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Iterated Hyperbolic Mixed Problems

By
Reiko SAKAMOTO, nee ARIMA*

Introduction

Mixed problems for hyperbolic equations have been investigated by

many authors, but mostly in the case when the equations are of second

order or the case of one space dimension. In 1962, S. Agmon [1] esta-

blished a priori estimates for solutions of general mixed problems of

higher order hyperbolic equations with constant coefficients in a half

space. In the case of variable coefficients, there are recent works of

S. Mizohata [2] and of S. Miyatake [3]. In this paper, we study the

conditions for solvability of higher order mixed problems by means of

iteration procedure. We confined ourselves here to the case of half

space, but it is not difficult to see that our method is also applicable

to general bounded or unbounded domains.

In §1, we summarize Z,2-energy method in elliptic general boun-

dary value problems, due to Schechter [4]. We also clarify the

dependence on the parameters in order to apply his results to unbounded

domains. Here we consider even the case where boundary operators

are not normal. The existence theorem is proved in appendix, using

singular integral operators.

In §2, we shall study the iterated hyperbolic mixed problems on

the basis of energy inequalities.
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§1. Preliminary (Energy of Elliptic Type)

1. Fundamental energy inequalities,,

In this section we consider polynomials of one variable:

flof" + Oif""1+-4-fl.l = floII(f-fy)
/=!

y=i

We denote

for

where D = —. — = — , then we have
i dx

Let us denote

, ft)) = jP(£, 0)0,

then we have

Now we denote

£, 5) =P(f)P'(f, 5) -P'(«P(|, 5),

then we have

Lemma 1.1. S> is represented by
m

•J* \^j S) == _x i (7/ys ^ == \^ j * " " >

where
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Proof. From the definition of £P, we have

+ {a,, (co f""1 + • • • + al-i) - cL (ffo f"'1 + • • • + ft.-i)

Now suppose that R = Q, that is, {P, P'} has a common root ?0, then

we have ^(fo, s) =0 identically, which means that detQ = 0. Remarking
that detQ is a polynomial of degree m(m—fy with respect to (fi, • • - ,

?«, fi, •••,fi-/) , we have

where c is independent of (?i, • • • , ?» , , ?i, ••-,?«-/). It is shown easily
that c=(-l)l"c"+1)0{.

For the present we consider

where we assume that

|«;|,|«;i<C^ j = l,2,-,w (C>0, r>0).

Lemma 1. 2. We assume that

\RPP'\>cr'"\

then we have

!P(£) | + |P' (?) I >£'(!?!+?•)''' for

where c'=c'(C,c~). The converse is also holds.



' = C'(C,c).

. Let

then
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Proof. Assume that

I RPP> I >crm\

then we have

lfi-#l>£o(C,c)r i, .7 = 1,2,-, HI,

\P&\ + \P'&\=n\t-tj\+n\S-l'j\>(l>c0rr forfeC1 .
y=i y=i

On the other hand, we have

|P(f) | - i - |^ /(f) l>Co(C)( | f |+r)- for

Conversely assume that

\P&\ + \P'&\>cf(\t\+rY for

Let S = Sj, then we have

therefore

Lemma 1. 3. We assume that

for ^R (00),
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Now we have

f ) |2-S|P*CDMf) I 2
fe = 0

, a.) 1 2+ 1 P'(f)zKf) +«PU «) 1 2

= (!P|2

PP_4- P /P /

= ( I /Y+I*T-SI /M Z ) " ' - rr^~rr
v1! P !— 2j 1 -o 1

! 2
A 1

From the representation of £P in Lemma 1.1,

Lemma 1. 4. We assume that

\RPP'\>cr"'\
then we have for ueS^O, °o)

where c' = c'(C, c).

Proof. In the same way as in Lemma 1. 3, we have

PP+ P'P'
I PI 2 I I P/l 2

From Lemma 1. 2, we have

|P|2+|P' ^(CcXIfl+r)8" for
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Hence we denote

j = l j=m+l

where

Then we have

o

o

where we have

Now we denote

and

o

then we have, from Lemma 1.1, that the absolute value of each

element of Ei is bounded by C'(C, c), £1 is positive, and

Lemma 1.5. We assume that Imf,-<0 (^ = 1, • • • ,

« for

Proof. The unique solution of P(D^)u(x^ =/(^) C^>0) is given

by
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then we have

Therefore we have

P°° HZ 1 f00 '

\ S|r'I>--'«OOl2d* = ^-\
Jo y=o ZTT J-oo;

Here we introduce

then we have from Lemma 1. 5

Jo y=o

Finally we consider the general case when

P'(?) =r'+^r"1+ •••+«:„= n (f-fj),
y-=i

where we assume that

\aj\<CrJ (; = 1, -,m), k;i<Cr; (;

Proposition 1.1. We assume that

/ for

. {SI
o y=o Jo y=o

, wO and CS = CS(C, c).
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Proof. Let

and apply Lemma 1. 3 to {Q, Q'} .

