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Uniqueness in Cauchy’s Problem for Certain
Fourth Order Elliptic Equations

By

Kazunari Havasgipa*®

1. We consider in the NN dimensional space RY with coordinate
(%4, -+, Xy) and with norm 1/(:(.1\721 x)Y?). Let I" be a smooth initial
hypersurface containing the origin‘:in its interior and let 2 be a domain
whose boundary contains I. We consider the real elliptic operator of
the form

0° 0
1.1 L=g, -2 +b-2 +c,
1D a 0x,0x; o ox; e

where a;,€C**(2) (a=>0) and b, c< L*(2).

When L is of the form (1.1), uniqueness in Cauchy’s problem for
solutions of Lu=0 was shown by several mathematicians (see cf. [1],
[4], 51, 171, [9], (16]). On the other hand, when the coefficients of
L in (1.1) are smooth, Landis [12] and Lavrentév [13] proved that
any solution # of Lu=0 satisfying the following two conditions vanishes
identically in £2:"

(i) u=C*®) and Lu=0 in &,

Gi) u,u.,=o(exp(—7r)) (r—0) along T,

where & is a positive constant depending only on L and I'. Their
method may be said to give an explicit estimate expressing a relation
between the solution and the Cauchy data.

In this note we shall give another proof for their results. Qur
method will be applied to the elliptic system
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1) Previously Mergelyan [14] proved this result for harmonic functions.
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(1.2) Lou,=F,(%, 4y ) D=1, -, m,

where each L, is the elliptic operator of the form (1.1) and each non-
linear part F, satisfies

(1.8) 1By ) — Fy(%, 00 00) | Scomst 3] 35 [D*(—,) |2

Theorem 1. There is a positive number & such that if the
solutions {u,} and {v,} of (1.2) satisfy

u, 1,=C*(2) NC ()
and
Uy—Vpy Upe,— Vs, =0(exp(—77%)) (r—0) along I
(p=1,-,m, i=1,-, N),

then u,=v, in 9, where o depends oniy on {L,} and I

Next we treat the solution # of the fourth order elliptic differential

inequalities

(1.4) ILleulg,constHZ‘. | D*u|,
] <3

where L,, L, are of the form (1.1) whose coeflicients are sufficiently
smooth and the nonlinear part of the right of (1.4) satisfies the
Lipschitz condition as in (1.3). Uniqueness for solutions of (1.4) was
shown by several mathematicians (see cf. [10], [11], [15], [17], [18],
[19]). In particular, Mizohata [15]® proved that the solution z< C*(2)
of (1.4) vanishes identically in 2 if the Cauchy data of # vanishes on
I He used the singular integral method developed by Calderén [3].
On the other hand, Pederson [17], Protter [18] and Shirota [19] proved
that the solution #=C*(2) of (1.4) vanishes identically in £ if D%u
le] <3) tends to zero rapidly at an interior point of £. They used
an integral estimate with a weight function having singularity at the
point.
Now does the solution of (1.4) vanish identically, if its Cauchy

alal
0X1%1- 20X n %
3) He proved also for the more general case of fourth order elliptic equations.

2) We write =D< for any vector a= (a1, -, &n).
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data tend to zero rapidly at a point? We shall answer to this problem,

that is, we can prove

Theorem 2. There is a positive constant & depending only on
L, L, and T such that if the solution usC*(@)NC'(I") of (1.4)
satisfies
Dru=o(exp(—7r*)) (r—0, |a|<3)

along T, then u vanishes identically in Q.

Remark. If I is a spherical surface in the neighborhcod of the
origin and if L, (or L,) is the Laplacian operator at the origin, then
the constant ¢ in Theorem 2 can be takeu as 0> V.

2. Let us denote by S, an open sphere with the center (d/2, 0,
.=+, 0) and with the radius d/2. We put 2,={0<<x,<<h}NSi, =10
<x,<<h}(0S: and [,= {x,=h} (N S:. In this section we shall prove the
following

Propesition 2.1. If usC"(@)NC**(I,) and D u=o(exp
(—7722)) (r—0, la|<m—1) adlong T, for any fixed positive numbers
0 and <, then there is a function v suck that

2.0 veCr(2.—{0)HNC(2.),
(2.2) Drv=D*u onrT, for |a|l<m—1
and

(2.3) S’le“v}dez---dx,,zo(exp(—h"“)) (h—0) for |a|<m.

Before proving the proposition we prepare a lemma. Let us take
a function ¢(x2)=C~=(R?) such that S o(x)dx=1 and the carrier of
eC{lx| <1}, Set

eo  sao=L (@-n/ma 0.

Then we easily see that

fx,8)eC(R*x {s>0})
and
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1 lx]<s

f(x’s):{o x| =3s.

Further we have

Lemma 2.1. There is a constant C. such that
(2.5) | D*f(x,8)| <Cus!o! in  R'x{s>0},
where o= (a4, as) and D*= D*D%,

Proof. Obviously,

(x/s
(

o9 ={"""owat

[ ewar+ (o 2at+{ pt-2at

0

xls 0
Thus, if we prove the inequality (2.5) for So e(t+2)dt and S I¢(t—2) dt,
then we shall complete the proof.
It is easily seen that

x[s . x 1
(2.6) D,So <o(t+2)dt—¢(-s—+2>?

zls o E_C_ _{_
(2.7) Do +2at- ¢(s +2> z.

