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Factorizable Representation of Current Algebra
-Non commutative extension of the Levy-Kinchin

formula and cohomology of a solvable group
with values in a Hilbert Space —

By
Huzihiro ARAKI

Abstract

A notion of factorizable representation is defined and all factorizable
representations of a commutative group of functions as well as those of the
current commutation relations and canonical commutation relations are explicitly
given in the continuous tensor product space (i.e. the Fock space).

The formula for a state functional of a factorizable representation is a
non-commutative extension of the Levy-Kinchin formula in probability theory.

In the course of analysis, the most general form of a first order cocycle of
any solvable group with values in a Hilbert space is determined. Non trivial
cohomologies appear by two entirely different mechanism, namely a topological
one on infinite dimensional space and an algebraic one on a finite dimensional
space.

The immaginary part of an inner product of such cocycle is a second order
cocycle. The condition that it is a coboundary is discussed.

§1. Introduction

A factorizable representation has been discussed for commutative
groups of functions and canonical commutation relations [1], [2],
Here we extend this notion to the current algebra, which is of some
interest in elementary particle physics. Given a Lie group G, we
consider, so to speak, a continuous direct product of copies of G,
each associated with a point on a measure space X. In the com-
mutative case, G is the additive group of reals. In the canonical
commutation relations, we take G as the group corresponding to the
Lie algebra of one pair of canonical variables p, q and an identity
operator (times t). If a unitary representation of the big group is
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associated with a state, which splits up into product of states of the
small group at every points, then the representation can be realized
in the continuous tensor product space defined in [3]. We shall
attempt a determination of the structure of such a representation.

It is shown that a representation is determined by specifying at
each point x of X, a unitary representation Qx(g) of G, a first order
cocycle <t>x(g) with values in the representation space of Qx, and a
real valued function cx(g) whose coboundary should coincide with
Im (0(gi), <t>(g21}). The representing operator can be expressed in
terms of Bose creation and annihilation operators as an exponential
of a*(x)a(x), a*(x) and a(x) terms.

All cocycles $ for given unitary representation are obtained for
any solvable group G. It is in general a sum of coboundary of a
vector in a space D+ which is somewhat larger than the represen-
tation space, and certain vectors in the adjoint representation space
of G (on its Lie algebra). The problem for a general G can be
reduced to the case of a semisimple G. The cocycles for a semisimple
G are not analyzed.

The problem of finding c for a given Q and <£ is partially solved.
The general theory is applied to special examples, including the

abelian case, the canonical commutation relations and current algebra
over the rotation group.

§2. Current Algebra

Let X be a measure space and G be a connected Lie group with
a finite dimensional Lie algebra g.

Definition 2.1. The current group C(G, X) of G over X is the
group of all bounded G-valued measurable functions equipped with
the pointwise group operations. The bounded function means that its
range is contained in a compact subset of G. The measurability
refers to the a-fields Bx of measurable sets in X and the v-field BG

generated by compact sets of G.

Definition 2.2. The current algebra C(g, X) of g over X is the
Lie algebra of all bounded measurable Q-valued functions equipped
with the pointwise Lie algebra operations.
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For each element I of C(g, X) the exponential el of I is the
element of C(G, X) defined pointwise by [_el'](x} = eK*\ where the last
exponential is the conventional exponential mapping from Lie algebra
to Lie group.

Definition 2.3. A unitary representation geC(G, X)-»U(g) (a
unitary operator on a Hilbert space £>) is called continuous if \](etl)
is strongly continuous in the real parameter t for each fixed I in
C(g, X).

Lemma 2.4. Let %(X0) be a characteristic function of a fixed
measurable subset X0 of X and let £XCX<P be the function belonging to
C(G, X) which is equal to g on X0 and to 1 on X—X0. Then g^G
-» \J(g*<xo>) is a representation of the group G, which is continuous in
the ordinary sense if U is continuous.

Proof. The group representation property follows from
= gX^gK---0\ As for the continuity, we use the fact that (a) because
of the representation property U(g) = U(gg0~

1)U(g0), it suffices to
prove the continuity at g=l, and (b) if Ir--Iw is a basis of g, &•••/,,)
->eti\...etn\n gives a homeomorphism of a neighbourhood of 0 in Rn

and a neighbourhood of 1 in G. By assumption each U(eV/) is
continuous in t and uniformly bounded, where lj(x) is equal to Iy

on X0 and to 1 on X—XQ. By using the estimate of the following
general form

^ \\A(t,)\\ \\A(tj®-A(tfi9\\ + \\lA^ ,

we have the strong continuity of U(e*i/i)---U(eVf.) in (^•••^).

Definition 2.5. A functional E over C(G, X} is a mapping from
C(G, X) to complex numbers. A triplet of a Hilbert space §, a
unitary representation U of C(G, X) on § and a cyclic vector M* in
§ (namely a vector M* such that vectors U(g)^, geC(G, X) span £>)
is said to be canonically associated with E if

(2. 1) E(g) = (V, U(g) W) , g GEC(G, X)

Theorem 2.6. ^4 triplet (£>, U, ^) canonically associated with a
functional E exists if and only if E satisfies the following positivity
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condition: E(gi~
1gJ)J f = l, • • - , n, j = I, • • • , n, is a nonnegative matrix

for any choice of gz-, f = l, • • • , » from C(G, -ST). For ^^ E, the
triplet is unique up to a unitary equivalence. The unitary represen-
tation U is continuous if and only if E(g1e

tlg2) is continuous in the
real parameter t for every fixed g19 g2eC(G, X) and JeC(g, X).

The necessity of the conditions for E is obvious. The existence
and uniqueness of the triplet is easily proved by a standard method.

Since 11(0"), being unitary, is uniformly bounded, the continuity
of its matrix elements between a total set U(g)M?" implies the weak
continuity of U(etl) itself and hence its strong continuity.

Definition 2.7. A functional E is called an expectation func-
tional if E(l) = l, the positivity condition is satisfied and E(g1^

/g2) is
continuous in t.

An expectation functional satisfies

(2.2)

(2.3) |E(g)| ^1

which immediately follows from the positivity condition with n = 2,
g1 = l and g2=g.

The definitions introduced in this section are related to customary
notations in the following way.

If G is taken to be the additive group of real numbers, then
C(G, X) is a vector space of functions. The functional E for such
C(G, X} has been extensively treated in the literature.

If G is the Heisenberg group, namely if g is spanned by three
A A A A A A

elements q, £, t satisfying [£, q] = t, [q, t] = Q), fj = 0 and if we re-
quire U(0i/), for any real valued bounded measurable function /, to

be an identity operator times a number exp/1 f(x)dx, where d# is
J X

a measure on Xy then we are dealing with a representation of
canonical commutation relations. The last condition may be expres-
sed in terms of the functional E by

(2. 4) E(geV) = E(g) exp ,' J/(*) d* .

In this case, the customary notation is

(2. 5)
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(2. 6) U(d>/) = V ( f ) = 0'*c/) = e''J*wA*)d* B

If g is a Lie algebra of antihermitian matrices (g/y), then a
standard notation is

(2. 7) U(e*) = exp 2] ^+(*)* ^(*

For 7 eg, the expression ^+(#) y^(#) is the operator valued distribu-
tion defined through a generator of one parameter subgroup :

(2. 8)

If 7 is antihermitian, £ times this operator is self ad joint. The
current commutation relation is

(2. 9) !>+

which is to be understood as

(2. 10) [ J

and holds on a dense set of vectors depending on ry1fl and y2/2.
The use of i|r+ and \|r comes from the fact that (2.9) is formally

implied by

(2. 11) [>+(*),

(2. 12) [>+(*), ^+(J)]± = C^W, ^)L = 0

where either + or — commutation relations are assumed, {A, B~}+

= ABJrBA, [A, B~}_ = AB—BA, and they lead to the same equation
(2.9).

Sometimes, one is interested in a locally compact space X and
the group of G-valued measurable bounded functions on X with a
bounded support. The following analysis can be modified to accomo-
date such cases.

§3. Factorizable Functional and Type I Factorization

Definition 3.1. An expectation functional E of C(G, X) is finitely
factorizable if
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(3.1) E(glg2) = E(gl)E(g2)

whenever the support of gl is disjoint from the support of g2 . Here
the support of a function g(x) is the set of x^X for which g(#)^L

If {Xi\ i = l,~-,n} is a partition of the set X into a finite
number of subsets in Bx, then the subgroup of functions g(#) with
supports in X{ may be identified with C(G, -X,-). C(G, X) is then a
direct product of (mutually commuting groups) C(G, -3Q, * = 1, ~-<>n.

If we denote the restriction of the functional E to C(G, Xf} by
Ef , it automatically satisfies a condition for an expectation functional
of C(G, XJ. For Y^BX and geC(G, X\ let gXCF> denote the element
of C(G, X} which is equal to g on Y and to 1 on X~ Y. For a
finitely factorizable functional E and for a finite partition {Xt} of
X, we have

(3.2) E(g) = nE,(g«*<>).
i=l

Theorem 3.2. Let (£>, U, ¥) ^md ($,-, U,-, ¥,-) 6e triplets canoni-
cally associated with expectation functionals E a^J E,-, respectively.
Let

(3. 3) & = <g> & , £ = <g> ¥,1=1 1=1

(3. 4) U(n g,) = ® U,(g,) , g,-eC(G, JQ

® denotes the tensor product. If E is finitely factorizable,
A A A

then (§, U, M?) w unitarily equivalent to (£>, U, *P").
This follows from (3.2) and Theorem 2.6.
For any subset X1 of JT in 5^-, we consider partition of X into

Xl and its complement Xl=X2. By the unitary equivalence of
^ = ©i®©2 with ^> ̂ (©i)®! defines a type I factor on £>, which we
shall write R(^). Here ^(©x) denotes the set of all bounded
operators of &IB

Theorem 3.3. L^^ E fe finitely factorizable. For any finite
partition {X£, i = l, --,n}, X^BX of a given X0<=BX, {R(-X,.), i = l,
•••,«} is a type I factorization of R(-Xo) /or ^fe'cA ^ w a product
vector. The operator U(g) belongs to R(X0} if the support of g is
in X0 and is factorizable operator with respect to this factorization :

U(g) = n U(gxc*.°),
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This follows from Theorem 3.2 if we consider the partition
{Xo, X19 • • • , Xn} as a common subpartition of {X0, X%} and {Xiy Xf},
i = l, —,n.

Definition 3.4. An expectation functional E of C(G, X) is said
to be a-- factorizable if the following condition is satisfied :

If {Xj} is a countable partition of X into measurable sets, then

(3. 5) E(g) = n E(g,.)
z

where the product converges irrespective of the ordering (the absolute
convergence).

Definition 3.5. A subset X0 of X is called E-null set if
and E(g) = l for an arbitrary geC(G, XQ). The set of all E-null
sets is denoted by NX.

Lemma 3.6. Let E be a a-factorizable functional. If
X2<EBX and X2aX17 then X2<=NX. If X.-eJVf , then \JX£^N$ where

i
the index set is countable.

Proof. The first statement follows from C(G, J*QcC(G, XJ.
For the second statement, let XQ= \JX{ and Yi = Xi— ( U Fy). Since

* j<i

YiC_Xi, Yi^N%. Since X0 is the union of disjoint F,., Definition 3.4
implies E(g) = nE(gf.) = l for all geC(G, X0). Hence XQ^N$.

Definition 3.7. The carrier Boolean algebra BX of a factorizable
E is the Boolean algebra obtained from the a- field Bx by identifying
any two sets which differ by an addition and a subtruction of E-null
sets.

Definition 3.8. E is called separable if, for any measurable
partition {Xa} of X, XM belongs to NX except for a countable number
of a.

Lemma 3. 9. // E is cr- factorizable and separable, then BX is a
complete Boolean algebra satisfying a countable chain condition.

Proof. Since Bx is a cr-field (i.e. Boolean cr-algebra), BX is also
a Boolean o--algebra because of Lemma 3.6. Next, if X^BX is
given for every ordinals p between //,0 and 1 such that X^XV and

x for IJL>V (A—B = A^BC\ then ^ must be countable,
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This follows from separability because Y^^X^, l —X^^NX is mutually
disjoint. Thus B% satisfies the countable chain condition. Finally,
let Xp<=Bx be given. We show the existence of their least upper
bound in 5f. We define an ordinal ^0, the pair of the set Y^ and
an index a(juu) for every ordinal ^</^0 by the transfinite induction
in such a way that Y^^Bx, Y^iDYv if /£>*>, Y^—YV^NX if p>v,
YH.= U Xa^> and Xa— U Y^NX for any a.

If this is achieved, //,0 must be countable and Y^^ U Y^ is the

lowest upper bound of {Xa} in Bx. Let Yv be defined for V<[L.
(If fjb = l, this assumption holds trivially.) Then ^ must be countable.

Hence \JYV=Z^BX. We look for Xa such that X^-Z^Ng. If

no such a exists, we set /^ = ^0. Otherwise choose one such index
a(p) and define Yp = Xaw\jZp. Then Y^BX, Y^IDYV for
Further, if JJL>V, Y^—Y^Y^ — Z^ = X(&W — Z^N^X and hence 1
&NX. Then strictly increasing transfinite sequence {a(v}; v<

jLL = l,2,-- must terminate by the axiom of well ordering and we
have the desired result.

Definition 3.10. The discrete spectrum S^ of E in X is the
set of points x^X such that E(g)4=l for some geC(G, {#}).

Sjp is countable for a separable E.

Definition 3.11. Let Nx be the family of subsets of X obtained
as a union of an E-null set and a subset (including the empty set)
of SiE. The carrier Boolean algebra Bc/ of the continuous part of
E is the a-field obtained from the a-field Bx by identifying any two
sets which differ by an addition and a subtraction of sets in Nx>
(Another equivalent way is to consider the lattice of Y-S^E, Y^BX

modulo null sets.)

Lemma 3.12. B°x is a complete, continuous Boolean algebra with
countable chain condition. BX is a direct product of Bf1 and the
countable atomic complete Boolean algebra B*/ generated by points
of SiE.

Definition 3-13. A representation n of a complete Boolean algebra
B by factors is a mapping from Y^B to a factor zr(Y) such that
7t(Yc) = n(Yy and TT( U Y,) = ( U^Y;.))77.
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Lemma 3.14. Let E be a a-factorizable separable functional,
(£>, U, M?) be as in Theorem 3.2 and R(Y) be defined as stated after
Theorem 3.2. Then (1) R^) = RW if X,=X2 in 5f . For FeBf ,
define R(Y) = 'R(X1) where X1 is any set in the equivalence class Y.
(2) Fe5f->R(F) is a representation of a complete Boolean algebra
by type I factors.

