
Publ. RIMS, Kyoto Univ.
Vol. 6 (1970), 71-111

Formula Manipulations Solving
Linear Ordinary Differential Equations (I)

By

Shunro WATANABE*

1. Introduction.

The linear ordinary differential equations of the type

-LX + c2x
z}y = 0

or

(1. 2) O-O2/'+ (*-0i) (&>+*!#)/

can be solved, in a theoretical sense, applying the theory of Riemann's
P function and of Hukuhara's confluent P function respectively ([!]).

The purpose of this paper and the series of papers to appear is
to report an experiment on digital computer by formulation of the
above theoretic approach for solving linear ordinary differential equa-
tions.

In this paper we study the formula manipulations of Frobenius
algorithm ([!]) to test the occurence of the logarithmic terms in the
solutions of a given linear ordinary differential equation at a regular
singular point. If every solution at a regular singular point a. has no
logarithmic term, then the given differential equation can be reduced
to the equation which has a as a regular point. Therefore we may ask to

a computer about the possibility to reduce a given ordinary differential
equation to the equation of the t/pe (1.1) or (1.2). ([!]).

This paper consists of 2 parts, in Part I (Section 2 — Section 3)

Received December 11, 1969.

* Tsuda College. Formerly a member of the Research Institute for Mathematical
Sciences, Kyoto University.

72 Shunro Watanabe

we describe a basic algorithm solving our problem, and in Part II
(Section 4^-8) we describe some programming techniques for the
algorithm. In section 2, we review briefly the Frobenius' method which
requires the factorization of characteristic equation of the differential
equation. In section 3, we offer two algorithms for factorizing a poly-
nomial with integer coefficients. From section 4 to section 8, the
programming of the Frobenius method is explained in detail systemati-
cally introducing the list processing subroutines which could be useful
for other purpose, especially for the general formula manipulation. For

the purpose to describe our program, we introduce an algorithmic lan-
guage L which is defined from lower level language to upper level
language, language namely ALGOL 60, La, Lai, and Lp. Although

this language is incomplete as a programming language, it is hoped at
least to expose the nature of our formula manipulation to language
designers.

PART I

2. Some remarks on Frobenius method for formula manipulation.

We consider a linear ordinary differential equation of the n-th order

(2. 1) (#-a0^oOO/'°+ (s-aO'-^iC*)/""1^ —+ -R.GOj> = 0

where .RoGO, •••, &00 are rational functions with rational number
coefficients and are regular at rational point x=a. <* is called a regular
singular point of (2.2). We assume that (2.1) has a solution of the

form

(2.2) *(*, jl)

For brevity we write

(2.3) z.(jO = (s-aO

so that also we have

(2.4)

where

Formula Manipulations 73

(2.5) /(*,*) =S*.-.GO*Gi-i)"-Gi-*+i).
*=0

The function f(x, <0, as a function of #, is regular at a, therefore

(2.6)
where

(2.7)

are polynomials of ^ with rational number coefficients. We substitute

y=g (x, A) into (2.3) then we get

-«)A+-) =23 *.(*-«)A+"/(
m=0

Therefore if (2. 2) satisfies (2. 1) the following relations must be

satisfied.

(2.8)

Here we construct a polynomial -FiGO with integer coefficients from

by multiplying the L. C. M. of all the denominators of coefficients

of /oO). Then we factorize -F0(A) within integer coefficients as follows:

(2. 9) FoOl)

Next we classify ^iO)Vl, •••,^rO)Vr into classes, one of them consists of

(2. 10)
where O<&2<"-<&T, and A,-, i=2,"'9r, are integers. We call F0GO=0

the characteristic equation of (2. 1) and call roots of this equation the

characteristic roots of (2. 1).

An algorithm to make the classification of (2. 10) is as follows.

74 Shunro Watanabe

Let

(2.11) p, GO =*!*'+ — +*b
<pj(£)=bmXj-\ ----- \-bQ ,

and we assume that <pi(jL)=<pj(A+k) &>0, then from

we get the necessary conditions

(2.12) *=/, a.=6.,

Then we can test whether ^C*+£)=^GO holds or not using the k of

(2. 12).

Now return to the problem whether we can determine gm so as to

satisfy (2.8) or not. If we think the root of <?iGO=0 of (2. 10), as a

root of /o 00=0, then from (2.10) we have

(2.13) /oa + *t)=/oa + fc)=-=/oa + *r)=O f

and all the other /0G*+A) are not zero, where 'is zero' means to be

divisible by 0>iCO.

1) If v=l in (2. 10) then we put gQ=C (any constant), and cal-

culate gm as follows. Moreover if the class of (2. 10) consists of one

element ^iCO1 then all gm are determined from (2.8). If (2.10) con-

sists of two or more elements, we must investigate as follows. Then

for the I to satisfy ^iCO=0, /oO + l), •••,/oO + fc — 1) are not zero.

Therefore £•»», m = l, 2, ••• , kz — 1, are determined as rational functions

of A with rational number coefficients.

For m=k2, we must consider the following relation

(2. 14)
where /0(A+&2) =0. Therefore if the numerator of the following rational

function of ^ with rational number coefficients

(2. is) ^2-i
is not divisible by 0>iGO then ^2 is not determined so as to satisfy

Formula Manipulations 75

(2. 14). If the numerator of the rational function (2. 15) is divisible

by PI GO, then gk2 becomes a free parameter, and for each m = k2+l,

•••,&3-i> gm has the form

(2.16) A^GOfo+A-,00

where A«iGO> AM2GO are rational functions with rational number coef-

ficients. In this case there need more investigations.

For m = kz, we must consider following relation

(2. 17) £*3/oGl+*0 +^3-1/1^+^3-1) + - +£o/*3GO =0

where /oG+&3) is equal zero, and

(2. is) ^3-i/iG*+£3-i)+--+£o/*3a)
has the form of (2.16). If h^X) is divisible by ^iO), and A«2GO is

not divisible by piGO, then ^3 cannot be determined. If A^GO is n°t

divisible by piGO, then free parameter gkz is represented as

If both hmi(£) and A,»2GO are divisible by #?,GO» then g**3 becomes a free

parameter. We repeat these steps up to m = kT. Since we can deter-

mine gm for w = l, •-,&, the solutions of (2.1) have no logarithmic

term as expressed in (2. 2). The number of these solutions are the

numbers of free parameters remained.

2) When we cannot determine g,R for m = l, • • - , &T, in the case of

1) or when ^3^2 and (2. 10) tas two or more elements, we put

(2. 20) «ro = C^O):Q:) £ (2) =%+ - +*- ,

and when yi2^2 and (2. 10) has only one element, we put

(2.21) gQ = C

where C is any constant. In these cases all the relations except the

first one in (2. 8) can be satisfied by sequentially determined gm .

Therefore for the case (2.20), gm can be written as the following

a - polynomial of ,^gm — —

76 Shunro Watanabe

and this is true for the case (2.21). In these cases /oG)goGO contains
<PiGOlcl), where £(l)=i*+-+*.