We have the same equality as (2.6) and (2.7) for Sj/;¢<t+2)dt'
Noting that f(x,s)=0 in |x|=3s, we have proved (2.5) for |a|=1.
If we differentiate (2.6) and (2.7) any times and note that |x/s|<3,
we obtain (2.5) for any a.

Now we shall prove Proposition 2. 1.

Proof of Proposition 2.1. Let us use the polar coordinate
(7,64, -+, 0,—1) with the center (3,0, -:-,0) such that

X1— % =17 cosb,

Xo=7 Sin 01 cos @,

X,—1 =7 sinf, sinf; -+ sinf,—, cosf,—

X,=7 sin6; sin6, --- sinf,_, sinf, ;.
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We denote (6, **+, 0.-1) simply by @. Set
m=—1
5@ =51 (DD (3, 6).

Then it is easily seen that

bt = 1 1N\ p—! Y4 N\
(2.8) D,5(x) :E W(”“?) (Diu) (3,65
and
(2.9 (D'D)(},0)=(Diu) (%, 0) for I<m—1.

Put A(xy) =exp(—x%¢*), And we set for the function f(x,s)
in (2.4)

N
e =F(Va—at St k) /3).
From now on we denote D¢ simply by DI for |al=I. Then we see
by Lemma 1.1
(2.10) | D¢ () | <ei(%r-x) " k(x0)™

in a neighborhocd of the origin, where ¢, is a constant depending only
on /. Set v(x)=0(x)¢(x). Then we have

(2. 11) Div'\—D,lfﬁ'DiZC <l:l1+l2),

where the notation ~ means that the left side is a linear combination
of each term on the right side. We see from (2.11)

(2.12) Div~DD} 5. Dt
L0 =1, L+L=I1<m).

Combining (2.8) and (2.12), we obtain

(2.13) Div~(r—3)"Ds' ((Dlu) (%, ©)) D¢
(h=p<m—1).

We note that

(2.14) lr =31 <k(x)

in the carrier of v (or &).
Now let us consider each term of the right side of (2.13). If
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W+ p<m—1, we have from (2.10), (2.14) and from the assumption

on u,
(2.15) | (r—$* 4D ((D*u) (3, 0)) DL |
gc (xl. . -x,,) —c k(x1>p-l’rlz eXp( _ xl—s—(sm)
<cexp(—x1?).
If /+p>m—1, we see
(2.16) | (r—3)Dy:((D'u) (%}, 6))Dr¢|
<c(xyx) T R(x)r
<< (%1 %0) " R (x) M

In particular when I+ p>m—1 and [<<m, we have

2.17) the left side of (2.16)<<c exp(—x1%).
Combining (2.15), (2.16) and (2.17), we have shown (2.1). Further
we have obtained in the general case I<m

lDivl_é_C(xl"'xﬂ)—c-
Since the carrier of » (or &) is concentrated on a neighborhood of I,
we see |Div|<cx;°. Thus we obtain

Sl |D.v|*dxs - dx,<cxi k(%) =cexp(—x°%).

Hence we have shown (2.3). Since the equality (2.2) is trivial, we

have completed the proof.

3. In this section we see how the behavior of the solutions of
(1.2) or {1.4) is controled by the Cauchy data. This section is essen-

tially based on Mizohata’s result [15]. We set <a,.(x1):<x1+%>_n and
write ¢,(x;) simply by e¢.

Lemma 3.1 (Mizohata [15]). Let L., L. be second order elliptic
operators of the form (1.1) with sufficiently smooth coefficients in 2,.
Let weC*(2,)NC(R,—{0}). Assume that

(8.1) D*w=0 onTrT, for |al<3

and
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(3.2) I (D*w) (&) [|*—0 (=0) for |al=4.

Then theve is a positive constant n,, h, and c independent of n and
h such that if n>n, and h<<h,, then

(3.3) c{g ¢2]Llewl2dx+52n2¢2<h>}gc~”2 ngo"‘iD“wlzdx,
25 o] £3J 2
where ¢=(h+n")""

Proposition 3.1. Let u be in C(2)NC'(I",) and be a solution
of (1.4) in Q.. If for some =0, §>1,

Dru=o(exp(—r %)) (r—0, |a]<3) on 1.,
then it holds that

(3-4) S | Deul*dx—o(exp(—i)  (h—0, |a|<3).
Qn

Proof. From Proposition 2.1 there is a function v such tuat

(3.5) velC*(2.—{0)NC (L),
(3.6) D*v=D on I, for |a|<3
and

B D)W =olexp(—k> )  (5—0) for |a|=4.

