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Uniqueness In Cauchy's Problem for Certain
Fourth Order Elliptic Equations

By

Kazunari HAYASHIDA*

1. We consider in the N dimensional space RN with coordinate
N

(#!,•••>#*) and with norm K= CS*?)1'2). Let ^ be a smooth initial
i=-l

hypersurface containing the origin in its interior and let Q be a domain

whose boundary contains F. We consider the real elliptic operator of

the form

where ais^C^a(^ (a>0) and b

When L is of the form (1. 1), uniqueness in Cauchy's problem for

solutions of Lu = Q was shown by several mathematicians (see cf. [1] ,

[4], [5], [7], [9], [16]). On the other hand, when the coefficients of

L in (1. 1) are smooth, Landis [12] and Lavrentev [13] proved that

any solution u of Lu = 0 satisfying the following two conditions vanishes

identically in Q:^

(i) weC2G0) and Lu = Q in Q,

(ii) u, uXi = 0(exp( — r~5)) (r-»0) along r,

where d is a positive constant depending only on Z, and F. Their

method may be said to give an explicit estimate expressing a relation

between the solution and the Cauchy data.

In this note we shall give another proof for their results. Our

method will be applied to the elliptic system
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1) Previously Mergelyaii [14J proved this result for harmonic functions.
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(1.2) Lpup = Fp(x,uq,uqx^ p = l,~-,m,

where each Lp is the elliptic operator of the form (1.1) and each non-

linear part Fp satisfies

(1.3) |F/*,«,,«O-^*,^,O!^cor^tS S |Z?«(w,-fO |.2)

*=1 |«|^l

Theorem 1. There is a positive number 8 such that if the
solutions {up} and {vp} of (1. 2) satisfy

and

r~2S*)) (r-*0) along r

p=Vp in @, where d depends only on {Lp} and T\

Next we treat the solution u of the fourth order elliptic differential

inequalities

(1. 4) \L±l2u\ ̂ const S i D" u \ ,

where Li, L2 are of the form (1. 1) whose coefficients are sufficiently

smooth and the nonlinear part of the right of (1. 4) satisfies the

Lipschitz condition as in (1.3). Uniqueness for solutions of (1.4) was

shown by several mathematicians (see cf. [10] , [11] , [15] , [17] , [18] ,

[19]). In particular, Mizohata [15] 3) proved that the solution ^eC4(5)

of (1. 4) vanishes identically in Q if the Cauchy data of u vanishes on

F, He used the singular integral method developed by Calderon [3].

On the other hand, Pederson [17] , Protter [18] and Shirota [19] proved

that the solution ^eC4(]2) of (1.4) vanishes identically in Q if Dau

(i#|^3) tends to zero rapidly at an interior point of Q. They used

an integral estimate with a weight function having singularity at the

point.

Now does the solution of (1.4) vanish identically, if its Cauchy

2) We write = Da for any vector a=(ai, ••- ,#»).
dXiai-'-dXn

an

3) He proved also for the more general case of fourth order elliptic equations.
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data tend to zero rapidly at a point? We shall answer to this problem,

that is, we can prove

Theorem 2, There is a positive constant d depending only on

Li, L2 and r such that if the solution z*eC4C§)nC7(F) of (1.4)
satisfies

along r, then u vanishes identically in Q.

Remark, If r is a spherical surface in the neighborhood of the
origin and if LI (or L2) is the Laplacian operator at the origin, then
the constant 8 in Theorem 2 can be taken as d>N.

