends only on g=gH. Since Q(g)
commute with the projection on ¥, and ¢,, (4.24) holds for ¢, and
¢, separately. Hence we have the required property for ¥, part.
We now turn our attention to ¢4(g). From (6.30) we have

(6.33) ba(h bk hz") = 0
(6. 34) o (exp 2ztl) = tpl(exp 2z]) = 0

if ;e H, ¢ H, and exp2zl=1. Hence ¢,(h)=0 for hc H, and ¢}(g)
depends only on gH,. Further ¢,()=0 for [2]= H, and hence ¢,(k)
depends only on [[~Z]]=K. From

(6. 35) Ppa(exp il) = t¢pa(exp )

¢s(h) is real linear when considered as a function of log 4.

Let K, be the set of k=K for which ¢}(k)=0. It is a connected
subgroup of K due to (6.30) and (6.35). Obviously K, must be 7(G)
invariant. The Lie algebra f{ of K/K, can be identified with a real
linear subset of ¥£,, which spans €,. The inner product of ¢,
induces an inner product of ¥ +¢t{, which is 7(G) invariant, and
positive semidefinite. Since K is commutative, 7’g) defined on K
and hence on K/K, depends only on g=gH<=G. Hence we write it
as 7(g). We may also write ¢i(#)=log[[[%]]] for k= H according
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to the above identification.
Finally, for each g=G, we fix y(8)eG such that g=v(g)H.
We shall compute

(6. 36) log [a(g,, &)1 = ¢u(v(£:4) " v(£)v(£.)
= ¢u(v(£) 7(£) + Q(v(8) v () *da(v(£:4)7)
= Pa(7(8) () + Q(v(£: 8))*palv (8. £) ")
= balv(8)v(&) — pia(r(4: £)
= ¢a(v(£)) +Q(£)*pa(v(8)) — da(v (4. 42) -

The orthogonal projection on I’, in the real Hilbert space £, with
respect to the real part of the complex inner product of £,, commutes
with Q(g), g=G. Applying it on (6.36) and using (6.31), we see that
[a(g., &)] is cohomologous to 0. Thus K, must be an annihilator.

We now define ¢, as in the theorem and ¢,(g)=(Ps(g)—.(2))
Dps(g). We have ¢,(h)=0 for heH. Q.E.D.

We now study further structure of ¢;. For this purpose, it is
convenient to decompose at the start the representation Q(g) of G
on the finite dimensional €, into irreducible representations @;(g) on
P8, where P; are projections. Then P,p,€Z'(G, P%,) and we can
discuss each P,p;. Equivalently, we shall assume that Q(g), g&G
is already an irreducible representation on %,.

Let H,, be the identity component of the subgroup H, consisting
of all geG such that Q(g)=1 on the subspace ¥,. Let H, be the
set of all ze H,, such that ¢;(£)=0. Since Q(gggr)=Q(g)RQ(gT)=1
if Q(g)=1, H, and H,, must be invariant subgroup of G. If heH,,
then

(6.37) u(ghg ™) = Q(g) di(gh)+du(g™) = (&) du(g) +Pi(g™) =0.

Hence ghg'eH, and H, is an invariant subgroup of G.

By the same reasoning as the proof of the previous theorem,
H—H, |H, is faithfully represented by a real linear subset €,, of g,
((6.30) and (6.35)) and hence it is abelian, does not contain any
compact subgroup and is connected. @(g) on ¥,, coincides with the
adjoint representation Ad (g) on H,,.

Let P be the orthogonal projection on ¥, in the real Hilbert
space ¥, with respect to the real part of the complex inner product
of ,. Let ¢,(g)=PFPpi(g). Since L, is invariant under Q(g), ¢7

a
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belongs to Z'(G, ¥,,). Let H, be the subgroup of G consisting of all
geH, such that ¢7(g)=0. By (6.37), it is an invariant subgroup.
H,/H, is faithfully represented by ¢, and is identifiable with H.
G,=G/H, is faithfully represented by g,=gH,—Ad (g) and H,/H,
is maximal abelian in G/H,. Since G, is a connected Lie group with
a faithful finite dimensional unitary representation, it is a direct
product of a compact group and R™.

For each g=G, there exists an k= H,, such that ¢i(h)=¢(g)
and E(g)EhHoeH is uniquely determined. Let HX G, be the semi-
direct product with the multiplication law

(6. 38) (h1 ’ gl) (%, gz) = (hl T(gx) hys 8.&)

for 4, heH, g, =G,. Then the mapping g—(E(g), gH,) is a
homomorphism onto HxG,. If g H,=gH,, then gi'g,eH, and
Q(g)=Q(g) If £(g)=E&(g) in addition, then ¢7(g1'g,)=Q(g)*du(g1")
+ ¢u (£)=Q(g)*¢Pa (g1") + ¢a (&) =Pz (g)— 7 (g)=0. Hence gi'g,c H,.
Therefore gH,=eG/H,— (£(g), gH,) is an isomorphism of G/H, onto
HXG,.

We now have the following structure : (1) a commutative group
H isomorphic to R”, (2) a real inner product x on H, (3) a connected
subgroup G, of the orthogonal group on the real Hilbert space
L,(H, u), and (4) an invariant subgroup H, of G such that G/H, is
isomorphic to the semidirect product Hx G,.

Conversely, suppose that such structure is given and gH,—(£(g),
7(g)) is the isomorphism of G/H, onto HxG,. Then Q(g)=n(g) is
orthogonal matrix on L,(H, p), £(g)eZ'(G, L,(H, ) and
(6.39) H,= {g; Q) =1, geG},

(6. 40) H, = {g;&(g) =0, geH,},
H=H,/H, and G,—G/H,.

Finally we discuss ¢5(2)— ¢ (2)=¢,’(g), which belongs to Z'(G,
L,). If geH,,, then ¢,'(g)=0, namely ¢,’(g), g H, depends only
on gH, G,/H,,. We see from (6.31) and the continuity of ¢}’(%)
that Q(g)=1 for all gG on ¢;’(h), ke H,. (H,/H, is countable.)
Since @ is assumed to be an irreducible representation, either ¢’(k)

=0 for all ke H, or Q(g)=1 for all g&G and H,=H,,. In either
case we may assume ¢;’(h)=0 for heH,.
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Now Q(g) and ¢’(g) depends only on gH,eG/H, and Q is a
faithful unitary representation of G/H,=G,. If G, has no nontrivial
connected invariant abelian subgroup, then G, is compact and hence

77 is a coboundary by Theorem 7.1. Suppose that G, has an
invariant abelian subgroup G, isomorphic to R™, m=0. The projec-
tion E¢,(0) on Q(G,) invariant vectors commutes with @(g), g=G.
Since @ is an irreducible and faithful representation of G,, E;,(0)
=0. Since €, is of finite dimension, ¢, (g) is coboundary due to
Theorem 7.3.

Summarizing, we have

Theorem 6.7. (1) Let G be a connected Lie group, H, and H,
be invariant subgroups of G such that (i) H,DH, and ILQTEHa/HD is
isomorphic to R", (i) there exists an isomorphism g=G|H,— (£(g),
n(g))elflx G,, from G onto the semidirect product of H with G,=G/H,,
where the adjoint representation of G on H canonically induces the
action of G, on I-AI, (1ii) G, is a divect product of a compact group
and R™, (iv) H is maximal abelian in G|/H,, and (v) there exists
ad (G) invariant inner product p on H+iH. Then P(g)=E(gH)e
LZ(PAI+1'H, w)=2 is in Z'(G, Q) relative to the unitary representation
Q(g)=ad(g),

(6.41) H,= {g;Q(g) =1, g=G},
(6. 42) H, = {g;$(g) =0, geH,}.

(2) Let G be a connected Lie group, Q(g) be an irreducible finite
dimensional continuous unitary representation on 8, p=Z'(G, ). Let
H, and H, be defined by (6.41) and (6.42). Then, (a) H, and H, are
invariant subgroups satisfying (©)-(iv) of (1), (b) ¢(k) depends only on
hH,cH,/H=H and ¢ gives an isomorphism of L H+iH, w) onto &
for an appropriate u, and (c) $(g)—E(gH,) is a coboundary.

