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Introduction

Recently real submanifolds of complex manifolds have been studied
by several complex analysts, differential geometers. Ever since Lewy
[5] studied the holomorphic extension problem for pseudo-convex hy-
persurfaces in C2, Lewy [6], Wells [12], [13], Greenfield [2] obtained
many results on the hull of holomorphy of lower-dimensional real sub-
manifolds in complex manifolds. On the other hand Tanaka [9], [10],
[11] studied the pseudo-conformal equivalence between real submanifolds
as 'an example of geometry of differential systems and at the same
time he introduced in a group-theoretic manner an ideal class of real
submanifolds in complex vector spaces which are called ‘standard real
submanifolds’. In this paper we attempt to study the hulls of holomor-
phy for a special kind of standard real submanifolds, i.e., those of the
second kind and further to solve the holomorphic extension problem for
those real submanifolds. We shall now give a precise formulation of
the holomorphic extension problem.

Let M be a real submanifold of a complex manifold M and T°(M),
T"(M ) the complexifications of the tangent bundles 7' (M), T(ﬂ )
of M, M respectively. For any peM, T§(M) is a subspace of Tf(ﬂ )
and we shall denote by S, the intersection of T'f(M) with T§P (i),
that is,

S=Te§M)NTP(M).

Here we have set TO0(M) ={x+ilx; x< T,(M)}. (I is the automor-
phism of T,(ﬁ ) defining the complex structure of 7, (ﬁ ).) We assume
that dim S, does not depend on p. Then we obtain a unique vector
bundle S whose fiber at each p of M is S,. This subbundle S of 7°¢(M)
is called the tangential Cauchy-Riemann bundle of M. A continuous
function f on an open subset U of M is called S-holomorphic in U if
it is a (distribution) solution of the following differential equation

VXEPU(S)i Xf=0 .

This equation is called the tangential Cauchy-Riemann equation of M.
From definition of &S it follows immediately that the restriction of a
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holomorphic function to the intersection of its domain with M is always
S-holomorphic. The converse is, however, not true in general. Thus
it is an interesting problem to examine under various condition on M
to what extent an S-holomorphic function can be continued into a
holomorphic function. More precisely it may be formulated as the

following

Problem H. Let M, M be as above. Given an open subset U
of M, find an open subsel U of M, whose closure contains U with
the property that one can extend every S-holomorphic function in U
to a continuous function v in UUU so that v is holomorphic in U

This is the holomorphic extension problem. The investigation of

this may be divided into the following two steps. The first is to show
that a holomorphic function # defined near U can be holomorphically

continued to a neighbourhood of U UT and that this U can be chosen
at once for all #. The next is to show that in the set of S-holomorphic
functions on U there densely exist restrictions to U of holomorphic
functions near U. The first step may be done by the method of Wells
and Greenfield, but we do not utilize this since a much simpler approach
is possible when M is a standard real submanifold. (However it should
be noted that our procedure is essentially based on the same idea as
theirs, i.e., the analytic discs.) As opposed to the generality of the
results obtained in [13], [2], we were able to make a fitting choice of
U because the situation is simple in our present case. In fact, for a
standard real submanifold M of second kind in a complex vector space
N we can canonically assign a domain D of N whose closure contains
M in such a way that, when M is the Silov boundary of a non
degenerate Siegel domain of the second kind, the corresponding domain
is nothing but the Siegel domain itself, moreover, in this case, the
above U can be taken so that UU U is an open subset of MUD. As
for the second step our discussion here is goup-theoretic and is based
on an approXimation theorem which is an analogue of the famous
theorem of Harish-Chandra, Nelson and Gérding in the representation
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theory, but our theorem is very special and much more complicated. In
the near future the method we exploit will be developed into a theory
of differential equations admitting a Lie transformation group and is
also interesting in its own right.

Among standard real submanifolds of second kind two classes of
them are of particular importance, one is the class of so called ‘totally
indefinite’ ones and the other is the class of Silov boundaries of non
degenerate Siegel domains of the second kind. One of the most remar-
kable facts concerning totally indefinite standard real submanifolds is
that every S-holomorphic function on such a submanifold is the restric-
tion of an entire holomorphic function in the ambient complex vector
space, moreover it is also locally true, that is, every S-holomorphic
functon on an open subset of the real submanifold can be extended
into a unique holomorphic function in a fixed open subset of the
ambient space containing the domain of the original function. As a
result we obtained in this case a hypoellipticity theorem in the real
analytic category on the tangential Cauchy-Riemann equation which
is, however, not elliptic. Further it is also proved that the space of
S-holomorphic functions on an open subset of a totally indefinite stand-
ard real submanifold is a Montel space, so that the finiteness theorem
is obtained for S-holomorphic vector bundles over compact locally stand-
ard real submanifolds. However, this theorem holds for a much wider
class of real submanifolds [7]. The method of [7] is based on an
estimate of HOrmander used in connection with the theory of hypoel-
liptic second order differential equations [3]. But the procedure used
here leads us to a conjecture on Problem A for arbitrary totally
indefinite real submanifolds. For two integers #, 2 such that #>2,
0<<k<mn*—1, it is possible to construct a totally indefinite standard
real submanifold of real dimension 2%+ & in C***, thus its real codimen-
sion being Z.