Proof. If Y<=Nx, then the corresponding £>r is one dimensional
and (1) follows from Theorem 3.2. As long as the finite Boolean
operations are concerned, Fe£f->R(F) is a representation of the
Boolean algebra Bf by type I factors, due to Theorem 3.2. Hence
the only point to be proved is whether ( U RCX*))" = R( U XJ for

a Oi

arbitrary Xa . Because of the countable chain condition, it is enough
to see this for countable number of mutually disjoint Xa.

Let XQ = (\jXa)
c and adjoin 0 into the index set. Consider (^,

O5

Uju, , M?V) corresponding to the restriction of E to C(G, X^ and con-
struct the incomplete infinite direct product £>=®% containing M? =
®^,. Because of Definition (3.4) (b), II (^, U*(g,0%) is absolutely
convergent, and hence (8)11,̂ )% e&. Hence (8)11,̂ ) = C(g) also
exists as a unitary operator on |>. Moreover (\fr, U(g)'4r) = E(g).
Hence (^, U, ̂ ) is unitarily equivalent to (£>, U, ̂ ) of Theorem 3.2.

Furthermore, clearly R,* = .®(®*)®(® lv)
 and ^ = ©M®(®§V) corres-

VzpfA Vzcf^

pond to RCXJO and the related decomposition of the Hilbert space.
Hence R( U Xa} = R(X0)

/ =

Definition 3.15. The set of Y^Bf such that R(F) is one
dimensional is denoted by BX®. The corresponding support S^p is the
maximal element of BXR (defined as a subset of X modulo It-null
sets}.

Lemma 3.16. BXE is a complete Boolean sublattice of Bcx. If
, then

Proof. The first part follows from Lemma 3. 14 and the second
part from Theorem 3.2.

Definition 3.17. The carrier Boolean algebra of the continuous
tensor product part of E is the a field obtained from BX by identi-
fying any two sets which differ by a finite number of additions and
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subtractions of E-null sets, sets in B^ and sets in 5^E. (Another
way is to consider the lattice of Y— Sjp— S3JE, Y^BX modulo E-null
sets.) It is denoted by B^.

Lemma 3.18. Let E be a a-factorizable separable functional, (§,
U, M?) be as in Theorem 3.2 and R( Y") be defined as stated after Theorem
3.2. (1) jBf is a direct product of 5iE, fl£E and BfE. (2) geC(G,
S^E)->E(g) is a character of the group C(G, S^E) and the correspond-
ing Hilbert space is one dimensional, (3) Fe5^E-^R(F) is a faithful
representation of the complete Boolean algebra Bcx^ by type I factors.

Proof. (1) follows from Definition 3.11, Lemma 3.12, Definition
3.15, Lemma 3.16 and Definition 3.17. (2) follows from Definition
3.15. (3) follows from Lemma 3.14 and Definition 3.15.

§4. Realization of the Unitary Representation in the Fock Space

We now analyze the structure of the unitary representation U(g)
and obtain a concrete realization in terms of creation and annihilation
operators in the Fock space. First we separate out the discrete part.
If #eS£E, then U(g), geC(G, {#}) is a cyclic continuous unitary
representation of the group G and we have

(4.1) & =
X

(4.2) U(g) = Uc(g)<g){<f>U,(g(*))}

where x in <g) runs over all points in SiE. Thus the discrete part
x

is reduced to the study of continuous unitary representation of the
Lie group G, which we do not have to study any further. We shall
now turn our attention to the continuous part £>c and Uc . To simplify
the notation we omit the c, in other words, the discrete part is
assumed to be absent in the following discussion.

Next we can separate out the character part. Any geC(G, X)
is decomposed as g = g^2 , supp g1 c S1/, supp g2 c X— Sjjp. Then
U(g) = U(g1)U(g2) where U(gx) is a character of the group C(G, Sf).
A typical example of a character of C(G, S1/) is given by
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where Kx is a character of G depending measurably on x and ^ is
a measure.

As long as the Hilbert space structure is concerned, UXgJ is a
multiple of identity. In the present paper, we concentrate our
attention to the continuous tensor product part and hereafter omit
the superfix cT (which is equivalent to assuming that the S^E part
as well as the discrete part are absent).

For continuous tensor product part, the analysis of the continuous
complete Boolean algebra of type I factors [3] reveals the following
structure. § is an exponential of a Hilbert space 2. There exists
a faithful representation of the complete Boolean algebra j3f by
projections on 2: YeBx-+P(Y)9 P(F) = 0 if and only if R(Y) = 1,
that is Y^Nx. The most general forms of a product vector and a
bounded product operator on § are known.

We start with the analysis of the projection valued measure
P(F) on 2.

Lemma 4.1. There exists a countable partition of X into mutually
disjoint Xn^Bx and positive continuous measures d//,w such that

(4.3) 2

(4.4) P(Y) =

where 30^ are Hilbert spaces of distinct dimensions and PH(Z) is a
multiplication operator of the characteristic function of Z.

Proof. First, we find a vector % such that (%, P(F)%)>0 for
every Y^BX, $Aff. For this purpose, take arbitrary unit vector
^ and find the largest projection P(FX) such that P(F1)^1 = 0. Next
pick up a unit vector W2 from P(Ft)2 and find largest projection
P(F2) such that P(F2)^X = P(F2)W2-0. Continuing in this way by
a transfinite induction, we have a strictly increasing sequence of
projections l-P(Fa}) which exhausts 2: 2 P(Ffl})(l-P(FflJ+1))-l.

*<tfo
(Y0=X.) By the countable chain condition, a0 is a countable ordinal.
By construction, P(F)^QJ = 0 for all a<a0 implies P(F)-0. Let
a^n(a) be a one to one mapping of the ordinals a<a0 to natural
numbers. Then X.=^n(a)~1'3?a has the desired property.

To find a decomposition of the required type, we construct
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(%*, Z* , 8J for every ordinals a < a0 by a transfinite induction in
such a way that (1) 2-08*, (2) {P(y)Xrt; Fe5^} generates 8tf,
(3) P(Z*) is the largest projection of the form P(Y), vanishing identi-
cally on {©8,}^, (4) (X«, P(F)X,)>0 if F-Z^JVf. Note that

j3<a

S^JJJp for a^/3 and (3) imply P(Zp)^P(Za)) for /3<a and PCZ^S,
= 0. For the construction, assume (Xp, Zp, 80) be given for /3<a.
Define P(Zrt) by (3). Use the previous construction of X to define X*
as a unit vector in {©S^-1 satisfying (4). Define 8^ by (2). This

P<#
procedure is possible unless {©S^-^O. If the last equation holds,

P<«
we set a = aQ and we have (1).

To reach the form of (4.3) and (4.4), define P(YJ = P(Za)- V
^<*

P(Zp). By the complete Boolean property of B\, YaeBx exists and
by the countable chain condition, P(ya)=t=0 only for a countable
number of a = an> n = l,2, —. Set XJI = Xa,li. We have I]P(XJ-1,
P(J*QP(JfJ-0 for ^^m, and 8-08,, 2n = P(Xn)Z. Because of the
property (4), P(F)X^O for YaXn, Y&N% where we define Xg=

for /3<an. We have 8w-08^ where 8£ is generated by
Since two measures (X!, P(F)X^) and (%g, P(F)Xg) are

equivalent, we have derivatives of one with respect to the other:

A(x) = (Xl, P(d*)X?)/(X?
3\ P(cLr)XS). Then <p%=^A(x)l'2P(dx)X% satis-

fies (^,P(y)^)-(^,P(F)^). Since XJ= JA(*)~1/8P(d*)p5, 8^ is
generated by P(F)^ and P(F) on all 8^ with ^ fixed are unitarily
equivalent. Writing /,W(F) = (X?, p(y)x») and 2%=S2(Xn, d^)®^,
TO,= 0 {̂ }, ^S=l®^(||ep|| = l)f we have (4.3) and (44).

P^K

If dimensions of some 3Jl's coincide, we lump together those Xn

for which 3Jlu has the same dimension and obtain (4.3) and (4.4)
where 3Jl's have distinct dimensions. Q.E.D.

Next we analyze a product unitary operator.

Lemma 4.2. A niost general unitary product operator in a
continuous tensor product is given by

(4. 5) W(c, 0, 0) = e-*+-»+ieT(-Q<l>, Q, 0)

where Q is a unitary operator on 8, commuting with all P(F), Y<=BX,
$ is a vector in 8, c is a real number and T(^, Q, 0) is defined in
Theorem 5.3 of ref. [3]. It satisfies



Factorizable Representation of Current Algebra 373

(4.6)

= Wfe + ̂ -ImOk, Q202),

(4. 7) W(c, 0, Q) exp ¥ - g-*c*"»+i'c+c*'*> exp Q(¥ - 0)

(4.8) (n, W(c, 0,

Proof. The general form of bounded product operator is given
by &T(i|r, Q, 0) where k is a number, Q is a bounded operator on 8
with ||Q||<1, commuting with all P(F), i|r and $ are vectors in £
and 0 + 0*^ is in the domain of (1-Q*Q)~1/2. The last condition is
equivalent to the requirement that T(\|r, Q, 0)*T^, Q, 0) be a
bounded operator and is automatically satisfied if the unitarity re-
quirement is satisfied. The latter is given by

1= |*I2W, Q,

Since kfrT(^, Q', 00 = 1 implies &'=1, •^/ = 0/ = 0, Q'=l, we obtain the
following necessary and sufficient condition for the unitarity:

QQ* = Q*Q = 19 ty = — Q0 , \k\2 = e~~^'^

The rest of the lemma follows from ref. [3].
(In terms of annihilation and creation operators, T(\/r, Q, 0) can be
written formally as

, 0) = ^MOgCaMogQa^.a^

Lemma 4.3. // lixnW(cw, 0n, QJ = W(c, 0, Q)

operator topology, then lim exp / (cn — c) = 1, lim 1 1 0W — 0 1 1 = 0 , and
limQw=Q in the strong operator topology.

Proof. From (4.7), we have

(4. 9) (e*, W(c, 0, Q}e*) = e~^'^ic^ ^.TJ-CO-GM+C*^^ o

By setting ^ = 0 = 0 and separating the absolute value and phase,
we have

(4.10) lim 1 10 J |2 = 1 10| j2

(4. 11) lim exp i(cn—c) = 1 .

By setting <$> = 0, taking sufficiently small M? so that (0W , ^) | <
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| (<£, ¥) |< ?t and using (4. 10) and (4. 11), we obtain

(4.12) lim (0., ¥) = (&¥).

Together with (4. 10), this implies lim ||<£n-0||=0. By setting W = 0
and using small <3>, we have

(4. 13) lim (®, QA*) - (3>, 00) .

Finally, by using small <3> and M?, and substituting previous results,
we have

(4. 14) lim (*, QHV) = (<£, Q^F) .

Because (?w and Q are unitary, this implies limQn = Q in the strong
sense. Q.E.D.

We now concentrate our attention to the subgroup Cp(G, X) of
C(G, X) consisting of elements gxc30 where g^G which is considered
as a constant element of C(G, X) in the notation gxcF) and %(F) is
a characteristic function of Y^Bx. For each fixed Y, we have a
continuous unitary representation of G

(4. 15) ^eG-Ute*") = W(<fe, Y), 0(^, F), Q(^, F))

where the continuity follows from Lemma 2. 4. The relations among
quantities with varying Y are given by

(4. 16) Q(g, Y) = P( F) Q(g, X) + 1 - P( F) ,

(4.17)

From

(4. 18) Ete«") = exp {--(0(^ X), P(Y)^, X)) + »c(^, F)}
£

we have

(4. 19) g«w.^ = n ^c^' V

where (F.J is a countable partition of y and the product must
converge irrespective of the ordering.

Theorem 4. 4. (4. 15) gives a continuous unitary representation of
G for a fixed Y, if and only if (1) Q(g, Y) is a continuous unitary
representation of G, (2) g-^$(g, Y) is a continuous mapping satisfying
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(4.20)

and (3) g->gz'c^>F^ /$ a continuous mapping satisfying

(4. 22) exp i {c(& , Y) + c(^a , Y) - *(&& , Y)

+ Im|Xft,y), tfft-MO]} = 1.

If § is spanned by U(g*CY>)n, then {0(g, Y}} must span 8. If
{0(g, Y)} spans 8, then spaces 2Jlw in (4.3) are separable.

Proof. The first half is an immediate consequence of (4. 6) and
Lemma 4.3. ((4.20) follows from (4.21).) From (4.7) and (4.21),
U(gxc30)n is a multiple of

(4. 23) exp - Q(g, Y) 0(^ Y) = exp <t>(g~ \ Y)

which is in exp8t where 8j is the space spanned by all <p(g, Y).
Therefore 81 = 8 is necessary in order that {U(^xc:r))n} spans e%.
Finally, to prove the separability of 2Jlw , we note that G is separable
and hence has a countable dense set {gn}. By continuity, {$>(gnJ Y)}
generates 8. Let EN be the projection on the subspace spanned by
<t>(gn> y)i n = l,~-,N, Y^BX. En commutes with P(Y) by construc-
tion. Let 8W be the subspace generated by (1 — ̂ -i)^^, Y}. Then
8-08w and each 8W is cyclic for (P(y)}. Let P(YW) be the largest
P(y) vanishing on 8W. (Yn defined up to a set in JVf.) Define

PWr=5]nP(yz-
Cc)) where (c) indicates Yf or Y£

c and the summation
1=1

runs over all possibilities such that the number of Yf is exactly r.

Define %r= 2 m~1Pmr(l-Em_1^(gm> X}. This has the property of
m^r

Xis in Lemma 4.1 except some of Xr here can be 0. Since its total
number is countable, dim ^Sln is finite or countably infinite. Q.E.D.

Definition 4.5. Let $Q be a Hilbert space, G be a group , and
Q(g\ g^G be a continuous unitary representation of G on £>. An
^-valued continuous function $(g} of g^G is called a cocycle of first
order if it satisfies

(4. 24) *(&)-*(ft&) + Gtea)**(&) = 0

The set of first order cocycles is denoted by Z\G, £>). //
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for an fle§, then <p is called a coboundary. They are denoted by

B\G, £).
We shall study 4>(g, Y) in a separate section. The representa-

ting operator for a general element of C(G, -X") can be obtained from
that of Cp(G, X) if we introduce the following additional continuity
assumption.