We put w=u#—v. Then w satisfies the assumption in Lemma 3. 1.
Hence the inequality (3. 3) holds. Here we use the following relations
iL1 Lzﬂ)l 2§2<i L1Lzu‘ 4 ;L1L2’UI 2)

and
| Dw|zh Dul— | Dol
Since # is a solution of (1.4), the inequality (3.3) becomes for
sufficiently large ¢

(3.8) c{ng;LleviﬂdHaz g ¢2iD“v!”dx+62n2¢2(h)}

lal =8J2y

= Spgple“ulzdx.

laf =3JCy

4) We write (lu(h)[P:S,h[ulzdxz---dxn.
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By (3.7) this inequality becomes

/N N S __Jb—(EIDN o A2 2(i_1_ >—2”}
<2+n> c{n exp(—n Y+é&n n'h

=C > Sﬂ | D*ul*dx.

la| =3

Let us take h+% sufficiently small and #nk sufficiently large. We

easily see that in order to prove

(3.9) > ngmau[ 2dx=o(exp< _ (g)a» (h—0),

lal =38

it is sufficient to show that we can choose # in such a way that

—5—€;
(3.10) nz”“gexp((—z-) )
and
n —5—&’

where ¢; is a given number and e will be determined later. If there is

a positive number z such that

(3. 12) %1+g§<%>‘5—51 ,

then (3.10) holds. Since #k is sufficiently large, if we show that

o ()

then (3.11) holds. Let us take positive numbers ¢/, ¢ such that
0+e<<(0+e) /145

Noting that 1<<21log(5/3), we can take # in such a way that

1 2 s+Er (2)(5-&61)/1*5
(8. 14) 210g(5/3)<h> ="=\7 :

It is easily seen that the ineguality (3.14) implies (3.12), (3.13) and
that #nh—oo. Thus we have proved (3.9).

Secondly we consider the system of second order differential in-

equalities
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(3.15) | Lu,| <const 3} ) |D*w,|,  p=1,--,m,

g=1 |a] =1

where each L, is the elliptic cperator of the form (1.1).

Proposition 3.2, Lef uy, -, %, be in C*(2)NC*{T.) and be
solutions of the elliptic system (3.15) in Q.. If for some 0, 6>>1,

u,, Du,=o0(exp(—7r7%7%)) (r—0)

on I, for 1< p<m, then we have

(3.16) g u,|2dx, S | Du,|* dx = 0(exp(—h))
(h—0, 1< p<m).

The proof of this proposition is obtained in the same way as in
Proposition 3.1. Thtus we shall sketch the proof briefly. From Pro-
position 2.1 there are functions v,(p=1, .-, m) such that

v,€C*(2,— {0} ) NC* (L),
D*v,=D%u, on I', for |a|<1
and

1(D=v,) (W) [*=0(exp(—A>“))  (h—0) for |a|=2

Put w,=u,—v,. Then in the same manner as in Lemma 3.1 we see
that there is a positive coustant ¢ independeat of # and 2 (#, h>>0)
such that

qgwwmmMﬁﬁwwwﬁgngwwwmwm
Q4 |l £1

2y
where c=#n+A4". Then we have the inequality as in (3.8),
>34\ o | L) e 2 { @21D“v,lzdx+62n2¢2(h)}
p=11Jg, al=1Je,
=3 5 | ot 1Duldx.
p=1 la|=1J2,

We proceed in the same way as in the proof of Proposition 3.1. Then
we obtain (3.16).

4, In this section we shall prove the following
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Proposition 4.1. Let u be in C*(2,)NC'(I',) and be a solution
of (1.4) in Q,. If for some =0, §>1,

(4.1) Du=0(exp(—7r%°¢)) (r—0, |«|<3) on 1.,
then, in Si:(2., it holds that
(4.2) Dy =c¢(exp(—77%)) (r—0, || <3).

Before proving the proposition we prepare a lemma. Let 2 be
a fixed point in RY. And let L;, L. be second order elliptic operators
with sufficiently smooth coefficients in a neighborhood of x®. Further

we assume that L,, L, are real and homogeneous. Then we have

Lemma 4.1.° Let u be a C* funciion in @ neighborheod of x™.
Then there is a constant C independeni of R (R<<l) such that

@ 3 |Du)] gcze—m{( S S[ el Dau;zdx>”

Jal =3

b2
+({ iL1L2u12dx> }
x50} <R
wheve p,, p. depend only on N.

Proof. We may assume x=0. Let us write simply by C the
constants independent of B. We take a C™ functioa such that
1 in r<R/2
o (7) ={ .
0 in r=R

and |D'¢|<CR™* Put v=¢u. Then we see
(4. 4) L L,v=Q(D*¢-D"*u) +¢L, Lu,

where @(D*¢-D"*u) is a linear combination of each term D'¢-D**u
(A<k<d).

Let L® (¢=1,2) be differential operators whose coefficients are
those of L; at x. Then there is a fundamental solution E(x) of
L LY such that

(4.5) | DE (x) | <Cy* 1l |logr!.