(2. 23) L(g(x, *)) =/.GO#00 (*-«)*

is satisfied from the method of construction. From this we get

(2. 24)

Thus if *<£(!) then

(2.25)

where

is a solution of (2.1). From (2.24), (2.25) and

=£0 (*

we get all the solutions of (2. 1) as follows

(2. 27) y= (*-«)AS(*-«)-{

In case 1) no logarithmic term appears and in case 2) logarithmic
term appears in the solutions of (2. 1). For the solution of the form

(2. 28) y= (*-«)*-
m=0

we make a classification (2. 107) instead of (2. 10),

(2. 100 GhOO"2, ^a-&3)v3, -, ^ia-^)vo
where <^1(>l)=^iO— fc), ^3=^3 — &2, •••, ̂ T=^T— ^2, and repeat the same
algorithm.

3. Two algorithms for factorizing a polynomial with integer
coefficients.

Kronecker's method ([2]) is known as a polynomial factorization
algorithm, but here we offer other two methods.

Formula Manipulations 77

1) Radix substitution method.

A polynomial factorization within integer coefficients

(3.1) ^anx
tt+'-' + a^ = (]bkx

k^''' + bQ)(clx
l+'--^c^ k+l=n

can be analogously considered as a factorization of the number #„#„_! •••#<,
whose radix is x, also we assume ah, bi9 cs may take plus and minus

values and

(3.2) |«.|, |4f |, k

Given a polynomial

(3.3) /(JO =«•*•+•

we select a positive number M, such that

(3.4) Ubl, 16,-1, |c,|<M

and evaluate the number N=anM"-\ htf0 , then factorize this number
N into 2 numbers, say B and C. We expand B as those numbers of

radix M whose coefficients take plus and minus values. This expansion

is not unique. But if the degree k is fixed, then the number of pos-
sible expansions is finite, namely

(3.5) 5=4?)M*+- + «') s = l,-,p.

We divide (3. 3) by

(3.6) WV+-••+«•> s = l,-,£

and if divisible, then such (3. 6) is a factor of (3. 3), and if not divi-

sible then other (3. 6) is checked. We repeat this process from degree
k = l to k= [n/2]9 and also we repeat this for all possible choice of B.

The method of selection of M from (3.3) is, for example, as

follows. A factor polynomial #?(#) of /(#) has properties that f(f) is
divisible by q>(f) for every integer i. Therefore ^00 coincides with
one of the polynomial 4>t(x) which passes through (w+1) points (i,

'any factor of/(*)') *"=0,1, •••,». Therefore the maximum of absolute
values of the coefficients of any factor of /(#) is not greater than

Max (the maximum of absolute values of coefficients of

78 Shunro Watanabe

The polynomial 0/00 of degree k can be calculated using the values

of /OO at points #=0, 1, • • • ,& , from the Newton's interpolation poly-
nomial

(3.7) fa(x)

where

If |/(0 I <m then U/(0) I <2m generally U'/(0) | <2''m, consequently
Of

we get |<«/|<— m. If d is coefficient of #' of $/(#), then

/ f+i fc-i
(3. 8) I c, I <A*. + (s yo A-+1 + (23 ;'i •/'•) «+.+ •••+ A-+I (S ;'i • • •/*-*>•

Taking the maximum of { } for k and i satisfying i<i<k< [deg/O)

/2], we may set M=mxmax { }.

2) Method of indeterminate coefficients.

From (3. 1) we obtain the following relations between coefficients

of the given polynomial and its factor polynomials.

a. = fad (£„)

(3.9)
a, =

\ a0 =bQc0 (£"0)

where I'Szk, n=k+l, aQ9-~,an are known and b0,~-,bk, CQ, • •- ,£/ are

unknown. Our purpose is to find all combinations of (bQ, •••,&*) and

(£o, •••>cd which satisfies (3.9). The factor polynomial is obtained as

Formula Manipulations 79

First we put k = l and factorize a» to b£t, factorize a0 to bQcQy then

collect all combinations of (bk, c?, bQ, c0), the number of combinations

is finite. For each of these we can consider bk, ch bo, CQ as known,

therefore from Ei, •••,£,_! we can determine each of Ci, •••,£/_! as a

rational function of ii, •••,&*_! with rational number coefficients. Then

substitute these d, •••,£/-! to EI, ••-,£„, thus we obtain & algebraic

equations of bi,'~,bk-i with rational number coefficients. Starting from

this system, eliminating variables one by one using the method of

([9]), we obtain at last an algebraic equation of higher degree of one

variable, say bi. By substituting to bi all integers which lie within

the equation's root boundary, we obtain all integer solutions. And

substituting one of these values into the equation of two variables

obtained one step earlier of elimination of bz. Continuing the same

method, we obtain a family of polynomials

(3.10) £00=ft#*+-+*o.

Then we try to divide /(#) by 1?00» anc* check whether B(x) is

really a factor of /OO- And then we repeat this for all possible (bk,

ct, bo, Co), and again repeat the entire process increasing k up to [n/2].

PART II

4. The outline.

In part II, we shall give a detail description of the program to

solve our problem given in Section 2. Although this program is written

in an assembler language, it is needed for our description to introduce

a new algorithmic language by two reasons: (1) Since the original
program had three levels, namely

the main routine to solve our problem

the polynomial and rational function manipulation subroutines

the very basic list processing subroutines,

it is desired to make clear the structure of editing of lower level

routines in the sense of language design. (2) By the effect of (1), it

80 Shunro Watanabe

will become easier to understand the programmed algorithm itself.
To describe the basic list processing routine, we shall define in

Section 5 an algorithmic language La adding the list type data struc-
tures and the simple list processing functions to ALGOL 60. For the
polynomial and rational function manipulation subroutines and the main
routine, it is needed to add further the functions between structure
types to Lex., the resulting algorithmic language is called Lol. However,
Lol is still not powerfull enough to simplify the description of the
higher level routines, we finally introduce an algorithmic language L&
in Section 7, where the conventions of mathematical notions are pursued.
In Section 9, finally program of Frobenius algorithm is described.

5. Let; List structures and operations for our purpose.

1) In the algorithms explained in section 2 and 3, we may con-
sider integers, and rational functions as basic data, namely, as the
operands of various operations. Furthermore we have treated more
complex structures, for example /*GO of (2. 8) can be viewed as data
of the following form:

(5.1) C/.GO,-,/.GO)

where /* GO, *"=0, •••,»!, are polynomials, and £*GO of (2.8) as

(5.2)

where gvCO = (/i,-oGO, ••• , A A GO), and ht/9 /=0, ••- ,&,- , are rational func-
tions with rational number coefficients (see ((2-16) (2.19)). Moreover
a rational function with rational number coefficients of the form

n

can be written as follows

(5.4) (#,(»,</), (0o,4i ,— ,0«)» (&>, *i, —,*.))•

An example of representations of such data in computer memory
is given for (5. 4) as follows by Figure 1.