Proposition 1. 2. PFi? assume that P, Pf are decomposed in such

a way that

P= PQ jP(_) , P' = PoP[-^ ,

where all the roots of P(_} and P('_) have negative imaginary parts

and

'-»' for

we have if u belongs to Gs
Lz(JO, co)?

(x*) 1 2+
Jo y-o

where 5>max(m, m7)

Proof. We have

We denote

then
I /? / f£>

\-KQQ'\.S

Therefore we have from Lemma 1. 4

Co (C, <0 Ts I
Jo y=o

D'-^Po (D) « («) | 2 + sl r'Lr
o y=o y=o

On the other hand, we have from Lemma 1. 5
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o ;=o

2. Hyperbolic polynomials.

Let P(r, ?, 7?i, 3?2, • • • , tf«_i) be a homogeneous polynomial of degree w,

where the coefficients of rw and fm are not zero, which we denote

y=i

We assume that {r/f,v)}^i,-,» are real for (f, ^)eJ?", which we say

that P(r,$,-q) is hyperbolic with respect to r. Then /j of {TI, •••,!•„}

are negative and the others positive for f>0 and 77 = 0, therefore ^ of

{?i, ••*,?»} have positive imaginary parts and the others negative ones

for Imr<X) and 17 ej?""1, which we denote by {f^", • • - , £*} and {?r, • • • ,

^~_^} respectively. Here we denote

Next we consider another hyperbolic polynomial P' of homogeneous

degree m'\

y=i

= as n (e - e; (r, ,) ) = p; (r, $ , v) PL (r, ? , v) .y=i

We denote the resultant of (P, Px} with respect to r by

and that of {P+J P+} with respect to £ by
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Rp.pib, V) = R+(.r, V) = A fl (tf(r, T?,-=i y-i

Here we assume that

(I) inf | £"(?,,?) |=^0,
(£,7j)e.R»
I€l + M=l

(II) Inf |£+(r,v)|=*BM).
ImT<0,77el?»-i
|T| + |nl=l

Now we denote

max(!/U, \p'ijv\, 1A1"1, \p'Q -\ a

then we have

Lemma 261. (I) & equivalent to the following: there exists h>Q
such that

( I )' inf {! P(r, f, v) 1 <»'+ | P'(r, f

precisely, if we assume (I), £/igw ^fer^ exists h = h(K, ki)
and k(U)<h, and if we assume (I)7, then k±>c\K, A(A))>0.

Proof. Assume (I). Since RQ
PmfP,m={RQpp,}"nnf, we have from

Lemma 1. 2

inf { | P(r, f,
T&ci,($,77)e^"
|T| + |€| + \r,\ -1

Now we denote, for f^C1, Re? = ^, Imf==/5, then we have

P(r, 6K + ^, T?) - P(r5 «, T?) + 0jFi (r, a, ft 77) ,

P7(r, aj + fft v)=P\r, a, 77) +^K(r, a, ft 77),

where

| P,(r, a> ft 77) !

Therefore we have

and then there exists c'=c'(K,ki*)X) such that
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inf
ed, *ie=fl

S| + |T»| =1

The converse is shown easily.

Lemma 2.2. WKe assume (I) <2m/ (II). TA#w P, P' are de-
composed into

inf

o/ P(_), P('_) Afl^ negative imaginary parts, and

inf | Pc-oCr, !\ v) I , inf | P/.^r, f, V
^ O , ( ^ 1 7 J ) & / Z » TmT'0 , t$ ,7 | ) i= / e«
|$| + \n\ =1 |T| + |$| + |U|=!

Proof. From Lemma 2.1, we have the two cases for gj(T,-q):

i) |Imfy(r, v) l^>£'(k| + \V\ )>

for Imr<0, ^eJ?""1. The analogous situation holds for ?/. Now we

denote

•* (—) v^"> 's) ^?y ^0 -1-J- V^ ^J V^J V}) ) >

Po (r, ?, v) = P+ (r, f, ^) P(0) (r, ?, #),

where the degree of P0 may vary with (r, 17). We define P(J}, P('_),

PQ in the same way. Since we have

we have

inf i J?Popj(r, ij) | ̂ c(K, Ai, A2)>0.