5) From our proof it is easily seen that this lemma holds also for general fourth
order elliptic operators.
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Since DL D*v=D*L, L,v+D*(L"L{” — L, L,)v, we have
(4.6) D*u(0)= S’SRE( —x){D*Ly Lyv+ D*(L{" Ly — L, Ly) v} dx.
When |a|<<3, the equality (4.6) becomes

(4 7 Dra = (-0 (DEN-n L L

+ (L LY — L L) vy dx.

7,

We get by (4.4) and (4.5)

(4.8) ‘grékD“E(—x) L. Lwdx

gcmg 7 [log7 | (kZioiD"u] | Ly Lou) )dx.

rS

Noting that the coefficients of L”L{” — L, L, have order O(») (r—0),
we have from (4.5) by the integration by parts

(4.9) ‘S,SRD"‘E( — ) (LOL® — Ly L) vdx

gcg 7V |logr || D*v|dx

r=R

gcmg 77 [log7 | (z | D*ul Ydrx.,

7S

Combining (4.7), (4.8) and (4.9), we obtain

(4.10) | D*u(0) [gcw‘i 7V |log# | (,?;]Dk”l + L Lyu|)dx.

JrsR

3
Put m=msag:(ZOIDku[). Then by Hélder’s inequality we have
r= k=

(4.11) S r‘"”]logr!m’l(i | DFu|)dx

r<R k=0

1/

g(&g@l—ﬂ log7| ya’x)”" (st a{p )qu) g

where p7'+¢*=1. We can take P, ¢ in such a way that ¢>>2 and
the right side of (4.11) is finite. Since

3 3
(™ S| Duly = 3 D,
k= k=
the left side of (4.10) is estimated from above by
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3 2
cml(g <z[Dm|2)dx>”.
7SR k=0
Similarly we have
{ _rltogr|| L Lul dxgcmx(g | LiLul de)“.
Thus from (4.10) we have completed the proof.

Now we shall prove Proposition 4. 1.

Proof of Proposition 4.1. For the point x® in S we denote
by 7:(%®) the radius of a sphere tangent to S; whose center is x.

It is easily seen that
() ~x” (2 —0).
By Proposition 3.1 we have
D*u l 2y — 0(6Xp< _ x;o)—a—(él?:))‘)

(#1"—0, [a|=3).

<4. 12) S‘er(x(a))ﬂtgo) i

Let us apply Lemma 4.1 to the sphere with the center x. Then we
obtain from (4.3) and (4.12)

D*u(x,) =0(exp(—#""")) (21”0, |a|=3).
Thus we have completed the proof.

We note that Lemma 4.1 holds also for second order elliptic
operators. Hence by Proposition 3.2 we have the following

Proposition 4.2. Let u, (p=1,:--,m) be in C*(Q,)NC*{T.) and
be solutions of (1.2) in 2,. Then, if for some <0, 5>1,

Dru,=o(exp(—7r"9))  (r—0, |a|=1, p=m)
on T,, then in Si:N2,
Dru,=o(exp(—77°))  (r—0, |a|<1, p=<m).
5. We prepare an energy estimate of Carleman’s type for second

order elliptic operators. We proceed along the method developed by
Pederson [17], Protter [18] and Shirota [19].
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Definition., If a function v(x) satisdes the following conditions,
we say that v belongs to &, .s(S.):

(1) veC*(RY)NC"(S.—{0}) and the carrier of v is contained
in S,.

(ii) For some =0,
(5.1) Dv=o0(exp(—7r7%))  (r—0, |al<m) in S,.

Now we set 0(x)=x,/r®. Then an easy computation shows that

2 0.2
q)xlzﬁ—yz—xl, 0,,=— 2% %:; /7" (Ix1)
4
3 43
(5 2) m’l"x: <—2x1> <_;,T——1,..(5_:l_>
1 457 .
0= (20 (=) G
and
(5.3) | Dro| <cr+ (0<Ek<2).

Let us note that the condition (5.1) implies
(5.4) Div=o0(exp(—0*%)) (-0, |a|<m) in S..

Let L be a second order hcmogeneous elliptic operator of the form
(1.1) defined in a neighborhood of the origin. And we assume L=4
at the origin. Then we have

Proposition 5.1. There are positive constants do, n, depending
only on N and a;; such that if 0<<d<d,, n=mn,, and 6>N—1 it holds
for any v=F, 5(S.)

(5.5) cgr“ 0 exp(2n0°) (Lv)*dx
gn“gr"" 0% exp(2n0°) v2 dx + nS(D‘I exp(2n0®) |Vv|tdzx,

where ¢ is a constant depending on d, and n, but independent of n.
Proof. We can write

(5. 6) a”-:&-j‘i“b;j, Ib;jlécr.
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Let us denote simply by ¢ the positive constant independent of # and
d. We see by (5.2)

(5.7) Vo =r,

Let us put g—exp(—#0®) and v=2zg. It is easily seen that z&C*(S,)
NC2(S;—{0}) and the carrier of z<S,, Further we note that if
k+I<3, and k%3, i3,

(5.8) DizDiz=o(exp(—0f?))  (r—0) in S..
Obviously
(5.9 8™ Lv=Lz—2n30" ' (X a,;2,9.,) +28"Lg.