(3) Let G be a connected Lie group, H be a connected invariant
subgroup, Q(g) be continuous unitary representation of G on & without
identity subrepresentation, Q(g)=1 for gcH, $=ZG, ). Assume
that ¥ is spanned by $(h), heH. Let H, and H, be defined by (6.41)
and (6.42). Then the conclusion (a), (b) and (c) of (2) hold.

In the above, Lz(ﬁ+iﬁ, r) denotes the quotient of H+iH by
the subspace of vectors with vanishing x norm.
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The proof of (3) can be obtained by the following slight modi-
fication of the proof of (2). Since an identity subrepresentation is
assumed to be absent, we have H,=H,. We have G,=GgXG,
where G is compact, G,=R™ and X denotes the direct product.
As before, (1—E;,(0))¢%’ is a coboundary due to Theorem 7.3. On
E; (0)¢7’, Q(g=1 for g=G, and hence Q(g)=1 for all geG on
E; (0)¢y’(h), heG, by (6.31). By the absence of the identity sub-
representation, E; (0)¢;’(G.)=0. Hence E (0)¢;’ is a cycle for the
compact group Gx and must be a coboundary by Theorem 7.1.

Q.E.D.

87. Determination of Cocycles
Theorem 7.1. For a compact group G, Z'(G, %)= B'(G, Q).

Proof. Since G is compact and ¢(g) is continuous on G, ¢(g)
is uniformly bounded. We integrate (4.24) with respect to g, using
the invariant measure on G and obtain

.1 Q) [ p(a)du(e) = [(g.8)duig)— (2
If we set
(7.2) a = [#@dulg)

and use the invariance of u, we obtain

(7.3) #(g) = 1-Q(g)")Q
where Q is a vector independent of g,.

Lemma 7.2. If G is abelian and Q(g), g=G does not contain
the identity representation, then Z*(G, %)= B\G, D*).

Proof. The basic equation for our discussion is

(7. 4) Qg)*—D¢(g) = (Q(&)*—1D)o(g) -

This equation is obtained as the difference of the equation (4.24)
and the same equation with g and g, interchanged, where the com-
mutativity g,g,= g,g, has been used.

Let Ey(A) be the spectral projection for Q(eﬂl)zge"“‘Erl(dx) and
K(l,) be the operator introduced in §6. Then K(I,)™* is bounded for
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E((— o0, 0)—(—¢, €)) for any €>0. Hence
(7.5) [1-E (¢ €)]e(g) = A1-Q()*)

where
Q, = K(— 1) [1-E (¢, &))] S I(t) p(eth) di

is a vector in the Hilbert space € independent of g. Since [, is
arbitrary, we see that

(7.6) (1-E(A)#(g) = (1-Q()*) Q4

for a vector Q, in (1—E(A))® where E is the joint spectral projec-
tion for Q(¢!/¥) and A is any neighbourhood of the origin.

We now define a functional Q over a certain set of vectors in
¢ by

(7.7 (Q, ) = (H(8), X)

if

(7.8) v =01-Q@)x.

First we show that

(7.9) ¥ = (1-Q)X, = (1-Q(g)X,
implies

(7.10) (¢(&), X)) = ($(&), Xo) -

From (7.9) and (7.6) we have
(¢(g1)’ [l_E(A)] Xl) = (QA) (1_Q(g1)) Xl) = (‘QA7 11")
= (QA) (1_Q(g2)) Xz) = (¢(g2)) [1_E(A)]X2) .

By taking the limit of A shrinking to O and using the assumption
E(0)=0, we obtain (7.10). Thus (7.7) does not depend on how +r
is expressed in the form of eq. (7.8). Furthermore

(7.11) [(1-E@A)1y, Q) = (I, Qu), VEE,

for any neighbourhood A of the origin.
Next we show that Q can be extended to be linear. Let

(7.12) S (1-QUe)X = 0.
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Then (7.6) implies
N
; (¢(g:), [1-E(A)]X,) =0.

By taking the limit A —0, we have again

(7.13) > (¢(g), %) = 0.

Hence Q has a linear extension, which we denote again by Q.

Next, we use the fact that K(I,)"?[1—Q(¢’%)] is bounded and
[1-QE") ] *K(,)2?E(A) is also bounded for a fixed ¢ if A is suffici-
ently small. If

(7.14) v = (1-Q")x,

{r is in the domain of K(I;)"? and any vector v in E(A) times the
domain of K(I;)"* can be obtained by (7.14) with the following X:

(7.15) X = [1-Q") 1K) (K(L) “E(A)¥) -

In particular, there is a constant «; such that

(7.16) HEA)X]| < ;|| K1) 2E(A) Yl .
Hence
(7.17) 1(Q, E(A)Y)| < aillp(e™)] [ KL) E(A) ]| -

Let I ---I, span the Lie algebra. Since G is commutative, K(I;)
commutes with each other.

If we split up A into mutually disjoint # regions A;, i=1, .-+, n
such that (p,---p,)€A; implies p;,>p, for any j, then E(A,) are
mutually orthogonal projections with the sum E(A). We have
(7.18) IK™ZE(A) il = A/ m)|[KE) " EA) .

Therefore if +» is in the domain of K™ then E(A;){r is in the
domain of K(I,)™%. From (7.17) and (7.18), we have
1(Q, E(A) )| < n”ail|d(e")]] [[KE(A) | -
Hence
(7.19) [(Q, EQA)Y) | < allEA)l-,
a = nmax a;l|p(e")]| .
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We have the estimate (7.19) for any » in D~. Together with (7.11),
we see that Q is in the dual of D~, namely

(7. 20) QeD*.

From (7.7) and (7.8), we have

(7.21) P(g) = 1-Q(@"Q,

which is the required result. Q.E.D.

Theorem 7.3. Let H be an invariant abelian subgroup of G and
oeZNG, ). Then

(7.22) d(8) = ¢.(2)+.(2), d.(8) = 1—Q(2)*)Q

where ¢,(g)€Z'(G, Ex(0)®), QeD*(H) and 1—-Q(g)*)Qel for all
g=G, Ey0) is the projection on the subspace of vectors invariant
under H and D*+(H) is the D* for H.

Proof. Since H is an invariant subgroup, E;(0) commutes with
all Q(g), g&G. Thus

(7.23) b.(g) = A1—Ex(0) ()
(7.24) b:(g) = Ex(0)$(g)

are both in Z'(G, &). By the previous lemma, ¢,(%), s H is of the
form

(7. 25) $.(h) = 1-Q(N)*)Q
where Q is in D*(H). We shall show that
(7.26) $.(g) = 1-Q@H Q.
From the definition equation for a cocycle, we obtain
(7.27) (1—Q)*) .(g) = $.(h)—Q(&)*.(ghg™) .
If we put
(7.28) X = 1-QW)r—(1—-Q(ghg ™)) Q&) v

= (1-Q)1-QM)yeD (H),
we obtain, from (7.25) for ke H and ghg'eH and (7.27),
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Or somewhat differently written,

(7.30) ([1-Q@)]1%,, Q) = (X,, $:.(2))

where X, =[1-Q(k) ], v L.
If we make the simultaneous spectral decomposition of Q(%),
he H, then K(H) is a multiplication of a function > (1— i(p,))=K(»).

Since Q(2)K()Q(g)*=K(Ad (g)1), K(H),=Q(g)*K(H)Q(g) is a mul-
tiplication of a function K(Ad (g)p). Since Ad(g) is non singular
and continuous in g, K(H)”K(H)z*” and K(H)“”K(H),” are locally
bounded and hence uniformly bounded on a compact set. This
implies that Q(g) maps D (H) into D (H), D*(H) into D*(H) and
is uniformly bounded for g in a compact set, with respect to the
norms of D™ (H) and D*(H), respectively.

Since the linear combinations of [1—Q(%)]y, y=8 are dense in
D (H) as is seen from the simultaneous spectral decomposition of
Q(h), he H, we see that (7.30) holds for all X, D (H) and

(7.31) (X%, 1-Q(2)") Q) = Xy, $:(2)) - QE.D.

Lemma 7.4. If H is an invariant subgroup of G and Z'(H, %)
=B'(H, 8), then ¢=Z'(G, Q) is always of the form

(7.32) P(g) = 1-Q(g)"Q+¢:(g) »

Qe(1—-E40)8, ¢,(9)eZ(G/H, E4(0)R) where Ey(0) is the subspace
of vectors invariant under H.