2 Q Let us denote by Sd an open sphere with the center (rf/2, 0,
• • • , 0 ) and with the radius d/2. We put A= {0<#i<A} fl-Si, A={0
<#!</&} n^Si and /A= {#! = /z} RSi. In this section we shall prove the
following

Proposition 2. 1. // weOCa,) nC2^(rfl) ^nrf Da^-o(exp
( — r~25~s)) (r— >0, \eK\^m — 1) along Ta for any fixed positive numbers
S and e, then there is a function v such that

(2.1) »eC-(5.-{0})nC-1(5.),

(2.2) D«v = Dau on ra for \a\^m-l

and

(2.3) J iDaz;l2^2---^-o(exp(-r5)) (A->0) /or kl^w.
J/»

Before proving the proposition we prepare a lemma. Let us take
f °°a function ^(^)^C00(J?1) such that \ ^(^)rf^ = l and the carrier of

Set

(2. 4) /(^, 5) --f
O

Then we easily see that

and
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ff ^ = i1
n*,s) |0

Further we have

Lemma 2.1. There is a constant Ca such that

O R^ I r)a/Y*- cA I <^C* e~l«l -7-M P1 V /c""t>fYlV^. Oy IU J ^A, oy I j^'L'oco brl £\- A xo^^U/ 5

Proof. Obviously,

^(i-2)*.
P*/J PO

Thus, if we prove the inequality (2. 5) for \ <p(t + 2)dt and \ ^>0-
Jo J-r/5

then we shall complete the proof.
It is easily seen that

f x l s I % \ 1
Jo \S J S

Jo \ S J S2

r°
We have the same equality as (2.6) and (2.7) for \ <p(t + 2)dt.

Jr/s

Noting that f(x,s')=Q in #[2^3s, we have proved (2.5) for \a\ =1.
If we differentiate (2.6) and (2.7) any times and note that [ff/s| <^3,

we obtain (2. 5) for any a.

Now we shall prove Proposition 2.1.

Proof of Proposition 2.1. Let us use the polar coordinate
(r, 61, • • • , 0,,-i) with the center (i, 0, • • • , 0 ) such that

cos 02

i sin^2 ••• sin0«-2

sin02 ••• sin0«_2
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We denote (0i, •••,#„-!) simply by 0. Set

Then it is easily seen that

»»—i
(9 8^ D f i f r ^ — V^. o; ^^V^J — 2_i-7-

and

(2.9) (A'£)(i,6>) = (Z)?w)(i,60 for

Put &OO =exp( — aT5~(£'3)). And we set for the function /(#,

in (2.4)

COO

From now on we denote D? simply by DJ
X for \a\= L Then we see

by Lemma 1. 1

(2.10) I

in a neighborhood of the origin, where ct is a constant depending only

on 7. Set 00i;)=t;OOC(#). Then we have

(2.11) D'.v-^D'sv-D'sC (/ = /! + /2),

where the notation — means that the left side is a linear combination

of each term on the right side. We see from (2. 11)

(2.12) Dlv-^DWv-Dte

Combining (2.8) and (2.12), we obtain

(2.13) D^^(r-i)^

We note that

(2.14) I r - J j

in the carrier of ^ (or C).

Now let us consider each term of the right side of (2. 13). If
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— l, we have from (2.10), (2.14) and from the assumption

on u,

(2. 15)

If l"+p>m — l9 we see

(2.16) i(r-J)

In particular when l(/Jrp>m — 1 and /<M, we have

(2.17) the left side of (2. 16)^c exp(-*r5).

Combining (2. 15), (2. 16) and (2. 17), we have shown (2. 1). Further

we have obtained in the general case l<?

Since the carrier of v (or C) is concentrated on a neighborhood of Ffl,

we see \Dl
xv\<^cXi\ Thus we obtain

\Dtv\ 2dx2 • • - dxn<Lcx!ek (A;I) ̂ c exp ( - *f 5) .

Hence we have shown (2.3). Since the equality (2.2) is trivial, we

have completed the proof.

3. In this section we see how the behavior of the solutions of

(1. 2) or (1. 4) is controled by the Cauchy data. This section is essen-
/ i \ -»

tially based on Mizohata's result [15]. We set <pn(xi) = \Xi-t-- — J and
\ n /

write 0>«(#i) simply by <p.