Silov boundaries of non-degenerate Siegel domains of the second
kind are all contained in some wider class of standard real submanifolds,
which is dual, in certain sense, for the class of totally indefinite ones.
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For this dual class we also have solved Problem H in slight stronger
form. However, the meaning of the result is not so clear in this case
as in totally indefinite case. As examples of compact locally standard
real submanifold of this type, there are the éi]ov boundaries of the
classical domains I,,,(p#¢q), which are all well-known [4], [8].

Because of the restriction of the argument to standard real sub-
manifolds we have received an important simplification of the method,
i.e. the homomorphisms between standard real submanifolds. (This was
informed by Tanaka in connection with the problem on the existence
of a bounded global S-holomorphic function on staiadard real submani-
folds.) In fact this eliminates the necessity to attack each standard
real submanifold, at least as far as concerning our problem, and instead
we may only study a special one denoted by D, (or M°). This is the
Silov boundary of certain Siegel domain equivalent to a classical domain
and for this reason the treatment is very handy.

Now we shall shortly describe the construction of this paper. In
§1 we study general real submanifolds in complex manifolds and define
standard real submanifolds. We study also elementary properties of
standard real submanifolds of the second kind, for example, a simple
method of tireir construction, komorphism, and so on. Most of the
materials of this section are due to [10], [11]. In §2 we investigate
the shape of the holomorphic hull of an open subset of D,. In §3 we
study some special kind of differential operators on a trivial U(#n)-
buandle which are invariant under the right (or left) operation of U(#n)
in order to obtain an approximation theorem for solutions of those
differential operators. The results can be directly extended also for
right invariant differential operators on an arbitrary U(s)-bundle on a
C= manifold. However, we do not include this since it is trivial. In
§4 we give a convenient parametrization of D, in order to apply the
result of §3 to D,. Further combining the result of §2 we solve
Problem H for D, in somewhat stronger version. In §5 we extend the
result of §4 for almost all standard real submanifolds of the second
kind, i.e. the stable ones. First we shall concern ourselves with totally
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indefinite ones and mention the conjecture indicated already. Next we
study the dual class of standard real submanifolds, and as a result we
solve Problem H for Silov boundaries of non-degenerate Siegel domains
of the second kind.

Here we shall give some notational conventions frequently used.
For two subsets A, B of a vector space W we denote the set {a+b;
acs A, beB} by A+B. For two vector spaces V and W we shall
regard, in canonical way, V and W as subspaces of the direct sum
V+ W. If we wish to distinguish between elements of V and those
of W, V+ W will be considered to be also the direct product Vx W,
and then (x,%) means x+y when x, y lie in V, W respectively. The
letter I will mostly be used to denote the linear automorphism of
a complex vector space sending each element to that multiplied by
i=v/—1. If A is an endomorphism of a (real or complex) vector
space V, Dy(A) denotes the determinant of A. When A maps a sub-
space W of V into itself, then Dy(A) means the determinant of A|.
We also denote the determinant of a matrix A by D(A4). For a vector
space V, I, is the identity map of V waile I, is the identity matrix
of type (m,n). In §§3~4 we use capital roman letter to denote
matrices and capital gothic letters to denote matrix groups. In other
sections Lie groups are usually denoted by capital roman letters. For
two subsets A, B of a topological space 4, to say that A is an open
(resp. closed) subset of B means that A is open (resp. closed) in the
relative topology of B induced from 4. Unless smoothness is stated
explicitly, we assume the differentiability of class C=. For a (real or
complex) vector bundle E over a manifold M we shall denote by E,
(resp. E) the sheaves of germs of C=-sections (resp. continuous sec-
tions). For peM, E, denotes the fiber of E over p. Similarly S, is
a stalk of S over p if S is a sheaf over M. TI,(S) is the set of sec-
tions over 2 and I'(S) denotes the set of global sections of S. For
simplicity we use I';(E), I'(E) instead of I',(E), '(E). For a com-
plex manifold X, H(X) denotes the set of holomorphic functions on X.
For a relatively compact subset S of X we shall denote by §x the
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subset {x=X: !f(x)|_<_szlé1é>!f(z)l feH(X)} of X. Here the author
apologizes to the reader for the disharmony of notations which arises
from the comparative independence of each section. In fact it might
be said that this paper grew out of many small papers.

In this occasion the author thanks to Prof. Tanaka for suggesting
the idea of homomorphism and a number of stimulating conversations.
He also thanks to Prof. Matsuura for his constant encouragement and
critical advices.

§1. Standard Real Submanifolds

1.1. DermiTION OF STANDARD REAL SuBMmANIFOLDS., To motivate our
discussion we shall begin with the study of general real submanifolds
in complex manifolds.