Now we denote
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Proposition 2.1. We assume (I), ^^ we have, for

cs\\ul,r<\\P^ A, DJu\\M.r+\\P'(r, A, A)«II.-,>.T /or Imr<0,

where s>max(m, m7) «wrf cs = cs(K, &i)>0.

Proof. Remarking Lemma 2.1, we only apply Proposition 1.1.

Proposition 2.2. ITe assume (I) £^ (II), ^^ we have, for

c,\\u\\..r<\\P(r, Dx, Dy}u\\s-m,r+\\Pf(r, D,, Dy^u\\s-ln,,T for Imr<0,

where s^max(m,m') and cs=cs^Kyk1Jkz)>0.

Proof. Remarking Lemma 2. 2, we only apply Proposition 1. 2.

Finally we consider the case of variable coefficients:

P(X, y, r, f, v) = S ptjv(x, jOrW,
I + J + |v| =«

where />,/„(#, JO, p(JV(x,y}^^(Rl}, and

inf

Theorem 2. 1. JTe assume that P, Pf are hyperbolic with respect

to r for each point (x, y} e R+ , and

(I) inf I lft,,(*,j;f ,*)!=*=()

(II) inf
>6«»-l

ImT<0,T/e^«-
M + \n\ =1

for

/or Imr<0 and |r|>Cs, w/zgre 5>max(M,mO 0«d c,, C5 are positive

constants.

Proof. Using partition of unity in R+ , we apply Proposition 2. 2

near the boundary of Rn+ and Proposition 2. 1 in the interior.
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3o Lopatinski's determinants.

Given a system of polynomials (A(g)\ -Bi(f), • • • , -5WZ(?)}, we define
Lopatinski's determinant of {^4; Bi,~-,Bm} by

; Blt -, Bm} = d

where T is a simple closed curve enclosing all the roots of A.

Lemma 3. 1. Let A(g) = U (f-f/), then

LopU; 5,,-,5.}

Moreover if {Blt ••• , -Bm} ere

then

Lop{A; B,, ••-, Bm} = (-

Remark. Let

JB,(f)
then

; 51; • • - , Bm} = nC(f,)Lop{A; Clt ••-, Cm}.
y-i

Proof.

1

»-! 1

if /51\=^/ -1

i
(ft)

?«(fi)-A,(£,)

1 L i- *m-i «,-i (_i)i»c«-Ddet^.

1 ••• 1
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Lemma 3. 2. Let

A& = U (£-£,), A'® = n (£
j=i y=i

fe* {# (£ ) , • • - , 51, (f ) } be divisible by A (f ) .

; A, -^^LopM7; 51, -,5;,}

Remark. Let

5J(«=
then

Lop {^ ; 5lf • • • , Bm} • Lop (A' ; C(, - , C'm,}

Proof. Since jB|(^)=0 (? = ! , - •• , m', j = I,---,m), we have from

Lemma 3. 1

;^,-, 5,,, #,-,£:,}

i>J

Hereafter we consider {^4; B^,---,B^} in the following situations:

Let

where {?*},•=!,...,« have positive imaginary parts, {^7}y=1,...,,,,_M have nega-

tive ones and

\aA<Cri j = l,-,m,

for

" for f
And let

where
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Proposition 3* 1. We assume that

I Lop {A,.; A, -, Btf}

100 fcflve /or we SKO, °o)

o y=o Jo y=o

Proof. Let us denote

* = /£ + !, -,m),

\B
then we have from Lemma 3. 1

Lop {A; B^ --,Bm} = 1
n(fr-£7)

A (£'}

frA^sr)
A (&- ^

= A+(ft-)-Af (K_M) = (-D^-^J?^
and

Lop {A; fij, •»,5ll,} = (-l)^CM"

Therefore we have from Lemma 3. 2

Lop{Af ; B19 -, 5,,} = (-i)^-

Now let

then we have idet^l^J, and then every elements of H~l are bounded

by C'(C,d}. Therefore we have

On the other hand, since

we have
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| D'
j=Q Jo

Then we have from Lemma 1. 3

o y=i

--'>-*B, (o>) | 2 + T "s
Jo ;=0

and we have from Lemma 1. 5

o o
; o i

\1 *•• '••• a.J\l

4,V}=\ U(X
Jo

Since

(Dku, v) =i{Dk~1/t

we have

Jo y=o Jo

For s>m, we put AMs~m instead of A.