Proof. The proof is exactly the same as the previous one. In
the present case, Z'(H, )=B'(H, &) is 0 on E4(0)2 and hence ¢,(g)
is in ZY(G/H, Ez(0)9).

Determination of cocycles. Assume G is a connected Lie group.
From the above theorems, we can analyze given ¢(g), g=G in the
following way. Take maximal invariant abelian connected subgroup
G, of G and apply Theorem 7.3, Theorem 6.6 and Theorem 6.7.
The problem is then reduced to G/G,=G,. Continue this procedure
until G has no invariant connected abelian subgroup. If the original
G is solvable, then G is trivial and the problem is completely solved.
Otherwise we are left with a semisimple group. If it has invariant
compact subgroup, we can apply Theorem 7.1 and Lemma 7.4 and
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proceed until G has no invariant compact subgroup.
We have not solved the problem for a semisimple Lie group.
Summarizing, we have the following.

Theorem 7.5. Let G be a Lie group and G;, j=1, -, n be an
ascending sequence of invariant connected subgroups of G such that
G,=1, each G;/G;_, (j=2, -, n) is abelian and G|G, is semisimple.
Let € be a Hilbert space, Q be a continuous unitary representation of
G on & and ¢=Z'(G, ).

Then there exist mutually orthogonal invariant subspaces £,
j=1,-,m and &, j=1, -, n of & such that

(7.33) = (HYS(HY,
(7.3 Qg) = (DQYe)B(DRe)),
(7.35) $(g) = (D)) D(D¢5(2)

(7. 36) Qi(g) = Qi (g =1 for g=G;, j=2,n,
(7.37) ¢i(g) = $(gG,), j=1,-n,

(7.38) $,€B G/G;, D*(G,;,/G)), j=1,-,n—1,
(7.39) $heZG/G,, L),

(7. 40) $3(g) =0 for geG;, j=1,--,n—1,

(7. 41) Qug) =1 for geG.

L5 is finite dimensional and is spanned by $3(g), g€G;1.(G,,=G),
5y J=1,--,m—1 has no identity subrepreseniation. (The structure
of ¢S is given by Theorem 6.7.)
If G is solvable and ¥ has a finite dimension, then we can
reformulate Theorem 7.5 as follows :

Corollary 7.6. Let G be a solvable Lie group, & be a Hilbert
space of finite dimension, Q be a continuous unitary representation of
G on & and ¢ Z'G, Q).

Then there exists an ascending sequence of invariant comnected
subgroups G, of G and wmutually orthogonal invariant subspaces Qj
(=1, -, ) such that G,=1{1}, G,=G, G,/G,_, is abelian (j=2,---,n),
e=a¢,, Qe)= 0Q,(2), $(g)=X1$,(2), Q,(&)=1 for gG,.,, $,(g)=0
for geG,, d)el; (j=1,-+,n—1), &, is spanned by $(g), g=G,,,
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(j=1, -, n—1), $,(g) is a coboundary on € and éj(g) is either an
identity representation or without any identity subrepresentation
(7=1,+-,n—=1). (The structure of $; is given by Theorem 6.7.)

To obtain this form, we proceed in exactly the same manner
as Theorem 7.5. All ¢} are coboundaries and all coboundaries are
lumped together as ¢, in the present Corollary. Each Q% in Theorem
7.5 can be split into a direct sum of an identity representation and
a representation without any identity subrepresentation. Denoting
G,=1{geG,, ¢,(8)=0}, G,/G,, is split into a direct sum of two
invariant subgroups G;, and G,z of G/G,,, where G, consists of
some central elements of G/G;, and G, does not contain any central
elements of G/G,,. If we inflate the ascending sequence {G,} of
Theorem 7.5 by inserting the invariant subgroup {g; gG,=G,}
between G;_, and G;, we obtain the structure in Corollary 7.6 where
G; and » are different from those in Theorem 7.5.

§8. Determination of ¢(g)

When ¢(g) is determined, ¢(g) is to be determined from

@.1) (g 8)—c(g)—c(g) = —Im (¢(g.2.), #(&)
= Im (¢(g), ¢(gz")) (mod 27).

Obviously, if ¢,(g) is one solution a general solution for ¢® is
obtained by multiplying ¢¢®> with an arbitrary unitary character
of G. In the following, we omit mod 2~. All equations involving
c(g) linearly are to be understood modulo 27.

Lemma 8.1. If Z*G, R)=B*(G, R), then (8.1) has a solution.

Proof. Sufficient to prove that the righthand side of (8.1)
belongs to Z*(G, R). Let d(g, g&)=(¢(g), #(gz"). Then

8.2) d(g, 8:8)—4(& &, &)
= {(p(g), Q(g) p(g5") + (P(g), $(gz"))}
—{Q(&)*$(g), d(g5M)+(p(&), p(gs N}
= d(g, 8)—d(&, &) -

This proves that Im d(g,, g,)=2Z%G, R).
For a simply connected semisimple group and a compact group,
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ZYG, R)=B*G, R).

Theorem 8.2. If $,=BYG,Q) and ¢,=Z'(G, Q), then both (p.(g),
d.(g7") and (p,(g), b.(gz?)) are coboundaries.

Proof. Let ¢,(g)=1—Q(2)*)Q, Q€& ¢,(g9)=(Q, ¢$,(g7)) c(8)=
(¢g), Q). Then

(8 3) (¢1(gl)) ¢2(g2_1)) = cl(gl) + cl(gZ) - cl(gl gz) ’
(8 4) (¢2(g1): ¢1(g2_1)) = Cz(g1) + cz(gz> - c2(gl gz) .

To treat the case whcre Q is outside of ¥, we need a few
preparations.

Lemma 8.3. Let g—', Q(g):SeMdE(x), E,=E( — A, A).
Then

8.5 Q40 = lim 17 E, $(g)

exists in & for any ¢ Z'(G, ). o()=EQ0)Q4() is then independent
of A and

(8.6) #(g) = 1-Q(g9)*) Q2 +iw(l)
where Q is in D, for one parameter group {€'}. (1—E,) P and
(—dQU) E)*Q=04(0) — w(l) where dQ(I):(%Q(e”) at1=0). If fe9
and ( £($)dt=0, then QU is in & where Q)= QW AWt Let
D; be the set of SQ(g)\I'f(g)dg for Y8 and f in the class 9. For
yeD,, the limit
8.7 (W, Q) = lim (¥, 7 (g))
exists and satisfies
(8.8) O L+2,1) = 2, Q1) +2, (1)
(8.9 dQ(l,)al,) —de(,) o) = oL, L] .

Proof. Since Q(g)E,, g=¢" is holomorphic in ¢, it follows from
(6.17) (y» replaced by E ) that ¢ (") is strongly C* in #, where
da(g@)=E.d(g). Since ¢,(1)=0, we have ||p(e)||<ta for |#| <T and

for a constant a.
Since p=Z'(G, &), we have
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(8.10) Be™) = 5 Qe GmY getimny
Therefore, we have J

(8.11) lIp.ale™) — np 4 (€H/MN)[| < me(t)l| pe/™N)[
(8.12) clt) = sup [[(Q™)—1 Eall .

Hence

(8.13) |lp.a(e™) —nep a(e® D) < (L—c(®) @)l paleII -

Since c¢(#) is of order ¢ for small ¢, we have for sufficiently
small # and a constant b,

(8.14) pa(e)— ()" pa(eV/™)|| < bF .
Hence
(8.15) (/1) pa(€V/?) — (¢ m) " P a(e™™)|| < 20t .

Further, we obtain from ¢(g,)—¢(g,)=Q(g)*P(g g2")
8.16)  {[pale™™ —pale™)| < llpalet* N <alt/n—s].
Let t/n>s>t/(n+1). Then

(8.17) (/1) bal@/ ") —s"'pale)l| <2(n+1)"a.
Hence by taking ¢=¢ and s, s'<&, we have

(8.18) 157 pale™) =5 dale™ il < ct

for some constant c¢. Therefore s™'p,(e*) is a Cauchy sequence and
has a limit in €.

If we denote the one parameter subgroup {e'; —oo<t<oo}
tentatively by H, then ¢=Z'(G, &) implies ¢=Z'(H, &). Hence by
Lemma 7.2, we have (8.6). From (8.6), o()=E(0)Q,(l) is indepen-
dent of A.