Let M, ]W, S be as in the introduction and define a distribution
(in the sense of Chevalley) D on M setting

D,={Rex: x€8,}

where Re x denotes the real part of x. Assume that there exists a
series of distributions D=D'c D*C, :--, D*=T(M) such that

D=[D, DI +D"  (>2)
where D* denotes the sheaf of germs of smooth sections I. Then
ey [D/; D] <D™,

Let ¢ denote the quotient bundle of D' by D™ (1>>2) and set g'=D",
m=g'Pg*P---Pg*. Then the bracket operation induces a Lie algebra
structure of I"(m), such that

¢, gl <g™
where we have put g*=0 if 2> 4.
One can easily show that
[fX,gY]=fglX, Y] f,geC(M) X Yer(m).

Thus this Lie algebra structure is defined pointwisely, i.e., n1,=g}+---
+4a% (M) has also the canonical Lie algebra structure such that
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[X,, Y, 1=[X,Y], X, Yer(m).
The properties of m, are the followings

(i) m, is generated by g;
(i) [a gl =gt
(iii) [Rex, Rey]=[Re((x), Re(ty)] =x,y<S,.

Let I be the linear isomorphism Rex—Re —ix of D, onto itself, then
(iii) is equivalent to

Gii)" [x, y]1=[Ix, Iy] x,yED,.

For pM m, is called the Levi-Tanaka algebra of M at p. We as-
sume that for (p,q)EM XM there exists a Lie algebra isomorphism
¢ of m, onto m, such that ¢(g}) =g} and

o(Ix)=Is(x) x<=g;.

A real submanifold satisfying all hypotheses assumed so far is called
a strongly regular submanifold.

From now on we shall discuss only strongly regular submanifolds.
Now a question arises: Suppose that m=g,+---+g. where g, is a
complex vector space, is a finite-dimersional Lie algebra satisfying fol-
lowing properties

(i) m is generated by g;

(i) [8) 8] =Gue (4,=0 if I>p)

(i) [Ix,Iyl=[x39] x,9€a
where [ is the linear isomorphism of g; defining the complex structure
of g;.. Is there a strongly regular real submanifold M in certain
complex manifold such that the Levi-Tanaka algebra at each point p
of M is isomorphic to m? This is affirmatively answered in the fol-
lowing way.

Let m€ be the complexification m+:m of m, M€ the simply con-
nected Lie group whose Lie algebra is m€, and exp the exponential
map of m€ into M€ Then exp is a holomorphic isomorphism of m¢
onto M€ since € is nilpotent. Set

S={x+ilx; x€g}, N=S+gf+ -+g°.
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S, S are abelian subalgebra of m® and N is an ideal of mC. Set
further M'=exp (m), H=exp (S), N=exp (N). M’, H are Lie sub-
groups of M€ N is a normal subgroup of M. Since exp is one to
one and m(S=(0), we obtain
M'NH=(e).

In other words the restriction to M’ of the canonical projection z: M€
—M¢€/H is one to one on M’. Then real submanifold M=r(M’) of
complex manifold M€/H is the desired real submanifold. To see this
let 6, be the isomorphism of m€ onto T,(M€) defined by the Maurer-
Cartan form of M€ Then the sequence

l dﬂpodp

0—S—>m¢ — Tupy(MC/H)—0
is exact where / is the inclusion map. Denote by f, the isomorphism

of m¢/S onto Ty, (MC/H) such that the following diagram is com-
mutative:

dﬂ.‘podp

mé — T‘lr(p)(Mc/H)

Let p denote the restriction to m of the canonical projection m®—m¢/S.
p is an isomorphism into m€/S since mNS=(0). For p= M’ we have
p(n) =f 7} (Trw(M),

while we obtain by simple calculation

p(m) N (me€/SH P =p(S)
where pC=pRC: mC—(m¢/S)C. (For a complex vector space V we
shall denote by V' the subspace of V¢ given by

Vo= {gx+ilx: x€V}

where I is the automorphism of V which defines the complex structure
of V)
Therefore we obtain

Oy (S) = (dﬁp)_l (‘S‘N(p))
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where S is the tangential Cauchy-Riemann bundle of M and 7 is the
restriction to M’ of n. This implies that

(d7) 7 (D)) = {o,(%): xE@+ -4}

since m can be regarded as the Lie algebra of left invariant vector
ﬁelds M’. Therefore m,= Z D;/Di™* can be canonically identified with
m= Z‘ g; and this 1dent1ﬁcat10n is a Lie algebra isomorphism.

A finite-dimensional Lie algebra it with properties (i), (ii), (iii)
is called a fundamental algebra of the uth kind and the real sub-
manifold M constructed above is called the standard real submanifold
corresponding to m, which will be denoted by M(m) hereafter.

Remark. Since N\ H=(e) the restriction to N of the canonical
projection M¢—M¢°/H is a holomorphic isomorphism onto M€/H, the
inverse of which we shall denote by 7”. Since exp|n~ is a holomorphic
isomorphism of N onto N, T'=(exp) %7’ is also a holomorphic iso-
morphism of MY/H onto N. Thus, if we identify M¢/H with N by
T, M can be considered as a real submanifold of N, further extending
the linear isomorphism of g, onto S given by x—3(x—:lx) to a linear
isomorphism of g;+gf +--4g¢ onto N in obvious manner, we shall
consider M as a real submanifold of g,+gf+ :--+gf.