Lemma 3.1 (Mizohata [15]). Let Li, L2 be second order elliptic
operators of the form (1. 1) with sufficiently smooth coefficients in Qa.
Let WZE C3(^) n C4(a- {0} ). Assume that

(3.1) Daw = Q on Ta for

and
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(3.2) !l(I>w)(o)]i4)->0 (e-»0) for |*|

Then there is a positive constant «0, hQ and c independent of n and

h such that if n>n0 and h<hQ, then

(3.3) c

where c=

Proposition 3. 1. Let it be in C4($ff) nC7(r«) <z«rf ^ ^2 solution

of (1.4) m A. ///or 50f«g e>0,

(3-4)

Proof, From Proposition 2. 1 there is a function 0 such that

(3. 5) ?;eC4(5a- {0}) nC3(Sfl),

(3.6) D"v = D*u on rfl for |«|^3

and

(3.7) H(Daz;)(^)|i2-oCexp(-r5-(£/3))) G%-0) for kl^4.

We put w = u — v. Then, w satisfies the assumption in Lemma 3.1.
Hence the inequality (3. 3) holds. Here we use the following relations

and

Since u is a solution of (1.4), the inequality (3.3) becomes for
sufficiently large c

(3.8) c\{ 9
2\L^

I J f l A

4) We write ||«(A)||2= \u\*dxz~'dxn.



50 Kazunari Hayashida

By (3. 7) this inequality becomes

( h i \2n ( / 1 \~ 2 «)
4+ A.) ck

2»+1exp(-;r5-C£'3)) + c2^(i+A)
Z n/ ( \n J }

\D«u\2dx.

Let us take h + — sufficiently small and nh sufficiently large. We
%

easily see that in order to prove

(3.9) S \ \D«u\2dx = o(exp(-(^-Y}} (/*-0),
M^sJohlz \ \ \2/ !/

it is sufficient to show that we can choose n in such a way that

(3. 10) ^B

and

*••'>«•
where ei is a given number and e will be determined later. If there Is

a positive number e such that

(3.12)

then (3. 10) holds. Since nh is sufficiently large, if we show that

then (3. 11) holds. Let us take positive numbers e', i such that

Noting that K2 log (5/3), we can take n in such a way that

6+£'

It is easily seen that the inequality (3. 14) implies (3. 12), (3. 13; and

that H^->OO. Thus we have proved (3.9).

Secondly we consider the system of second order differential in-

equalities
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K

(Q 1 c^ \J iji 1 <CrnnQt V V \T}^1A I /) — 1 • • • W7^O. ±Oy |jL/^^| I±^LuIlSI 2-i x ' 1-^ ^tf I > ^ — -*•> ? ''^>

where each L# is the elliptic operator of the form (1.1).

Proposition 3.2. Let ul9—9um be in C2® flC3(Ffl) and be

solutions of the elliptic system (3.15) in Qa. If for some s>0, d>l,

Up, Dup = o (exp ( - r~25-£) ) (r->0)

on Fa for l<^p<^m, then we have

(3.16) { \ut\
2dx,[

Jo/, Jo*

The proof of this proposition is obtained in the same way as in

Proposition 3.1. Thus we shall sketch the proof briefly. From Pro-

position 2.1 there are functions vp(p = l9 •••,wi) such that

D«vp = Daup on Fa for |a|<;i

and

o(exP(-r5-(£/3))) (A->0) for la|^2.

Put wp = Up — vp. Then in the same manner as in Lemma 3.1 we see

that there is a positive constant c independent of n and h (n, hXf)

such that

c\{ ^2|L^l2J^ + £2^VWi^S { v2\D«tvp\
2dx,

IJOA J |<x|^lJflA

where c = nJrk~:L. Then we have the inequality as in (3.8),

We proceed in the same way as in the proof of Proposition 3. 1. Then

we obtain (3. 16).