Next by integrating with the weight Ai(¢), we have

8.19) S(f)(e”) npdt — KHQeg.
Hence

(8. 20) 1—E)Q = KO 1—E,) S¢(”) nt)drel.
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Because ¢t '(1—Q(e™)) E,y converges to —dQ()E vy in D (H), we
also have (—dQNE)*Q=Q,()—w(l)e® from (8.6). From these
two conclusions, Q(f)Qel for S f)dt=0, fe9 follows because
Q(fYA1—E,) and dQ()'Q(f)E, are both bounded.

We now come to the second half of the lemma (which is in-
cidentally not used in later discussions). It is known that D, is a
common domain of any polynomial of infinitesimal generators of
Q(g). By splitting Q in (8.6) into (1—E,)Q and E,Q, we immedi-
ately have the existence of (8.7). At the same time,

(8.21) (8 ) = Q&) *d(g) +b(g) ,

with g,=expt?l, implies (8.8) in the first order in ¢,, ¢,, because
¢(1)=0. By using (8.21) repeatedly, we have

(8.22)  P(g ger") = Q) ) (&) +Q(g) p(g) + (gt
= Q&) {(Q(&)* —1)¢p(g) + ()} -

Hence
(8.23) Qgl.—1) = Q(g)—1)Q,) - Q(g,)dQL,) ¢(g,) -
Taking the first order in ¢,, we have (8.9). Q.E.D.

We remark that it is possible to obtain (8.21) in a neighbour-
hood of the identity from (8.8) and (8.9) provided we have the
convergences of several sequences.

Lemma 8.4. Let ¢=Z\(G,Q). If gis in the commutator subgroup
of G, then ¢(g)=D (G).

Proof. We first note that D* is invariant under Q(g) for any
g=G. The reason is as follows: If [,---1, is a basis of g, then
Ad(g)],---Ad (g)!, is also a basis of g because g has an inverse g’
and Ad (g) is nonsingular. Thus K and Q(g)KQ(g) '=K, defines
the same D~ and the same topology by Lemma 6.2, which establishes
the invariance of D* under Q(g).

Next we note the following consequences of (4.24):

(8.24) P(gr'gi'g g) = Q&)*P(gr'gr'g) + (&)
= Q(2)*Q(g)*d(g1'gz") + Q(£)*d(g) + P(g,)
= Q(£)*Q(8)*Q(2.)(p(g1") — P(£)) + Q&) * () + p(&,)
= Q(g)*(1—Q(g1'g.8)) p(g) + (1 —Q(g2'g1' %) $(g)
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where we have used Q(g)*¢(g™)=¢(1)—p(g)=—p(g). Since (1—
Q(g))%e D™ for any g and D~ is invariant under Q(g), we see that
d(g)eD if g=gi'g7'8,: 8- Further ¢(g,g,)=0(g,)*d(g.) +$(g,) and
hence ¢(g)= D™ if gis a product of elements of the form g7'g:'g g,.-
Therefore ¢(g)e D~ for all g in the commutator subgroup of G.

Lemma 8.5. Let G, be the commutator subgroup of a connected
Lie group G and G/G,=K,-K, where K, is compact and K, does not
contain a compact subgroup. If ¢=Z'(G, R), g=G, [gleK, where
Lg] denote the class of g in G/G,, then $(g)eD".

Proof. Let Lie algebras for G, G, K,, K, be g, g,, £,, £,. Then
gmod g,=f,+%,. Since [g]eK,, there exists =g, such that [[]ef,
and [g]=exp[l]. Let exptl=g(F). Then [g(1)]=[g] and hence
g=g1)g,, g,.=G,. By the previous lemma, ¢(g)=D~. Therefore,
if ¢(g(1))eD", then ¢(g) = Q(g)*¢(g(1))+d(g)eD”. We now show
that ¢(g(1))eD".

Let E, be defined as before in terms of the spectral projection
of Q(g(#)). First consider the case where there exists a #, such that
[g(t,)]=1 and hence g(¢{,)eG,. Then ¢(g(t,))=D". Since (1—E )%
c D™, we have Y=E, ¢(g(t,))eD”. If A is sufficiently small, then
from the known structure of ¢(g) for an abelian group {g(¢); —
<t< 4o} (Lemma 7.2), we have

.25) Ead(g®) = |7 FoyaEMw

where F(\) is a function of class 9, coinciding with (1—e ")~ (1 —
e ) for ne[—A, A], »=+=0. Therefore

(8.26) Ead(g®) = ;- [P asQg(—)v.

If we can show the continuity of @(g(—s))¥ in D~, then (8.26) is
in D™ and we have ¢(g(#))eD” due to 1—E,)RcD".

The continuity follows from the following inequality and Lemma
6.2:

8.27) IQ(g(—N)¥—Qg(—=¢¥Il- = K "Q(g(—1))(1—Q(g¢t—)¥l|

= K7 [1- Qg — ) 1¥l|
< a” K {1-Q(gE -} ¥l .
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Here K,=Q(g())KQ(g(—1)) and the local uniform bound |K;/2KY*!|
<a'” is obtained as follows. We take K,=K, and K,=K in the
proof of Lemma 6.2. Then ¢, in (6.13) is a locally bounded function
of £.

We now consider the general case. If [ ---1, are linearly in-
dependent basis of ¥, such that {¢’'i} for each j is compact, then by
repeated use of

(8.28) p(ge') = Q) *P(g) +p(e),

and

(8.29) QEg)D" c D,

we have

(8.30) ¢o(exp (¢, L+ - +¢,10,) € D

for any ¢, £,. Q.E.D.

Theorem 8.6. If $=B G, D"), then Im (¢(g.g,), $(g,))eB*G, R),
namely (8.1) has a solution.

Proof. Let G, G,, K,, K, be as in Lemma 8.5. Let [ g] be the
class of g in G/G, and [[g]] be the element of K, such that
[[¢1]l=[g] mod K,, and [[g]]=exp(#(g), 1), where (¢(g), )=21t:(g)L;
and {; is a fixed basis of f,. Then #;(g) is a representation of G
on the additive group R. Let /I\,- be an element of g such that
(1, mod g)=1;.

Next we note that if g=g,--- g, and ¢(g;)—¢;=D", then (p(g)—
>i¢,)eD". This is because

B3 #(9) = 2 9(g) + Q&) — (g, ) + Qg1 8)* D H(gn)
+ o Q&g g)* -1 d(g)

and (Q(@)*—1) =D if p=k.

Now ¢(g)=1—Q(g)*)Q for Q=D *. By Lemma 6.4, $=Z'(G, L)
and hence the previous lemmas are applicable. For geG, g=
g'eh(@b... ghi(&l for some g’eG,K,. We already know from Lemma
8.5 that ¢(g)eD . Next ¢(e')—tp(e")=BQ, B=(tQ(€")*—Q(\)*
+1—1). K()”*D"c® and K(I,)"“BK(l,)"** is bounded, BQ is in the
domain of K(I;)"* and hence BQeD . Thus we have
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(8.32) $(&)—2t(g)ple) e D

Let

(8.33) c(g) = (Q, $(g)— 2 t(g) p(e") .
Then, using #(g, g,)=1(g)+#(g,), we have

(8.34) ¢(g &) —c(g)— (&)

= (Q, (Q(g)*—1) (&)
= —(p(gz"), ¢(g)

Hence c¢(g)=Imc,(g) satisfies (8.1). Q.E.D.
Since Q in Theorem 7.3 is not necessarily in D*(G), we can
not in general apply Theorem 8.6 to ¢}, j=1, ---,n—1 of Theorem
7.5. We also do not know the structure of a cocycle ¢(g) for a
semisimple group and hence we do not know whether Im (9i(g),
¢i(gz")) is automatically a coboundary except when G/G, is simply
connected in Theorem 7.5. We shall leave these problems for a

future study and now consider the case where qs(g)=i]¢j(g) in
Corollary 7.6. We want a condition on ¢; such that there exists

c(g) (mod 27) satisfying
8.3  clgg)—cle)—clg) — T Im (@,(e). $i(e)-

In this case, the existence of ¢ is not automatic and we shall obtain

an interesting structure.
We shall analyze (8.35) by an inductive procedure.