Remark. By p(p) we shall denote the canonical left operation
on MC/H of an element p=M€ Then for peM’ o(p) leaves M
invariant. Thus the holomorphic transformation group po(M’) operates
transitively on M. In other words M is homogeneous.

Above arguments show that standard real submanifolds are the

most typical and important ones.

1.2. ELEMENTARY STUDY OF STANDARD REAL SUBMANIFOLDS OF THE SECOND
Kinp. From now on we shall concern ourselves only with standard
real submanifolds corresponding to fundamental Lie algebra of the
second kind, which will be called shortly ‘2-standard real submanifolds.’
First we give a method of construction of all 2-standard real sub-

manifolds.
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Let V be an #-dimensional complex vector space and I the linear
isomorphism of V onto itself which defines the complex structure of
V, i.e.,, I maps zx into v —1x for x€ V, let H(V) denote the vector
space of hermitian forms on V¥, i.e.,

H(V)=A{aeSk(V); IQI(x) =a}

where S%(V) denotes the vector space of symmetric elements of
VQV. Further let = be a linear mapping of H(V) onto a vector
sp:ce W and set .=V, g.= W, m(z)=g:+g.. Then we can define
the bracket operation [ , ] on m(z) Xm(z) so that m(z) is a funda-
mental Lie algebra of second kind. For this we must set

[g]-’ g2] = [gz, gz] = (O) .

As to [ , ] on g Xg we set
(%, ¥] =7};n(x®ly—y®lx~lx®y+ly®x> % YEG.

It is easily checked that m(z) satisfies properties (i), (ii), (ii). We
shall denote by M(zx) the standard real submanifold of g;+gf corre-
sponding to m(z). By direct computation we have

M@ ={(x, y—%x, Ix] ) Eq+af: xEG, YEG)}.

Here we write (x,2) for x+z, regarding g,+gf as g: X gf.

We can obtain any 2-standard submanifold in this way. To see
this let m=g;+g. be a fundamental Lie algebra of the second kind
and set V=g, W=g.. We define a linear mapping ¢ of W* into
H(V*)(=H(V)*) setting

¢(a) (x, ¥) =a(lx, Iy]).

Then ¢ is one to one because of property (i) of m. Hence z='¢ is a
linear mapping of H(V) onto W, and we have m=m(z). Details
of the verification shall be left to the reader.

Now we shall introduce ‘homomorphism’ between standard real
submanifolds, which makes it unnecessary to study all standard real
submanifolds. (In fact it suffices to study only special one, namely
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M0 =M(idx(v)).

Consider the following commutative diagram

HV) —> W

I, b

HV) — W

where =z, o, p are all surjections. Then the linear mapping p=1idyDp°
of N=V@ W° onto N'=V&@ W’'C maps M(z) onto M(z"), p is obvi-
ously a holomorphic mapping and the restriction ¢ to M(z) of p is
called homomorphism induced by p. Now consider the following diagram:

tdue)
H(V) —— H(V)

[

HV) —— W

Then we obtain homomorphism # of M° onto M(z). Thus every
2-standard real submanifold is the homomorphic image of M°. This
fact allows us to deduce many information concerning our problem for
M(z) from those for M°. For example, if f is S-holomorphic in an

open set U of M(x), then #*(f) is also S-holomorphic on #*(U).
This is easily seen from

dit,(S3) =S

where &°, S are the tangential Cauchy-Riemann bundles of M°, M(x)
respectively. Conversely if, for a continuous function f on an open
subset U of M(z), 2*(f) is S-holomorphc in #7*(U), then f is also
S-holomorphic in U. Further, if f is the restriction of a holomorphic
function in a neighbourhood of U, z*(f) is also the restriction of a
holomorphic function in a neighbourhood of z7*(U). But it is not
quite evident that f is the restriction of a holomorphic function defined
near U whenever z*(f) is the restriction of a holomorphic function
defined near 7z '(U). Fortunately it is true. This follows from

Proposition 1.2.1. Let S be the tangential Cauchy-Riemann
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bundle of a real submanifold M of a complex manifold M (assum-
ing that S is well-defined). Suppose that (2) complex fiber dimen-
sion of S+complex dimension of M=real dimension of M. Then
every holomorphic function u on a domain U of M such that UN
M+¢ and u|onu=0 must vanish identically in U.

Proof. Condition (2) implies that for peﬁ T,,(ﬁ ) is the unique
complex subspace of itself containing T,(M). To show this let p, be
the projection of TS(M) onto T (M ) in the direct sum T'§(i)
= T¢O(MD@ TSV (M) and p, the restriction to TE(M) of pi.. Then
condition (2) implies that

dimension of T§(M)—dimension of Kernel of 51

=dimension of T (i)

since S,=Kernel of _51. Thus 27,1 is onto; in other words T§(M)
+ TOO(M)=TE(M). Now let L be a complex subspace of T,(M)
containing 7,(M), then we have
s(M)cLe
L=LOO@LoD

where LOO=LeO TV (M), LO=LeN TV (M). Therefore
(M) =TEM) + TSP (M) = L&+ LoD+ TV (M)
=La04+ TP (M)
which implies that L®®= TSO(M). Consequently we have
L="T,(M).