4. In this section we shall prove the following
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Proposition 4. 1. Let u be in C4(J2a) nC7(Ffl) and be a solution

of (1.4) in Qa. If for some e>0, <5>1,

(4.1) Z)V, = 0(exp(--r-25-£)) (r— 0, W<3) on r. ,

n

(4. 2) Z> H = o (exp ( - r"5) ) (r->0,

Before proving the proposition we prepare a lemma. Let #(0) be

a fixed point in RN. And let LI, i2 be second order elliptic operators

with sufficiently smooth coefficients in a neighborhood of jr(0). Further

we assume that Li, L2 are real and homogeneous. Then we have

Lemma 4. L5) Let u be a C4 function in a neighborhood of %(0\

Then there is a constant C independent of R (J?<C1) such that

(4.3)
l<x |<3

\LiL2u\2dx}

where pi, p2 depend only on N.

Proof. We may assume #(0) = 0. Let us write simply by C the

constants independent of R. We take a C°° function such that

fl in r<i

and \Dk</>\<^CR~k. Put v = $u. Then we see

(4. 4) LiL2v = Q (Dk 0 • D4-' «) + 0

where Q(Dk(t>'D*~ku) is a linear combination of each term

Let Z,-0) (z = l, 2) be differential operators whose coefficients are

those of Li at xw. Then there is a fundamental solution E(x) of

I40)ZJ0) such that

(4. 5) | Da£00 | <,Cr*-N~M |logr j .

5) From our proof it is easily seen that this lemma holds also for general fourth
order elliptic operators.
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Since D<^WD^v = D^L^v^Da(U^^~LlLz}v, we have

(4.6) D«u(Q*)

When ]a'l<|3, the equality (4.6) becomes

( 4 7 ) I^
Jr&S

We get by (4. 4) and (4. 5)

(4.8) \\ V^Et-x^L^
\JrZR

^eBr'[ r™ | logr

Noting that the coefficients of L^L^-L^L, have order O(r) (r~>0),

we have from (4. 5) by the integration by parts

(4.9) \{ LPEt-xKWW-LiLJvdx
iJr^R

<,C{ rl'N \logr \\D3v\dx
Jr^R

^CR~5\ r™ \logr \dm?u
Jr^R k=Q

Combining (4. 7) , (4. 8) and (4. 9) , we obtain

(4.10)

Put m = max(]SI^*w|). Then by Holder's inequality we have
r^R k=0

(4.11)
Jr^R

G (^-"
rg^

where p~l + q~l = l, V/e can take /?, ^ in such a way that q>2 and

the right side of (4. 11) is finite. Since

the left side of (4. 10) is estimated from above by
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Similarly we have

rl'N i log r i ! A L2 u \ dx^CR-'* \L,Lzu\2 dx
R \JrrZR J

Thus from (4. 10) we have completed the proof.

Now we shall prove Proposition 4. 1.

Proof of Proposition 4. 1. For the point #(0) in Si/2 we denote

by ri(^(0)) the radius of a sphere tangent to Si whose center is #CO).

It is easily seen that

By Proposition 3. 1 we have

(4.12)

Let us apply Lemma 4. 1 to the sphere with the center #(0). Then we

obtain from (4. 3) and (4. 12)

Thus we have completed the proof.

We note that Lemma 4. 1 holds also for second order elliptic

operators. Hence by Proposition 3. 2 we have the following

Proposition 40 2B Let up (p = l,—,m) be in C2C0a)nC3(Ffl) and
be solutions of (1.2) in @a. Then, if for some e>0, 3>1,

on ra, then in

5. We prepare an energy estimate of Carleman's type for second

order elliptic operators. We proceed along the method developed by

Pederson [17], Protter [18] and Shirota [19].
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Definition. If a function v(x) satisfies the following conditions,

we say that v belongs to 2^.s(Sd) ".

(i) v^C^(RN}[^Cm(S~d-{Q}} and the carrier of v is contained

in Sd.

(ii) For some e>0,

(5.1) Dav = o(exp(-r-5-£^ (r->0, |

Now we set 0(#) = Xi/rz. Then an easy computation shows that

-2

* , 0,l=-2xlx,/rt
!