Theorem 8.7. Let G, Goy, H,, Hyy be invariant subgroups of
a connected Lie group G such that G, is comnected, H,DG,,
H,DH,, and Gu=H,NGy,. Let Q,(g) be a continuous unitary re-
presentation of G on a finite dimensional space 8, and ¢, Z* (G,
). Assume that $,(g), 8=Gy sSpans £,

(8. 36) H, = {g;Qu(g) = 1, g&G*},
(8 37) Hwo = {g: ¢m(g) = O’ gEHw} ’

and Q,(g) is either an identity representation or without any identity
subrepresentation. Assume that theve exists a real valued measurable
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Sunction c,(g) on G satisfying
(8.38) (8 &) — (&) —Ca(8) = Im ($a(g), Palgz?)
+Fw(g1G(w)y g:aG(w))

modulo 2= where F, is a continuous function on G[Gey X G |Gy
satisfying

(8.39) F,(1,2)=Fux,1) =0, x&G/Gy,.

Then there exist subgroups K, and G, of G and Q,=%, such
that G;DHwo, G(m)mG;:Gwo; Hm:G(m)G;’ me Hw:Ha:o’ G(W):Hme,
Giwr/Gay and G.L|H,, are isomorphic to R" and R™ for some w' <n,
K,/H,, is the direct product of a compact group and R™,

(8.40) Paog) = Palg)+(1—Qa(8)*) QW

belongs to ZI(G(M), 8&): ¢wo(Km) = 0, Qw(gl) ¢m0(g2) = (j)a,,o(g1 gzgl'l) and
Im ((;bwo(KmGa;): Qbmo(KwG;)) =0.

Further, let
(8.41) Can(8) = €a(8)+(1/2)(Qa, (Qu(g) —Qu(2)) Q) -

Then there exists a dual element x, of the Lie algebra g, of Gy
such that

(8.42) % (Ad (2)1) = x, (D)
for leqy,, geG as well as for leq.,, g K, and

(8.43) Im (¢mo(g1)a ¢wo(gz)) = - (1/2) %, (log &1 & gi_lgz_l) ,

where g<Gey, &< H,, log is taken modulo the commutator subgroup
of G-

The subgroup G,, must be conmnected and any g=G,, can be
written as g=¢'g,, 1€q,,, & in the commulator subgroup of Gg.
For any such decomposition,

(844) cas(g) = cwo(g) = xw([) .

expic,(g), g=Gay, is a unitary character on G,,.
Any g in G, can be written as g=é'g, |€q.,, 8 EG,y. For
any such decomposition,

(8. 45) ca(8) = Calg) = xa(l) +cal(g) .
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Any gin G can be written as g=g®¥g®g®, g Gy, gPG),
g¥eK,. For any such decomposition

(8. 46) Cao8) = Cao(8P D) + Cao(gP)
+(1/2) x,(log g g {g®} " {g"} ™),
where the argument in the last term belongs to Gu,.
Let c,., be the restriction of c,, to K,G.,=G“*, It satisfies
Cw+1(g):Cwo(g) f07’ gEGwo and

(8' 47) caH'l(gl gz) - cw‘f'l(gl) - cm+1(gz) = l/;\‘w(gl Gﬂ?O ’ ngwo)

where ﬁw(giGwo’ ngwo)EFm(glc(w); gzc'(m)) fO?’ gn gz ln G(OH—D- G(wﬂ)/Gwo
is isomorphic to G[Ge. GO is commected.

Proof. From Theorem 6.7, there exists a measurable mapping
& from geG“ to g(g)=H, such that £(h)y=4 for he H, and (g, g,)H.,,
= {E(g) H,o} {7(g)E(g,) H,}. There also exists Q,=%, such that

(8.43) Pu(&) = $a(E(£)+(Qu(8)*—1) Qs .

Let K, be the set of g such that £(g)H,,=H,,. It is a subgroup
of G, isomorphic to G*/H,, K,DH,,, G=H,K, and ¢,,(K,)=0.
K, is the direct product of a compact group and R™, H,/H,, is
isomorphic to RY for some N, G¢,»/Gs is isomorphic to R™ for
n<N<2n, ¢u(g)=¢6(2) and Qu(g)Pulg)=du(g g g1"). Since
Puo@)=Pa(g) for geH,, ¢u(Ga) spans &, and K,NH,=H,,. Let
w'=N-—n. We shall choose G, after we have analyzed c,(g).

Since G, is connected and G, /G,, is simply connected, G,, is
also connected.

We now consider (8.38). First, if g,G,,, then the right hand
side vanishes and we have

(8 49) Cw(ggl) = cm(gl g) = C,,,(g) + cm(g1), g1EGmo ’ gEGm) .

In particular, expic,(g), g=Gu, is a unitary character on G,,.
If & EG(“,) , then

(8 50) cw(g1 gz) - Cm(gl) - Cm(gz) = - Im (¢w(g1)) Qm(gz) ¢w(g2)) ’

(8 51) cw(gz gl) - Cw(gl) - Cw(gz) = —Im (‘i’w(gz), ¢w(g1)) 5

where we have used ¢,(g)=—Q,(g)d.(g) and Q,(g)=1. If we set
g,=gr' in (8.51) and use ¢,(1)=0, we have
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(8 52) cw(gl—l) = —cw(gl)’ g1EG(w) .
If g,=H,, then Q,(g)=1 and we have from (8.50) and (8.51)

(8.53) Fleng8) + o8} = cul@)+ a2

mod . Substituting gi' into g, and g,g, and g,g, into g, in (8.53),
we have

(8.54) cal:8) = 6al8)+ 5 a8 + 0ol 88T}
(8. 55) Cu(88) = Calg) 5 eul 8T 80) +Cul8d)}

mod » where we have used (8.52). We set
(8.56) k(g) g = g(ggg)"
(8.57) k(g g =(8"88)"4-

Since Q,(g,)=1 for g, H, and ¢, is faithful on G, /G.,, k(g)g, and
K(g) g, are in G,. Substituting k(g,) g, and #(,g)g, into g and g,
into g in (8.49), we have

(8. 58) Ca(8 £:81") = Cu(&)+Calk(g) &)
(8.59) cu(81'2. &) = calg) +ca(k () &)

for g G, g.H,. By substituting (8.58) and (8.59) into (8.54)
and (8.55), we obtain

(8. 60) col88) = Cal8) )+ Culs 87 8T)
(8.61) col8:8) = cal@) + Cul8) + 5 Culg' 878, 8)

mod = for g, G, g.€H,. If g=G,, in (8.60), we obtain from
(8.49),

(8. 62) 0 =cu(g&gr'g:") = cu(g) —Calg, 8,877 -
Thus we have restriction for ¢, :

(8 63) cw(gghg_l) = cw(g1) ’ gleGam’ gEHw .
From (8.50) and (8.60), we have



410 Huzibiro Arak:i

(8.64) Im ($a(g)), Pa(gr)) = —(1/2)ca(g 887827,
gIEG(aJ)! gZEHm

mod =. Since Q,(g) is unitary and @.(2)$.(g) = P.(gg g ") for
g.€H,, we have

(8.65) ca(88.87") = Cu(g)

for g&G*, g,=g,8,8:'25", 8:<Gw, &<H.,.

So far we have considered c, and ¢,. Since c¢,(g)=c(g) and
b.(2)=ao(g) for geH,, all the results so far hold for c,, and ¢,
as well. We now consider c,, and ¢,, for general geG*.

If g,=K, in (8.48) and (8.51) where ¢, and ¢, are replaced by
Cao and ¢, then the right hand sides are 0. We substitute g3'g, g,
into g, of (8.51) and subtract from (8.50). Then we obtain

(8' 66) Cm(gz_lgl gz) = cw(g1) ’ gleG(a':)) gzeKm .
Since G*=H,K,, (8.63) and (8.66) imply

(8.67) (8788 = (&), GEGu, gEG™.
Let
(8 68) J’m(I) = exp icw(el) s IeQ(m) .

Since ¢(g) is measurable and ¢(g) is C~, we see that c(g) mod 27 is
C~ by integrating (8.51) over g, with a class 9 function. Define

(8.69) xa(l) = (d/dD)ya(D ] 1=, €G-
From the definition,

(8.70) 2,(Y) = tx,(1), lEgw-
Since y,(0)=1, we have from (8.60)

(8.71) y.,(D) = expix,(1).
Hence

8.72) cale) = x4(0) .