Our assertion is proved.

Now let # be a holomorphic function in a domain U of M such
that UNM+#¢ and %|5nu=O0. Suppose that # does not vanish identi-
cally. Then we obtain a series of proper analytic sets Vi, V2, -+ of
U such that Vi={ze U: u(z) =0}, V, is the set of singular points of
Vi (B>2). Since dimV,<<dimV, and since Vi:2MN U, it holds for
some ¢ that

ViaMN U, (VA Vi) N(MNT) #4.
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(For Vio2MNU, (VA Vi) N(MNT)=¢ imply Vix>MNT.) Choose

e (VA Vi) NMN D).
Then
T,(V)2T,(M) since V,2(MND).
As we have showed above this implies T,(V,-)=T,,(ﬂ ) ie., dimV;

=dim M which contradicts the properness of V.. Thus #=0 is proved.
QE.D.

Let us now study the aspect of homomorphisms more in detail.
Let M'(m®), M’'(z) be the simply connected Lie groups corresponding
to m*(=m(idxw,)), m(x) respectively. Then the linear map idy@Pr of
m°® onto m(z) is a Lie algebra homomorphism. Let z be the homomor-
phism of M’(m,) onto M(z) induced by id,PD=, the Lie algebra of the
kernel K(z) of x is the kernel of = when one regards H(V) as a sub-
space of m'=V+ H(V). By direct inspection we obtain

-
00— K@#n)-M@m) - M'(zx) -0

L

M — M)
where the vertical arrows denote the canonical identifications. The
first horizontal sequence is exact. On the other hand we can easily
see that the transformation p(exp x) (x=H(V)®) is the translation
by % in N°=V+H(V)C. Thus we obtain

a7 (z(p))=p+Kern peM®
while
7' (xz(p))=p+Kern)¢ psM".

Remark. In the next section, by identifying M’'(m®) with M°
in canonical manner, we often regard M° as a group manifold. Then
the left operation L, of p(p=M®) can be uniquely extended to an
affine transformation p(»") of N° when p’ is identified with p under
the identification.

Now let us prove our assertion stated before Proposition 1. 2. 1.
Let U be a domain of M(z) and f a continuous function on U such
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that z*(f) is the restriction of a holomorphic function #’ on a domain
U’ in N° containing z7*(U). Let w,(h€H(V)) denote the translation
x—x+h (xN°®) and let 8, be the vector field which generates 1-
parameter transformation group (z.):;cr. Note (0" |a-1sy=08*(f)=0
for heKern. Thus Proposition 1.2.1 implies

ou4'=0 heKerz.
Note that #’ is holomorphic. Hence it follows also
6.-;.u’=0 hEKern .

Thus #’ is constant on each component of the intersection of linear
variety p+ (Kern)€ with U’ for each p=U’. This implies that, for
any continuous map d of V+z(H(V))€ into N° such that zod is the
identity, the function #=#'od on d~(U") is holomorphic. If, moreover,
d(M(z)) <M’, then u|y=f. Thus the only task is to give such a
map d. But this can be obtained in the following way. Let ¢ be a
linear map of W=z(H(V)) into H(V) such that mos=idy. Set

d(x, ) =(x,6°(y+1ilx, Ix]) —4i[x, Ix],) =x€V, ye W°

where [ , 1, [ , ]o are the bracket operations of m(z) m,, respectively.
It is evident from [ , ]==[ , ], that d is the map with the desired

properties. Q.E.D.

In the next section, instead of M°, we shall study an equivalent
real submanifold D, which is the Silow boundary of certain Siegel
domain of the second kind. The equivalence of D, with M°, though
almost obvious, will be firstly showed in §5.

§2. Holomorphic Hulls for Open Subsets of D,

This section is divided into two parts 2.1 and 2.2, The first half
consists of long, rather tedious but important preparation for the second
half. For this reason the motivation of the first half is not clear for
the readers who want to know the meanings of notations, lemmas,
propositions and so on. Here we indicate only that all of these are
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made to be fitted for the application to D,, D introduced at the begin-
ning of the second half.

2.1. Basic ContinuaTION THEOREM. Fix an #-dimensional complex
Hilbert space V with the inner product ( , ) and denote by & the
vector space of linear operators of V into itself. For A& we shall
denote by A* its adjoint, ie., (4x, y)=(x, A*y) x,y€ V. As usual
we call A hermitian if A=A*. For a hermitian operator A, A>0
(resp. A=>0) means that (Ax, £x)>0 (res. (Ax, x)>0) for 0£x<= V.
For y= V the mapping x—(x,y) is a linear form on V, which we
denote by y*. Then x@y* can be regarded as an element of & since
V@ V* can be canonical identified with . Further we denote by 1
the mapping of §X V into & defined by

(4, x) =%<A—A*) —x@x*  Acg; ze V.