Definition 4.6. The functional E(g) is called uniformly conti-
nuous if it is continuous with respect to the uniform topology on
C(G, X). The uniform topology on C(G, -X") is defined by neighbour-
hoods Nm(g)={g' ', g'(x)g(x}~lc:yi for all x] where 31 is a neighbour-

hood of 1 in G,

Theorem 4. 7. An expectation functional E(g) is uniformly con-
tinuous if and only if the representation U(g) canonically associated
with E is strongly continuous with respect to the uniform topology
of C(G, X).

Proof. The if part is obvious. For the only if part, we note
that given a compact K in G and an open neighbourhood 31 of 1 in
G, there exists a neighbourhood %l' of 1 such that {x$l'x~lm, x^K}
c9i. (Take a compact neighbourhood 91, of 1 for each x<=K such
that x3ixx~lc:3l. Then consider the set Kx of all y^K satisfying

<3/91,.y~1c9l. Kx is an open covering of K and hence there exists a
finite number of Kx covering K. Take 91' to be the intersection of

91, for the finite number of x.) Hence if E(g) is uniformly conti-
nuous, then E(g!gg2) for a fixed gl and gz is continuous in g. From
this U(g) is weakly continuous on a dense set. Since it is unitary,
it is strongly continuous. Q.E.D.

§5. Form of Expectation Functional

Theorem 5.1. Let jBf be a continuous complete Boolean algebra

of equivalence classes of subsets of X satisfying the countable chain

condition and let F(g, Y) be a complex valued function of g^G and

Y^ BX satisfying the following condition ;

(1) F(gigj\ Y)-F(gt, Y)-F(gT\ Y) = H(gi, gj ; Y} (mod
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(2) H(gi9 gj\ Y) is continuous in g{ and gj for each

(3) H(l9g;Y) = H(g,I;Y) = Q
(4) Y->H(gi9 gj\ Y) is complex finite measure on the complete

Boolean algebra J3f for each fixed gt and gj.

(5) H(gi , gj ; Y) is a positive semidefinite matrix for any fixed g{ ,

i = l, -,#, and Y.
(6) exp F(g, Y) is continuous in g.
(7) If {Yi} is a countable partition of Y, expF(^, Y) = nexpF(£, Y,-).
(8) ReFOf, YHReFGT1, Y).

Then there exists a continuous tensor product ^=e^, £l = e° and a
continuous unitary representation gx-»U(gx) of the subgroup Cp(G, X)
such that

(5. 1) E(g*™) = (fl,

Conversely, any separable cr-factorizable functional over C(G, X)
with no discrete spectrum is of this form when restricted to Cp(G9 X).

Proof. We first prove the converse part. Let U(gxcF)) be given
by (4. 15) where Q, $ and c satisfy (1), (2), (3) of Theorem 4. 4
and are cr-additive in Y, mod. 2,ni for c. We compute E(^'XCY)) =
(aW^f!) in terms of ^, Y), Q(g) = Q(g,X), 4>(g} =<t>(g, X) and
P(Y). We have

^5^ 2) E(P"XCF)) —

and hence define

(5. 3) F(g, Y) = - (</>Qr) , P(y)^)) + icte, F) .

js continuous in ^ for fixed Yby Lemma 2.4. We also have
0Fcliy) = E(l) = l. Because we have a freedom of adding an integral
multiple of 2?t to c(g, Y), we set c(l, Y) = 0. Then F(l, Y) = 0.
From (4.20) and (4.21), we have $(g-\ Y}= -Q(g, Y}$(g, Y\ Hence
the unitarity of Q(g, Y) implies (8). Next we compute

(5. 4) G(ft , gj ; Y) = F(gigT\ Y}-F(giY}-F(gfY] .

From the unitarity of Q(g) and equation (4.17), we have
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(5. 5) IIP(Y)DXft&)-<KftO:]ll' = IIP(Y)Q(&)*0(ft)ll'

Hence

(5.6)

+ (0(ft), P(F)<X&)) = 2 Re (<Kglg2),

Setting &=£,, g1 = gigT\ we have

(5. 7) Re LF(gigj\ Y)-F(gi, Y)-F(g,, Y)]

By setting gv=l, we have ReF^'1, y) = ReF(£, Y). Hence

(5. 8) Re lF(glgj\ Y)-F(g{, Y}-F(gj\ F)]

Next we consider (4.22). We have

(5. 9) c(glg2, Y)-c(gl9 Y}-c(g2, Y) = Im

modulo 27T. Hence, we obtain modulo 2-rr

(5. 10) Im {F(gigT\ Y}-F(gi, Y)-F(gy\ F)]

Combining (5.7) and (5.10), we have

(5. 11) F(ft*r, Y)-F(g» Y)-F(gT\ Y) =

modulo 27rt" . By taking H(g{ , ^y ; Y") to be the right hand side, we
have the properties (2)-(5) for H.

Now let F and H be given. We introduce the free complex
linear space KQ over 5f xG, denoting a general element by

(5. 12) 2

We introduce an inner product by linearity and

(5. 13) WF1; ft), ^(F2, &)) = fT(ft, ^2 ; Yin Y,) .

After identifying all elements with 0 norm as 0, we obtain a
prehilbert space. We denote its completion by 8. We define
c(g, F), P(F) and Q(g) by
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(5. 14) $(g) = ¥(X, g), c(g, Y) = ImF(g, Y}

(5. 15) P(Y)¥(Y', g) = ^(FH F, g)

(5. 16) Q(g)V(Y, g') = V(Y, g'g-*)-V(Y, g-1} .

First we note that </>(!) = 0, because \\W(X, l)\\2 = H(l, 1; X) = 0. By
linearity, we want to extend P(Y) and Q(g) to a dense subset.
Because of (4) and (5), P(Y) brings 0 always to 0 and hence the
linear extension is possible. Further (4) and (5) imply that P(Y) is
bounded. From the definition, we see P(Y)* = P(Y) and P(Y)2=P(Y).
Namely P(Y) is a projection. (4) then tells us that Y-»P(Y) is a
projection valued measure.

From the continuity of H(gt , gj ; Y) in gt and gj , we see that
*P(Y, g) is strongly continuous in g. Hence $(g) and Q(g) are
strongly continuous in g.

For Q(g), the structure of H and the definition (5. 16) of Q imply

(5. 17)

1 ; r,n y
; Y2n yj

Here we have used F(l, y) = 0, which follows from (1) with gt = \
and (3). (5.17) holds up to 2mtiy n = Q, ±1, ••• . However, the con-
tinuity of Q(g) implies n = Q. Hence Q(g) can be extended to the
whole space as an isometric operator by linearity and continuity.
From the definition Q(gl}Q(g2) = Q(g1g2) holds on a total set ¥(Y, g)
and hence on all vectors. Since Q(l) = l, Q(g~1}Q(g} = Q(g}Q(g~1} = l-
Hence Q(g)'1 exists, which implies that Q(g) is unitary. Further
Q(g)* = Q(g~1}- By definition Q(g) commutes with all P(F). Since
ReF(l, Y) = 0, (5.13), (5.15) and (8) imply (<j>(g), P(Y)0(g)) =
-2Re F(g, Y). If we define U(^XCFD) by (4. 15), (4. 16) and (4. 17) with
<f>(g, X) = 4>(g)9 Q(g, X) = Q(g), then the equation (5.1) is satisfied.

The function c(g, Y} is a--additive in Y mod 2it by (7). It
satisfies (4.22) due to (5.14), (1), (5.13) and (5.15). It is continuous
in g due to (6). Thus U(^XCF)) is a continuous unitary representation
of Cp(G9 X). Q.E.D.
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We remark that the absolute value part of (7) is a consequence
of other assumptions. We also note that Im F(g, Y)= — ImF(g~\ Y)
mod 2?r follows from (1) and (5).

In the rest of this section, we rederive the form of the func-
tional E(g) in the preceding theorem by an elementary method under
the assumption that the functional is given by

(5-18)

Here F(g) is assumed to be continuous in g, F(l) = 0 and p is a
continuous positive finite measure on X.

Lemma 5.2. Let Ai/9 i,j=l,—,n, be a matrix. The matrix
(exp cAiJ is positive semidefinite for all positive c if and only if A

is hermitian and PAP is positive semidefinite where Pij=
<8ij — — .

n

Proof. (1) The sufficiency : We have

(5. 19) exp cA{j = * Vi)* (exp c(PAP),v)(^/) ,

where

(5-20) a= — ̂ SA-y (real),
n a

(5.21) /8y = ^-2^y.
n •

Hence

(5. 22) 2 xf (exp cA^ xj = e«^y? (exp c(PAP)^yj

where

(5.23) yj = Xj<fi.

By Lemma 8. 2 of [3], the positive semidefiniteness of (PAP),-y

implies the same for exp c(PAP)ij . Therefore we have the positive
semidefiniteness of exp cAij from (5. 22).

(2) The necessity: Let Px = x, namely 2#, = 0. Then

(5. 24) 2 xfAijXj = lim c'1 2 xf^AuXj>0 .
a J J C-+Q a J

Since P is a projection, we have the positive semidefiniteness of
PAP.

It follows that Bij=expc(PAP)gj is hermitian. Since f(c) =
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exp fcA,v must be real, a= —(c/n2)f'(Q) is real. Since

-,.exp(tf + y,- + /Qy) is hermitian, where 7.-=(c/«)2 A; "' we bave

y
= Pj

Jr2n7ci. From the continuity in c, we have »=0. Hence
v=a + y,- + /3/ + GPAP),v

 is hermitian. Q.E.D.
We now consider

(5.25)

By the Lemma 5.2, the positivity condition for E implies

(5.26)
n

whenever 2]** = 0- Let i,j = Q,l,~-,n, gQ=l, XQ= — $]#•• Then we1=1
have

(5. 27) xtF(gig7
l)Xj-( *?)

=

1=1

Namely F(gigjl)-F(gi) — F(gjL) is positive semidefinite.
Conversely, assume that F(gigj\ x)-F(g{J x)-F(gj\ x), i,j =

l,-~,n is positive semidefinite for any {gf}9 n and x. By setting

«=1, #! = !, we have F(l, x) = 0. Let /^ be a finite positive measure
on X. Then

(5. 28) F(g) = jF(g(jc), ^)d^W , geC(X, G)

have the property that H(giy gJ) = F(gigYl)-F(gi)-F(gjl) is positive
semidefinite and F(l) = 0. Then, for any x{ satisfying ^Xi = Q, we
have

(5. 29) ^*fH(gi, gy)*y = S^^fegJ1)^ > 0 -

Hence E(g,-g71) is positive semidefinite and E(l) = l. In particular,
if F(g, x) is constant in x, we have the positivity for (5.18).

§6. Standard Examples for $(</, F)

To analyze <j>(g, F), we introduce the following spaces.

Definition 6.1. Let h(t) be a function of the class S) such that

its Fourier transform h(^)=(eitxh(t)dt satisfies Z(Q) = Q,
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for X=|=0 and 2"(0)=|=0. Let Iz- be a linearly independent basis of g,
and

(6. 1) K =

5
00

X£(dX) <z^rf K"1/2 fe £fe inverse of the mapping K1/2 from

(1-£([0]°))8 into 8.
The space Z?* is the range of KT1/2 in 8 equipped with the

topology induced by a new norm \\^\\±=\\K±1/2^\\ and D+ is the
completion of Z)"1". The space J90 is the largest subspace of 8 on
which Q(g) = l for all g.

Lemma 6.2. D± as a topological linear space does not depend
on the choice of h and {IJ. D0 is the eigenspace belonging to the
eigenvalue 0 of K. (Q(g) — 1)M?" for any g^G and M*e8 belongs to
D~ and

(6.2)

where d(g} does not depend on ^. For every ^, \\(Q(g) —

Proof. We first characterize a vector in the range of K(I,-)1/2.
Consider the spectral decomposition of one parameter family of
unitary operators

(6.3) Q(

Then

(6.4) K(I) = [l-

By assumption 1 — ̂ (\)>0, where the equality holds only at X^O,
1 — $(X)->1 as X-^oo and of order X2 at x = 0. Hence a vector \|r is

in the domain of K(I)~1/2 if and only if fx~2d(^, £r(X)^)<oo. In

particular (Q(etl}-l)^ is in the domain of K(I)-1/2 because x~2|^-l|2

is a bounded function of X. We also know that K(I)i/r = 0 if and
only if Q(etl}^r = ̂  for all /. Next, since all K(If-)>0, we have

Now we see that the eigenspace of K belonging to the eigen-
value 0 is the intersection of the same for K(I,-) and hence consists
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of i|r such that Q(etlt')^ = ̂ . Since etli generates G, we have proved
the assertion on DQ.

Next we prove that (Q(etl^-l)^ is in D~. Since K(I,)>0, we

have (<p,Kp)2>(<p, K(I,)?0 for any <p. Hence UKa^K-^il^ll^iH2

where ^)l=K1/2^. Hence K(lz-)
1/2K~1/2 has a bounded closure with

normal, which we denote by R{. The domain of Rt is ZV1. If T
is a bounded linear operator and S is a linear operator with a dense
domain, then (TS)* = S*T* ([5] p. 297). Since the ranges of K(I,-)1/2

and K~1/2 are contained in ZV-, we consider the restrictions T=

IZV- and S-K'^IA-1 on the space DQ\ Then

for <pe/V- where 7?f is the adjoint of R{ on Do*1. Therefore,

for peZV-- Since K(I£)
1/2^ = 0 for ^eZ>0, we see that K(IZ-)VV for

any 9? is in the domain of K"1/2 and the above inequality holds.
Since

(6. 5) p(t) = sup 2(1 -cos
x

^3 = WC^O-l]^ for any \|r is in the domain of K(IZ-)~1/2. Hence
setting ^?2=K(IZ-)~1/V3, we see that <p^ is in the domain of K~1/2 and

(6. 6)

Any ^eG can be written as a product gKi) ...gKAO where l(p)

is of the form fplw for some «'(/»)• Then, writing
and £C/V+1) = 1, we have

(6. 7)

(6.8)
^=1

We thus have proved that {Q(g)~ 1}^^D_ and the equation (6.2).
Near g=l, we may take i(p)=p (running over a basis) and g->I is
equivalent to {tp}^>0. As /->0 and ^5->^, S,(^)= IIK^O'^CQ^O

and 8,(^)<p(/)||^— i|r|| + S^)->0. Hence (6.7) implies
^0 as g-*l for every ^ in 8.

Finally we prove that different choices of h and {IJ give the
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same D±. Let pv(f) and KV(I) be the p and K(I) with £=&,, dv(g)
be the d(g) with hv and {I*}, KV = SKV(I?) where ? = 1 and 2. For
<p={Q(en) — I}ty, we have

(6.9) HKr 1 / 8^l l^rf i (^)IWI.