Since G(,,/G, is commutative, [, [,]=g, for any L, LEgw,.
Further

(8 73) xw([Iu Iz]) =0 ’ ileg(m; IZEgao
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from (8.67). From (8.49), we have

(8.74) 2,(0+1) = 2,0+ x,1), €0, LEGw-
From (8.60), the Baker-Hausdorff formula, (8.74) and (8.73), we have
(8- 75) xm(Ix+ rz) = xw(I1) =+ xw(Iz) ’ Il ’ IZEg(aD .

From (8.70) and (8.75), we see that x, is in the dual of gc.

(8.42) follows from (8.66) and (8.67). (8.44) follows from (8.49)
and (8.72). (8.45) follows from (8.49). (8.46) follows from (8.60),
(8.74) and (8.66) mod . The argument in the last term of (8.46)
is in G,, as long as G,c H,. (8.43) follows from (8.50) and (8.60)
mod =. The two sides of (8.43) are continuous in g,. Since it holds
for g;=1 and G, is connected, (8.43) holds. Since the continuity
of ¢, (mod 2z) follows from (8.38), (8.46) holds mod 2z by the
same reason.

We now choose G/, so that H,DOG,DH,, H,=G.G,, G NG,
=Gy, G,/H,, is isomorphic to R™ and Im (¢u(K.G.), Pul(K.GL))=0.
The last equation implies (8.47).

Let £ be the real Hilbert space consisting of elements in 9,/
equipped with an inner product

(8.76) pali, ) = Re ($anle™), dun(e?))
where 1,=1,+5,€0,/0,, j=1,2. Let
(8.77) pra(ler Bal) = Im ($un(€), daole®)) -

The real matrix B, on P is antisymmetric and ||3,||<1. Let {2
be the subspace {{+9,; IEgw}. We have dim &P =n, dim L} =
n+n'.

Let B,=ER,E for the projection E on &¥. Since £/ is also real
antisymmetric, there exists an orthonormal basis z;, j=1,--, %z in
¥ such that Bz, ,—a;z,;, BL2,;=—a;2,; ,, a;,>0 for j=1,--,m
and B}z;=0 for j>2m where m is some integer not exceeding #/2.

Let €,, be the real linear subset of £, spanned by ¢,(e"), lez,,
i>2m; dae)), 1€2,;, j<m; and ¢uo(e)—ia,;pule"), 1€2,;,, V'Ez,;,
j<m. Then the inner product of elements in 2,, are all real. Since
$ao(Gs) span &, (as a complex linear set), €, must be the complexi-
fication of &,,.
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Let €% be the orthogonal complement of &% in £°. For each
ucsl®, let s(u) be defined by

8.78) s@) = u+ 3 a;(1—(a,)) 7 (227, Bath) 2554

where the summation is over j<m such that @,+1. Let s(8)=8".

By construction, £ is a real linear subset of £, £ NLP = {0},
and &P +2P =8P, Hence the same is true for L. Further, by
construction of € and by (8.78), [z L satisfies Re (yr, p(e))=0
for all y»€8,,. Note that ¢, (") —iapu(e")=0 if a;=1 because it
has a O norm. This implies that ¢(¢')=i%,, for lez=¥® and hence
Im (¢(e'), p(e")=0 for any l€zf® and V'ez' =P

Let G/ be the subgroup of H, generated by H,, and ¢, leze{®.
H,DG,DH,, holds by construction. Since &®+8® =% and G,D
H,,, we have H,=G,G,. Since LP’NLP= {0}, GyNGL=GCGpyN Hy,
=G,. G,/H,, is isomorphic to 8 ~R"”. Im (¢(g), $(g,))=0 for
g, &G, by construction.

Since G,,NG* =G, and GG, =G, GG, is isomorphic
to G“™/G,,. Since G is connected, G®/G,, is connected. Since
G, is connected in addition, G®®*® is connected. Q.E.D.

By using this theorem, we can analyze a solution ¢ of (8.35) in
the following manner. Let G; be as in Corollary 7.6, for a given
connected solvable group G.

First we set ¢=2 in Theorem 8.7 and consider G =G, G,=0G,.
L, @, ¢, are Ql, Q\l, é,, respectively. H, and H,, are defined by
(8.36) and (8.37). G,, is defined as H,,NGq,. The function F, is

the sumS‘;Im (b:(g), $,(gz"). A solution ¢ of (8.35) is taken as c,.

Then Theorem 8.7 is applicable.

There exists an element x, in the dual of g, such that c.(e)=
x,(l) for lege,. The group G“* contains G, and G“™/G,, is
isomorphic to G/G,. Both G and G, are connected. c,(g) for
a general g is given in terms of x,, O, and ¢, through formulas
(8.40) and (8.46) where Q, is a vector in &, and ¢, has to satisfy
(8.47). In addition, c,(e") = x,(L) for l&g,,. Im(Pus(Q), Pulg) is fixed
in terms of x, by (8.43). Since G, is abelian, this implies in parti-
cular that Im(¢,(g), ¢.(gz"))=0 for g, g=G, (or else ¢ does not
exist). (If ¢, is given first, (8.43) is a restriction on x,, for which
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a solution might not exist.)

Next we proceed to higher c¢,. We make an inductive assump-
tion that we are given a connected subgroup G of G, containing a
connected invariant subgroup Ge,_po=GNG,_, such that G“°/Ge,_p
is isomorphic to G/G,_,. We then look for ¢, satisfying (8.38) with

b=ty and Fo= 3 Im(,(g), $,(gr).

We apply Theorem 8.7 to the connected group G’ and its
invariant subgroup G.,,=G®NG,. Ge/Ge_po is isomorphic to G,/
G,_,, which is connected. Hence G, is also connected. £,, @, ds
are taken to be £,_,, QA,H, ¢s_,, respectively. H, and H,, are
defined by (8.36) and (8.37). G,, is defined as H,NGy,. The
function F, is as given above and we assume the existence of a
solution ¢, of (8.38).

We then obtain a group G“'" such that it contains G,,=G“*""
N G, (which automatically contains G,_,,,) and G***?/G,, is isomorphic
to G/G,. Both G®* and G,, are connected. There exist an element
%, in the dual of g, satisfying (8.42), an element Q, in &,_, and

Cur, satisfying (8.47) with Fo=S1Im(d,(g), $;(gi"). cu(g) for a

general g is given in terms of x,, Q, and c,., through formulas
(8.40), (8.44), (8.45) and (8.46). Im (puo(g), Pue(gy)) is determined by
(8.43) in terms of x,. x, has to coincide with x,_, on g¢_,, and
Caus:(€") has to coincide with x,(l) for [eg,,.

Proceeding recursively, we obtain the following structure:

1) Subgroups. G, a=2, ---,n is a descending sequence of
connected subgroups of G and K,, H,, G, G, Go,, H,, are sub-
groups of G*°. They are interrelated with each other and with G;
of Corollary 7.6, by the relations : (i) G,y=G“NG,, G4,=G*"NG,,
G Giy=Gy, G=Go_,G. (i1) Giy_1pog—>Gyu_, g gives isomorphisms
of G“/Gey_ry and Geyy/Geaopo 00to G/G,_, and G,/G,_,, respectively.
(iil) H,K,=G*, G.K,=G“", G,G?=H,, H,NG*™ =G, H,NK,
:Hwo» G(w)nGa’o:G(w)ﬂG(w H):G(m)ﬂ Kw:G(m)nHmo:Gwo: GaoDG(w—ﬂo
(an ascending sequence). (iv) H,, G, H,,, and G,, are invariant
subgroups of G*°. Besides G, G(,, and G,, are connected. K,/H,,
is the direct product of a compact group and R™, H,/H,, is iso-
morphic to RV« for some N,>0, and is maximal abelian in G/ H,,.
(v) G®=G, G»=G.,=H, and K,= {1}.
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(2) Hilbert spaces and cocycles. There exists a real linear
mapping p, from the Lie algebra of H, onto a total set in a complex
Hilbert space £, (=%,_,), equipped with an inner product 4. The
kernel of p, is 9,,. On &,, there exists a continuous unitary re-
presentation Q,(g) of g=G such that Q,(g)=1 for geG,_, and
Q.(Qp,=p, Ad(g) for geG where Ad(g) is the adjoint represent-
ation of G on the Lie algebra of H,. For g—geé's, 5<Gs_s,
leb,, g€K,,

8.79) () = Dl + (Qu(@)* —1) Qs
is in ZY(G, &,) where Q,=%, is fixed.
(8- 80) ll'm(Iu Iz) = Re ,@m(pm Iw ﬁw Iz)

is an Ad (G*”) invariant positive real inner product on §, with the
kernel §,,.