I(4, x) is obviously hermitian. Let S, denote the unit sphere of V and
4 the unit disc in C, i..,

Si={xeV: |x][=1}

4={C; |C1<L1}
where [x]'=(x,x). We shall shortly denote by & the product space
GX VX8 X(—o0,) and by &° the open, dense subset {(4,%,5,7);
({(A,x)y,y)#0} of £ For later purposes we shall regard A, x,y, 7
as the projections of € onto G, V, S;, (—oo, ) respectively, i.e.,
e=(A(), x(e), (), 7(e)) for e€&, and further introduce some con-
venient notations setting

n(e) = (A(e), x(e))
(&) =l(=(e))y()
Define a continuous function 2 on &° and a continuous mapping ¢ of
&' X C into GX V setting
@)= U&=y, yED |+
UCIONION e Z4dODRE

eEE.



Holomor phic Extension Problem 129

0(e8) = (A() +iQA(Z—7())y()Q(x(e) —7 () y(e))*,
x2(e) +Q@)C—7(e))y(e)).
Then ¢ has the following properties.

(1) ¢¢ is a holomorphic mapping of C into X V where we denote by
oc the mapping 43¢—0:(8) =a(e, O).

) z(e) Ece(4).

In fact =(e) =ae(-r(L)) and \ 7(e) <Z1. By simple computation we can

1(e) 2(e)

obtain

@) el D)) =Il(xn(e))
—21*1 (¥, ¥y | +7(*(1C1P=1)) 3 () Qy(e)*.
In particular, if |¢] =1,

3’ [(6(e, ) =1(m(e)) — | (¥(e), () | F() Ry (D*.
Set, for a subset S of Gx V,

~

E'S={c& oe(dh) =S}  E°S=n(E°S)

ES=SUE"S.
Then we have
4) SCT=ESCET LXJESAQE(LI\JSA)
E(QS)\) QQES,\ .

Further, for a bounded set S,
(5) EScS.
Here S means SgxV. (5) follows from (1) and (2).

Lemma 2.1.1. If O is an open set of € XV, then E°O, EO are
open sets.

In fact £°O is an open set in £° by the continuity of # and =z is
an open mapping € onto §X V. Therefore E°O=z(E°O) is open.

Now we are in a position to study holomorphic extendibility from
S to ES for a subset S satisfying some conditions. Let ¢,(£=>0) be
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the holomorphic automorphism of GX V defined by ¢.(4, x) = ({24, tx).
A subset S of GX V is said to be ¢-star-shaped if S coatains 0 and
if ¢SCS for 0<<¢<<l. All p-star-shaped sets are connected. If S is
¢-star-shaped, then ES is ¢-star-shaped as is evident by the following
relation:

vios(A, %, 9,7; €) =a(A, tx,y,t7'7,0).

Now the key of our discussion is the following.

Proposition 2.1.1. Let O be a o-star-shaped open subset of
GXV. Then, for any f= H(O), there exists uniquely Ef of H(EO)
such that Ef|,=f.

For the proof of this we need some notation and lemmas. For a
holomorphic function f on O, we define a continuous function £°f on
E°0 setting

Eof )=\ 7o) Plo, 70 /1)

where P(y, z) is the Poisson kernel for the unit disc in C, i.e.,

1—]z|?

P(yp, 2) =W .

Lemma 2.1.2. Suppose that O is a bounded open set. If f is
the restriction to O of a holomorphic function u in a neighbourhood

of O, then
E°f (&) =u(n(e)).

Proof is evident if one observes that, for any e E°QO,
oe(4) g/(\),

so that f(ee(e’®)) is the boundary value to 84 of the holomorphic func-
tion #(6e(¢)) in a neighbourhood of A4.

To formulate next lemma we need a new notion: Let 2 be a C~
manifold, 9’(2) the space of distributions on 2. A mapping {—f ()
from an open interval (a,b) into 9Y(Q) is called an analytic 9’(Q)-
valued function on (a,b) if, for any C= density 4~ with compact sup-
port, the function {f(¢),+> is (real) analytic in (aq,b).
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Lemma 2.1.3. Let P(D) be a scalar differential operator on 2
and f(t) be an analytic 9 ()-valued function on (a,b). Suppose
PDYf)=0 for t in a non-empty opcn subset of (a,b). Then
PD)f(#) =0 for any t=(a,b).

Proof. Obvious.

Now define a function space on E°O setting

L={feC=(E®)0; ¥’ HE°0)ec E°Of'(z(c)) =f(e)}.
Lemma 2.1.4. Let f(2) be a continuous D*(E °0)-valued function
on (0,1] a nalytic in (0,1] such that, for t in a non-empty open
subset of (0,1), feL. Then f(I)e L.
Proof. This follows immediately from Lemma 6 since there exist
scalar differential operators P,(D) (r=1,2,---,m) on E°O such that

L is the set of solutions in 9’(E°0) of the overdetermired elliptic
system of differential equations

P,(D)v=0, -, P,(D)v=0.

The construction of such P,(D) is easy and shall be left to the reader.
Now we are ready to prove Proposition 2.1.1.