Next we consider an adjoint system of {A; Biy-'-.B^}. Let us

denote

\ i
and

I «(b)
Now we assume that

which implies that detJ3^0, then we denote

Here we have
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Proposition 3. 2. We assume that

exists a system of polynomials {BhB
fj} j=^...,m, and it

satisfies that

C4(Z?)w, v} — (u, A(U)v) =i^BjU(ff)B'jV(Sf) for u,

and

|Lop{A.; B^'",B'm}

Proof. To show the last statement, let

« 00= *''«*, i;U)=^7',
then we have

that is,

Since 5.(ft+) = - = fit(f;)=0 (Ar=Ai + l, -,i«), we have

5;(ir) = "-=#(fiU)=o (*=i, -,/•),
that is, (5i(f), ••• ,K(f)} are all divisible by ^L(f). Now let

where the absolute values of the coefficients of (Cy(f)} are bounded
by a positive constant K=K(C, d} if r = l, then we have from Lemma
3. 1 and Lemma 3. 2

= Lop{A; B'^, -,BL,B(, •••, B'J = (-

Finally we consider equivalent boundary conditions. We say that

{.frO), ---.^(f)} and {^(f), ••-,5'B(f)} are equivalent, if the condition

{.B,-(£)«U=o=0 (y = l, • • - , A)} is equivalent to the condition {B^
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-0 (y = l,-,/0} for

Lemma 3.3. Let {^;(<?)}y=i,...,,x and {Bj^}j==i,...ttlbe sets consist-
ing of linearly independent polynomials of order less than m.

Then, in order that {-B/(?)} and {Bj($}} are equivalent, it is necessary
and sufficient that there exists a regular constant matrix

L =

such that

Proof. Let us denote

Then, in order that {£/(?)} and {-By(f)} are equivalent, it is necessary

and sufficient that

is equivalent to

for (»„_!, • • • , co0)^C'", that is, the space generated by {bj=(bn,

&/*)}/=!,...,,* is equal to the space generated by {&,— (^/i, • • - , ̂ «)}y=i,

Hence we have

k y=i, •• - , /* .
A=l

Corollarjc Z^ J5y(f) fe ^2 normal set such that

if
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\bJk\<Clt |£,|<C2 O' = i , - .> / £ , k = l, ~',m).

Then there exists a positive number 8 = d(Ci,Cz) such that

I Lop (A; Bl9'"9B^}\>d\Lop{A+i B19-9BJ\.

Proof. Let us assume s1L>s2>"->sIJ. without loss of generality.

From the Lemma 3. 3, we have

• 1
therefore we have

hence

On the other hand, we have

then

40 A-elliptic (J<0) operator in JR+

Let us consider

where {^4, jBi, • • • , 5«} are homogeneous polynomials of degree {2m,

•-,rm] with respect to C*,£, ?):

where the coefficients of A and 5,- belong to J2(J?+).

Nov/ we assume that

inf \A(x,y; ^ f ,v ) 1 = ^ = 0 ,
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then we can decompose

We denote Lopatinski's determinant of {^+(0, y, A, ?, ??) ; -Bi(3>; /*, f, ??),

• • • , /?„(.)>; <*, f, 77)} with respect to f by Lop{^+; 5i, • • - , 5H!} (y; t, 77).

We say that L is /^-elliptic (^>0) in the half space R"+, if

inf

and

inf |Lop{A; ^-^.X^j^^l^
^efl»-i

A>0,^el?»-i
|A| + |nl=l

We denote

I(#,;y; /I, /)„ Dy~)u(x,y) = {A(x,y; t, Dx, D^

B^yi t, Dx, Z),)«(0,y), -, Bm(y; ;, D^

then L is a bounded operator from <?lt2wz(j??+) to

x

Let F={f; gi, "-.gm} belong to §,, we introduce norms of F in §, by

where 5 is a non-negative integer, CK is a real number, and

l i + j+\v\=s

where

Theorem 4.1. PF^ assume that L is ^-elliptic 0>0) m
^^ have

||) for
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Proof. Using partition of unity in Rn
+, we apply Proposition 3. 1

near the boundary of R"+ and Proposition 2. 1 in the interior.

Let us say that Lu = F is solvable at A, if for any F^§0 there
exists a unique solution

Theorem 40 2. We assume that L is ^-elliptic (£>0) in R"+ ,
then Lu = F is solvable for £>XQ , where A0 is a positive constant.

The proof is given in the appendix.

§2. Iterated Hyperbolic Mixed Problems

1. Hyperbolic energy,,

Given a system of m + \ homogeneous polynomials with respect to

(r, f , *) :

whose degrees are {2m; ri, • • • ,^«} (0<r/<2m — 1). We say that L is

r-elliptic (Imr<0), if L(x,y\ Ae~ie, f, T?) is ^-elliptic 0>0) for each

(0<^<7c). We say that L has the energy inequality of hyperbolic
type, if

C- i , T — f — rimri

Now we consider

for Imr<-ro (ro>0).