We call an unshaded rectangular box 'a node', and call a shaded

Formula Manipulations 81

Fig. 1

Fig. 2 Fig. 3

rectangular box 'a head' in Figure 1. We call a sequence of nodes

with a head 'a node sequence', or more precisely 'a fixed length node
sequence' in the case of Figure 2, and 'a chain' in the case of Figure 3,
that is of variable length.

Thus for our formula manipulations, we shall use the following

definition— "a list is a node sequence or a chain and each node of

which may contain an information or may refer to another head of a

node sequence or a chain."

2) A head or a node consists of consecutive two words and their

structures are shown in Figure 4 and 5 respectively.

| PEG | EPOINTER I TYPE! POINTER [| INFORMATION | TAG {POINTER

a head a node
Fig. 4 Fig. 5

(1) EPOINTER contains an address of the right most node of the

node sequence.

(2) POINTER contains an address of the node which lies just right

to the head.

82 Shunro Watanabe

(3) A special address which means this node sequence ends here, is

written as nill and this is shown by \/\ in Figure J.

(4) DEG (degree) contains an integer expressing (the length of the

node sequence —2).

(5) TAG contains a code which distinguishes whether corresponding

INFORMATION part contains an integer, a letter, or a chain.

(6) TYPE contains a code which distinguishes the type of the node

sequence, and in the case of chain TYPE in partitioned to two

parts, TYPE 1 and TYPE 2, these are explained later.

First we assume that all available storage locations are bound up

to a chain A, the nodes of lists to be constructed are taken from this

chain A. Also the heads of constructed chains and node sequences are
stored in table T. In La the chain A of available storage, and the

area for the table T are considered to be built a priori. There are

two built-in pointers pT and pA in La, where pT points the first un-

used location in T, and pA points the head of the chain A, (Figure 6

and Figure 7).

La contains declarer pointer other than the repertories of ALGOL

60 so that a pointer variable p can be declared by 'pointer p' where

the variable p will contain an address of a head or a node.

,
PT

'//

7f
't

7/
//
Y/

already used

available

head

PA headA

Fig. 6 Fig. 7

When p is used in DEG (/>), TYPE (/>), TAG (/>), EPOINTER (/>),

POINTER (/>), and INFORMATION (p~), the meaning is as follows.

Formula Manipulations 83

If these are in the left hand side of : =, the value of the right hand

side is stored to that field of the node or the head pointed by £, and

if these are in the right hand side expression, we mean the value con-

tained in that field.

The following is the table of basic subroutines, which can be used

to construct or change lists. Pointer ph means it points a head, and

pointer p contains any node address or head address, but after head (£),

p is converted to ph. For brevity we write HEAD (£) := HEAD (?)

this means that DEG (£) : =DEG (?); TYPE (£) : =TYPE (?);

EPOINTER (£) : = EPOINTER (?); POINTER (£) : = POINTER (?);.

Similarly NODE (£) : =NODE (?) is defined.

name parameter actions

(1) head (£) p:=pT; pT:=pT+2; EPOINTER (£):

= POINTER (£) : = nill; DEG (£): = -!;

(2) next (p) p:= POINTER (£);

(3) clear (£0 £T:=£*-2; erase (£0;

(4) decomp (£) if DEG(M) = -1 then goto ERROR;

p: = POINTER (pA) ; POINTER (pA) : =

POINTER (£) ; POINTER (£) : =nill;

(5) set (£) begin pointer pi;

head(^); decomp (£1); DEG(£):=0;

EPOINTER (^) : ̂ POINTER

end

(6) cone (#U,MO begin pointer ^?3; ^3: =EPOINTER

POINTER (^3) : ̂ POINTER (p2h) ;

EPOINTER (^10 : = EPOINTER

DEG (£10: -DEG (£10 +DEG (£20+1

end

(7) cones (£*,££0 begin pointer £1;
set (£1) : cone (£/,, £1) ; clear (£1) ;

££.:= EPOINTER (£0;
end

Shunro Watanabe

(P»,PP*) begin pointer pi;
set (pi); cone (pi, pt); HEAD (p,) :
=HEAD (/>!); clear (/>!);
#>*:= POINTER (A)

end

(/»») begin pointer M;/>, tt>l/>; wp:=wlp:=ph;
M: if POINTER (M;l£)=nill
then goto EXIT else next (wlp) ;
if (TAG (wlp) =£ integer) A (TAG (wlp)
^letter) then cone (pA, wp~); goto M

EXIT: end

(P»,P) begin pointer pi; pl:=pk;
L: if POINTER (pl)*p then
begin next (/»!); goto L end;

POINTER (pi): = POINTER (p);

POINTER (/0:=nill;
DEC (A): =DEG (pt)-1; pl:=p;
head (p); POINTER (p): =pl

end

(P», P) begin pointer wp, tp, wpl, tpl, sp, spp, gp;
head (sp~); head (gp); tpl: =p;
tp: —wp: =ph;

L: head (tpl); HEAD (tpl): =HEAD (tp);
M: if POINTER (wp) =nill then goto R;

next (wp); concp (tpl, wpl);.
if (TAG (wp) = integer) V (TAG (wp)
=letter) then

begin NODE (wpl): =NODE (wp);
goto M end; concp (sp, spp);
INFORMATION (spp) :=wp;

#>:= INFORMATION^); goto L;
R: if POINTER (sp) *nill then

begin gp: = POINTER (sp);

Formula Manipulations 85

cut (sp,gp); ne
wp: = INFORMATION

goto M end

end;

input output

:i) head (p)

! 2) next (p)

(4) decomp (p)

(5) set (p)

pA

f G) cone (p i , p ^ ^

p=

7

_j

86 Shunro Watanabe

input output

(7) cones (pi ,p2)

Pi

Pi

(9) erase (p)

Pi

fe~-LB

Fig. 8

6. Ltf'.

1) La is extended naturally to La which have functions of

Formula Manipulations 87

defining 'structure types' and 'operations between structure types'. A

variable declared under a structure type declarer is fixed length node

sequence, the type of component nodes is integer, letter, chain, or other

data structure. If the type is iite^er or letter, the INFORMATION

part contains integer or letter, however, if it is chain or other data

structure, the INFORMATION part contains the head address of the

latter, here we notice that for a chain only a head is prepared at the

time of its declaration. For example by the structure type declaration

(6.1) define type pol (x) = (letter x, ratn r, chain integer a)

(6.2) define type ratn = (integer », integer rf);,

the list shown in Figure 9 is prepared by Ld compiler, where the head

rpol

Fig. 9

of this list is refferred by rpol within our system, DEG of the head

under a is -1, TYPE of the head of a is chain integer, TYPE of

the head under r is ratn, and TAG of a is chain. By the declara-

tion

(6.3) pol GO/,*;,

two lists are copied from the list of Figure 9, and are identified with

/ and g respectively. At the same time two pointers rf, nf pol (#)

variable / are generated, and r/, nf coctan the head address of /.