Proof of Proposition 2.1.1. Any ¢-star-shaped open set O can
be represented as the union of an increasing sequence of ¢-star-shaped
bounded open sets O, O:, ---. It follows easily

EO=NEQ;
and each EO; is connected as was remarked before. Therefore we

may assume that O is bounded. For zC, we denote by ¢, the holo-
morphic mapping of XV into itself

(4, x)— (24, zx).
Let be denote the open set in € given by
be={2E€C: ¢,00:(04) SO}

and let ¢ be a C~-function on E°O with compact support K. Then
each de(e€ K) contains a fixed neighbourhood dx of the [0, 1] since de
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depends continuously on e and since [0, 1] Cbe(e= E°0). Define a con-
tinuous function F’ on dxX E°0 x84

F'(z,¢, &%) =4r(e)fop,00e(e”) P(p-7(e) /2(e)).

Then F’ is obviously holomorphic with respect to z in dx. Therefore,
for a fixed volume de on E°O,

S~~ F(z, )vr(e)de
E°0
is also analytic in b when one puts
2w
Fz,0)={Fon00e(e”) Plo, 10 i)

for (z,¢) such that zebs. In particular

S% F(t, &)y (e)ds

E°0
is real analytic with respect to # in (0, 1), thus the continuous
9D'(E°O)-valued function

t—F(,)

on [0,1] is analytic in (0,1). Therefore in order to show E°f=F(1,-)
e[, it suffices to prove that, for sufficiently small ¢, F(¢,-) is in L
(Lemma 2.1.4.).

For this purpose let #,(0<</<1) denote the holomorphic function
defined on ¢;'0=¢..0 setting

u(p)=f(e:(p)) DE¢:/0
and f, the restriction to O of . Then we have
F(t,e) =E°f.(o).
Therefore, for ¢ such that ¢,,0 contains 5, we have by Lemma 2.1.2,
(6 F(,e) =u.(n(e)).

But, for sufficiently small £, agrme since O is bounded. Thus, for
sufficiently small ¢, F(¢,-)=_£ which proves that E°f_L. In other
words there exists a holomorphic function E°f such that
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Ef()=E°f (x(=)).
Now what remains to be proved is that, in the interseclion of O and
E°0,
) E°f=f.
To show this we set, for e E°0 such that z(c) €0,
G =F(,e)—fi(x(e).

Then by (6) G(¢) vanishes when f is sufficiently small. Since, more-
over, G(#) is teal analytic in ¢, G(1) =0 and (7) is proved. Thus, if
one defines a holomorphic function Ef on EO setting

Ef(p)=[f(® (p€0)
\E°f(p) (pEE°0),

we obtain the desired holomorphic extezsion Ef of f. The uriqueness
of Ef is obvious since EO is corrected. Q.E.D.

For any subset S of GX V let H°(S) dznote the set of the restric-
tions to S of holomorphic functions defined on some neighbourhood of
S. Thex in terms of H°(S) we can give a more convenient formula-
tion to Proposition 2.1.1.

Corollary 2.1.1. If S is a o-star-shaped subset of GXV, then
there exists a linear operator E from H°(S) into H°(ES) such
that

Ef ls=f

sup |Ef(D)| =sup [f(P)I

for f€H°(S). In particular the restriction map H°(ES)—H°(S)
is onto.

Proof. Suppose f€ H°(S). Then there exists an open subset
U2S of Gx V and a holomorphic function g in U such that g|s=f.

Then the set
O={peix V: 0<"t<1p,(p) € U}

is ¢-star-shaped and open in &X V. Certainly O contains S. Thus we
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can assume that U=0. But then Ege H°(EQ) and Eg|O=g in the
notation of Proposition 2.1.1. Set Ef=Eg|s. From the explicit con-
struction of Eg, Ef is given by the formula

2T ~
Ef(=(e)) =So foe(e”)) Pp, x(e) /2(e))do ¢S E°S.
Thus it follows
sup | Ef (p) | =sup| f(p)].
PEES PES
Q.E.D.
2.2. AprpricaTioN To D,. From now on we shall apply the result
obtained so far to the holomorphic continuation from the Silow boundary
of the Siegel domain
D={(A4,x)eix V; (4, x)>0}.
Set for £=0,1,2, ---
D,={(A4, x); =1(A4, x)>>0, rank of [ (4, x)<k}.
Each D, is a closed subset of GX V. D, is the Silow boundary of D

(See Piatetski-gapiro [71). Further 6D=D,,, D=D,=D,,;,=---. Now

set
EP=(DyXx8; X (—o00,))NE".

Then we have
Lemma 2.2.1. Let ¢ be an element of £°. Then &P if and
only ifec(64) €D, .
Proof. From (3)’ it follows that ¢:(84) €D, if and only if the
rank of the hermitian endomorphism
Al =Il(x()) — 1 (¥, () |y (O Ry(e)*

is less than % and A(e)>>0. Now suppose e=&P. Then [(n(e))>>0,
rank of [(z(e))<k, ard (¥(e), ¥(e))#0. Hence (¥(e),y(e))=U(xn(e))
y(e), ¥(e))>>0, and thus

Ae) =1(x(e)) — (9(), () I () Ry (*.