(/ = !, 2, "- ,-AO, where the degree of ^4/ is 2m/ and the degree of
is r / j f. Here we assume that

i) each Lt is r-elliptic (lmr<CO),

ii) each Z,/ has the energy inequality of hyperbolic type,

iir)
(I) inf
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(II) inf

Now we denote
AT

/ = !

*,.y; r,

and

where m = ml^

Lemma 1. 1.

Lop {-4+; Bl9-,Bm} =
i<j i=^y /-=i

. Let's denote for k = 2,3,--,N

—

then

Now we assume that

= n SA+A- n i?
»</<* ' 7 f-^-y

i-y, ^fe

On the other hand, we have
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GH-1)

and we have from Lemma 3. 2 In §1.

l+ • R(fe+1) ... R(*+1) \lA+i , x5mi + ...+f f lA+i, •", £)„,! + . ..+JBA+1/

Therefore

n RA*A+ n

Lemma 1=2. "FF^ assume that {Ai}i=i,...lN are hyperbolic polynomials
and satisfy the condition ill). Then we have for

xfyi r, A, A)«l l sh2» / .T for Imr<0, |r|>C,,
/ = !

where s^ -min{2mi, • • • , 2mN}.

Proof. The case when 37 = 2 is shown In Theorem 2.1 in

§1. We have

Gi"U,j>; T9D,,D,-)=At(x,yi T, D,,A)Oi*"1}U,^; r, A, A)
+ lower order terms,

G^Ot.jy; r, A, A) =^U',3'; r, R, Z?,^^'-"^^; r, A, O,) +l.o.t,

. ^ i r , A, A) =A(*,;y; r, A, A)01*-"U,^; r, A, A) +i.o.t.

=AGT,>-; r, A, A)G{*"1J(^^; r, A, A)+Lo.t.
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Then we have for

therefore we have
k k-i

2_J\\Qj U\\s+2mj,T^Cs2-l\\Qj U\\s+2mj+2mk,T •
j=i y=i

Here we have only to use the mathematical induction for k.

Proposition 1.1. We assume the conditions i), ii), iii) for

{Li}i=i,...iN. Then L becomes also ^-elliptic (Imr-<0) and has the
energy inequality of hyperbolic type,

Proof, r-ellipticity (Imr<0) of L follows Lemma 1.1.

To show the hyperbolic energy inequality for Z,, we denote

= A1(x,y; T, Dx, A)Qi (*,.?; r, Dx, A) +A[(x,y; r, D»

= AN(x,y\ r, Dx, DJQ»(x,y\ r, D,9 Dy) +Af
N(x,y; r, Dx> Dy~)

Bmi+...+mi_i+k(x,y; r, Dx, A)

= Blk(y; r, Dx, D,}Q£x,y\ r, Ds, Z?,) +5:i+...+^_l+,(^3;; r, £>„ A),

where the order of A' is less than 2m and the order of Bj is less
than r,-. Now we denote

then we have

^T./ M/ Z~:J' ^l/ 2^j

JBl*w/U=o=g-«1-,-+.l_1^-5i1+...^IB|_1+*wU=o (* = 1, • • • , *w/).

Since each L/ has the energy inequality of hyperbolic type, we have
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\\A,U\\

+ s
/=»,+— +»,_!+!

for Imz-<— ro (/ = !,•••, JV). Summing up them with respect to /, we

apply Lemma 1. 2.

Example. Let us consider

A(r, f, *) -r2-2rf- {<tf*

The common root of {A, A'} (0=^00 with respect to £ must satisfy

0'A - fl A' = (^ - O) (r2 - 2r^ - ?2) - 0,

therefore

that is, no common root is on the upper half plane, whenever Imr<CO.

Now let

I,= {A,;1} O^l,-,^),

where 0<ai<fl2<-"<<2jv. Then {L,}^....^ satisfy i), ii), iii).

2. Hyperbolic energy (continued),,

In the preceding section, we assumed i), ii), iii) on L, but (II) of

iii) seems too strong restriction on A. In this section, we assume i),

ii) on L. If we try to drop (II) of iii), A is forced to be combined

with another appropriate boundary conditions {Cj}J=I>...im of different type

from {Bj}j=1>...im. Let us find sufficient condition on {C/}, in order to get

the hyperbolic energy for M= {A; Ci, ••-,€„}, where the degree of Cs

is Aj. For the simplicity, we assume that M(0, y\ r, f, 77) is independent

of y for \y\>R.