Choose an a satisfying 0<a<27c/t and define J5a=J5j([ — 0, a]). Then
^-(QC^1)-!)-^^!)1^ is bounded and hence ||^||= \\RK2(l)-

l/2<p\\<
\\R\\ HK.OO-'Vi! if Ea^ = ̂  and EQ^ = Q. If ^ runs over (Ea-E0)Z,
then 93=(Q(g/r) — l)^ runs over Ea times the domain of K2(I)~

1/2.
(Note that E"08 is orthogonal to the domain of K2(l)~

1/2.) Hence we
have

(6.10) \K^K2(iy^i\<c(i)\m

for 3> = K2(I)-
1/V, which runs over (Efl-E0)8. If OeE08, then the

left hand side of (6.10) is 0 and hence (6.10) holds trivially.
Next consider -\]r in (1— jBfl)8. If A is a closed operator and ^n

is a sequence of vectors in the domain of A such that \\A\}rn\\<a
for all n and lim-^w = i/r, then i/r is also in the domain of A and
\\A^\\<a due to the weak sequential compactness. If -fy(t) is measure-

able in t, ^=\^(t}dt converges strongly, \\A\]r(f)\\<a(f) and \a(t)dt
<oo, then ^ is in the domain of A and \\A\)r\\<(a(t)dt. By using

this, we integrate (6.9) relative to hz(t)dt where J(I)=(
<oo. We have ||Kr1/2K2(I)i/r|| < J(I)||^||. If we set <E> =
runs over (1-EJ8 when ^ runs over (1-EJS and
x(l-£J|| ||0>||. Hence (6.10) with a new constant c(l) holds also

for such <3>.
Thus we see that Kr1/2K2(I)

1/2 is a bounded operator. Taking
adjoint, we see that

(6.11)

for any (p in the domain of Kr1/2. Setting KrvV = ̂ . we nave

(6.12) OKK2(I)^)<0(I)2(^ K^)

where ^r^D^-. By adding this equation for 1 = 1?, z'=l, • • • , we have

(6.13) (^K^^a^K^)

for some constant a^ and for any ^ in the orthogonal complement
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of DQ. Since D0 is the 0 eigenspace of both Kx and K2, an addition
of vectors in Z)0 to -^ does not change the inequality (6.10) and we
have Kg^fliKi. Similarly, we have K^^K^ Hence D" is the same
for v = l and 2. From K^^K^ we have

(6.14) ||K1/2K^||*<^||*

for ^GEKi/28. Since K2
1/28 span D0\ Ki/2K?1/a is bounded on D^-.

Namely, KKi/V, K^V)! <a¥2\\<p\\ I h H I for any ^ in the domain
of Ki-1/2 and any <p. Hence (KJ/V, K^/S/p) = (%, ̂ ) for some % in D0\
satisfying ||X||<a\ /2\\cp\\. Since Ki/V is in D0

X, we have X-
and hence ^/2K\/2<p\\<a\/2\\<p\\ for any <?. Therefore

(6.15) IIKi-^ll^

for any ^eKi/2?. Similarly

(6.16) i lK^VII^

for any ^eKi/28. Since the domain of K^1/2K1/2 is 8, the domain
of K^1/2 contains Kl/28 which is the domain of Kr1/2. Similarly the
domain of Ki~1/2 contains the domain of K^1/2 and hence the two are
equal. Thus D+ and its topology does not depend on the choice of
h and I,. Q.B.D.

Remark. In our preceding proof of the statement that K(I,-)1/29?
is in the domain of K~1/2, we have actually proved that for any
bounded self-adjoint operators satisfying ^4^,6^0, the range of ̂ 41/2

contains the range of B1/2.
It is also possible to obtain D+ by the following procedure.

Introduce a family of seminorms ||i/r! I=||K(I)1/V'|| to A"1 where I
runs over all elements in the Lie algebra. This defines a locally
convex topology on ZV-, which actually coincides with the topology of
D+. The completion of D^ with respect to this topology gives D u.

Lemma 6.3. Let & be a Hilbert space, G be a locally compact
group, Q(g) be a continuous unitary representation of G on §, and
(j)(g) be a ^-valued function on G satisfying (4.24).

(1) // <£(#) is weakly measurable (i.e. (\|r, <j>(g)} is measurable
for every i/r) and is locally essentially bounded (with respect to in-
variant measures on G), then $(g) is strongly continuous.
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(2) // \\$(g}\\ is measurable, then $(g) is locally bounded.
(3) // <p(g~) is weakly measurable and £> is separable, then

\\$(g}\\ is measurable.

Proof. (1) First, we show that $>(g) is strongly continuous at
g=l. By setting g1=l in (4.24), we have 0(1) = 0. Hence this
amounts to proving lim I |<K#)[ 1 = 0.

S->1

Let Sft be a bounded neighbourhood of 1 such that \\<l>(g)\\<R
for almost all g in 31. Let 9^ and 5ft2 be neighbourhoods of 1 such
that SfiJKgcSft. Let / be a continuous function with support in 5R,

such that l/(gi)dgi=l and g<^%l2. From (4.24), we have

(6. 17) ty, (£(£)) = J

where d& is the right invariant measure on G. Hence

where <f>=\<t>(g)f(g)<ig, which converges weakly due to the measur-

ability and essential boundedness of <j>(g) on the bounded support
of continuous /. This then implies |(^, <t>(g))\ ||^iir1->0 as ^->1
uniformly in ^. Namely il<£(g)i|-*0.

From (4.24), we have ||0(&&)-0(a)|| = l|0(&)||. Hence 0(^) is
strongly continuous at any

(3) This is obvious from \\$(g)\\2=l>2\(^j, $(g)) 2 for a count-

able orthonormal basis \^.
(2) Let i7(£)=!l£(g)||. It is measurable, 0<^(^r)<oo and

(6. 18)

due to (4.24). Let A be a bounded measurable subset of G,
be a right invariant measure and

(6. 19) f(A, a) - Ki^A ; -n(g)<a})lv(£) .

Since g'eA, ^(gf)<b implies v(gf g)>v(g) — b by (6. 18), we have
(for b=r](g)-d)

(6. 20) f (A& a) < 1 - g(A,
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If 5ft is a sufficiently small neighbourhood of 1, then the invariant
measure of the complement of \g in A can be made smaller than
given £>0 for every g<^%l. Then

(6. 21) f (Aft a) > £(A, 0)-eMA) .

If -n(g) is locally unbounded at ft=l, there exist g), .7 = 1,2, ••• such
that g, e 5R and lim ??(g}) = -h <» . By ^(g) < oo 9 we have lim £(A, 6) = 1.

&-><*>

Hence (6.20) and (6.21) imply, when gy is substituted into g, £(A, a)
— £/#(A)<0. This contradicts with limf(A, 0) = 1. Hence ^(g) is

«->oo

locally bounded at g=l.

From the first equation of (6.18), sup ^(ftg) < sup ??(£) + j?(ft).
g^w ge9?

Hence ij(g) is locally bounded at any fteG. Q.E.D.

Lemma 6.4. // \/re£)+, /A0w K^eD~. Tfe closure of this
mapping is a unitary mapping from D + onto D~. The sesqui linear
form (i|r, <^)g /or i/reD+, 0eD" c#?z fe extended to ^^D+ and it
gives the duality between D+ and D~. Here ( , )g /5 Me £/mer product
in 8.

Proof. By definition, ||i/r||* = ||K1/2^II2^ llK-1/2Ki/r|l2= (|K^||!. for
any \|r^D+ (^Do1-). Hence K is isometric and defined on a dense
set D+ in D+. Further, KD+ is dense in D~. Hence the closure of
K is a unitary mapping from D^ onto D~. For \|reD+, ^>eD~, we
have (Ki/r, ^>)_ = (i|r, </>)g. Since 5+ is self -dual with respect to ( , ) + ,
KD + -D" is dual to D+ with respect to (,) s . Q.E.D.

We note that for any operator A which maps D~ into IT, we
can define ^L* as an operator on Z)+ by 04*-^, ^)s=(^, A£)2 for

This definition coincide with A* in 8 if \/r is in D+.

Lemma 6.5. For each

(6.22)

Proof. By (6.2), Q(g) — l is a bounded mapping from 2 into
D~. The dual of 8 and D~ with respect to ( , )y is ? and D+. Hence
Q(g)*~~ 1 can be considered as an adjoint of Q(g) — 1 which must be
a bounded mapping from D+ into 2, with the norm bounded by
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d(g). Since (Q(g)-I)D0=Q, (Q(g)*-l)D*JLD0. Further,

(6. 23) (Q(gl) - 1) Q(g2) = (Q(gl g2) - 1) - (Q(g2) - 1)

and hence (4.24) holds. By Lemma 6.2, we have, for any
and

as g-*l. Therefore <f)(g) is weakly continuous at g=I. Then
is weakly continuous at any g by (4.24). We already know the
local boundedness from \\<l>(g)\\<d(g)\\'*P\\+. (It also follows from the
weak continuity.) By Lemma 6.3 (1), $(g") is strongly continuous.

Q.E.D.
Let H be a connected invariant subgroup of a Lie group G,

G=G/H, H^ be the commutator group of H, H2 be the maximal
compact subgroup of the connected abelian group H/H^ and K=
(H/Hl}/H2. Let r(g), g^G be defined by r(g)h=ghg~1 for h^H and

[[>(£)*]] for k = [£hJ\t=K (Aeff, [h^H/HJ. Then for
, r(h) is the identity on K and hence we can define r(g) = T(g)

on K for g=gH<=G. Let y(^) be a measurable function g^G/H
with values in G such that 7(1) = ! and g=j(g)Ha Let

(6. 24) a(gl9 g2) =

Let *(^) = [[7(^)"^]] where gs=G, g=gH. Then

(6. 25) a(g19 g2)

where gl = glH, g2=g2H. From this, the following equality can easily
be checked by using the commutativity of elements in K:

(6. 26) a(g2 , &)

Hence a determines a cohomology # in jff2(6, K). Let a^ and c^
be the a corresponding to two choices jl and j2 for 7. Then
J^^gY^H and hence 5(£)= [[T^)'1^)]] is a /iT-valued
measurable function. We have

(6.27) «„(&, ^ = a,2(^, ^{S^^W^-S^))-^^)-1} .

Hence (T does not depend on the choice of j and is determined by
G. We write as #(<?).
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If ^ is a r(G) invariant connected subgroup of K and d:(
is a 0 cohomology in K/Klf we shall call K^ as an annihilator. In
this case, there exists K/K± valued measurable function S^g) on G,
of which |>Yl(&, &)] for a given ^ is the coboundary : [aYl(&, &)]

. Then <ya(£) = T^)^) satisfies

Theorem 6. 6. Let G be a Lie group, H be a connected invariant
subgroup of G, G=G/H, g be the coset containing g<^G, Hl be the
commutator subgroup of G, H2 be the maximal compact subgroup of
H/H,, [A] be the coset containing h^H, K=(H/H1)/H2, [[A]] be the
coset containing \Ji}^HjHl, r(g) be the representation of G on K
induced from the inner automorphism of G, j ( g ) be a G-valued
measurable function on G such that g=^(g}H and y(l) = l, a^(gl9 g2)
= [Lv(gi &)"1 7(^1)7(^2)]], <x(G) be the cohomology class of ay in
H2(G, K), which is independent of 7, K± be an annihilator for a(G),
\_k~\ be the coset in K/^ containing k^K, and JQ be a choice of j
satisfying [_a^Q(gly ft)] = l for all g19 gz^G, which exists.

Let lf be the Lie algebra of the connected obeli an group K/K19

IL be a r(G) invariant nonnegative hermitian form on I' + zT, %a be
the quotient of I' + il' by vectors of vanishing p-norm, and <j>a(g) =

Further let Qb(g) be a continuous unitary representation of G on
a Hilbert space Zb and $b(g)^Zl(G, Sfl086).

Let

(6. 28) S = Sfl © S, , Q(g) = r(^) © Qb(g) ,

(6.29) 0(g) = 0ate) + 0^).

Then Q(g) is a continuous unitary representation of G, Q(g) = l
for g^H, and 4>(g)<=Z\G,%).

Conversely, any such Q(g) and <fr(g) is of this form, i.e., the
representation space can be decomposed as a direct sum of Q(g)
invariant subspaces %a and 86, each of which is as described above.

Proof. Since KjK^ is connected, commutative and contains no
compact part, the exponential mapping from I' onto KjK^ is one to
one and onto. Hence $a(g) is defined for all g. By the invariance
of IJL, r(g) is unitary. The equation (4.24) for 2fl part follows from



390 Huzihiro Araki

(6.25) and [«?„(&, £"2)]
 = 1- T(g) is continuous by construction. The

continuity of $ follows from (6.28) and the measurability of $ due
to Lemma 6.3.

We now prove the converse part. For h^H, we have from
(4.24)

(6.30)

Further

(6.31)

Let 8^ be the subspace spanned by </>(A), Aeff. Then

(6. 32)

on this space. Hence it is invariant under Q(G). Let 8 =
(£)- Then 0J(A) = 0 for AeF. From (6.30), we have
Namely &(g) depends only on g=gH. Since Q(g)

commute with the projection on 8fl and 86, (4.24) holds for <££ and
06 separately. Hence we have the required property for 8& part.
We now turn our attention to 3>'a(g). From (6.30) we have

(6.33) *i(A1A8Ar1A2-
1) = 0

(6. 34) 0a(exp 27r«) - ^(exp 2x1) = 0

if hi^H, etl<^H, and exp27rl = l. Hence <j>'a(ti) = Q for Ae^ and <l>'a(g)
depends only on gH^. Further 0i(A) = 0 for [A]e£T2 and hence ^(h)
depends only on [[A]]e/f. From

(6. 35) 0a(exp rt) = <0i(exp I)

^>i(A) is real linear when considered as a function of log A.
Let /JCj be the set of k^K for which $K&) = 0. It is a connected

subgroup of K due to (6. 30) and (6. 35). Obviously K^ must be r(G)
invariant. The Lie algebra IJ of K/K^ can be identified with a real
linear subset of 8fl, which spans 8fl. The inner product of 8fl

induces an inner product of Ii + /Ii, which is r(G) invariant, and
positive semidefinite. Since K is commutative, r(g) defined on K
and hence on K/K^ depends only on g=gH^G. Hence we write it
as -r(g). We may also write 0i(A) = log[[[A]]] for h^H according
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to the above identification.
Finally, for each geG, we fix y(g)eG such that g = y(g)H.

We shall compute

(6. 36) log [>(&,

The orthogonal projection on I', in the real Hilbert space 8fl with
respect to the real part of the complex inner product of 8fl , commutes
with Q(g), g^G. Applying it on (6.36) and using (6.31), we see that
[_a(gly g2)] is cohomologous to 0. Thus K^ must be an annihilator.