(8 81) Il'm(In Ba&IZ) = Im lﬁm(pwrlr pzlz)

defines an antisymmetric operator B, on real Hilbert space 9,/94,
such that

(8.82) 1Ball < 1.

B, commutes with Ad(g), g=G“.
(3) x, is in the dual of g, and satisfies

(8.83) %, (Ad (g)1) = x,(T)
for 1=g,,, geG*? as well as for I=g,,, g=K,. Further,

(8 84) xﬂigwo = xwlgmo (18>a) .
(4) P, is related to x, through

(8 85) #aﬂ(r1 » Ba Iz) = - (1/2) xa([Iu ’ I21] + [Im ’ I21] + [Iu ’ Izz])

if [;=0,+1;, [i€qw, €0, 1=1,2.

(5) ¢, is given in terms of x,, Q, and c,., by (8.40), (8.44),
(8.45) and (8.46), where c,., is to be taken 0. c=c, satisfies (8.35)
with ¢,=¢ ;..

In the above analysis, we have shown that the pair ¢ and ¢
necessarily leads to the structures (1)~(5). We have not listed all
the restrictions, which could be extracted from our construction.
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(An example is a relation between adjoint representations of G on
Lie algebras of G.,, and H,.) However, the structure and its pro-
perty extracted above as (1)~(5) are sufficient in the sense that,
starting from the subgroup structure (1), the dual elements x, of
(3) and real inner product u,, we can always obtain (in a unique
manner) a pair ¢(g) and ¢(g). More precisely, we have

Theorem 8.8. Let the structure of subgroups be given asin (1)
above. Let x, be given as in (3) above. Let u, be an Ad(G™)
invariant positive real inmer product om Y, with the kernel Y),, such
that B, defined by (8.85) satisfies (8.82). Then there exist £,, Q,,
Q. b, and c, which satisfy (2), (4) and (5) above. L,, Q,, P and
Coo arve umique while Q, is arbitrvary.

Proof. Since (8.85) is antisymmetric in [, and [,, the linear
extension of

(8' 86) /l/\w(rl$ Iz) = Mw(IU I2)+iﬂw(113 BwIz)

to the complexification §,+:%, of §,, which is again denoted by £,
is a nonnegative inner product. The quctient of §,+:§, by the
kernel of £, norm, considered as a complex Hilbert space with an
inner product £,, will be denoted by £,. The natural homomor-
phism from real Hilbert space %, onto a total set in &, is denoted
by p,. The kernel of p, is §,,. (We do not necessarily demand
that p,G.,, be total in &,.)

Due to (8.83) and Ad (g)[1l, L]1=[Ad(g)l,, (¢)l,], we have
ra(Ad (9)1, B, Ad(g)L)=p4(l,, B,L). Therefore,

(8.87) ha(Ad (9L, Ad(QL) = £u(, L), gEG™.

This shows the extence of a unique continuous unitary representa-
tion Q,(g) of g=G“> such that Q,(g)p,=p,Ad(g). Q. (g)=1 if
geH,.

Next we define Q,(2)=Q.(g) if g=gg, 2<G,.,, &G,
Since G=G,_,G”, any g has such a decomposition. Since G,_,N G
=Giypo " H,, Q,(g)=0,(g4) for a different decomposition g= g{g}.
Since geG“°—G,g is an isomorphism from G*“/G.,, to G/G, and
since @,(g g)=@Q.(g) for g=G,, the extended Q, is a continuous
unitary representation of G.
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For g=gcdg, g<G,,, leb,, g=K,, we define

(8.88) bao(g) = Dal .

Any ge=G has such a decomposition, because G=G,_H,K,, H,/H,,
is exponential and H,,cK,. Since G, N H,K,=Gy 1CGy, H,N
K,=H,, and p,l=p,l for ¢'=ge'g, g<=G,, g =H,, the above
definition of ¢,(g) is independent of the decomposition of g. (Note
the following: For l,=g,,, 'eh,, Ad (e‘l)I’—I’zg(m)‘lAd Wre
Du. Since G,, is connected, [”=Ad (g)l' satisfies p,I”=p,l' for any
g.€G,,. Next,if ¢'=¢"g} for gt=g g, €H,, |,I"h,, then |- Y,
because H,/H,, is isomorphic to R¥e=, Hence p,"=p,l.)

We now prove that ¢,=Z'(G, £,). We already know from
earlier results that ¢, restricted to G is in Z'(G*”, &,). We also
know that, for g=G,_, and g€G“, Q,(2)=1, ¢.(2)=0, $.(g2)=.(8)
and ¢,(g 2)=¢.(g,g27'g)=0.(g). Here the last equality is due to
g g87'eG,_, if geiG,_,. Therefore ¢,,=Z'(G, &,).

We now define ¢, assuming that c,,, is already defined. To
start the inductive procedure, we take c,, ,=0.

The quotient of G, by its commutator subgroup, say G, is
connected and abelian. Hence it is exponential and any geG,, can
be written as g=¢'g,, l=q,,, g,G,,. Hence (8.44) defines c,,(g) for
all geG,,. Suppose ¢'¢~V is in the commutator subgroup. Since
G../Gl, is expcnential, [-l'eg,,. From special case of (8.83) with
g=G,,, we have x,(g%,)=0. Hence the definition (8.44) is independent
of the decomposition g=é'g,.

If g=dg, g=é"gl, LVeq,,, g,8€G., then gg’=e'tVgy for
some gy <Gl because G,,/G,, is abelian. Therefore

(8.89) Cal88) = Cal@)+Calg), & 8'EG,.

Next, we define c,(g) for g=G,, by (8.45). If g=elg =¢"g],
LS, 8, 8i€G,,, then e e'=g(g))'eG,, and hence I'—leq,,.
Let I”ES Ad (e~ #Y('-1)dBeg,,. Then ¢ '¢'=¢"g, for some g,&
G.,. Hence
(8 90) cwo(gl) = Cwo(e gz)+cmo(g§)

= x,(I") + ca0(g1)
= xm(I/ - I) -+ Cam(g{) ’

V4
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where the last equality follows from (8.83). Therefore, the defini-
tion (8.45) does not depend on the decomposition of g.
From (8.83), it follows that

(8- 91) cwo(gg/g_l) = Cwo(g/)

for geG*, g'eG,, as well as for geK,, g'€G.,,. From the
definition and (8.89), we also have

(8 92) Cwo(gg/) = Cwo(g)+cwo(g/>a gEG(wD’ g/EGwo .

Suppose geH,, g'=¢'g, 1g,, =G, Then gg'g™'(g)"'= 2.4,
g,=e2@le G, g,={(gg.g ") gi'te'EG,,. By the same argu-
ment as in (8.90), we have c,(g)=x,Ad(g){—1). From (8.83) and

(8.89), we have c,,(g)=Cau(2887'81") = Canl28 &)+ Car(gT) = Car(g) —
¢.(g)=0. Therefore

(8.93) ca(88'87 (1)) = x,(Ad (2)1-1).
If 'ch,, then
(8.94) %,(Ad (") [=1) = x,([V, ]

due to (8.83). From (8.93) and the commutativity in Gc,,/G,,, it
follows that

(8.95)  C.(g(£18)8 (2.8)7") = culg887'8T) 0188 87"82")
1f gly ngGu)-

We now define c,(g) for g=G* by making decomposition g=
g¥gPg®, g0eG.,,, g2<G,, g¥<=K, and then by setting

(B.96) Caolg) = €ari(8PgP) +Caolg M)+ (1/2) (g gV {g ™} g M)

We want to show the independence of this definition on the decom-
position of g.