For each point (jy, r, #)> A(0, jy; r, f, #) is written by
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where {Sh Pi} are polynomials of ?, the roots of S/ are also the roots of
N

Qi= II Ak, and the roots of P/ are not the roots of (?/„ We denote S= HSh*=M 1=1
the degree of S/ is p.t and the degree of S is p..

Here we assume

in)' (0) M is r-elliptic (Imr<0),

(I) inf |nJ?U(^J>;^)1^0,
(jr.joe*? i<y
(£,77)e-R»

(II) Lop{S+(j; r, f, T?) ; CyiO>; r, f, *), -, C,,+ (^; r, f, 77)} ^=0

for .yejR""1, Imr<0, ^eJ?""1 (/j+ = degree of S+).

Lemma 20 1. W% assume Hi)7, jfAe» w^ ^^ for

iV

/(^,^; r, D,, Dy)u\\s,2miiT

j;; r,
y=i

Imr<0? |r|>C (s>0).

Proof. Let us denote

and let (3^0, r 0 ,vo)^A Since S/(y0; r0 ,? ,vo) and P/(^0; r0, ?, ?o) have

no common root, there exists a neighbourhood F of (jo, f0, 770) in D,

where S/(.y; r , f ,v) and P/(^; r,f, 77) are polynomials in f with smooth

coefficients in V, the degrees of them are invariable and

S/(:yo; r0, f, 770) =Si(.yo; TO, f, vo)i

and moreover

inf
(^.T,»)ev i<y

inf |Lop{5F(^; r,
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^^ ZV ^

where S^IIS/. Since D is compact, D is covered by finite number
/=-!

of { Vj} with the same properties as above.

At first we assume that A is independent of y, and that support

of u(T,x,7i) is contained in V. Since S/Q/ = ST/, where T/^UP*,*=^/
we have

C\ S I r VDi T, (r, A, V) S(r, A, 77) £ (r, X, 77) \ *dxdV
Ji + y+ |y j=J+2;«/ — jot/

therefore we have from Lemma 1. 2

c'.\ S I rVWS(r, D,,
Ji + j+ \v\ =s + 2m-ij.

Then we have from Proposition 3. 1 in §1

y4(r> A,

N

£
1 = 1

In the general case, we use two kinds of the partition of unity

for Rn
+ and for {Inir<0? ^el?""1; | r | + | v =1}. We refer to appendix

about the treatment of the partition of unity in (r, •#)- space.

Proposition 2, 1. M^ assume ii) a^J iii)' o^ M, ^2^J moreover

where cij^y;r^') are homogeneous polynomials of (7,77) w#Y& coeffi-

cients in ^(-ff*"1). TA^^ M /^^5 hyperbolic energy inequality.

Proof, It is similar to the proof of Proposition 1.1, only we
remark that

>; r, A, A)^U-o>2w-,r-«,r<CS<C,(3;; r, A, A)
j=i z y-i

and we use Lemma 2, 1 instead of Lemma 1. 1.

Example. Let us consider

77)
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where «(?, ^) =f2 + /&G?)f + ^G?) is positive definite. The common root

of {Aa,Aa'} (0=W) only appears on r = 0.

Now let

then

and

fSi = l, Pi = A, for

lSi = AM P/ = l for r = 0.
AT

Let Af(f) = n(f-ft)> then from Lemma 3.1 in §1,

If Imfy>0 (^ = 1, •-, JV). Then Af satisfies ii) and iii)7.

3. Existence theorem.

We say that Lu = F is analytically solvable in the region Imr<C — r,

if Lu = F is not only solvable in Imr<< — r, but u is analytic in Imr<[ — r
with values <?Sr1(J?+), whenever F is analytic in Imr<C— r with values

in §0.

Proposition 8. 1. PFi? assume that

i) Z w ^-elliptic (Imr<0),

ii) Z, ^^5 ?/j^ energy inequality of hyperbolic type in Imr<C — r. Then

Lu = F is analytically solvable in Imr<— f.

Proof. From i), applying Theorem 4. 2 in §1, L is solvable in

Imr<0 and |r|^>Cargr. Now we fix a solvable point r0 (Imr0< — r),
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and make Taylor's expansion on L and F at r0. Denoting r =

we have

/j?F2+ — for |

Then LQu = FQ is solvable and

llll*«lllofTo<C||«||2«-i.ro (* = 1, 2, • • • , 2m),

where C is independent of r0.