Therefore Let system complies 'pol (*)/;' to

(6. 4) pointer r/, nf; copy (rpol, r/) ; nf: =rf\.

If we use z:=f.r then La system generates the following object
program of La

88 Shunro Watanabe

(6.5) next (IT/); nextU/); z: =INFORMATION (*/).

For /. x and /. a, 'next(7r/); next(7r/);' is replaced by 'next (*/)'
and 'next (TT/) ; nextU/); next (TT/);' respectively. If we use
f.r:=z then 2: = INFORMATION Or/) of (6.5) is replaced by
INFORMATION (*/) : =z.

Moreover if we used w:=f.r.n then La system generates the
following object program of La

program of (6. 5)

(6.6) nfr: =Tfr: =INFORMATION (*/); nextU/V);

w: = INFORM ATION (*/r);.

For f.r.n:=w or w: =/. r. d etc, the object program can be obtained
similarly.

2) A chain being solely declared or defined within a data struc-
ture is compiled to a La program consisting of a head and two pointers,
and we can make any list structures from this head using the sub-
routines of section 4.

Also we note that a chain is considered conceptually as an array
whose lower bound is 0 and upper bound is deg 04), where the latter
changes dynamically. Only admissible operation for a chain variable A
is an assignment statement

A[i\:=E;

where E gives only one node which may point another chain, if *<0
then the node given by E and auxiliary \i\ — 1 nodes are inserted at
the position just after the head of A, and if £>0, then the node given
by E is inserted just after the i-th node of A and note that (i — deg (-4))
auxiliary node are inserted when e>deg (-4). After the insertion, the
content of DEG (.4) is adjusted accordingly.

In the following we give the translations of the chain declaration
and assignment statement to a chain variable and subscribed chain
variable in La' to corresponding La program.

Formula Manipulations 89

Lol = La

(6.7) chain integer #=pointer TX, nx\ head(r#); nx:=TX]

TAG1 (r*): =1; TAG2 (r#): =integer;

(6.8) chain chain integer 3;=pointer ryyny\ head(rjy); ny\=?y\

TAGl(r#):=2; TAG2(r*):= integer;

(6. 9) z[i]: =£=ASSING (*, E, i); comment procedure call of ASSIGN;

(6.10) procedure ASSING (2, E, f);
begin integer k; comment z=x of (1) or y of (2)
if *>DEG (r2) then
begin for &:=DEG(r2)+l step 1 until z'-l do

CONCPS (cones, 0); CONCPS (cones, E) end else
if 0<i/\i<DEG(Tz) then
begin nz:=TZ; for &:=0 step 1 until i do

next (nz); STORE (m, JB) end else
if f<0 then
begin for ^: = —1 step —1 until i + 1 do

CONCPS (concp, 0); CONCPS (concp, £) end else
goto ERROR

end
where

(6.11) procedure STORE (*, exp);
comment type of x is chain integer or chain integer, for

the former exp is integer, for the latter exp is chain
integer;

if TAG1 (r*) =1 then INFORMATION (**): =exp else
if TAG1 (r*) =2 then

begin chain integer s;
INFORMATION (**): =TS; s:=exp

end

(6.12) procedure CONCPS (sub, exp); procedure sub;
begin comment sub=cones or concp;

sub (r*, nx) ; TAG (nx): ==TAG2 (r^) ;

90 Shunro Watandbe

STORE (#, exp)
integer 2; begin integer k; end;

(6.13) x[i] COMP(*, i) comment function designator of COMP;

(6.14) integer procedure COMP(#, i)>" chain integer x\
integer i; begin integer k;

nx\ =r#; next(7r#);

for k: =0 step 1 until i do next (TC*);
COMP: = INFORMATION (**)

end

Similarly we can get the object program of Lex for y[i], y[i] [j] etc,
however these correspondence cannot be given by operation definitions,
because these need a representation of infinite number of types, for

example COMP of the above must take the form anytype procedure
COMP(#, t); chain anytype, integer i; therefore the object program

must be compiled specifically by La compiler.

Moreover assignment statements of a data structure to the other
data structure both of which have the same structure type is compiled
to a program that each part of the right hand side is assigned to the

corresponding part of the left hand side, for example lw:=v:' where
w and v are chain integer means w is the copy of v.

3) An operation definition is equivalent to a procedure whose
parameters may be data structures or procedures. For example follow-
ing is the definitions of operator //. (See (3) of Section 8. 3)

(6.15) define operation iffj as ratn procedure r (/,.;); integer i,j;
begin integer g; g: =gcm ((*", /)); r.n: =i/g\
r.d:=j/g end;

We remark that at the end of a block all pointers are checked
whether these are declared within this block or not, and all those
pointed node sequences or chains are returned to available chain A by
subroutine 'erase'.

7. Lf.

1) Lp is a language for rational functions. First we notice that

Formula Manipulations 91

the constituents of rational functions are integers, rational numbers,
polynomials and rational function themselves, and they are composed
into a rational function through formal arithmetic operations. Further-
more, the algorithm, to be programmed, can be described through the

processing with respect to these constituents of rational functions and
the formal arithmetic operations. Therefore establishing some corres-

pondence between mathematical notations and the editing of lower level
subroutined (to manipulate pointers and nodes), we may eliminate all

pointers and nodes from the language Z$, so that it becomes easier to
read the programs. In fact, all the programs of L& are compiled to
Z^'-programs where in the latter programs pointer and node manipula-

tions will appear.

2) For example, the mathematical notation

(7.1) /(*) =00+tf1*
1 + — +*„•*"

can be understood as follows:

When we know the meaning of operations in the right hand side,
namely, the subroutines corresponding to these operations, then the

right hand side specifies how to edit these subroutines to make up the
subroutine corresponding to the right hand side itself, and the left
hand side indicates the proto-type of the calling sequence for the con-
structed routine, so that /(3), /(1/2) or /(£(#)) are the actual
calling sequences. Here a problem arises, that is, the meaning of
operations in the right hand side may differ according to the type of
the value actually substituted to x. Therefore before to enter the con-

structed routine, it is needed to distinguish the type of the value of x.

We also note that /(#) itself may be an actual calling sequence with
the actual parameter 'letter x' where letter will be explained later.

Urder these consideration we arrive at the concept 'formula type
definition' defined as follows: Atypical example of formula type defini-

tion and their usage is shown by (7.2).

(7.2) A: pol (L)= letter Lx x chain integer A

where (L) = (integer, ratn, pol (L),

92 Shunro Watanabe

chain integer) level 2;

B: pol (L) /, g;
C: ratn s;
D: s:

By (7.2)^4, we define a declarer pol (L), and when / and g are decl-
ared as pol (L) variables by (7. 2) 5, / and g are identified with a
data structure (letter L, chain integer A) prepared by the right hand
side of (7. 2) A. (See (2) of Section 8. 1.) For (7. 2) A, L$ system

compiles a subroutine S(F, M) which distinguishes whether the type

of M is integer, ratn, pol (L), or chain integer and jumps to those
subroutines generated respectively from integer MX x chain integer
F.A, ratn M chain integer F. A, pol (L)Mx x chain integer F.A,

or chain integer MX x chain integer F. A in operation definitions,

where F is a pol (L) variable.