We now define <$>a as in the theorem and $b(g) = (4>'a(g) — $a(g}}
® <££(£)• We have <j>b(h} = Q for h^H. Q.E.D.

We now study further structure of <££. For this purpose, it is
convenient to decompose at the start the representation Q(g) of G
on the finite dimensional 8fl into irreducible representations Qj(g) on
Pj$>a where Pj are projections. Then P/^eZ^G, Py8fl) and we can
discuss each P/#[. Equivalently, we shall assume that Q(g), g^G
is already an irreducible representation on 8a.

Let Hal be the identity component of the subgroup Ha consisting
of all g^G such that Q(g) = l on the subspace 8fl. Let HQl be the
set of all h e Hal such that <j>'a(K) = 0. Since Qfagg?) = Q(gJ Q(g^) = 1
if Q(^) = l, Ha and Hal must be invariant subgroup of G. If
then

(6. 37) Wghg-1) = Q(g} &(gh) + ̂ (r1) = Q(^) 4>'a(g) + tite'1) = 0 .

Hence ghg'l^HQl and H01 is an invariant subgroup of G.
By the same reasoning as the proof of the previous theorem,

H=Hal/Hol is faithfully represented by a real linear subset 8fll of 8a

((6.30) and (6.35)) and hence it is abelian, does not contain any
compact subgroup and is connected. Q(g) on 8al coincides with the
adjoint representation Ad (g) on Hal .

Let P be the orthogonal projection on 8fll in the real Hilbert
space $a with respect to the real part of the complex inner product
of 8fl. Let $a(g) = P<l>'a(g). Since 8fll is invariant under Q(g), ^
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belongs to Zl(G9 8al). Let H0 be the subgroup of G consisting of all
g^Ha such that 4>a(g) = Q. By (6.37), it is an invariant subgroup.
Ha/H0 is faithfully represented by 8fll and is identifiable with H.
Ga = G/Ha is faithfully represented by ga=gHa-^Ad(g} and HJH0

is maximal abelian in G/H0. Since Ga is a connected Lie group with
a faithful finite dimensional unitary representation, it is a direct
product of a compact group and Rm.

For each g"eG, there exists an h^Hal such that 4>a(K) = $a(g)
and %(g) = hH0^H is uniquely determined. Let HxGa be the semi-
direct product with the multiplication law

(6. 38) (A,, a) (A,, &) = (h, r(ft) A2, ft ft)

for Aj, A2e#, ft, g2^Ga. Then the mapping g->(g(g), gHa} is a
homomorphism onto HxGa. If glHa = g2Ha, then g±lgz^Ha and
C(a) = C(a). If f (a) = f (a) in addition, then $f feT'a) = Q(&)*<K(g?)
+ #f (a) = 0(&)**ater1) + #f(&) = <(a)-*a(a) = 0. Hence gTlgze#0.
Therefore gHQ(=G/H0-*(i;(g), gHa) is an isomorphism of G/#0 onto
HxGa.

We now have the following structure : (1) a commutative group
Hisomorphic to Rn, (2) a real inner product p on H, (3) a connected
subgroup Ga of the orthogonal group on the real Hilbert space
Lt(H, M), and (4) an invariant subgroup H0 of G such that G/H0 is
isomorphic to the semidirect product HxGa.

Conversely, suppose that such structure is given and gH0-*(l;(g),
ri(g)) is the isomorphism of G/H0 onto HxGa. Then Q(g) = y(g) is
orthogonal matrix on L2(H, ^), %(g)^Zl(G, L2(H, /^)) and

(6.39) Ha= {g;Q(g) =

(6.40) H0 = te;fte) =

H=HJHQ and Ga = G/Ha.
Finally we discuss <t>'a(g) — <l>a (£) = $!'(g), which belongs to Z\G,

8J. If ^efffll, then tf'(g) = 09 namely ^C^), ^e//fl depends only
on gHal^GJHal. We see from (6.31) and the continuity of $,"(A)
that Ote) = l for all g^G on ^X/(A), AeJY«. (HJHal is countable.)
Since Q is assumed to be an irreducible representation, either $,"(A)
= 0 for all Aeff, or Q(^) = l for all ^eG and Ha = Hal. In either
case we may assume $,"(A) = 0 for
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Now Q(g) and <j>'d'(g) depends only on gHa^G/Ha and Q is a
faithful unitary representation of G/Ha = Ga. If Ga has no nontrivial
connected invariant abelian subgroup, then Ga is compact and hence
<£a" is a coboundary by Theorem 7.1. Suppose that Ga has an
invariant abelian subgroup Gc isomorphic to Rm, m=j=0. The projec-
tion EGc(G) on Q(GC) invariant vectors commutes with Q(g), g^G.
Since Q is an irreducible and faithful representation of Ga , EGc(0}
= 0. Since 8fl is of finite dimension, <t>'d(g) is coboundary due to
Theorem 7.3.

Summarizing, we have

Theorem 6.7. (1) Let G be a connected Lie group, Ha and HQ

be invariant subgroups of G such that (i) Ha^HQ and H=Ha/H0 is
isomorphic to Rn, (ii) there exists an isomorphism g<=G/HQ-*(t;(g),
7](g)) e Hx Ga , from G onto the semidirect product of H with Ga=G/Ha ,
where the adjoint representation of G on H canonically induces the
action of Ga on H, (Hi) Ga is a direct product of a compact group
and Rm, (iv) A is maximal abelian in G/HQ, and (v) there exists
ad(G) invariant inner product ^ on H+iH. Then <j>(g) = %(gH^^
L2(&+i&, v) = % is in Zl(G, 8) relative to the unitary representation

(6.41) Ha= {g',Q(g) = 1

(6.42) HQ= te;0te) = 0, g<=Ha} .

(2) Let G be a connected Lie group, Q(g) be an irreducible finite
dimensional continuous unitary representation on 8, <j>^Zl(G, 8). Let
Ha and HQ be defined by (6.41) and (6.42). Then, (a) Ha and H0 are
invariant subgroups satisfying (f)-(iv) of (1), (b) 0(A) depends only on
hHQ^Ha/HQ=H and $ gives an isomorphism of L2(H+iH, ^) onto 8
for an appropriate p, and (c) <l>(g) — Z(gH0) is a coboundary.

(3) Let G be a connected Lie group, H be a connected invariant
subgroup, Q(g) be continuous unitary representation of G on 8 without
identity subrepresentation, Q(g) = l for g^H, <j>^.Z\G, 8). Assume
that 8 is spanned by <£(A), h^H. Let Ha and H0 be defined by (6.41)
and (6.42). Then the conclusion (a), (b) and (c) of (2) hold.

In the above, L2(H+iH, p) denotes the quotient of H+iH by
the subspace of vectors with vanishing //, norm.
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The proof of (3) can be obtained by the following slight modi-
fication of the proof of (2). Since an identity subrepresentation is
assumed to be absent, we have Ha = Hal. We have Ga = GKxGc

where GK is compact, Gc = Rm and x denotes the direct product.
As before, (1 — £"Gc(0)) t^" is a coboundary due to Theorem 7.3. On

= l for g^Gc and hence Q(g) = l for all g^G on
h<=Gc by (6.31). By the absence of the identity sub-

representation, EGc(0)^(Gc) = 0. Hence £Gc(°W
 is a cycle for the

compact group GK and must be a coboundary by Theorem 7.1.
Q.E.D.

§7. Determination of Cocycles

Theorem 7.1. For a compact group G, Z1(G,%) = B1(G,Z).

Proof. Since G is compact and $(g) is continuous on G, $(g)
is uniformly bounded. We integrate (4.24) with respect to gl using
the invariant measure on G and obtain

(7. i)
If we set

(7.2) «=

and use the invariance of /*, we obtain

(7.3) *(&) = d-0(ft)*)n
where O is a vector independent of &.

Lemma 7.2. // G zs abelian and Q(g), g^G does not contain
the identity representation, then Z'(G, 8) = fi1(G, D+).

Proof. The basic equation for our discussion is

(7. 4)

This equation is obtained as the difference of the equation (4.24)
and the same equation with gl and gz interchanged, where the com-
mutativity glgz=g2gl has been used.

Let ^(A) be the spectral projection for Q(etl^=ieitxEil(d\) and
be the operator introduced in §6. Then K(I1)"

1 is bounded for
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00, °°) -(-£,£)) for any €>0. Hence

(7. 5) [i-^a-e, £•))]*(*) = (i
where

is a vector in the Hilbert space 8 independent of g. Since It is
arbitrary, we see that

(7. 6) (l-E(A))0te) = (l-QOf)*)nA

for a vector fIA in (1— £(A))8 where £ is the joint spectral projec-
tion for Q(/^'^) and A is any neighbourhood of the origin.

We now define a functional ft over a certain set of vectors in
8 by

(7.7)

if

(7.8) + = (I-Q(g))X .

First we show that

(7. 9) *

implies

(7. 10)

From (7.9) and (7.6) we have

By taking the limit of A shrinking to 0 and using the assumption
E(0) = 0, we obtain (7.10). Thus (7.7) does not depend on how ty
is expressed in the form of eq. (7.8). Furthermore

(7. 11) ([l-£(A)]^f O) = (+, HA), ̂ e8 ,

for any neighbourhood A of the origin.
Next we show that O can be extended to be linear. Let

(7.12) 2(i
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Then (7.6) implies

By taking the limit A->0, we have again

(7.13)

Hence n has a linear extension, which we denote again by O.
Next, we use the fact that K(If-)~

1/2[l-Q(0"0] is bounded and
[l-Q^Ol^KftO^SCA) is also bounded for a fixed t if A is suffici-
ently small. If

(7.14) * = (l-e(*"0)X>

\/r is in the domain of K(IZ-)~1/2 and any vector i|r in jE(A) times the
domain of K(I/)~1/2 can be obtained by (7.14) with the following X:

(7. 15) %

In particular, there is a constant at such that

(7. 16)

Hence

(7. 17) |(f

Let \ — \n span the Lie algebra. Since G is commutative, K(IZ-)
commutes with each other.

If we split up A into mutually disjoint n regions A,-, / = !, • • • , n
such that (p1-"pn)^Ai implies pt>pj for any j, then J5(A,-) are
mutually orthogonal projections with the sum E(A). We have

(7. 18) ||K-^(At.)^i!2 > (1/«)| |K(W-^(A,)^| I1 .

Therefore if -^ is in the domain of K~1/2, then E(Ai)ty is in the
domain of K(I/)-

1/2. From (7. 17) and (7. 18), we have

Hence

(7.19)
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We have the estimate (7.19) for any ^ in D~. Together with (7.11),
we see that fl is in the dual of IT, namely

(7.20) n e D + .

From (7.7) and (7.8), we have

(7.21) <X*) = (i-Qte)*)n,
which is the required result. Q.E.D.

Theorem 7.3. Let H be an invariant abelian subgroup of G and
$^Zl(G, 8). Then

(7. 22)

where fa(g)^Z\G, EH(0)8), fle:5+(ff) an<? (l-Qte)*)ne=8 /or a//
£eG, EH(Q) is the projection on the subspace of vectors invariant
under H and D+(H] is the D + for H.

Proof. Since H is an invariant subgroup, EH(Q) commutes with
all Q(g)9 g^G. Thus

(7.23) ^(^ = (

(7.24) h(g) =

are both in Z\G, 8). By the previous lemma, ^(h\ h^H is of the
form

(7.25)

where H is in D+(H). We shall show that

(7.26) ^te) = (i-Qte)*)n.
From the delSnition equation for a cocycle, we obtain

(7. 27) (l

If we put

(7.28) % = (l-

we obtain, from (7.25) for h^H and ghg'^H and (7.27),

(7. 29) (X, n) = ([l-
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Or somewhat differently written,

(7. 30) ([1 - Q(gft %, , n) = (%, ,

where %1 = [1-
If we make the simultaneous spectral decomposition of Q(h)9

, then /JT(ff) is a multiplication of a function 2(1-^(A-)) = K(^).

Since Qte)K(I)Qte)* = K(Adte)I), K(H)^Q(^)*K(F)(?(^) is a mul-
tiplication of a function K(Ad (^)^). Since Ad (g) is non singular
and continuous in g, K(H)^2K(H}^2 and K(H)-l/2K(H)g

l/2 are locally
bounded and hence uniformly bounded on a compact set. This
implies that Q(g) maps D~(H) into D"(ff), D+(H) into Z)+(H) and
is uniformly bounded for g in a compact set, with respect to the
norms of D~(H) and D+(H}y respectively.

Since the linear combinations of [1 — Q(A)]^, ^^8 are dense in
D~(H) as is seen from the simultaneous spectral decomposition of
Q(K), h^Hy we see that (7.30) holds for all ^eZrCff) and

(7. 31) (%, , (1 - Q(g)*) (i) = (%, , ^(g)) . Q.E.D.

Lemma 7. 4. // JJ 15 <2^ invariant subgroup of G and Z\H9 8)
= B\H9 8), ffew ^Z\G9 8) i5 a/^^5 o/ the form

(7.32) ^) = (i-Q(«r)*)n+*.(«r),
ne(l-jBH(0))8, fa(g)eZ\G/H,EH(QW whe™ EH(Q) is the subspace
of vectors invariant under H.

Proof. The proof is exactly the same as the previous one. In
the present case, Z\H, %} = Bl(H, 8) is 0 on EH(Q)% and hence $2(g)
is in

Determination of cocyeles. Assume G is a connected Lie group.
From the above theorems, we can analyze given <j>(g), g^G in the
following way. Take maximal invariant abelian connected subgroup
G, of G and apply Theorem 7.3, Theorem 6.6 and Theorem 6.7.
The problem is then reduced to G/Gl = G1. Continue this procedure
until & has no invariant connected abelian subgroup. If the original
G is solvable, then 6 is trivial and the problem is completely solved.
Otherwise we are left with a semisimple group. If it has invariant
compact subgroup, we can apply Theorem 7,1 and Lemma 7,4 and
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proceed until G has no invariant compact subgroup.
We have not solved the problem for a semisimple Lie group.
Summarizing, we have the following.

Theorem 7.5. Let G be a Lie group and Gy, .7 = 1, •• - , » be an
ascending sequence of invariant connected subgroups of G such that
G! = !, each Gj/Gj^ (j = 2,-",ri) is abelian and G/Gn is semisimple.
Let % be a Hilbert space, Q be a continuous unitary representation of
G on & and <j>^Zl(G, 8).

Then there exist mutually orthogonal invariant subspaces 85,
j = l, • • • , n and Sj, / = !, ••• , n of 8 such that

(7.33) 8 = (©85)0(085),

(7. 34) Qte) = ( © QJ(ir)) 0 ( 0 Q?