We use the following inequality for the right of (5.9)

(X+Y+2):=2Y( X+ 2).
Then

(5.10) g7 (L)'= —4mb0" (@, 2.,0.,) Lz
— 4130 (Say;2.,0.,)28 ' L g.

Thus we have
(5.11) 874 08¢ (L)tdx=— 4n587’4Lz S ai;2,0.)dx
— 4n5g74 Xa;z,0.)zg ' Lgdx,

where the integral domain is S,. We write

(5.12) —Adndr*Lz(X a;;2.,0;,)
= ~4n674(2i (L+5:)2s,0,+ gja,-j Zsix;)
X (2 (A+b.)z,,0,, +T§a,,z,'.cfz,1)
= —4ndr*(4z) (T z-V0) —4%5]:?,

where R is the sum of the remained terms.
In general for any function f(x) it holds

(5.13) S Foanzdi=— S Faznzedi+ %S . 2 dx.

Further we have
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(5.14) gfz,,, wZ2ndx= %(— Sf,,, 2,2, 4%+ Sf,kz“zzj dx— Sf,;z,k 2., dx).

In fact

(5.15) gfz,,m Z,dx=— Sf,, 2. 2,4 — sz“zz,,z, dx,
(5. 16) quzh,z,wdx anL,,z,,z,,dx 4 S‘fz JE I
and

(.17 szmk z,dx=— Sf“ Z.,2,,dx— sz,,,z 2, 4%,

Combining (5.15), (5.16) and (5.17), we obtain (5. 14).
Applying (5.13) and (5.14) to each of R, we see from (5.12)

(5.18)

(Rax <calo) a2
Now let us show the following ineguality
(5.19) {rca2) 7z royax=o.
We get from (5.7)
r*(Vz-Va))=z,1(r2—2x§)—2x1%zx,x,.
Thus
\rican wz-royax

N
_ SZ 2, (22D dx+ 3 Sz 2 (r— 20 dx
N N N
- Slexl 2x1 (2 Zi’iﬂ) dx - Z Szx,x, le (Z Z.r,‘ xj) dx
i=2 i=2 =2

:]1+_[2_]3—]4-
By (5.8) we can integrate by parts each J;. Integrating by parts, we

can verify
]1= SZilxj, dx,

Je= ——S(ézﬁ,)xl dx— S (éZx,- 2,) 2., d%
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J:=(N—-1) Szilxl dx— S (_IjEz 2%,2,)2., 4%
and

Ji=> S(N—Z)zi, o dr.

i=2
Combining these integrals, we get
N
Sr%dz) Vz-Vo)dx=(2-N)X, Szi, %, dx=0.
i=1

Hence the inequality (5.19) has been shown. We have from (5.12),
(5.18) and (5.19)

(5. 20) Sr*Lz(’Zj 4:;;2,0.,)=cd Sa)‘lle] tdx.
Now we estimate the last integral in (5.11). A computation
shows
g'Lg= kzl‘.a,,, {6 0* P —n3(6—1)0" )0, 0., — 130" 0.} .
Thus
(5.21) — 4n5§r4 (Z, @:;2.,0,.,)28 ' Lgdx

=2ns >3 S(% a;; 0,15 @, 0°°0,,0,,).,2°dx

i,d.k,1

—2n8 >3 S(Wa,.,-mx,.n{s(a—1)ak,m5—2m,,ka),,)x 2*dx

i,7,k,0

—2n8 >, g (r*;; 0., 180,0°* 0,,,,) -, 2° dX.
i,7,k,1

The first integral on the right of (5.21) contains the following three

terms:
M1=41'L333<3——1) E gf*d;i ak,@,;, @,j@,k@,,, 025_322 dx,
i,7,k,1
M,=2n%5" > S1f4 @:;0u0;,: 0,,0,,0°° 22 dx
i, k1
and

M =29%5° Sr‘* ;00 0.;(0,,0.,) . 0** V2" dx.

i,7, k1

From the positive definiteness of L and (5.7) we have
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(5.22) M =cn*o*(6—1) 87”4 0% 2% dx.
We decompose the integral M, into

(5.23) M,=2n5° >) Sr“b‘,-,-a,,@,‘,, 0,00z dx

i,7, k1

+27°0* >\
k

ij k1

874 <aij a,—3d;; 6“) @x,xl Q., @x, 0>V 22y,

Since we have assumed a,;=4§;; at the origin, the second integral of
(5.23) is absorbed by the right of (5.22) if d<d, for sufficiently
small d,. The first integral of (5.23) becomes

2n3638744@(l7@)2(172(5‘”2207:5.
Let us note that 40=2(2—N)x,/7* by (5.2). Then we see from
(5.7)
(5.24) the first integral of (5.23)

=4(2— N)n3538x1 rr e 22 dx.

Since the constant ¢ on the right of (5.22) can be taken as arbitrarily
near to 4 for sufficiently small d,, the integral (5.24) is absorbed by
the right of (5.22) for >>N—1. Thus we see that the term M, is
absorbed by M,.