/ and g must be used with actual parameter of type integer, ratn,
pol(L), or chain integer, the effect of these are a subroutine call
of the S(F, M). For example, /(1/3) of (7.2)D is equivalent to
S(/, 1/3). However if the type of the actual parameter is letter then
the data structure generated by (7. 2)B is the only result of the call.
For example (7. 2)£ means that (/. Z,, f.A): = (g. L, g. A).

3) Guided by the same idea explained in 2), we have the concept
of operation definition. An operation definition has the form of an

equation. The right hand side of this equation specifies how to make
up the subroutine corresponding to the operation to be defined from
the lower level subroutines which correspond to the operations appear-

ing in the right hand side that are already defined before to reach this
operation definition. The other operator symbols in the right hand

side which are not defined before to reach this operation definitions

are considered merely as separator symbols of the data. The left hand
side specifies how to write the operation to be defined, namely, all

Formula Manipulations 93

the specification of the calling sequence for the subroutine constructed

from the right hand side.

More precisely, in the left hand side, operands of the operator to

be defined are preceded by formula type name such as ratn, and enclosed

by brackets. An operator symbol in the left hand side is either in an

operand or not in any operand. If an operator symbol is in an operand,

then it is considered to be a separator symbol, and the identifiers in

the operand are considered as the names of the substructures separated

by those separator symbols, and the correspondence is given by the

formula type of the operand. If an operator symbol is not in any

operand, then this operator symbol represents the operation to be

defined.

In the right hand side, if a formula type name appears first, it

represents the resulting formula type, therefore this subroutine is func-

tion type. If no formula type appears then this subroutine is subrou-

tine type. All identifiers of the right hand side must be given in the

left hand side, and this is the correspondence between the identifiers

of the calling sequence and the formal parameters of the subroutine

to be defined.

4) Operation definitions are typically shown by following three

examples.

(1) integer i/// = ratn r\ (See (3) of 8.3)

begin integer g\ g: = gcm((*,./)) ;/r. n:=i/g; r.d: =j/g end;

Lp compiler compiles (1) to (1)', where / is the usual integer division

operation, and gem is the unary operator which is defined in (33) of

8.3 for a chain expression (*,/).

(1)' define operation iffj as ratn procedure r(i, /); integer i, /;

begin integer g; £:= gem ((*',./)); r.n:=i/g; r.rf: =//£ end;

(2) ratn (»!//</!) + ratn (n2//d2) = ratn ((wl x d2+n2 x d2) II

(rflxd2) (See (2) of 8.3)

Z,j9 compiler considers // of the left hand side as a separator and ril, dl,

n2, d2 as the renaming of each part of two rational numbers, and con-

94 Shunro Watanabe

siders // x + of the right hand side as operators. (2) is compiled to
(2)'.

(2)' define operation rl-\-r2 as ratn procedure rad(rl,r2);
ratn rl, r2; begin integer nl9 dl, n2, d2, w3, <f3;

nl:=rl.N; dl:=rl.D', n2:=r2.N', d2:=r.2D;
n3:=nlxd2+n2xdl', d3:=dlxd2', rad:=r(n3,d3)

end; comment r is defined at (I)', rad is a identifier generated
by compiler;

(3)

(See (21) of 8. 3)

The definition of ratp (L) is given at (5) of 8. 1. Using (5) of 8. 1,
L0 compiler can determine the type of r, f. g, n, namely r is ratn, /,
g are pol (Z,), and n is integer, therefore x / f () of the left hand
side are considered as separators of the data structure ratp (L). In
the right hand side, X +t/() O are operators sirxe they are defined
in 8. 3. (3) is first compiled to (3)'.

define operation D (A) as ratp (L) procedure rpdif (A) ;
rapt (I) h;

begin ratn r; pol (L)/, /I, g; integer n, nl\

r:=h.R; /:=/*. F(L); £:=A.G(L); n:=h.N;

end

Moreover D(/) and D(^) of (3)x are replaced by procedure calls for
the procedure which are generated by (20) of 8. 3. Operations x /f of
the last statement are not defined in 8. 3, therefore these are considered
as separators of ratp (Z,).

5) Definitions of transformation rules are typically shown by the
following three examples. First we consider the transformation rule:

(1) integer /: = :ratn (//-I) ;. (See (1) of 8. 2)

Formula Manipulations 95

This rule is compiled to two procedures (1)' and (1)", where

(1)' ratn procedure ri(f); integer i; begin ri. N: =i; ri.D: =1 end;

(1)" integer procedure n"(r); ratn r; if r.D^l then ERROR else
ir: =r. N;.

Procedure (1)' is called when operations between ratn and integer
occurs or an assignment statement of integer to ratn occurs, or in the

equivalent cases. Procedure (1)" is called when an assignment state-
ment of ratn to integer, or the equivalent case occurs. The transforma-
tion rules

(2) integer /: = : chain integer A:A[Q]:=I; (See (2) of 8.2)

(3) chain integer A: = : pol (L)(Z,x xA); (See (3) of 8.2)

can be treated similarly and it is left to the readers.

8. The list of all formula types, transformation rules, and opera-
tions which are used in Section 9.

The following declarations must be in the block head where the

Boolean procedure FROBENIUS of the Section 9 and its call exist.

8.1. List of formula type definitions.

(1) ratn=integer N/-D level 1;

(2) pol (L)= letter Lx x chain integor A
where (L) = (integer, ratn, pol(i), chain integer)
level 2;

(3) bp (I) =pol (I) Ft integer N level 3;

(4) ratf(I)=ratn #x(pol(Z,) F/G) where (I) = (ratn) level 4;

(5) ratp(Z)=ratn JRx(pol(I) F/(pol(L) Gf integer AT))

where (L) = (ratn) level 5;

(6) polrp (I, X} =ratn Rx (letter Lx x chain ratp (JT) 5)
where (i) = (ratn) level 6;

(7) bpk(I)=bp FJV(i).^integer K\

96 Shunro Watanabe

(8) qar(Z) =ratn (I/ - #) x pol (Z) ((?) + +ratn(l/AT) x pol(Z) (E) ;

(9) rb(Z)=pol(Z) F/G level 3

8.2. List of transformation rules between different formula types.

(1) integer 7: = : ratn (//. 1) ;

(2) integer /: = : chain integer A: A[0] : =/;

(3) chain integer A: = : pol (Z) (Z x x A) ;

(4) pol(Z)F: = :bp(Z)(F(Z)tl);

(5) pol (Z) F: = : ratf (£)((!/•!) x (F(Z)/(£x x5))) : 5[0] : =1;

(6) ratn #: = : ratf (Z)(7?x ((Zx x^)/(Zx xfi))):

(7) ratn R: = : chain ratn CR: CR[0] :=R',

(8) pol (Z)#: =pol (Z, X)F: F[0] (Z) : =^?(Z) ;

8.3. List of operation declaration.
In the followings,

for i:=0 step 1 until deg(^4) do S

is abbreviated as

s'-̂ do S

where 5 is a statement and A is a chain. Similarly,

for z*:=degC4) step —1 until 0 do S

is abbreviated as

i-*A do S.