(7. 35)

(7. 36) Qftg) = Q*_£g) = 1 for g^G,., j = 2, -, n ,

(7.37) ti(g) = ti(gGj , ; = !,-,»,

(7.38)

(7.39)

(7.40)

(7.41)

dimensional and is spanned by <$(g\ g^GJ+1(Gn+1 = G),
QJ, 7 = 1, • • • , ^— 1 tes ^o identity subrepresentation. (The structure
of ffi is given by Theorem 6.7.)

If G is solvable and 8 has a finite dimension, then we can
reformulate Theorem 7.5 as follows:

Corollary 7.6. Let G be a solvable Lie group, % be a Hilbert
space of finite dimension, Q be a continuous unitary representation of
G on 8 and ^eZ^G, 8).

Then there exists an ascending sequence of invariant connected
subgroups Gj of G and mutually orthogonal invariant subspaces 8y

0" = 1, • • • , ri) such that G1= {!}, Gn = G, Gj/Gj^ is abelian (j = 2, • • • , n\

for gsEG,., $;(§)<=&; (j = l, —,»-!), Sy w spanned by <}>}.(g),
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G/=l, • • • , n — 1), <pn(g) is a coboundary on 8 and Qj(g) is either an
identity representation or without any identity subrepresentation
(.7 = 1, • • • ,« — !). (TAe structure of <£y is gifl0^ &;y Theorem 6.7.)

To obtain this form, we proceed in exactly the same manner
as Theorem 7.5. All $ are coboundaries and all coboundaries are
lumped together as <£„ in the present Corollary. Each Q] in Theorem
7.5 can be split into a direct sum of an identity representation and
a representation without any identity subrepresentation. Denoting
Gy0={geGy, <£/(#) = 0}, Gy/Gy0 is split into a direct sum of two
invariant subgroups GyA and Gyfi of G/Gyo, where GA consists of
some central elements of G/Gy0 and Gs does not contain any central
elements of G/Gy0. If we inflate the ascending sequence {Gy} of
Theorem 7.5 by inserting the invariant subgroup {g; gG0^GJA}
between Gy_! and Gy, we obtain the structure in Corollary 7.6 where
Gj and n are different from those in Theorem 7.5.

§8. Determination of c(g)

When <f>(g) is determined, c(g) is to be determined from

(8. 1) c(&&)-c(gi)-<:(&) = -Im OK&&), <^(&))
= Im (0(&), ^j1)) (mod

Obviously, if c0(g) is one solution a general solution for eic^ is
obtained by multiplying eic^ with an arbitrary unitary character
of G. In the following, we omit mod 2?r. All equations involving
c(g) linearly are to be understood modulo 2n.

Lemma 8.1. // Z2(G, R) = B\G, R}y then (8.1) has a solution.

Proof. Sufficient to prove that the righthand side of (8.1)
belongs to Z2(G, R). Let d(glf g2) = (<!>(g1), <l>(g?)). Then

(8.2)

This proves that Imrf(gi, ^2)eZ2(G, ^).
For a simply connected semisimple group and a compact group,
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Theorem 8.2. // ^eBXG.S) and fa&Z\G, 8), then both (<&(&)>
fr1)) and (</>2(&), ^(g^1)) are coboundaries.

Proof. Let &
). Then

(8. 3) (&(&), to-1)) = c,(ft) + <:,(&) - dte ft) ,

(8. 4) (&(ft), <fctei-')) = c,(ft) -t- c2(ft) - c,(ft ft) .

To treat the case where n is outside of 8, we need a few
preparations.

Lemma 8.3. Let g=f?\ Q(g}= Je"Ad£(X), £A=

(8.5)

iw S /iw «^ ^eZ^G, 8). G)(I) = jB(0)nA(I) w /fen independent
of A and

(8.6)

where n w m 5+ /or o^^ parameter group {etl}. (1 — J

(-dQ(I)£A)*n = n^(I)-o)(I) where &Q(l) = (^Q(etl} at t =

and j/(0d/ = 0, then Q(f)fl is in 8 where Q(/)= JQ(0/(Od/.

DG be the set of \Q(g)^f(g)dg for ^^2 and f in the class 3). For

9 the limit

(8.7)
t-*Q

exists and satisfies

(8.8) ncxji+xjjj) = X! 11(10 +x2n(i2)
(8. 9) dOft) n(i2) - dQ(i2) 0(1,) = no;!, , I j) .

Proof. Since Q(g)EA , g= g*1 is holomorphic in /, it follows from
(6. 17) (\|r replaced by EA\\r) that ^(en) is strongly C°° in t , where

4>A(g) = EA<l>(g)- Since (̂1) = 0, we have 11^(^)1 1 <ffl for |/ <T and
for a constant a.

Since <f>^Z\G, 8), we have
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(8. 10) 0(e 2
i=o

Therefore, we have

(8. 11) \\4

(8. 12) c(t) = sup
0<s<t

Hence

(8. 13) ll^(O

Since c(f) is of order £ for small t, we have for sufficiently
small t and a constant b,

(8. 14) ll^^1)-^-1)-1^^^)!! < bf .

Hence

(8. 15) \\(tlnY^A(etl^-(tlmY^A(etl/my\\ <2bt .

Further, we obtain from

(8. 16) \\$A(etl/n}-

Let tln>s>tl(n + l). Then

(8. 17) lltf/w)"1^^1711)

Hence by taking t = £ and s, s'<£2, we have

(8. 18) \\s-l^A(esl)-s^^A(es/ly{ < c£

for some constant c. Therefore s~l$A(esl) is a Cauchy sequence and
has a limit in 8.

If we denote the one parameter subgroup {etl ; — oo</<oo}
tentatively by H, then ^eZ^G, 8) implies cj>^Zl(Hy 2). Hence by
Lemma 7.2, we have (8.6). From (8.6), co(l) = £(0)nA(i) is indepen-
dent of A.

Next by integrating with the weight h(t\ we have

(8. 19) 0(e«) A(0 d^ = K(I) O e 8 .

Hence

(8. 20) (1-
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Because t~\l-Q(etl})EAty converges to -dQ(l)EA^ in D'(H\ we
also have (-dQ(I)£^)*n=n^(I)-co(i)e£ from (8.6). From these
two conclusions, Q(/)HeS for (f(t)dt = Q, f^.3) follows because
Q(f)(l-EA) and dQ(l)~lQ(f)EA are both bounded.

We now come to the second half of the lemma (which is in-
cidentally not used in later discussions). It is known that DG is a
common domain of any polynomial of infinitesimal generators of
Q(g}. By splitting H in (8.6) into (1 — £^)O and EA£ly we immedi-
ately have the existence of (8.7). At the same time,

(8. 21) 0(ft ft) = Q(ft)*0(ft) + £(&) ,

with gj = e^ptlj implies (8.8) in the first order in t19 t2, because
) = 0. By using (8.21) repeatedly, we have

(8.22)
= Qte) {»(&)*-

Hence

(8. 23)
Taking the first order in t19 we have (8.9). Q.E.D.

We remark that it is possible to obtain (8.21) in a neighbour-
hood of the identity from (8.8) and (8.9) provided we have the
convergences of several sequences.

Lemma 8.4. Let ̂ eZ^S). // g is in the commutator subgroup
of G, then

Proof. We first note that D± is invariant under Q(g) for any
The reason is as follows: If \i*"\n is a basis of g, then

Ad (g) Ix • • • Ad (g) ln is also a basis of g because g has an inverse g~l

and Ad (g) is nonsingular. Thus K and Q(g)KQ(g)~1='Kg defines
the same D- and the same topology by Lemma 6. 2, which establishes
the invariance of D± under Q(g).

Next we note the following consequences of (4. 24) :

(8. 24) teWa ft) = Q(g^(gI1g^g1) + ̂ .(ft)

ft ft)) *(&)
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where we have used Q(g}*<t>(g~l}=-<t>(l}~<}>(g) = -$(g)- Since (1 —
for any g and D~ is invariant under Q(g\ we see that

if g=g?g?g1gt. Further 4>(gagb) = Q(gb)*<l>(ga) ±<t>(gb} and
hence $(g)<=D~ if £ is a product of elements of the form gllg*lglg2.
Therefore $(g)^D~ for all g in the commutator subgroup of G.

Lemma 8.5. Let Gl be the commutator subgroup of a connected
Lie group G and G/G1 = K1'K2 where K± is compact and K2 does not
contain a compact subgroup. If $^Zl(G, £), g^G, [g^e/^ where

denote the class of g in G/Gly then

Proof. Let Lie algebras for G, G19 K19 K2 be g, g1? 119 12. Then
^fj + fa. Since [^]e^, there exists leg, such that [I]eli

and [g"] = exp[I]. Let exprt = ̂ (0- Then [^(1)] = [^] and hence
g=g(l)gi, g1<^Gl. By the previous lemma, ^>(gi)eD~. Therefore,
if 0te(l))eZr, then <fr(g) = 0^*0(^(1)) + ̂ )eZ?-. We now show
that 0(^(1)) eZ)-.

Let EA be defined as before in terms of the spectral projection
of Q(g(t)). First consider the case where there exists a t0 such that
[#(*<))] = 1 and hence g^^G,. Then ^(g(t0))^D~. Since (1-EA)Z
dD~, we have ^ = EA4>(g(tQ))^D~. If A is sufficiently small, then
from the known structure of <f>(g) for an abelian group {g(t} ; — °o

oo} (Lemma 7.2), we have

{ A

-A-Q

v/here F(X) is a function of class 3), coinciding with (1 —
^"f'*x) for \ e - A ^ X=t=0. Therefore

(8. 26)

If we can show the continuity of Q(g(—s))*& in D", then (8.26) is
in D- and we have ^(g(t))^D~ due to (l-£A)ScZ}-.

The continuity follows from the following inequality and Lemma
6.2:

(8.27) ||Q(£(-0)^-Q(£(-OW1^^
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Here Kt=Q(g(t))KQ(g(--t)) and the local uniform bound ||Kr1/2K1/2N
<al/2 is obtained as follows. We take K1 = Kt and K2 = K in the
proof of Lemma 6.2. Then a^ in (6.13) is a locally bounded function
of t.

We now consider the general case. If ^ •••!„, are linearly in-
dependent basis of Ij such that {etlj} for each j is compact, then by
repeated use of

(8. 28)

and

(8.29)

we have

(8.30)

for any /1--^m. Q.E.D.

Theorem 8.6. If <f><=Bl(G, D+), then Im(0(a&), <X&))eB2(G, #),
namely (8.1) tes /2 solution.

Proof. Let G, Glf Kly K2 be as in Lemma 8. 5. Let [g] be the
class of g in G/GX and [[g"]] be the element of K2 such that

CC«r]] = Crf mod K19 and [[rf] = exp(#te)f I), where (t(g), I) = 2*^)I*
and I/ is a Ifixed basis of !2. Then t&g) is a representation of G

A

on the additive group R. Let I,- be an element of g such that

(I f-modg1) = I f-.
Next we note that if g=gl~-gH and <X£y) — <£yeD~, then (<j>(g) —

This is because

(8.31)

+ - +(Q(aa -&)*-
and (Q(g)*-l) <£<=£>- if

Now <^)(g) = (l-Q(^)*)n forOeD^. By Lemma 6.4,
and hence the previous lemmas are applicable. For g^G, g=
g'gti(g)ii...gt*(g)i, for some g'^G^K^. We already know from Lemma

8.5 that 0(2') eZT. Next <j>(en')-t<l>(e:') = Bn., B=(tQ(el')*-Q(f?l>)*
+ l-t). K(l;)

1/2D hcS and K(I,.)"1/2-SK(I,.)-1/2 is bounded, Bfl is in the
domain of K(I,-)~1/Z and hence B£l<^D~ . Thus we have
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(8.32)

Let

(8. 33) Cl(g) = (a

Then, using /(&&) = /(&) + /(&), we have

(8.34)

Hence c(gi) = Imc1(g) satisfies (8.1). Q.E.D.
Since O in Theorem 7.3 is not necessarily in D+(G), we can

not in general apply Theorem 8.6 to $5, j = l, • • • , ^ — 1 of Theorem
7.5. We also do not know the structure of a cocycle (/>(£") for a

semisimple group and hence we do not know whether Im (0«(gi),

^(gT1)) is automatically a coboundary except when G/Gn is simply

connected in Theorem 7.5. We shall leave these problems for a

future study and now consider the case where </>(g) = 2 <t>j(g) in
j=i

Corollary 7.6. We want a condition on <£y such that there exists

c(g) (mod 27r) satisfying

(8. 35) c(glg2)-c(gl)-c(gj = lm (j— i

In this case, the existence of c is not automatic and we shall obtain

an interesting structure.

We shall analyze (8.35) by an inductive procedure.

Theorem 8.7. Let GCfl0, Gao, Ha, Hao be invariant subgroups of

a connected Lie group Gc*° such that GCa}) is connected, H^G^,

H^H^ and GaQ=Haor\G^. Let Qa(g) be a continuous unitary re-

presentation of 'GCQ>) on a finite dimensional space %a and (j}a,

8J. Assume that ^(g), g^G^ spans 2

(8. 36) H*= {g; Qa(g) = 1,

(8. 37) HM = te; 4>*(g) = 0,

and Qa(g) is either an identity representation or without any identity

subrepresentation. Assume that there exists a real valued measurable



Factorizable Representation of Current Algebra 407

function ca(g) on G(oi:) satisfying

(8. 38) crt(& ft)-£«(&)-<:,,(&) - Im (&,(&), ^(gt1))

+ Fa(g1G(ia^ &GCflo)

modulo 2-rt where F^ is a continuous function on Gc*:

sfltfs/yi'wg"

(8.39) F.(l, ^) - F*(x, 1) - 0 , x^G™/GM .

Then there exist subgroups Ka and G'a of Gca>)

Gt^/Gw and G'a/Hao are isomorphic to Rn and Rn/ for some ri '<n,
KM/HXQ is the direct product of a compact group and Rm,

(8. 40) ^(g) = ^(^r) + (1 - Q.(g)*) flu

belongs to Zl(Gw,&J9 ^(/JT.) = 0 ,
Im (^(/^Gi), ^0(^6;)) = 0.

Further, let

(8. 41) c-0te) - c^) + (1/2) (O, ,

TA^^ /fe^ exists a dual element %« of the Lie algebra gCQ)) of GCa0

such that

(8.42) *. (Ad (*)!) = *, (I)

/or leg^, g^Gc^ as well as for

(8. 43) Im (

where gi^GCl»), g2^Haj log is taken modulo the commutator subgroup
of G.0.