Now we solve the problems:

LQ Ui = Fi — LI UQ ,

:*_!+•" +1,2;

We have from ii)

IW|2«-1.T0<1T^-{I^
1 1m r0 1

^'{IIIFJlo.ro + ll^

where C, C7 are independent of r0. Then

k=Q

. / 1 \
.Let PI "^-^min 11. —-=—/^f . OQ I,

\ 2mL I
then

I

Then Sj«*«* converges to 7^ in £'S~1(J?+) for \p,\<.pi.
fe=0

On the other hand

^

then
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for |/j|<u0i. From i), applying Theorem 4.1 in §1, w belongs to
r>2m f TDn \
&Lz(K+)a

Finally we remark that pi depends only on pQ, relating to r0. So

in this way, u can be extended analytically on the region Imr<C — ?%

1. Singular integral operators with positive parameter X.

At first we consider #0*, ?), which is homogeneous of degree zero

with respect to (X, f ) e J?+ X /?*, and we denote

= s
Let us denote

for u<E;S(Rn') or more generally for u<^S\Rn}. Here we define

n^^
/or u^S(R"^) (s: complex number).

Now we denote

then we have

Lemma 1. 1. Let r>0,

Re5</0, where C = C(«, 70, r) ^ independent of s.

Proof. Since we have
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j?H.(l, x) = 9 t - A _

and

we have for \v\

(2«)

(w, /0, r) I H\ „+[/„ ,-Y] 111 #! 1~C'°H 7~c/o+y]:

Now we denote the norm of a(^)e^]V'1"a(J?") by

SUP
9 \v

1 -' -' • >_; sup -
I V | =AT *,,£=*»

Lemma 1. 2e Let N be a non-negative integer, 0<a</3<l,

= S r ^ U ) ^ ^ ^ ^
—

where

Moreover, there exist positive constants C, e, such that

1Ka^,x~y~) for

£|^|-"+£ for
s\x\-"-e for

Proo/. At first we consider HAN+S for Res<0. Since

=& (a, e) *+& a f) ft -!-•••+1?, a,
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we have

h'0l, Z?) a (*)»(*)

From Lemma 1.1, we have

r I / ? l ;-(T+cc-Res) I r -, I -»-y-a+3[a+Y]+1 1 a\N+&A \x—y\

Then we have for Res<j^ and ^1, taking r = ro (0<Cro<i^ — «),

| w+1 1 ^2 ! N+^° \x~y\ -»^-^\

taking r = ri (/3 — a:<ri <! — «),

i G;OK | <C | J5TI H+1 1 a I N+Br» \x~y\ —^-™.

Now we put e = min(ro, jS — «;— ro, ri — /5+^)» then we have

1\a\N+BKe(x-y^ for

From this estimate, we can use the method of analytic continuation

for Res<^, in the representation formula.

Remark. We define

then
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Corollary. Let 0<3e<l— *, then we have for

Let H(x ; A, f ) fe homogeneous of degree 0 M^f A respect to

l+\v\ <& (A,£)eS£

exists an extension H(x ; /^, f ) 0/ /f(^ ; ^, f ) which is

homogeneous of degree 0 with respect to (A,i^^RlxR", satisfying

1 H\a.,k= \ H\ CB">k(Rn^ S»)<^C| -H"!a,A •

Now we denote spherical harmonics on S" of order m by Ymk(A, f)

(* = 1, 2, ••- ,*„,) , and briefly denote Ymk = <pko+kl+...+km_1+k. Then W/=i,2,».

is a complete orthonormal system in Z,2(SK).

Here we denote

then we have

Lemma 1. 3. For a,

DO ^^

| H\ «,

Proof. We use the well known properties about
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Therefore we have

whose sum converges for N> - - - .

Now remarking Lemma 1. 3 and

n

we define for H^^'m\R\ S"),

^;^,Z))w(^)=i]fl/^)7j^^'^aO«(f)* fory=-i ^ZTT; J

then we have

life; ^,D)« <C\H\ o,3(o)|^||.
JV _

Since S^-(^)^0,f) converges to H(x\l,£) in ^°f°(-/?", 5") as
y=i

converges to

in ^°(J?") as TV-^oo, which implies that H(x',t,D^)=Q for ^>0, if

fe; ^^)=0 for ^>0. Hence we define for H^^'B^\R\ Sl~)

which is independent of extensions. We say that H(x\byD} is a

singular integral operator with symbol H(X', A, ?).

Lemma 1. 40

i) Z,e£ /i>0, fA^w ^fer^ exist C>0, e>0, s^c/x fA^f

(x; /I, Z)) J/2(/l, Z?)«(^)

/2^|l for

(Hi°Hz*)(x'9 ^, Z?) is c singular integral operator with symbol
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ii) |]#(*; ^,£)**<jO -#'(*; ̂  for

where H* implies the adjoint of H in L2(R*)%and H*(x\ I, D) is a

singular integral operator with symbol H(x\ J, ?).