Let g=gPgPg’=gPg®gi’ be two decompositions of g. Since
K.,NH,=H,, g&¥=g®g" for some g'eH,,. Let g’'gP=g®. Then

(8.97) x.(Ad (g:*)]) = x,(Ad (g2”)])

for any leg, due to (8.83) and g’'=H,cK,. Therefore c,(g)
defined by two decompositions g=g&gP g’ =g¥g® g is the same.
Next, we note that g®=gPg”, gi®=g"g® for g'’'=(g®)'gP=
g2(g?) ' eG,,NG,=G,,. From (8.92) and (8.91), we have
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(8.98) Caol@5”) = Cargi”) +Calg”) -

Since g”<G,,CGe,.py, We have from the inductive assumption and
its consequence (8.49)

(8.99) C<m+1>(g§,3’g22)) = C<m+1)(g§3)g§2)) +Ccuin(g7) -

We note that c.,.,,(g”)=Cyino(g”")=Cu(g”") by our assumption (8.84).
From (8.95), we have

(8.100) (g (e) (gi)™) = culei g (e?) (g))
eulgie (&) (e"))

where the second term vanishes due to the special case [=0 of
(8.93).

Finally we note that x,(Ad(gi®)])=x,(Ad(g”)* Ad(g®)))=
Z4(Ad (g&)]) for any 1[G, due to g”"=gPg"(g?) " 'eG,,C K, and
(8.83). Hence

B.101)  cao(g:"8:"(g6") 7 (ga”) ") = ca(gsPgi (gs”) 7 (gd”) ™) -

Combining (8.98), (8.99), (8.100) and (8.101), we have the independ-
ence of ¢,(g) for two decompositions g= gs¥gP g’ =g g® gs".
Q.E.D.

To sum up our result, we can obtain all possible pairs ¢ and ¢
from the subgroup structure (1), x, and u,. %, determines ¢ and
the imaginary part of the inner product of ¢ while u, determines
the real part of the inner product of ¢. In order that our construc-
tion works, it is necessary and sufficient for x, and p, to satisfy
the invariance (8.83), the mutual compatibility (8.84), the positivity
of u, and the inequality (8.82).

§9. Examples

Q) Abelian group.

In this case we have both BYG, D*) and Z'(G, L,(®, 1)) where
¥=g-+ig. Since Ad(G)=1, p can be arbitrary positive definite real
inner product. Imaginary part for (¢%(g,), $%(g,) is impossible and
¢° is a character. We write a general elements of G by f=(f,"f»)
and denote the group operation by vector addition. Then the general
form of F in Theorem 5.1 is
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9.1) F(f) = —jilfjll«jkfk‘”ficjfj

iz i1 511308 duih)

2

where p;, is a real positive semidefinite matrix, c; is a real number,
w is a finite positive measure, p°=32" (p,)* and g(p) is any smooth
ji=1

function with g(0)=1 and decreasing rapidly at p—oo. A different
choice of g is equivalent to a different choice of c¢;. The exact

(1+7°)

form of 5 is not important, because any bounded change can

be absorbed in pu.

If X=RY, we may represent elements in C(G, X) by f=(f,(x),
-+, f,(x)). Then the continuous tensor product part of a uniformly
continuous o factorizable separable functional E can be written as

©9.2) E(f) = exp | Flf@) dv(x)

where F, is of the form (9.1) and ., c; and 1 depends on x, where
v is a continuous positive measure. (To obtain this form of an
integral, we may use the standard reduction theory of ¥ relative
to {P(Y)}.)

The first term and the last integral in (9.1) defines two mutually
orthogonal exponent space ¢, and £,. The representation space is
the ¢2.Qe% and the representing unitary operator is of the form
U,HQU,{). L, is the direct sum of # copies of R~ with the inner
product

9.3 (£, £) =23 Sf}(x) p6(%) Fi(x) do () .

In terms of creation and annihilation operators, U,(f) can be writ-
ten as

(9.4) U,(f) = X,(f) expi{(a¥, f)+({, a,)} ,
9. 5) (@, f) = > Sa,,,.(x)*f,.(x) dx .

The second term of (9.1) gives the ¢ number coefficients

©. 6) X,(f) = exp zgg ¢,(x) f,(x)dx .
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£, is the £, space on the space of points (x,---%xy, p, - P,), XERY,
peR” with respect to du,(p)dv(x). Q(f) is the multiplication of

the function expi: é f(x)p, and Qe D~ is represented by a function
j=1

A+ (p)"*=Q(p). In terms of creation and annihilation operator,
U,(f) can be written as

©.7 UMD = expi | du(p)av(m) {(aux, £)*+0(p)
X (@5(x, B)+ 00—~ AULYe (D)} L)1,

The special case of (9.1) for =1 is given in [2] and is known
as Lévy-Kinchin formula. The equation (9.7) gives a representation
of the Poisson process part essentially in terms of the number
operator on the Hilbert space of the Gaussian process. (However,
the creation and annihilation operators are displaced by Q(p), and
the number is weighted by p;.)

This situation prevails for a general case, as can be seen from
Lemma 4.2. The representing operator U(e!%r) is of the form (9.7)
for ¢ in B¥G, D*(G)) and of the form (9.4) for ¢¢ and g=H,.

(2) Canonical commutation relation (CCR).

The group G is the Heisenberg group given by the multiplica-
tion rule
(9 8) (611, bl’ c1) (azr bz: (,‘2) = <d1+az’ b1+b2, c1+cz+azb1)
where a, b, ¢ are real numbers. The commutator group G, of G
coincide with the center of G and consists of (0,0, ¢). We may take
it as our G,. For CCR, there is an additional requirement that (0,
0, ¢) is represented by a c-number ¢. Thus B'G, D) part is
actually BYG/G,, D*) and exactly the same as the commutative case.
Also by the condition that (0, 0, ¢) is represented by é*, ¢;(g)=0
for j=2. For j=3, G=G, and hence Q,(g)=1. Since c, is already
fixed for G,, the imaginary part of (¢,(g,), ¢s(g,)) part is fixed to be
—%(albz—azbl). The real part is arbitrary except for the positive

definiteness condition. As a net result, we have

9.9) F(a, b, c)— — ,u,naz—,u,zab—pzzbz—%ab+ic+i(aa+,8b)

+ [ foxp itap, +bp)—1—iap.+bp) g} dup),
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(9 10) My > 0 ’ 4.“/11 hog = (’1‘12)2+ (1/4) .

This form was obtained by more elementary consideration in
[1]. For E(f), we have an expression of the form (9.2).

The exponent space can be split into a direct sum of 3 spaces
Q#», j=1,2,3. The representation space is ¢*’®e*’®ReX™ and the
representing operator is U, {f)QU,(f)QU,(f). L™ is the space of {f(x),
g(x)}, both f and g being real, with an inner product

9.11)  ({£ix), &@} {00, 20D = 2[{£09) /.0 pu(0)
+ (%) 2,() () +§<fl<x> £(®) + F.(%) &%) 1)

LD &) 1) g} dvl@),

9.12) ity (x) = {4Mu<x>}—lmu<x>+éx .

This is related to the standard form of the Fock representation of
CCR by a Bogoliubov transformation. £® is the space of {g(x)}, g
being complex, with the inner product

(g(x), &%) = 2 S 81(2)* @) (1) — (%)) doix) .

The ¢(g) in this space corresponds to a real wave function. The
splitting between £ and £ is rather arbitrary, for example we
may leave a part of p,, in € and modify u., accordingly. In any
case the creation and annihilation operator of the original CCR is
represented by a linear combination of two kinds of Fock creation
and annihilation operators. If we choose the splitting appropriate,
it can be arranged as a hole and a particle, namely the creation
operator of CCE is represented as a sum of Fock creation operator
of one space (particle) and Fock annihilation operator of another
space (hole). A typical example is in [4]. The &% part is exactly
the same as the commutative case where the relevant group is that
of (a, b, 0) and is two dimensional.

(3) The current algebra over rvotation group.

We consider G=SU(2) or 0(3). Then the group is compact and
hence ZY(G, L)=B'(G, L). In this case we have a2 representation
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U(g)=e¢H®, g—¢' in a Fock space ¢¢ where 8=S®8xdv(x)‘/2, Q(g)=
S@Q,,(g), Q=S@Qx and

9.13)  HQO) = —iS(a*(x)+ﬂ(x), dQ, (1) (a(x) +(x))) dv () .
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