Tfe subgroup GaQ must be connected and any g^G#Q can be
written as g=elg1, Ieg^0, ^ m ^fe commutator subgroup of Gao.
For any such decomposition,

(8.44) cUs) = c^(g) = (̂1) .

ic*(g), g^GaQ is a unitary character on Gm.
Any g in GCa}) can be written as g=elgly IegCa5), gi
5^c/z decomposition,

(8. 45) <;,(*) = ^0(^) = (̂1) +
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Any g in Gw can be written as g=g^g^g<l\ g
g^^Ka. For any such decomposition

(8. 46) cm(g) = c-0te<"*m) -r <?„,(*<")

+ (1/2) jt.dog *«£« {*«} -1 {#«} -1) ,

where the argument in the last term belongs to Gao.
Let Caj+1 be the restriction of cao to /£"aG£=Gc<*+13. // satisfies

ca+1(g) = caQ(g) for gtEGao and

(8. 47) ^+1(&&)-^+1(^i)-^+1(&) - FaX&G^, g2G^

where fagjG^, g2Gao) = F*(gjGM, gjGM) for gly g2 in Gc-+1>. G^/G^
is isomorphic to G^jG^. Gca>+1) is connected.

Proof . From Theorem 6. 7, there exists a measurable mapping
g from £EEGca>) to %(g)tEH« such that f(A) = A for ht=H« and ^(g^Hw

= {Z(gi}H<*0} {T(gi}£(g2}Hm}. There also exists O^eS,, such that

(8. 48) 4>.(g) = ^(f (jr)) + (Q^^r)* - 1) O. .

Let KU be the set of ^such that %(g)Hw> = Hw It is a subgroup
of Gw, isomorphic to G^/^, K^H^ Gw = HJt* and ^(/JTJ = 0.
X« is the direct product of a compact group and J?m, HJH^ is
isomorphic to ^?^ for some N, GCa))/GQ50 is isomorphic to Rn for

n<N<2n, $«0(g}= <t>»(Z(g)) ^nd Qc6(gl)^0(g2) = ̂ 0(glg2gTl). Since
$0o(g) = <l>«(g) for ^^^c,, ^oCGJ spans 8tf and Kar(Het=HaQ. Let
n' = N—n. We shall choose G^ after we have analyzed £#(£•).

Since GCQo is connected and G^^/G^ is simply connected, Gtf0 is
also connected.

We now consider (8.38). First, if g^GM9 then the right hand
side vanishes and we have

(8. 49) c^ggj = c«(glg) = c^ + ctfa), aeG*,, g^Gw .

In particular, expfcaj(^r), g^GW9 is a unitary character on G^.
If gi^Gcfl,), then

(8. 50) crt(gi &) - c«(gi) - ^(fe) - - Im (<£*

(8. 51) ca(g2 g,) - crt(a) - c,(&) = - Im (0c,

where we have used $<»(g~1)= —Q*(g)<l>«(g) and Qa(g1) = l. If we set
gz=gT1 in (8.51) and use cflj(l) = 0, we have



Factorizable Representation of Current Algebra 409

(8.52) c.tef1) = -

If g^Ha, then «?.(&) = 1 and we have from (8.50) and (8.51)

(8. 53) - {c.(a &) + ca(a a)} =

Tr. Substituting gr1 into a and aa and &a into & in (8.53),
we have

(8. 54) ca(a a) = cB(a) + -|- {<?«(&) + cB(a

(8. 55) CB(& a) = ca(a) + (c.(g?gt a) + c

mod TT where we have used (8. 52). We set

(8.56)
(8.57)

Since Qa(a) = l for &eH,» and ^B is faithful on GCB,/Gao, &(£)a and

A'C^a are in G»- Substituting A(a)a and ̂ (2^)a into a and a
into £ in (8.49), we have

(8. 58) cB(
(8. 59) c.(g?gt a) = c«

for a^GCal), g2^Ha. By substituting (8.58) and (8.59) into (8.54)
and (8.55), we obtain

(8. 60) ca(a a) = c<»(a) + cB

(8. 61)

mod?r for g^G^, g2^Ha. If a^GBO in (8.60), we obtain from
(8.49),

(8. 62) o = Ca(a a, ̂ r1^-1) = c.tei) - ca(^ a
Thus we have restriction for ca :

(8. 63) c^ar1) = c.(a) ,

From (8.50) and (8.60), we have
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(8. 64) Im (&.(&), £„(&)) = - (1/2) c«(gl

mod TT. Since Q^fe) is unitary and 0« (£)&»(&) = <£*(£& g1"1) for
, we have

(8.65)

for
So far we have considered c,* and <£*. Since cc6(g) = c060(g) and

<£*(g) = 0«o(g) for g^HM, all the results so far hold for c^ and c^
as well. We now consider cm and 0rt0 for general g^G^\

If gz^K* in (8.48) and (8.51) where c^ and $* are replaced by
c^ and c^o , then the right hand sides are 0. We substitute g^gi g2

into g1 of (8.51) and subtract from (8.50). Then we obtain

(8. 66) ca(gz1glg2} =

Since Gw = HaKtt> (8.63) and (8.66) imply

(8. 67) c^g-^g) = c.(gl) , aeGao

Let

(8. 68) y*(l) = exp i c*(J) , I e 0C^ .

Since c(g~) is measurable and $(g) is C°°, we see that c(g") mod 2n is
C°° by integrating (8.51) over g2 with a class .S) function. Define

(8. 69) (̂1) - (d/dt}ya(tl}

From the definition,

(8.70) **(*!) = ***(!),

Since ^rt(0) = l, we have from (8.60)

(8.71) jUI) = expiX(I).

Hence

(8. 72) cjtf) = (̂1) .

Since G^jGm is commutative, [Ix, y^g^ for any
Further

(8.73) *.(Fi,IJ) = Of I^g^, I2eg.0
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from (8.67). From (8.49), we have

(8. 74)

From (8.60), the Baker-Hausdorff formula, (8.74) and (8.73), we have

(8. 75) xa(l, + 12) = xM + x*(lj , I, , I2 e gc«o .

From (8.70) and (8.75), we see that xa is in the dual of gCfll).
(8.42) follows from (8.66) and (8.67). (8.44) follows from (8.49)

and (8.72). (8.45) follows from (8.49). (8.46) follows from (8.60),
(8.74) and (8.66) mod TT. The argument in the last term of (8.46)
is in Gao as long as G'«c:Ha. (8.43) follows from (8.50) and (8.60)
mod TT. The two sides of (8.43) are continuous in glm Since it holds
for g1 = l and GCaJ) is connected, (8.43) holds. Since the continuity
of c» (mod27r) follows from (8.38), (8.46) holds mod 2n by the
same reason.

We now choose G£ so that H^G'^H^, Ha=G^G'», G(

= G«OJG'JHao is isomorphic to Rn/ and Imfa^KjG'J, ^m(KjG
The last equation implies (8.47).

Let 8^ be the real Hilbert space consisting of elements in
equipped with an inner product

(8. 76) (̂1, , I2) = Re Ofc^i), 0

where ly-Iy + ̂ e^/^, j = l,2. Let

(8. 77) ^A , /3 J2) = Im (fc^i),

The real matrix j3a on S^ is antisymmetric and H/3J|<1. Let S^2)

be the subspace {I + f)^; IegCao}- We have dimS^2) = ^, dimS^^
n + n'.

Let j8^= jE/9e»E for the projection £ on S^2). Since /3£ is also real
antisymmetric, there exists an orthonormal basis zj9 j = l,-",n in
S^2) such that ^z2j^ = ajZ2j9 /3'az2j.= -ajZ2J_l9 ^->0 for y = l, — , m
and £l0Zj = Q for j>2m where w is some integer not exceeding w/2.

Let 8^ be the real linear subset of S^ spanned by ^ao(e
l)9 Ie^y,

y>2m; ^o^1), I^z2j,j<m\ and ^m(el}-iaj^m(el/}, l^z2J_19 \'^z2jy

j<m. Then the inner product of elements in 8^ are all real. Since
<t>#o(Ga) span 8^ (as a complex linear set), 8^ must be the complexi-
fication of S t f .
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Let 8^3) be the orthogonal complement of S£2) in £^1}. For each
we8^3), let s(u) be defined by

(8. 78) S(u) = K + 2' aj(l-(a,)*)'1 (^, Mz2j_,

where the summation is over j<m such that 0y=l=l. Let s(&^) = ££\
By construction, 2f is a real linear subset of $>?\ £f nSf - {0},

and 8^4.8^ = 8^. Hence the same is true for £^4). Further, by
construction of £13) and by (8.78), Ie*eSi4) satisfies Re O, <f)(el)) = Q
for all ^eStfr. Note that ^(el)-ia^(el/) = Q if ay=l because it
has a 0 norm. This implies that ^(^efS^ for Ie^eS^,4) and hence
Im(<XA <£(/)) = 0 for any Ie*e=Si4) and I'e^eS^.

Let G£ be the subgroup of H* generated by Hm and el, l(=z^%£\
H^G^Hm holds by construction. Since S^ + 8^8^ and Gi=)
^0, we have Ha = G^G^. Since ^ n «f - {0}, Gc-5 H Gi=Gc^ n ^0

= G.0. Gi/flT^ is isomorphic to S^-!?"7. Im (^(a), *(&)) = 0 for
gi, gz^G'u by construction.

Since G^nG^^-G^ and Gca>+1>GCQ}) = Gca>), GW/GM is isomorphic
to Gcfll+1VGtfo. Since Gcai) is connected, G^/G^ is connected. Since
G^o is connected in addition, Gca>+1) is connected. Q.E.D.

By using this theorem, we can analyze a solution c of (8.35) in
the following manner. Let Gy be as in Corollary 7.6, for a given
connected solvable group G.

First we set a = 2 in Theorem 8.7 and consider GW = G, GC«D = G2.
8*, 0*, ^aj are &19 $19 4, respectively. H* and H^ are defined by
(8.36) and (8.37). Gao is defined as H^nG^. The function Fa is

«-] A A
the sum2Im(9y(gi)> 9y(^2~1))- A solution c of (8.35) is taken as ca.

y=2

Then Theorem 8.7 is applicable.
There exists an element xa in the dual of gCQJ) such that cj(d) =

x»(l) for legc^. The group G(0>+1) contains Gtf0 and G^+l:>/GM is
isomorphic to G/G2. Both G(Q>+1D and G^ are connected. ca(g) for
a general g- is given in terms of x2, O2 and c3 through formulas
(8.40) and (8.46) where O2 is a vector in 8X and c3 has to satisfy
(8.47). In addition, c,(el} = xz(l) for Ieg20. Im(0a}0(^1), ^(ft)) is fixed
in terms of x2 by (8.43). Since G2 is abelian, this implies in parti-
cular that Im(<£2(gi), 02(^2"1)) = 0 for a, &eG2 (or else c does not
exist). (If 0^0 is given first, (8.43) is a restriction on x2, for which
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a solution might not exist.)
Next we proceed to higher c,, . We make an inductive assump-

tion that we are given a connected subgroup G(Q>) of G, containing a
connected invariant subgroup Ga»-iD0 = GC f l l )nG l»_1 such that Gca>)/Gc*-i)o
is isomorphic to G/Ga>_1. We then look for ca satisfying (8.38) with

^ = 4>^ and F-=2Im(^(gi),^i-1)).
j=05

We apply Theorem 8.7 to the connected group Gcan and its
invariant subgroup GCQ)) = Gca° fl G* . GCao/GCa}_1)0 is isomorphic to G tf/
GOS^, which is connected. Hence G(a}) is also connected. 8*, (?#, <£*
are taken to be 2^, Qa_ly <j>*_19 respectively. Ha and H^ are
defined by (8.36) and (8.37). G^ is defined as jR^nG^. The
function F# is as given above and we assume the existence of a
solution c* of (8.38).

We then obtain a group G ( a i l l ) such that it contains Ga50 = Gcai+1)

H GO, (which automatically contains GCQ>_1)0) and G(a>+1)/Ga}0 is isomorphic
to G/G,,. Both Gca>+1) and Gao are connected. There exist an element
xa in the dual of gc«o satisfying (8.42), an element H^ in SQ}_1 and

c^ satisfying (8.47) with ^=SIm(^/gi), ^X^1)). c^) for a
j=05

general ^ is given in terms of xa, O^ and c^ through formulas
(8.40), (8.44), (8.45) and (8.46). Im(^0(gi), ^0(&)) is determined by
(8.43) in terms of xa. xa has to coincide with x^^ on gCrt_o0

 an(i
Coj+^g1) has to coincide with ^(I) for l^QaQ.

Proceeding recursively, we obtain the following structure :
(1) Subgroups. Gca5), a = 2, • • • , n is a descending sequence of

connected subgroups of G and Ka, H«, GCfl0, G^, Grt0, H^ are sub-
groups of Gcai). They are interrelated with each other and with Gy

of Corollary 7.6, by the relations : (i) GCa0 = Gw n G. , G f lK)=GCf l l+1)nG t f ,
Gc2r"G^ = Ga9 G=G*_1G

W. (ii) G^.^g-^G^^g gives isomorphisms
of GcaJVGCQJ-Do and GCa>)/GCai_1)0 onto G/G^ and GJGa_19 respectively.
(iii) H«Ka = &«\ G^ = GC-+15, G^OJ=H^ H^G^^ = G
= HaQ , GCa>) n G^= GCa>) n GCQ> F1) = GCa}) n K(X,=G^^ n HC6Q=G060 , Gi
(an ascending sequence), (iv) J^, GCa0, //"«(,, and G^ are invariant
subgroups of GCfl°. Besides GCQ>), GCa}) and G^ are connected. Ka/H
is the direct product of a compact group and Rm«, Ha/Hm is iso-
morphic to RN<* for some Na>Q, and is maximal abelian in G(QS)/^o-
(v) G^ = G, G™ = G^ = Hn and #,= {1}.

ao
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(2) Hilbert spaces and cocycles. There exists a real linear
mapping pa from the Lie algebra of H* onto a total set in a complex
Hilbert space 2a ( = &a_1)9 equipped with an inner product /2. The
kernel of p* is £tf0. On 8tf, there exists a continuous unitary re-
presentation Qaj(^) of g*=G such that Qrt(g) = l for g^G*^ and
Q*(g)P»=P*A<l(g) for g^Gw where Ad(g) is the adjoint represent-
ation of GCOJ) on the Lie algebra of H*. For g=gle

lg3,

(8. 79)

is in Zl(G, 8J where fl^eS,, is fixed.

(8-80)

is an Ad(Gca>)) invariant positive real inner product on §* with the
kernel §rt0.