(1) integer efy=ratn r:

begin integer g; g: =gcm ((1,^)); r.n:=i/g\ r.d:=j/gend

(2) ratn(>l//rfl) + ratn (^2//rf2) = ra

(3) ratn (nl//dl) -ratn («2^rf2) = ratn ((»! xd2-n2x dl^/Kdl x

(4) ratnOl//Jl) x ratn («2^rf2)) =ratn((nl x

Formula Manipulations 97

(5) ratn (»l//rfl)/ratn («2//rf2) = ratn ((»! x rf2)//(«2 x rfl))

(6) chain integer Al + yl2 =chain integer .43:
begin integer 171, W2\ Wl:=AL, W2:=A2',

if deg (TFl)>deg (W2) then A2[deg (JTl)]: =0 else
if deg (PF2)>deg (171) then Al [deg (TT2)]: =0;
i-»AL do A3[i]: = Wl [i] + W2[i];

Z,: if ^3[deg(A3)]=0/\deg(A3)^l then
begin cut (A3, deg (A3)); goto L end

end comment for cut see (32) of 8.3, cf (10) of Secton 4;

(7) integer kxchain integer AL=chain integer A2:
begin integer /; i-*Al do A2[i]:=kxAl[i] end

(8) chain integer AlxA2=chain integer A3:
chain integer i; chain integer P7; A3[0]:=0;

i-+Al do begin Pf: =Al[i] xA2; W[-i]: -0; .43+ W end
end

(9) pol(Z)(£x x4l) + pol(l)(lx x42) = poI(I)(Zx x(41+42))

(10) pol (L) (I x x 41) - pol (Z) (L x x 42)
= pol (L) (I x x (41 + (-1) x 42))

(11) pol(I,)(Lx x4l)xpol(I)(£x x42) = pol(L)(Ix x (41x42))

(12) pol (I) (I xx 41)# pol (I) (I xx 42)
=qar(L)((l/-AOx(£x x Q) + + (!/•#) x(Ix xtf))
comment Q is the quotient, J? is the remainder;

begin integer i, s; chain integer Wl, W2\

s:= deg (41) -deg (42); if s<0 then goto ERROR;
.ZV:=42(deg(42))t(s+l); Wl: =inv(4l); W2: =inv(42);
for i:=s step —1 until 0 do

begin integer j; chain integer WR;

WR: =W2[Q] x W1-W1[G] xW2;

for ;: =1 step 1 until deg(WK) do PT1[;-1] : =WR[j]
end;

98 Shunro Watanabe

R:= WR
end

(13) pol(Z) F//G=rb(I)(Fl/Gl):
begin pol(I)#; qar(Z,)Fll, Gil;

F11:=FI%H; G\\:=G\% H;
F1:=F11.Q; G1:=G11.Q

end

(14) ratf (L) ((»!/• rfl) x (Fl/Gl)) + ratf (L) ((«2/ • d 2) x (F2/G2))
=nrf/(Z,)((l/.(dl xrf2)) x ((wl xrf2) x (Fl xG2)

+ («2xrfl)x(F2xGl))//(GlxG2)))

(15) ratf (Z) ((«!/• rfl) x (Fl/Gl)) -ratf (Z) ((»2/- rf2) X (F2/G2))
=ratf (£)((!/ • (rflxrf2)) X ((«lx^2) X (FlxG2)

(16) ratf (I) ((»l/-rfl) x (F1/G1)) xratf (I) ((»2/-rf2) x (F2/G2))
=ratf (i)(((«l x«2)//(rfl xrf2)) x ((Fl xF2)//(Gl xG2)))

(17) ratf (£)((»!/• rfl) x (Fl/Gl))/ratf (i)((«2/-rf2) x (F2/G2))
=ratf (i) (((«! x rf2)//(»2 x rfl)) x ((Fl x G2)//(F2 x Gl)))

(18) B(pol(i)(Ix x^.))=pol(I)(Ix x5):
comment D is a differential operator;
begin integer *'; for ;': — 1 step 1 until deg(.d) do
B[i-l]:=ixA[i] end

(19) J>(»tp(I)(rx(//(*tn))))

(20) D(polrp(Z, Z)(^x (Ix
= polrp(Z, Z)CRx(Zx
begin integer *; i^B(X)do DB(.X)[i]:=D(B(X)[i\') end

(21) ratn Rx x chain integer .A=ratn Rl:
begin integer f; J?l:=0; /«-^l do J?l: =^4[*] +7?lxJ? end

(22) cfc (chain ratn LR) = ratn (1//G) x chain integer A;
begin integer t; G:=l; *'->.Lff do G: =gcm((G, £/?[«].«));

Formula Manipulations 99

i-*LR do A[i] : =GxLR[i]
end

(23) pol (Z,) (L x x B) x x chain integer A = pol (Z.) (L x x C) :
begin integer *; C[0] : =0;

for *':=degG4) step -1 until 1 do C:=A[i] xB+A[i-l]
end

(24) chain bp(Z) F l̂C/Boolean procedure EQRL

chain chain bp(L) SETDIV:
begin integer i\ chain bp(JL) LFAC, LFAC1;

LFAC:=FAC(Z);
e-^LFAC(I) do begin integer;,*,/; &:=/:=0;

y->LFAC(Z) do
if EQRL (LFAC [i]9 LFAC[/]) then
begin SETDIV [i] [k] : =LFAC[y] ; k:=k+l end
else begin LFAC1[/] : =LFAC[/] ; /: =1+1 end;

LFAC:=LFAC1
end

(25)

(26) letter £+ -integer £=pol(L)CLx x^l) : ̂ [0] : =k

(27) chain ratf(I) CF/ratf(Z) G=chain ratf(Z) RF:
begin integer i; i-*CF do RF[i] : =CF[i]/G end

(28) in v (chain A)= chain B:
begin integer i; i-*B do 5[f] : =^4[deg(-4)— i] end

In the following we omit all the procedure bodies, since they are
well known.

(29) factor (pol (i)P)= chain bp(Z,)F:
comment P(I) is factorized as jF[0] (I) x — xF[deg(F)] (I);

(30) gem (chain integer -4)= integer G:
comment G is a common divisor of C4[0], ••-,,4[degCA)]);

(31) pgcm(chain pol (Z,)5) : =pol (L)C:

100 Shunro Watanabe

comment C(JL) is a common divisor of (J3[l] (Z,), • • - ,

(32) cut (chain any ^4, integer 0= chain any B:
comment A[i] is extracted from 04 [0], • • - , -4[degC4)]), and
the remainder is resubscripted and is named B whose length is
less 1 length than A.