Secondly we shall show that the term M; is absorbed by the right
of (5.22). Let us decompose [M; in a similar way to (5.23). We see

Z aijaklmxj<makd}u>a‘
i,7,k,1
=200.,(0%) =210, (r ), = 4227 1.0, .

ik i i

On the other hand we have from (5. 2)
2IX,0.,=—X.7"
Thus we get
Z aijaklmz,<@x,,mzl) z,zov

ij, k1

Hence the term M; is absorbed by the right of (5.22). More easily
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we can see that the remaining terms on the right of (5.21) are
absorbed by the right of (5.22) if we take #=#%,. Therefore combining
(5.11), (5.20), (5.21) and (5.22), we obtain

(5.25) n3Sr*4 0*% exp(2ne®)v* dx
<e( {740 exp(2nop) (L0y°ds
+nd {07 exp(2na?) 7o dx).
Lot us put ¢g=0"exp(2n@®). Then

(5.26) G Zcntrto®* exp(4ng®).

And we see
quLv dx=— Sqa,- iU Vs, A% — S (qa:;) ., vv,, dx.
Hence we have

(5.27) Sq Fov)rdx< l S (qa:)pv.,dx

+|{avzoas|

By Cauchy’s inequality we get from (5. 26)

(5.28) [(qa:;):, 00, ] = {07 exp(n0®)v,,| - [0 exp(—n0°) (qa:;).,v]
Zc{e0* exp(2n0®) |Fv| 2+ n2r 0% exp (2nd®) v*}.

Here we take e as sufficiently small. On the other hand we have

(5.29) 2| quLy| <2V 2r 0" Vw0 exp(2n0®) |vLv|
<nr*0°* exp(2u0®) v’ +n 1 r* 0% exp (2ne®) (Lv)*

Combining (5.27), (5.28) and (5.29), we have
(5. 30) (o exp(anor) (7o) ax
<c {nz Sr‘* 0% exp(Zno®) v dx
+nt Sf/*a)l“a exp(2no®) (Lv)zdx}.

Substituting this inequality into (5.25), we obtain
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(5.31D) 7 (1 ~cd)ng‘4a)25‘3 exp(2n6®)v*dx
gcgr%)‘“a exp(2no®) (Lv)*dx,

where d, is taken as more sufficiently small. By (5.30) and (5.31)
we complete the proof.

N
Mow let 74, ---,7v be the fixed real numbers such that >/ =1
1=1
Then we put for d >0

§d= {72<d<)’1 x1+ se “‘T}\rxzv)}.

The set §d is an open sphere with the center <%r1, ey g’”’) and the
—~ N
radius d/2. Further we sel 0(x)=>r.x,/7"
=1

Definition. If a function v(x) satisfies the following conditions,
we say that v belongs to T, .(S.):

(1) UECI(R”)DCZ(SZ~ {0}) and the carrier of v is contained in f?d
(ii) For some >0

v, D,v=0(eap(—7 %) (r—9) in E—;

Now we also assume that L=4 at the origin as in Proposition 5. 1.
Then we have by an adequate orthogonal transformation for (5.5).

Cerollary 5.1. There are positive constants d,, n, depending
only on a,; such that if 0<<d=<d,, n=n, and §>N—1, it holds for
any vE Fo5(S))

(5.32) cSr%"f’ exp(210°®) (Lv)*dx
grﬁgr“‘ 0* 2 exp(2nd®) v* dx + ”S 0 exp(2n0®) |Vv|2dx,

where ¢ is the same constant as in Propesition 5.1,

We have assumed that L =4 at the origin in Proposition 5.1 and
Corollary 5.1. If we eliminate ihis assumption, the statement of
Proposition 5.1 holds also, that is, we can prove

Proposition 5.2. There are positive constants d,, n, and &
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depending only on a;; such that if 0<<d<d,, n=n, and 5>0,, it
holds for any veF, ;(S.)

(5.33) 081'4 0% exp(2n0®) (Lv)2dx
gnsgr‘4 0" exp(2no®)v* dx + ngd)‘l exp(2n0®) |V v|%dzx,

where ¢ is a constent depending on d, and n, but independent of n.

Proof. Let L® te the operator whese coefficients are those of L
at the origin. The operator L\” is reduced to éx; D.: by an orthogonal
transformation %’ =Tx(x,-=ZNs,-,-x§). Secondls;_the operator ZN/L- D% is
reduced to 4 by the trar,sf(;;nation x'=4x"(xi=2:%"). On'?he other
hand the sphere S, is mapped into the following set:

N N N

(5. 34) (048,525 <<d 35281, %5
=1 j=1 j=1

Obviously there is a positive constant ¢ such that
N N N N

(5. 35) LRI O HOIVITNT 7P Lt DIF 768
=1 j i=1

i=1 j=1

We put
O Am—
r= ]/E(/Ijsli)z s Ti=T 481 (j=1,--,N).