(8. 81) ^ft , fa I2) = Im A,( A, I, , A I2)

defines an antisymmetric operator /8tf on real Hilbert space f^/I^o
such that

(8.82) Hfl.ll <1.

fa commutes with Ad(^), g^G^.
(3) xa is in the dual of gCa}) and satisfies

(8.83) ^(Adte)I) = ̂ (I)

for I e g^, g^Gw as well as for IegCa}), g^Ka. Further,

(8.84) xft\Qao = X^Q* (J3>a).

(4) flrt is related to xa through

(8. 85) ^(1,, fl.y =

if Iy=Iyi + Iy2> Iy ie0C«D, ^2^8^ 7 = 1,2.

(5) GO, is given in terms of %#, n^ and c^+j by (8.40), (8.44),
(8.45) and (8.46), where cn+l is to be taken 0. c=c2 satisfies (8.35)
with <£y = «£y+1.

In the above analysis, we have shown that the pair c and $
necessarily leads to the structures (1)^(5). We have not listed all
the restrictions, which could be extracted from our construction.
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(An example is a relation between adjoint representations of G on
Lie algebras of GCQ>) and H#.) However, the structure and its pro-
perty extracted above as (1)^(5) are sufficient in the sense that,
starting from the subgroup structure (1), the dual elements xa of
(3) and real inner product JJL^, we can always obtain (in a unique
manner) a pair $(g} and c(g). More precisely, we have

Theorem 8. 8. Let the structure of subgroups be given as in (1)
above. Let %« be given as in (3) above. Let /^ be an Ad(Gca}))
invariant positive real inner product on §* with the kernel f)M such
that fia defined by (8.85) satisfies (8.82). Then there exist £„, nrt,
Q<*> $<* and £<& which satisfy (2), (4) and (5) above. $>a, QM, $ao and
CM are unique while H^ is arbitrary.

Proof. Since (8.85) is antisymmetric in ^ and I2, the linear
extension of

(8. 86) £.(!, , I2) = ^ , I2) + ,>„(!, , /3J2)

to the complexification f)* + tf)a of Ijrt, which is again denoted by /£,
is a nonnegative inner product. The quotient of ^)a-\-i^ by the
kernel of /2rt norm, considered as a complex Hilbert space with an
inner product /2m , will be denoted by S.^. The natural homomor-
phism from real Hilbert space Ijrt onto a total set in 8^ is denoted
by pa. The kernel of pa is J)i3}0. (We do not necessarily demand
that pJG^ be total in Srt.)

Due to (8.83) and Ad (g)[lly IJ = [Ad(^)I1, (^)IJ, we have
n» (Ad (^r) I, , &„ Ad (g) I2) = P& , /5, 12). Therefore,

(8. 87) /i,(Ad (£)Ilf Ad

This shows the extence of a unique continuous unitary representa-
tion Q.(g) of g<=Gw such that Q^)^-^Ad(^). Q«(g) = l if

Next we define Qlt(g) = Qtt(g^ if g = &ft,
Since G = GaJ_1GCfl>:>, any g- has such a decomposition. Since G.^_ inGcaJ)

= G^^QdHc6J Qa(g2) = Qa(g£) for a different decomposition g = g(gz.
Since g^G^-^G^g is an isomorphism from G^/G^ to G/G^ and
since Q«(glg2) = Q.v(g2} for g^G*, the extended Q^ is a continuous
unitary representation of G.
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For g = gle
lgs, gi^G^, le^, g^K*, we define

(8-88) *<»(*) = J.I.

Any gr^G has such a decomposition, because G = G€>_1HaKet9 HJHM

is exponential and H^aK^ Since G^nH^K^^G^^aG^ Har\
Ka=HM, and AJ=AJ' for el=gle

l/g^ ftGG*o, gz^Hao, the above
definition of ^^(g) is independent of the decomposition of #. (Note

the following: For I^g^, I'GE^, Ad (^I'-1'= J (nl)'1 AdCyi'e

^0. Since G^ is connected, I" = Ad(ft)l' satisfies pjf/=p€tl
/ for any

g1 <= G^. Next, if 01 - /^s for gi = glg,^ H^, I, I" e ̂ , then I - Ix/ e ^0

because HJH^ is isomorphic to J?^*. Hence pctl
//=pal.)

We now prove that ^eZ^G, SJ. We already know from
earlier results that 0iai0 restricted to G(a° is in Z\GW, SJ. We also
know that, for ^G^, and &eGw, Q.(g) = l, ^(g) = 0, *.(ffi1) = ^(&)
and $06(g1g) = $c&(g1gg-lgl} = <l>a(g1). Here the last equality is due to
g1ggI1^Ga_1 if g^G^. Therefore ^eZ^G, SJ.

We now define c^ assuming that 6^+! is already defined. To
start the inductive procedure, we take cw r l = 0.

The quotient of G^ by its commutator subgroup, say G£0, is
connected and abelian. Hence it is exponential and any g^Gao can
be written as g=elg19 leg^, g^G'KQ. Hence (8.44) defines c^) for
all g^GaQ. Suppose ele~l/ is in the commutator subgroup. Since
GUQ/GM is exponential, I —Feg^0 . From special case of (8.83) with
g(=Ga0, we have ^(gio) = 0- Hence the definition (8.44) is independent
of the decomposition g=elg1.

If «T=^, g'-J'gi, 1,1'GQM, a^ieGio, then gg' = J+l'g{' for
some gf'eGio because Gao/G^0 is abelian. Therefore

(8. 89) U^') = ^0(^) + ̂ 0(^), ft g'^G* .

Next, we define cM(g) for ^eGCo}) by (8.45). If g=elg1 = el'g{,
I, FegU), ft, gieG^o, then e-lel'=g^(g{Yl^G^ and hence F-I

Let F^t'Ad^-^CI'-^d/Seg^. Then e-l#=£"g2 for some
Jo

G^0. Hence

(8-90) c
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where the last equality follows from (8.83). Therefore, the defini-
tion (8.45) does not depend on the decomposition of g.

From (8.83), it follows that

(8. 91) c

for g^G^\ £'eGrto as well as for g^K^, g'^G^. From the
definition and (8.89), we also have

(8. 92) c

Suppose g^H^ g' = t?g19 leg,, gieG^. Then ggfg-l(gTl =
. By the same argu-

ment as in (8.90), we have cM(g2)=xa(AA(g)l-l). From (8.83) and
(8.89), we have ^(^H^^^^
cM(gi) = Q. Therefore

(8. 93) ^(ggrg-^glD = *.(Ad (^)I-I) .

If Fe^, then

(8.94)

due to (8.83). From (8.93) and the commutativity in Gc^/G^, it
follows that

(8. 95)

if &,
We now define ^^(g1) for g^G^ by making decomposition g=

g^g^g^ ^eGc^, ^(2)eGi, ^e/frt and then by setting

(8. 96)

We want to show the independence of this definition on the decom-
position of g.

Let g=gpg?gp = gpg?>gp be two decompositions of g. Since
K,nHa= HM , g™ = gpg' for some g' e HM . Let g'g<*> = g?\ Then

(8. 97) ^a(Ad (g?) I) = *a(Ad (g?) I)

for any leg,, due to (8.83) and g'^H^aK^. Therefore cM(g)
defined by two decompositions g=g^g^ga^ = g^g^ga1^ is the same.
Next, we note that g<» = gpg", g?> = g"g™ for g"=(gprg?> =

nG'^G,,,. From (8.92) and (8.91), we have
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(8-98) cJ(gp) = cM(g™) + c

Since ^eG^cG^+^o, we have from the inductive assumption and
its consequence (8.49)

(8. 99) c^(g™g?) = cc-+1,te W) + c^ M') .

We note that c^+v(g'') = c^+M') = cJig'') by our assumption (8.84).
From (8.95), we have

(8. 100) cj(gpgp(gpy*(gm = c^tePgFtePY^m
+cMi2yg''(g?ri(g'/Y1)

where the second term vanishes due to the special case 1 = 0 of
(8.93).

Finally we note that xc60(Ad(g^)l) = xaQ(Ad(g^Y1 Ad (£?>)!) =
*«,(Adte?')I) for any IeGc-) due to g'"=g™g"(g™Yl^G,»c:K. and
(8.83). Hence

(8. ioi) cM(g«>g™(g«>y*(gm = cj(gpg™(gPYWYl) •
Combining (8. 98), (8. 99), (8. 100) and (8. 101), we have the independ-
ence of cj&) for two decompositions g=g™g™g™ = g™g™g™.

Q.E.D.
To sum up our result, we can obtain all possible pairs <p and c

from the subgroup structure (1), x^ and pa. xa determines c and
the imaginary part of the inner product of <£ while ^ determines
the real part of the inner product of <£. In order that our construc-
tion works, it is necessary and sufficient for 3^ and /^ to satisfy
the invariance (8.83), the mutual compatibility (8.84), the positivity
of pa and the inequality (8.82).

§9. Examples

(1) Abelian group.
In this case we have both B\G, D+) and ZJ(G, L2(8, ^)) where

& = QJrtQ. Since Ad(G) = l, p can be arbitrary positive definite real
inner product. Imaginary part for (<£?(&), ^i(gi)) is impossible and
eic is a character. We write a general elements of G by f=(fl"'fn)
and denote the group operation by vector addition. Then the general
form of F in Theorem 5.1 is
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(9.1) F(f) = - y2/>,*/* + *'

+1 (exp i

where //,yfe is a real positive semidefinite matrix, Cj is a real number,

//, is a finite positive measure, p2 = (pj)2 and g(£) is any smooth
.7=1

function with ^(0) = ! and decreasing rapidly at p->oo. A different
choice of £ is equivalent to a different choice of cy. The exact

form of - — ̂  is not important, because any bounded change can

be absorbed in //,.
If X=RN, we may represent elements in C(G, X) by f=(fl(x)y

••-,£„(*)). Then the continuous tensor product part of a uniformly
continuous a- factorizable separable functional E can be written as

(9.2)

where Fx is of the form (9. 1) and ^jk , Cj and //, depends on jr, where
v is a continuous positive measure. (To obtain this form of an
integral, we may use the standard reduction theory of S relative
to (P(y)}.)

The first term and the last integral in (9. 1) defines two mutually
orthogonal exponent space 2a and 2b. The representation space is
the e^a®e^b and the representing unitary operator is of the form
Ua(f)®Ub(i}. %a is the direct sum of n copies of RN with the inner
product

(9. 3) (f\ f 2) = 2|] J f )(*) pjk(x) t\(x) <M*) .

In terms of creation and annihilation operators, Ua(/) can be writ-
ten as

(9. 4) U.(f ) = XB(f) exp i {(a*, f ) + (f , a J} ,

(9.5)

The second term of (9.1) gives the c number coefficients

(9. 6) Xa(f) = exp i \ ± Cj(x)fj(x) Ax .
j j=i
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8& is the £2 space on the space of points ( x 1 - " X N 9 A""A*)>
p^Rn with respect to djuux(p)dv(x). Q(/) is the multiplication of

n _

the function exp z 2 f?0*0 A/ an<^ HeD+ is represented by a function
y=i

(l+^2)1/2/(/'2)1/2=n(/>). In terms of creation and annihilation operator,
U6(f) can be written as

(9. 7) Us(f) = exp *

x (a4(*f ft)+n(^))-n(^)2^)} : f *)
The special case of (9.1) for n = l is given in [2] and is known

as Levy-Kinchin formula. The equation (9. 7) gives a representation
of the Poisson process part essentially in terms of the number
operator on the Hilbert space of the Gaussian process. (However,
the creation and annihilation operators are displaced by £l(p)y and
the number is weighted by pju)

This situation prevails for a general case, as can be seen from
Lemma 4.2. The representing operator U(eI*y) is of the form (9.7)
for 0 in B\G, D+(G)} and of the form (9.4) for 0; and g^H^

(2) Canonical commutation relation (CCR).
The group G is the Heisenberg group given by the multiplica-

tion rule

(9. 8) (a19 b19 c^(a2y b2, c2) = (a^a^ b^ + b29 c^ + c2 + ajb^

where a, b, c are real numbers. The commutator group Gc of G
coincide with the center of G and consists of (0, 0, c}. We may take
it as our G2 . For CCR, there is an additional requirement that (0,
0, c) is represented by a c-number eic. Thus Bl(G, D+) part is
actually B\G/GC9 D+) and exactly the same as the commutative case.
Also by the condition that (0, 0, c) is represented by eic, 4>j(g) = Q
for y = 2. For j = 3, G=GZ and hence Q3(g) = l. Since cz is already
fixed for G2, the imaginary part of (</>3(gi), ̂ 3(&)) Part ig fixed to be

-n-(a^b2 — a2b^). The real part is arbitrary except for the positive
£j

definiteness condition. As a net result, we have

(9.9) F(ay b, c) = - p.^a2- ̂ I2ab- ^22b
2-
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(9.10) / ,n>0, ^^^ CO2 + (1/4).

This form was obtained by more elementary consideration in
[1]. For E(f), we have an expression of the form (9.2).

The exponent space can be split into a direct sum of 3 spaces
Sc^, y=l,2,3. The representation space is £2C1)®0£C2)®e£C3) and the
representing operator is U1(f)®U2(f)®U3(f). SC1D is the space of
g(x}}, both / and g being real, with an inner product

(9. ii) ( {/,(*), &(*)} , {/,(*), &(*)}) = 2
fJL'22(x) + — (fi(x) g2(x

£j

(9. 12) A4W
i

This is related to the standard form of the Fock representation of
CCR by a Bogoliubov transformation. Sr2) is the space of {g(x)}9 g
being complex, with the inner product

The <£(g) in this space corresponds to a real wave function. The
splitting between Sa) and SC2) is rather arbitrary, for example we
may leave a part of //,n in SC2) and modify /^2 accordingly. In any
case the creation and annihilation operator of the original CCR is
represented by a linear combination of two kinds of Fock creation
and annihilation operators. If we choose the splitting appropriate,
it can be arranged as a hole and a particle, namely the creation
operator of CCR is represented as a sum of Fock creation operator
of one space (particle) and Fock annihilation operator of another
space (hole). A typical example is in [4]. The 2c3j part is exactly
the same as the commutative case where the relevant group is that
of (a, b, 0) and is two dimensional.

(3) The current algebra over rotation group.

We consider G = SU(2) or 0(3). Then the group is compact and
hence Zl(G, L) = Bl(G, L). In this case we have a representation
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= e?HV\ g=el in a Fock space e* where 8= (eS,di/(*)1/2, Q(g) =

J © f©
Q,(£), n=J n, and

(9. 13) H(l) = - 1 J (a*(*
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