'4

(5.2) (Svi=(_

and

(5. 3) \Dk

Let us note that the condition (5. 1) implies

(5.4) D?z;-0(exp(-08+£)) (r->0, l«|<i«) in

Let L be a second order homogeneous elliptic operator of the form

(1.1) defined in a neighborhood of the origin. And we assume L = zl

at the origin. Then we have

Proposition 5. 1. There are positive constants dQ, nQ depending
only on N and au such that if 0<.d<,dQ, ri^n^ and d>N-~l it holds
for any

(5. 5)

^n* \ r"4 025~3 exp (2n$5) v2 dx + n\^ exp (2^5) ] Vv \ 2 dx,
j j

where c is a constant depending on dQ and nQ but independent of n.

Proof. We can write

(5.6)
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Let us denote simply by c the positive constant independent of n and

d. We see by (5. 2)

(5.7) \7®\2 = r-\

Let us put g"=exp( — n@8^) and v = zg. It is easily seen that z^C1(S<i)

nC2(^~{0}) and the carrier of zdlS^ Further we note that if

k + l<3, and k*3, 1*3,

(5.8) Dk
xzDl

xz = o(exp(-®el2)~) (r->0) in &.

Obviously

(5. 9) £-1Lv = Lz-2n^1(Zia.jZfi0J+zg-1Lg.

We use the following inequality for the right of (5. 9)

Then

(5. 10)

Thus we have

(5.11)

where the integral domain is Sd. We write

(5. 12)

where J? is the sum of the remained terms.

In general for any function /(#) it holds

(5. 13)

Further we have
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f / f f - r \
(^~\ 1 zO \ /V ^ fl *Y— —\ \ "f 7 7 /!Y-\-\ 177 fj Y \ T 7 7 /$ Y I\D. JL*±) XJ^x^^x^^— 2l \J Xj^rf^ik U-* ' \J *h^*i ^zj U""' \Jxi*

i->xk&xjM'J(,\.

In fact

(5.15) yzxi,jzxkdx=-yxjzxizxkdx-yz,lz,kxjdx,

and

r r
(5.17) \fzXiXk zX] dx^— \f,. zxk z,} dx — \fzXk zx.Xi dx.

Combining (5.15)3 (5.16) and (5.17), we obtain (5.14).
Applying (5. 13) and (5. 14) to each of J?, we see from (5. 12)

(5.18) \\Rdx <;<:d^Er*\Az\2dx.

Now let us show the following inequality

(5. 19) (r* (J^:) (yz - F0) dx<>Q.

We get from (5. 7)

r4 (yz - F$) - zxi (r* - 2x1) - 2x* S zXt xt .

Thus

\r\Az

Xt ,t zxi r -

AT

l
i=2

By (5. 3) we can integrate by parts each // . Integrating by parts, we
can verify
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/3 = (N- 1) \zl, x1dx-{c% 2x; zjz^ dx
J J i=2

and

Combining these integrals, we get

* ( Az} (Vz - F0) dx = (2 -- A7

Hence the inequality (5.19) has been shown. We have from (5.12),

(5.18) and (5.19)

(5. 20)

Now we estimate the last integral in (5. 11). A computation

shows

>-n8(8-

Thus

(5. 21)

^f/l/tR "ST"! I { /i*4: jj sf\ 4/7^ %% sy /S^Co""!) jj\ sfi \ ~?2 J/y
— Z</£0 J/_j \\f UfijWx.ll/ O UkiW "'Xfil"XiJxl^' W"^

- 2^5 S \ (r4 fljv (Z>. «5flw c^5"1 0^A^) ̂  z2 dx.
i.J.k.l J

The first integral on the right of (5. 21) contains the following three

terms :

and

M3=2n33* S [r*0,
i.j.k.lj

From the positive definiteness of L and (5. 7) we have
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(5. 22)

We decompose the integral M2 into

(5. 23) M2 =

Since we have assumed alj = dij at the origin, the second integral of
(5.23) is absorbed by the right of (5.22) if d<,d, for sufficiently
small dQtt The first integral of (5. 23) becomes

Let us note that J0 = 2(2-7V)^/r4 by (5.2). Then we see from
(5.7)

(5. 24) the first integral of (5.23)

Since the constant c on the right of (5. 22) can be taken as arbitrarily
near to 4 for sufficiently small d0, the integral (5.24) is absorbed by
the right of (5.22) for d>N-l. Thus we see that the term M2 is
absorbed by Mi.