(33) sort (chain any A, integer KEY) = chain any B:
comment A[i] must contain its substructure KEY, and C4[0] , •• - ,
-4[deg(-4)]) is rearranged so that A[i]. KEY are not decreasing,
the result is (£[0], --, £[deg (£)]), here degCB)=degG4);

9. Algorithm

Boolean procedure FROBENIUS (R, A) ; chain ratf(Z)J?; ratn A;
comment Calculate coefficients of the power series solution of the

at a regular singular point A, and if the solution has logarithmic terms
then FROBENIUS is true, else FROBENIUS is false. This procedure
must be declared in the block which contain all the declarations given
in 8. 1, 8. 2 and 8. 3, and must be called within this block;

begin comment This procedure starts at a statement labelled by START;
chain chain ratf (Z)GAf; chain poI(£)jF!Af; polrp(Z,

chain ratf (I,) procedure CALCGR (m); integer m\
comment calculate CALCGR =^w_1/1 (J + m - 1) +
begin integer j\

FM[deg (FM) + 1] : = F(L, A) ; CALCGR [0] : = O/ • 1 ;
for j = l step 1 until deg(FM) do

CALCGR: = CALCGR +GM[m-j] xFM[;] (1+ • (m-;))
end;

Boolean procedure INTDIF (^41, 51) ; pb(Z,)41, Bl\
comment if there exists an integer k such that Al. F(L) =BI.

Formula Manipulations 101

then true;
begin integer ea, ea\ ratn k\ pol(-L) a, b;

a(L):=AL.F(D; b(L):=Bl.F(L); **:=deg (*

if (ea^eft) V GK/0 [e*] =£*(£) [eft]) then goto F; *: =
if (*. 0 = 1) A (K£+ •*•#)=*(£)) then begin INTDIF: =true;
goto £ end; F: INTDIF: -false

E: end;

Boolean procedure CRDPO (PA, PE} ; pol(L) P4, PB;
comment if PA is divisible by PB then true else false;
begin qar(Z,)PC; jPC:=PA# PB; CRDPO: =if PC.R=0 then true
else false end;

Boolean procedure IFMAKGM(/); integer /;
comment if we can construct gm(X) which satisfies (2.8) for m = 0, 1,
2, •••,&-&/, then IFMAKGM^true else false;
begin chain integer PM; chain ratf (L) G;
comment G=^._i/i(^ + w-l) + ---+^0/.(^)=*oO)+*iO)^i + --- +
ha>(X)pu, see (2.8) where A<(>1) are rational functions and />/ are free

parameter and is represented as (AoCO, ^iO)> ""> AwO))-

PM= (/!, — , *"„.) where deg (^f|) =deg (^•/_1) +1.

go gi g2 ga g4 gs ge

/^•TUr Q Q Q^ Q Q Q Q - — —

6 6 6 — o o — o o — o o— o— o o — o— o

in the above example PM=(0, 2, 5, • • •) ;
procedure CSEPUT(CTJ?); integer CTR;

comment free parameter FPC indicated by the counter CTR of PM
is made first and is substituted into all the gm(£) which contain this
parameter;
begin integer * , / , * , / ; chain ratf(I) FPC, FPCl;

k:=0; i-*G do if i^CTR then

102 Shunro Watanabe

begin FPCl[*]:=G[»]; k: k+1 end;

for i:=CTR step 1 until deg(PM) do
for j:—PM[i] step 1 until
if *=deg(PM) then deg(GM) else Pflf[i+l]-l do
begin chain ratf (I) CMC, GMCI;

/:=0; &->GM[./] do
if k^CTR then begin GMC[l\ : =GM[j] [k] ; I: =1+1 end
else GM[j] : =GMCl+GMC

end
end;

integer 7, PCTJ?, ml; chain integer KJ;
comment PCTR is a free parameter counter NUK is a global para-
meter of the form

NUK=(.(vl,ff), (y2,kZ), —, (w.Arr)) which was explained in (2.10),
KJ= (0, A2, •••, jfer). For parameter /, JVC7JS" and KJ take the follow-
ing form NUK=(.(yJ,kn,-,(yt,kT')-), KJ=(k'J,VJ+l,-,Vr') as
(2-10'). g« is calculated for m:=wl step 1 until kj— 1. Also
SPHI is a global parameter;

:=0; PM[0]:=0;
for /:=/+! step 1 until teg (NUK) do
#/[/- (/+!)] : =NUK[I].K-NUK[J].K

I-+KJ do
begin chain ratf GMFP; integer /, m;
comment GMFP represents a free parameter of PCTR which has
the form (0, --,0, (1/1)) where the number of 0 is PCTR;
for m:=ml step 1 until KJ[I]-l do
GM[m] : =CALCGR(m)/FM[Q\ (£+ -m);
comment for/see (27), for +• see (28) of 8.3;
ml: =KJ[I] +1; G: =C^iCGJ?(JfiT/[/]);
if deg(G)=0 then

if CRDPO(G[Q], SPHI) then goto LFP else
begin IFMAKGM: =false; goto £JOT2 end;

Formula Manipulations 103

for j: = 1 step 1 until deg(G) do
if-\CRDPO(.G[j], SPHI~) then begin CSFUT(j); goto LFP

end;

LFP: comment make free parameter;
PCTR:=PCTR+1; GMFP[PCTR}:=1;
comment for the latter: = (1) and (7) of 8.2 are used;
GM(Kf[I]) : =GMFP; PM[deg (Pflf) +1] : = #/[/] ;
if 7=deg(iT/) then IFMAKGM: =true

EXIT2: end;

M4/JV: integer £; pol(i)P; chain chain bp(Z-) PLGR;
comment P(I)=I.(£-l)-(I-*+l)=^a-l)-U-*+l)
of (2.5), JRLGJ?(L) = ((f»1a)">s-,^a-^1)

1''0,-) of (2-10);

START: F(I,JT):=0;
comment for the former (8), and for the latter, (2) and
(3) of 8.2 are used;
k-+R do begin F(L,Z) : =F(L,X) +J?[deg(J?) -A] x P(I) ;

P(L):=P(Z)x (£+•(-*)) end;
PLG^: =factor(F(L, A))/INTDIF;
comment / is defined by (24) of 8. 3;

k^PLGR do
begin chain bpk FNK, FNK1; chain ratn NUK; integer /, SW;
ratf(I) PHI; comment first make NUK=(.(yl,0), (v2, A2), — ,
(w,*r)), SPHI=Vl(i); l-*PLGR[k] do FJVJT[/] := PIGfl [*][/]
• -* (PZG^ [A] [0] / + PLGR [k] [/]) ;
comment the type of (PLGR[k\ [Q]/+PLGR[k] [/]) is rational num-
ber, but it is transformed to integer, because its denominator =1 and
the type of FNK[f\ is bpk=pol(.L) f integer;
FNKI: =eort(FNK, FNK. K) ; PHI(L) : =FNKl. [I] . FN. F[L] •

1-+FNK1 do NUK[l\:=FNKl[f]N./'(FNKl[[}.K-FNKl[0].K);
1-+NUK do

begin integer /;'; ratf(Z,) SPHI;
GM [0] : =1; SPHI(L) : =PHI(L+ -(-NIK[l] . JQ);

104 Shunro Watanabe

if NUK[l].N=l then

SIMPROOT: begin
if l=deg(NUK) then goto NOLOG else
if IFMAKGM(fi then goto NOLOG else goto LOG

end else

MULTIROOM: if l=deg(NUK) then goto iOG else
for /;:=/+! step 1 until deg(NUK') do
GM[0]:=GM[0] xNUK.F(L+-(-NUK[lj].K»;

LOG: SW:=1;

NOLOG: end;

FROBENIUS:=if SW=1 then true else false end FROBENIUS.