- N N
Setting 0=>y,x7/>x7?, we have the inequality (5.32) for any
. i=1 i=1
v(x")eEeD, 5(S,) (0<<d<d,) from Corollary 5.1, that is

(5. 36) 08174 5% exp(2nd®) (L"v)*dx"
gnsgf'4 0% exp(2nd®) v dx" + ”S 0 exp(2nd®) |Pv|*dx",

N
where 7= (>1x*) and L” is the transformed operator of L by x”"=4Tx.
i=1
Let us note that if (5.34) holds, we have by (5.35)

N N
21‘ x;’2<d6‘r ZE i x7.
i= j=

Thus taking d, sufficiently small, we see that if v(x)E%,:{S:)
(0<<d<d)), then v(x")E%F.:(S,) (0<<d<d,). Hence the inequality
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(5.36) holds for the function v(x”) of v(x)E%,:(S.) (0<<d<d,).
Now from (5.35) we easily see

r (2 $1;%7) ~ T-1<Ej 2;81;%7)
J

<0< )
e (X048:5x) T T P 0085 x,)"
75 FR
that is,
—1 —~ —1
(5.37 R SN N
‘ c 7. — ct' 7

And we see for another positive constant ¢

N N N
(5.38) N> x>
1=1 i= i=1

Performing the inverse transformation x=7"'4'x" on the inequality

(5.36), we apply the relations (5.37) and (5.38). Then we obtain
(5.33) for any v(x)E%, (S, (0<<d<d,).

6. We prove the similar estimate to that in the previous section
for fourth order elliptic operators. Let L, and L. be second order
homogeneous operators of the form (1.1) with sufficiently smooth
coefficients in a neighborhced of the origin. Then we have

Proposition 6.1. There are positive constents dy and n, depend-
ing only on L, and L, such that if 0<<d<<d,, n>n, and 5>8, it
holds for any ve %, :(S,) that

(6.1) cgr“m”‘“ exp(210°) (L, Lyv)* dx
_2_87”@5‘45 exp(2n0) (31 [ D*0|)dx
2 Srsprﬁ exp(2n0°) (33| 00| dx
+nt Sm’l exp(2n0®) (Fv)*dx
+nt 87”4 0% exp(2no®) v’ dx.

Proof. We easily see
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(6.2) qum) dx= —Sq(Vv)zdx+%S(Ag) v dx
and
(6.3) quz,x,. Veye; A2 = qui,,,. dx— %S (@arsi V2= 20215, Vs, Vay+ Gy, V3) AX.
Now we consider the integral
Sq( Av)2dx— g (q ;Nl Ve H 4 302,022 .

Let us substitute (6.3) into the second term on the right. Then we

have
Sq(g vL,.)dx= SQ(Av)gdx+ SF (G2 Vs,)d%,

where F is a sum of preducts of v, v, and ¢..,. Let Li{” be the
operator whose coefficients of L, at the origin. Then by a coordinate

transformation we get
6o lagnpa=lamena (Fa.., 0)dx
Obviously

\aczs v)zdx§c<gq(l,zv)zdx+Sq((Lé”’—LQv)"’dx)

§c<gq(sz)2dx+dgq(gvii,,)dx>.

Thus if we take d sufficiently small, (6.4) becomes
65  lesmar=((aor i (P, v.)dz).
Hence we have
6.6 lesarze((eto) ds+ (F@., va.)dz).
Now it is seen

(6.7) lLavx,lgi([«va,] + | Lyv,,— (Le0), | <) (Lgi)),,l +clzilvx;zil'

Therefore we obtain from (6.6)
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68  (asa=c (L. e
s3iat,+ 3 (i, lhdz].
Let us estimate the following from the above:
874 0% exp 2ne®((L.v)?dx.
The integral can be rewritten in the {form
\rt0%= exp (2009 (0 L)
By Proposition 5.2 we see
(6.9) w2 {70 exp(200) (0 P L) dx
+n{07 exp(2n09) |7 (0" ¥L.0) |* dx
<clrom2 ep 2009 (L (o #L.0)) ar.
An easy computation shows

7 (rio> ) | <crov ¥

| (ror %), | <co ¥,

Thus taking # as sufficiently large (or d as sufficiently small) in (6. 9),
we have

W \r* 0% exp (2ne®) (L. v)*dx

[

*dx

+ ngrw—aﬁ exp(200°) |7 (L)
gc{ Sr”@f’“*s exp(2n0®) (L, L,v)*dx

+ SMM exp(2n0%) |7 (Low) |*dx

+ Sr*@“a exp (220°) (Lo ) de} .

Hence we obtain
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(6.10) n3874 0 exp(2n0”) (L, v)* dx
+ngif“a)3'35 exp(200°) |7 (L, ) | *dx
gcgrwmﬂﬁ exp(210°) (L; L,v)*dx.
Combining Proposition 5.2 and (6.10), we see
(6.11) $7’4@25'3 exp(2nd®)vidx
L S@'l exp(210°) |Pv|* dx
+n‘5gr“m3“3’5 exp(2n0°) |7 (L) |2dx

<ent ng(pHa ex0(2n0°) (L, Lo v)* dx.

We set in (6.5)

a=n"*r*0>* exp(2no®).
Then it is easily seen that

|q.,.,| <n?r* 0 exp(2n0°).