Secondly we shall show that the term M3 is absorbed by the right
of (5.22). Let us decompose M3 In a similar way to (5.23). We see

i.J.k.l

On the other hand we have from (5. 2)

Thus we get

Hence the term M3 is absorbed by the right of (5.22). More easily
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we can see that the remaining terms on the right of (5. 21) are
absorbed by the right of (5. 22) if we take n^nQ . Therefore combining
(5.11), (5.20), (5.21) and (5.22), we obtain

(5. 25) n*r~* $25"3 exp (2MP5) v2 dx

^€r(V01HI (LiO'rf*

+ nd U"1 exp (2n®8) \ Vv \ 2 dx\.

Let us put q--=@~lexp(2n®5)0 Then

(5. 26) ql<cn2r-*®25~* exp(4^5) =

And we see

\qvLv dx= — \ qan vX} vxj dx — \ (qa^ X} vvx^ d%0

Hence we have

(5. 27) \q (yv) 2 dx< \ (^f-y) xvvx. dx + \qvLv dx .

By Cauchy's inequality we get from (5. 26)

(5. 28) | (qa^Sivvs,\ = i^1/2 exp(^5)^8-l • W
lz

<^c {e®-1 exp (2n®^ \ Vv \ 2 + e"1 ̂ 2 r~4 ^25

Here we take e as sufficiently smalL On the other hand we have

(5.29) 2 ] qvLv \ <,2V2T~* ®»~2 - vV1
 r

4 cP1"5 ex

Combining (5.27), (5.28) and (5.29), we have

(5. 30) U"1 exp (2^05) (Fv) 2 ^

2 \r~* 025-3 ex
t)

+ n~l \r* 01"8 exp (2

Substituting this inequality into (5.25), we obtain
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(5. 31) ri* (1 - cd ) \r~* ^25~3 exp (2^5) v2 dx

<,c\r*®^ exp(2^5) (.Lv)2dx,

where dQ Is taken as more sufficiently small. By (5. 30) and (5. 31)
we complete the proof.

N

Now let ri>'"jTN be the fixed real numbers such that Sri = l.1=1
Then we put for d>Q

Sd= {r2<d(r^i^ ----- l-r^v)}.

The set 5^ is an open sphere with the center (-^-rij '">~^TN) and the
^, N \ ^ ^ /

radius rf/2. Further we set

Definition. If a function t?(,r) satisfies the following conditions,

we say that v belongs to 32,d(Sd^:

(1) yeC'C^flC'CS'rf- {0}) and the carrier of y is contained in Srf.

(li) For some e>Q

v,Bxv = o (exp ( - r~5~£) ) O^O) in S. .

Now we also assume that L = A at the origin as in Proposition 5. 1.
Then we have by an adequate orthogonal transformation for (5.5).

Corollary 5e 1. There are positive constants d0, n0 depending

only on atj such that if (Xd<^dQy n^nQ and d>N—l, it holds for

any

(5. 32) cr^1-6 exp(2wS8) (Lv^dx

^v2dx + n\®^ exp(2^58) \7v\ 2dx,

where c is the same constant as in Proposition 5. 1.

We have assumed that L = A at the origin In Proposition 5. 1 and
Corollary 5. 1. If we eliminate this assumption, the statement of
Proposition 5. 1 holds also, that is, we can prove

Proposition 5.2. There are positive constants d0j nQ and dQ
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depending only on 0lV such that if 0<.d<.d0, n^nQ and <5><50, it

holds for any

(5. 33) cY®1'* exp(2n<Z>6) (£v)2

J

---'>^3\ r~^ 02^~3 exo (2n^= j

ivhere c is a constant depending on d0 and n0 but independent of n.