10. Results of computations.

The results are listed up in the following pages.

Formula Manipulations 105

PROt'REM

WHE^E

16 <* 1* QX* OX*?* QX*3*
-

1 (+ 1* IX*

2 (* 0- 5X + OX*2* 1X*3)
s m ,, . _

1 l* 1* IX* 1X*2* ±XV3)

CHA^ACTFRISTJC FOUATiON IS

1L*'2- 3L* 2

=(1L- i)wv 1L* -2>

2 (- 1* ID

NO LOG TER«I APKF-AKS

PPOBREM

(?.} o -i) *2*Y* >* cx - i) *Rp (x > *Y#*r i c x)

1 I* 1* OX* IXi?)
> s , ,

1 C* n+ ix* 1X>2)

CHARACTERISTIC EQUATION is

1L*2- 2L* 0

=(1L* C)*l 1L* -2>

1 1+ 0* 1L)

106 Shunro Watanabe

f C- 1 2L/

NO LOG T£^M APPEARS

(3) { X - 2) ¥ 2 * Y * * + (X - 2 > * R ? t X > * Y * + 3 l (X) *Y=0

WHERE

1 <- 16* 16X + QX¥?- 4X*3+ 1X*4>
RKX) s-----. ._.--....-.

c+ 4* nx*

CHAPACTE«ISTIC EQUATION is

1L¥2«- 2L* 0

s(11+ Q)*(1L+ -2)

1 C+ 0* ID
CKL1 - - •

4 (- 1* 2L>

1 (+ n+ 2L-
GR(L) =r-*--t

16 C" 1* 2L)

NO LOG TERM APPEARS

(4J

WHERE

1 C- 2* OX*
RiCX) »-----.

1 (» 1* OX* 1X*2)

j» 1 C- 2* QX+ 1X¥2)
R2(X) *«•-» — , -

1 c* 1+ nx* ±X¥?)

CHARACTERISTIC EQUATION IS

Formula Manipulations 107

LL*2- 31 + 2

1L" DM 1L* «2>

0 (+ 0)
GRCL) sr-----. ,

1 <* 1)

NO LOG TERM APP&ARS

PRQ8REM

(5) I X-»

WHERE

1 <- 1* OX
RUX) = -

1 1+ 15

1 i * .1)
R.2CX) s--<^--f

1 1+ 1)

CHARACTERISTIC EiQUATiON IS

1L*2+ Ot- 1

0 (* C)
GKL) s •

1 t* 1)

1 C* 1)
GRCL) = •

1 <+ 1)

LOG TERM APPFARS

PR08REH

C 6) (

WHEPE

1 (- 1* IX)
RlCX) = -

4 (+ Q* IX)

108 Shunro Watanabe

i <- 3* 4X)
R?(X) s

2 C.+ 0* IX)

CHARACTERISTIC EQUATION IS

2L*2- 1L + 0

s(it* Q)*(2L+ *D

NO LOG TERM APPEARS

PROBREM

(7) (y-

WHEP6

• 12 i* n+
RKX) =

1 (+ 1+ 1X)¥?

2 («• 0+ IX)

1 t + 1+ IX)

CHARACTERISTIC EQUATION IS

2L- 3

1L* 1-3)

GlCL) =-----, '
2 C- l* 2Li

1 i* 0+ 6L)
62CL) *-" — - •

4 (+ 24* 12L>

9 (* 7- 16L)
G3(L) s « '

4

27 1*1614- 2591+16761*2+ 487L*3
GRCL) - • - -

2 <

LOG TERM ^

PROPREM

Formula Manipulations 109

t 8) < X - 2) * ? * Y , f + l X - 2) * R 2 (X) * Y * + R l (X) * Y = n

? C+ 1)
R1CX) s

1 (- 1* 1X)¥2

i c+ n+ IX)

l <- 1 +
CHARACTERISTIC EQUATION is

=(1L- !)*(11 + 2)

i (+ 4- 1L)
G1CL) = •

1 (+ 2+ 2L)

1 (- 22- 4Li
•

1 I* 28+ 12L)

4

1 (+ 56+ 80L+

LOG TERM APPEARS

PR03REM

(9)

WHERE

1 <* 3* IX)
Rt(X) s . -

1 (+ 4+ IX)

1 (+ 6+ IX)
R?(X) s , --'

1 1* 2* IX)

CHARACTERISTIC EQUATION IS

"1L<2* 4L+ 0

110 Shunro Watanabe

C 1U 0)*< -1L* 4)

NO LOG TERM APPEARS

PR09REM

(10) C

2 <* Q* 1X>
R j C X) s --, - •

1 I- 2+ IX)

2 <- 3* J.X)
R2CX) s ——

1 t- 2* IX)

CHARACTERISTIC EOUATiON 1$

OL- 4

1L* -2>

G1CL) = . - —
2 (* 1* 2D

1 1- 2n- 10L)
G2CL) s •

4 (* 36* 12L)

- I t * 900* 450D
G3CL) =-----. -

4 (*.5204*1548L)

GR(l) s*-*--.
2 (*S»344*4864L*692»L*2*7152L¥3)

LOG TERM APPEARS
JOB COMPUETfcU
1513LINE 8MJN. 24SbC. THIS JOB.

Formula Manipulations 111

References

[1] Hukuhara, M., Solutions of linear ordinary differential equations II, Iwanami,
1942 (Japanese).

[2] van der Waerden, Algebra I, II, 1937.
[3] McCarthy, LISP 1.5, Programmers Manual.
[4] Naul, P. (Ed.), Report on the algorithmic language ALGOL 60, Comm. ACM 3

(1960), 299-314.
[5] Sammet, J.E., Survey of Formula Manipulation, Comm. ACM, 9 (1966), 555-569.
[6] Brown, E. S. et al., The ALPAK System for Nonnumerical Algebra I, II, III,

the Bell system technical Journal 1 (1963); II, III (1964).
[7] Caller, B. A., and J. A. Perlis, A proposal for definitions in ALGOL. Comm.

ACM 10 (1967), 204-219.
[8] Collins G.E., PM, A system for Polynomial manipulation comm. ACM 9 (1966),

578-589.
[9] Joel, M., Solution of systems of polynomial equations by elimination, Comm.

ACM 9 (1966), 634-637.