Hence for a sufficiently small ¢ we have by (6.5), (6.10) and (6.11)
(6.12) Swa}%-z exp(2n0°) v dx

e Sm-l exp(210°) | 7o |2dx

+nt 81’803'25 exp(2n0®) (2 vi,,,)dx

<en® 87’”@5‘45 exp(2n0°) (L, L,v)* dx.

Secondly we set in (6. 8)

q=n"7r*¢"*® exp(2ne®).
Then we easily see

|55, | Zcn 72 0% exp (2no°).

Thus combining (6.8), (6.5), (6.11) and (6.12), we obtain the esti-
mate (6.1).
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7. Now we shall prove Theorem 1 and 2. First we shall prove
Theorem 2.

Proof of Theorem 2. We may assume that I'=2,.
Let ¢ and d, be the positive numbers in Proposition 6.1. Let the
assumption on # be such that

D*u=o0(exp(—r27%)) (r—0, 0,

| <3)

along I Then by Proposition 4.1 we see

(7.1) Dru=o(exp(—72¢™)) (r—0, |«|=<3) in Sy:MN%L.
Now we take a C= function »{¢) such that

1 0<¢<d,/2

()= {o t=d,.

And put ¢(x)=9(*/x.). Then we easily see

Dk(1’2/x1> _ Dk(_xl—l 7,2) écr-z(k+1).

Hence it holds
(7.2) | D =cor ™,

where ¢, is a constant depending on k. Set v(x)=C(x)u(x). We note
that v=# in S,,;». Then by (7.1) and (7. 2) it is seen that v, 5(S,,).
We can assume that the constant on the right of (1.4) is sufficiently
small. Applying Proposition 6.1 to v, we have from (1.4)

(7.3) 720" exp(270°) (L, L,v)*dx

c
SSdo— Sdysz

=n® Sr"* 0% exp(2n0®)udx.

Here we note that for some positive constant ¢

1,12 @5—45£C£r'—4 mZS»S
and

m22/d0 in SdO/Z

ng/do in Sdo - Sdo/z .

Hence (7.3) is reduced to
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cn‘ﬁg (L;L,v dezg udx.
Sdo—Sdo/z\ T ) T JSdg/2

Let # tend to infinity. Then #=0 in S,,.. Therefore # vanishes
identically by the well known result withh respect to the unigueness in

Cauchy’s problem.
Proof of Theorem 1. It is sufficient to prove the eXistence of
8 such that the solutioas {#,} of (3.15) satisfying
u,=C*(@) NC¥(r)
and
Uy, Uy, =0(exp(—7727%)) (#—0, e=0) along I
(p:]-, e, M, Z:1, ) N>
vanish identically in &.
We obtain from Proposition 5.2

(7. 4) cgr4@1~8 exp(2n0°) (L,0,)* dx
=n’ gr‘* 0*  exp(2no®)vidx
+ ngdfl exp(2no®) |Fv,|*dx.

Set v,(x)=¢(x)u, for £ in (7.1) and for the solutions #,. Then by
Propesition 4.2, we see v,& %, 5(S;,). Summing up (7.6) with respect
to p and noting that #, are solutions of (3.15), we see in a similar
way to that in the proof of Theorem 2

cn‘3S Lv,)dx= S usdzx.
Sdo—Sdg/z pgl( 4 ‘b> —_“p;l Sdo/z 2

Thus tending 7 to infinity, we have completed the proof.
Finelly we give some corollaries.

Corollary 7.1. Let u be a solution in 2, of
| Lu| SCCaoi* ] + 27 33 ),
=1

where L is an operator of the form (1.1). Then there is a positive
number § depending only on L such that if
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u, Du=o0(exn(—7r7)) (r—0) in S:.N&.,
then u vanishes identically.
Proof., We proceed in a similar manner to that in the proof of
Thecrem 1. Put v(x)=C(x)u(x) for ¢ in (7.2). Then we have

SS 7405 exp (2n0%) (L) dx
do

.
gcg 0% exp (200 (a7t lu |2+ 207 20w, | D dx
i=1

Sio/2
el o 70 exp(2nr) (Lo dx.

The first integral on the right of this ineguality is estimated from

the above by

C(S r 0 exp(Cne®) |u|tdx
Sa’o/z
+\y, 07 exp(2no) 17 dz.
Sdo/z
Thus combining this ineguality with Froposition 5.2, we obtain
cn‘3g 70 exp(2n0®) (Lv)tdx
Sdo—sdo/l

28 40?8 exp (Zud®) ut dx.
Sdo/?.

Heunce we complete the proof in the same way as in Theorem 1.
Similariy to Corollary 7.1 we can easily prove the fcilowing
Corollary 7.2. Let u be a solution in 2, of

| Ly Lou| <& >0 2| D*u ],

x| =3

where Ly and L, are of the form (1.1) whose coefficienis are suffi-
ciently smooth. Then there is a positive number § depending only
on L, and L. such that if for |a|<3

D“%ZO(GX[D(_-"_S)) (?——>O> in S1/zﬂé?a s

then u vanishes identically.
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