Proof. Let L(0) be the operator whcse coefficients are those of L
N

at the origin. The operator L>^ is reduced to S^A,7 by an orthogonal
N *' = ! ' N

transformation xf=Tx^Xi = ̂ sijx
f
j}. Secondly the operator S^£^ is

y=i 1=1
reduced to A by the transformation x// = Ax\x/

i = ̂ nXr/^. On the other

hand the sphere S* is mapped into the following set:

(5.34)
t = I .7= 1

Obviously there is a positive constant c such that

(5.35)

We put

y=i
^^ Jv ^

Setting (Z> = Sry^//S^72> we have the inequality (5.32) for any
_ j=i y-i

^^0) from Corollary 5.1, that is

(5. 36) cf 4 d1-3 exp (2^^5) (L"v) 2 dx"

5) z;2 rf^7 + n S"1 ex

where f = (S#J2) and Lr/ is the transformed operator of L by x" = ATx.
1=1

Let us note that if (5. 34) holds, we have by (5. 35)

y=i

Thus taking rf0' sufficiently small, we see that if v

<rfo), then tfGO^^.fiCSrf) (0<J^^0). Hence the inequality
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(5.36) holds for the function v(x"~) of v(x~)^32,s(.S,i)

Now from (5. 35) we easily see

that is,

(5. 37)
c r2 c r

And we see for another positive constant c

(5.38) c-'S^S^"^!]*!.
z=l i= i = l

Performing the inverse transformation x= T"1^1 xrr on the inequality
(5.36), we apply the relations (5.37) and (5.38). Then we obtain

(5.33) for any t;GOe=32i5(S,) (fXd^dfi.

6. We prove the similar estimate to that in the previous section
for fourth order elliptic operators. Let L± and Lz be second order
homogeneous operators of the form (1.1) with sufficiently smooth
coefficients in a neighborhood of the origin. Then we have

Proposition 6. 1. There are positive constants d0 and n0 depend-

ing only on L± and L2 such that if Q<d<d0, n>n0 and £>&>, it

holds for any v^3^s(.Si) that

(6. 1)

^J
exp (2w(ps) (2 ] Da v \ 2) dx

|a|=3

|a| =2

U"1 exp (2nd)5) (Fw) 2 rfz

25~3 exp (2^0S) z;2 dx.

Proof. We easily see

C
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(6.2)

and

S f fqvx.Xi vxjx. dx = \qvlt Xj dx-\\ (qXfXi v\ - 2qXiXj vXi vxj+qXjXj v\^) dx.
«j J

Now we consider the integral

Let us substitute (6. 3) into the second term on the right. Then we

have

where F is a sum of products of vXk, vxi and qXtXj. Let L(%} be the

operator whose coefficients of Lz at the origin. Then by a coordinate

transformation we get

(6. 4) q(^.^dxq(^vydx+F(iq^j9 vjdx.

Obviously

~

Thus if we take d sufficiently small, (6. 4) becomes

(6. 5)

Hence we have

(6. 6)

No\v it is seen

(6.7) l2VX!\

Therefore we obtain from (6. 6)
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(6. 8)

ij,k,i

Let us estimate the following from the above:

The integral can be rewritten in the form

By Proposition 5. 2 we see

(6.9) n* \r-* 02^z exp (2rf) (r4 ^2-^5IL2 1;) 2 dx

2 dx

An easy computation shows

Thus taking w as sufficiently large (or d as sufficiently small) in (6. 9),

we have

3 \ r4 01"5 exp (2^5) (L2 v) 2 ^

[ F (Z2 1;) 1 2

ex

Hence we obtain
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(6. 10) n3 r4^5 exp(2^5) (L2vYdx

2dx

Combining Proposition 5.2 and (6.10), we see

(6. 11) |jr-4<2>25

+ n~2 \ dr1

+ n~5 {r
8®*-35 exp (2^5) | V (L2 v) |

ex

We set in (6. 5)
q = n-*> r* 03-23

Then it is easily seen that

Hence for a sufficiently small d we have by (6. 5), (6. 10) and (6. 11)

(6. 12) \r~* ®28~s exp (2?^5) v2 dx

+ n~2 U"1 ex

2 05~45 exp (2^5) (Zi L2 v) 2 dx.