Proof, i) Hi

From Lemma 1.2, we have

\\aijipj A!la2k<pkAl2u

Then we have only to apply Lemma 1. 3.

From Lemma 1.2, we have

Next we consider H(x\ I, Z?), relating to decomposition of unity.

Lemma 1. 5. Z,e£ />0 cwrf 000 =1 °^ ^^ support of a 00-

r rnCL/J — !

Proof. HAlaU =
j

From Lemma 1.2, we have

where

Now we denote
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then

= 2]

where
I /^(.HAI »°0 (3 /!/• \}\ I ̂ (~* I ,_, I | TJ\ If" (3 /y iA
I U^QJ, i^/i, *Vj ^y I ^s^w I OL I /+2£ I •*•-*- I o,SC«+i) •**•£ \.^> ^ ^y •

Now

+ s
vo+ Iv| <

where

IG^O, ^,3^) I = I S C^^

Let {afcOO}*=i,2,- be a decomposition of unity in Rn, such that

«(^)=0 for U|>(5, \a\l+28<K (0<3£< [/]+!-/

Lemma 1. 6. Let />0, r>0,
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Proof. Relating to {<**(#)} we consider {&}, {j-J, suet that

rOO>0,

&-=!

Now we denote

== •»*! ~l~ •'42 ")~ -1 43 •

We have

S(,,+l)r
£|U['](A^)ll (from Lemma 1.4),

+ -K£,[/](r*«)ll)} (from Lemma 1.5).
Now we have

Moreover, since

we have

Here we have
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2. ^-elliptic (J<0) operator in R" with singular integral boundary

conditions.

Let us consider

L(x,y; A,£,Ti) =

where

M-=2<»

and L(x,y; A, $, ??) is /{-elliptic GOO) in J?+ in the sense stated in §4

of §1. Now we define

A(x,y, -I, /)„ Z?,) = S a,lv(_
t+j+ \v\ =-2m

ZC^r.j'; /!,/)„ A)

= UU,j; ^, A, A) ; ̂ (j; ;, D,, D,-), • • - , 5B(j» ; ^, Dn Dy~)}.

Lemma 2. 1. Let

where b is a singular integral operator in R"~l and r, s are non-
negative integer, then we have

where {«*} is a partition of unity in R" stated in Section 1.

Proof.
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Here we apply Lemma 1. 6.

Corollary.

(^: non-negative integer).

Here we have

Proposition 2.1. Lc^ L be ^-elliptic (X>(f) in R+, then

l l«ll2»+ , .x<C,Clll iMllL.A+l|M| |) for ^>0,

where we5i?'l"(J?+) (5: non-negative integer},

Next we define the adjoint system of L. At first we define

Bj(y; J, f, 17) =r'-"A (0, j'; ^ f, v) =S^(.y*=i

5,(^; X, A, A) =S^^; ^, Z?,)^v<"-«a
»-i

(^=; — 1, j = m + l, m + 2, •••,2m),

and together with {£.,•} /=i,2,. ••,,»,

^-"-Bim(y; H, D,, D,~)

where

Let

where

0= feC^; -I, A) )>,*-!. -.2» ,
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Lemma 2. 2. There exists M for O^o , such that

f D ~

; a, Dn Z?,)

Proof. Let

then we have from Lemma 1. 4

Here we have

where there exists (7+J^0^i+5li)~1 for -^>^0, and then we have

(I+M<>$1 + 311)'-
1M0$=I for

Let

Let

and (,) (resp<,» be the inner product in L\R'!,~) (resp

Lemma 2. 3. Let u,v<^ff£(R\~). Then

(Au, v) - («, ̂ (*^)

C2/"1 N «, ^ ̂ "(2'""1) 0, Z?,)
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where

0 ...... 0 l
1 0i(0,;y; A,

\1

<eAtfX,A<a

Proof.

k=0 1=0

2m-I 2m-k-I /

where we denote

Now we denote for

(B( \ =

and

then we have

Proposition 2. 2. 7^ Ao/rfs for l>^ that

(Au, v) - (u, A™v)
n
+), and

+'(J?+) (s: non-negative integer}.
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Proof. Let

and

-Lo~ {-^M) 5 -Dfii+10) ""> -t>2mQf°

Then we have from Proposition 3.2 in §1 that Lr
Q is ^-elliptic

Therefore we can apply Proposition 2.1 on io.

Weak existence theorem for L follows Proposition 2, 2, and Pro-

position 2.1 implies that weak solution of L becomes strong solution,

hence we have Theorem 4. 2 in §1.
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