Secondly we set in (6. 8)

q = n~6 r12 r~45 exp (2^5) .

Then we easily see

Thus combining (6.8), (6.5), (6.11) and (6.12), we obtain the esti-

mate (6. 1).
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7. Now we shall prove Theorem 1 and 2. First we shall prove

Theorem 2.

Proof of Theorem 2. We may assume that P = Qa,

Let d and d0 be the positive numbers in Proposition 6. 1. Let the

assumption on u be such that

D°^ = 0(exp(-r-25-£)) (r->05 e>0, k!^

along F. Then by Proposition 4. 1 we see

(7.1) Daw = o(e3q)(-r-fr-(£/B))) (r-*0, W^3) in

Now we take a C°° function 17(0 such that

And put £(x)=y(rz/Xi). Then we easily see

Hence it holds

(7.2) \Dk

where ck is a constant depending on k. Set #(#) ̂ CUO^OO- We note

that v = w in Srfo/2. Then by (7. 1) and (7. 2) it is seen that t;e£?4>5(Sdo).

We can assume that the constant on the right of (1. 4) is sufficiently

small. Applying Proposition 6. 1 to v, we have from (1. 4)

(7. 3) c(
JSdo — SdQ/2

u2 dx.

Here we note that for some positive constant c

and

in Sd0/2

in SdQ-Sdo,2.

Hence (7. 3) is reduced to
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f f
jSdQ — SdQ/2 jSd0/2

Let n tend to infinity. Then u = Q in 5^0/2. Therefore ^ vanishes
identically by the well known result with respect to the uniqueness in

Cauchy's problem.

Proof of Theorem 1. It is sufficient to prove the existence of
d such that the solutions {up} of (3.15) satisfying

and

w,,tt*r, = 0(exp(-r-2S-£)) (r-*0, £>0) along r

(/> = !, -,w, * = 1, -,#)

vanish identically in Q.

We obtain from Proposition 5. 2

(7.4) c \ r4 ̂ ~5 exp (2»0S) (I, 0

^w3 f r"*(P2S

Set Vp(x)=^(jx)up for C in (7.1) and for the solutions up. Then by
Proposition 4. 2, we see Vp^^F2,s^SdQ). Summing up (7.6) with respect
to p and noting that up are solutions of (3.15), we see in a similar
way to that in the proof of Theorem 2

cn *\
Jodo —

Thus tending n to infinity, we have completed the proof.
Finally we give some corollaries.

Corollary 70 1. Let u be a solution in ®a of

where L is an operator of the form (1. 1). Then there is a positive
number d depending only on L such that if



Uniqueness in Cauchy's Problem 69

i vanishes identically.

Proof, We proceed in a similar manner to that in the proof of

Theorem 1. Put t>O)=CGO«GO for C in (7.2). Then we have

<: r4 CD1"5 exp (2^5) (#{-41 u \z + #ra S1 ux\
2) dx

J 03-0/2

The first integral on the right of this inequality is estimated from
the above by

SaV2

+ \ IP1"5 exp (2w0s) ] FM 1 2 dx.
jSdQ/2

Thus combining this inequality with Proposition 5. 2, we obtain

r"4 (f/5"3 exp (2?^^5) ̂ 2 dx.
Sao/2

Hence we complete the proof in the same way as in Theorem 1.

Similarly to Corollary 7. 1 we can easily prove the following

Corollary 7» 2. Let u be a solution in ~Qa of

IF J a/I O V r | o c !~3 l Da?HJ JLyl JL*2 ^ I .— ̂ l 2-i Xl \LJ Ul I ?

where £1 <2#<c? Z2 ^^ o/ i/z^ /orm (1= 1) whose coefficients are suffi-

ciently smooth. Then there is a positive number d depending only

on Li and L2 such that if for |^i<^3

r" r->0 n

vanishes identically,
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