Therefore A(e)y(e) =0, while [(z(e)y(e) =y(e) #0. On the other hand
[(@(e)) —A) =(y(), ¥(e)) 'y(e)Qy(e)*>0. Thus, once A(e)>0 is
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proved, it follows

rank of A(e)<k—1,
i.e.,
J&(@A) gD/._1 .

To show A(e)=>0 we shall first observe that
(z(e)) (y(e) +22), y(e) +12)=0
for teC. Hence we obtain
(30, y() U())x, %) — | (¥(e), ) [°=0.
But the left-hand side is equal to (¥(e), ¥(e)) (A(e)x, x). Therefore
(AE@%,2)=>0 zx&V.

Thus A(e)=>0 and 6:(04) € D,_, is proved.

Conversely suppose that 4(¢)=>0 and that rank of A(e)<<k—1.
The image of [(n(e)) is contained in the sum of the image of A(e)
and the i-dimensional subspace generated by y(e). Thus

rank of [(n(e))<<rank of (A(e)) plus 1<k.
On the other hand
[(@) =A@+ (3, y(N]7F (ORI ()*>=A()=0.
Thus =(e) €D,, that is, e€EP. Q.E.D.
By this lemma the restriction ¢, of ¢ to the set £2%X04 is a
continuous map of &P into D,,. Further if S is a subset of D,.,

then E°S={cc&?; 6:(64) =S}. Note that the restriction =* of = to
&¢ is an open mapping from &P onto D,. Thus we obtain

Lemma 2.2.2. For an open subset S of D,.., E°S is open in D,.
Let E, denote the k-th power of the set operation E, that is, E.S
is defined as follows:
(i) ES=S
(ii) E..S=E(E.S).
Then we have

Lemma 2.2.3. E,,,IS=SUE°(E;S\)
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Proof. For k=0, there remains nothing to be proved. Assume
that the case 2=j is proved. Then we have

E;+2S=E° (E,+1S) UE}+1S

=E°(Ej+18> UEO(EJS)US
=E°(E . SHUS
since E°(E;S)CE°(E;,sS). Thus the case k=j+1 is proved.

Q.E.D.

Proposition 2.2.1. If the subset S of D, is open in D, then
E.S is an open subset of D,.

Proof. First we prove this proposition assuming the following
lemma.

Lemma 2.2.4. Under the assumption of Proposition 2.2.1, S
is contained in the interior of E.S.

Let us now prove Proposition 2.2.1. For k=0 nothing remains to
be proved. Suppese that E;S is open in D;, Then E°(E,S) is open
in D, ; by Lemma 2.2.2. But by Lemma 2.2.3. we have

E;.S=SUE°(E,;S).
Therefore by Lemma 2.2.4. E;S is open in D,,,. Q.E.D.

Before proving Lemma 2.2.4 we shall recall the group-theoretic
aspect of D,, which will facilitate the proof of Lemma 2.24. For a
point p of D, define an affine transformation p(p) by setting

p(D) (A, ) =(A+ A +ix'Qx*, x+x)
where p=(A,x) AsgG x=V. By simple computation

() =1(p)+1(@)=1(q) q€4x V.

Thus o(p) leaves each D; invariant. In particular p(p)p’€D, for
p, p'ED,, so we can define a multiplication of a pair of elements of
D, setting

p-p'=0(D)?.

This multiplication is associative
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(p-0)-p"=p- (' 0"
This follows immediately from
PRx*+ 2" Q(x+2)*=x"Q (&) *+ (&' + 2N Qx*.
If (4,x)eD,, then (—A+ixQ@x*,—x) <D, and
(4, %) (—A+ixQ@x*, —x)=0.
Further p-0=0-p=p. Therefore D, is a Lie group with this multiplica-
tion. The map Dy2p—p(p)=AFc(GX V) is a Lie group isomorphism
into. The group p(D,) operates transitively on D,. Further we have
E((p)S)=0(p)-ES.
In fact
a(o(D)a,3,7; O =0(p)e(q, 3, 7; ).
Thus, in order to prove Lemma 2.2.4, we may assume that S=0
and it suffices to show that 0 is in the interior of E.S in D,.
Proof of Lemma 2.2.4. First we shall introduce a norm on

GXx V setting:
1ol =1lAll + [l

where p=(A4, x) and || A| denotes the operator norm of A. By B; we
denote the open ball of radius ¢ in ¢xX V:

Bi={pegx V; |pl<a}.

Suppcse that peD, [pll<<l. Then [I(D)I<2(pll+p]D<4lp].
Therefore [|2(9, 3, DI = LCOIIN/1¢pyra LD 2| <2]| plI %, hence
for Ce=4

(8) le(5, 3, 0; DIl +114CD, 3, I(HYI %l +1)
<lipli+2lpl*2(lipll +1) <5l pll*/

Now suppose that p& (Bs/s:(D;)\ Dy (8<<1). Then there exists y=S;

such that (I(p)y, y)>>0 which implies ¢(p, 3, 0,04) CD,. But by (8)

we have ¢(p, ¥,0; 04) CBs. Thus p=E°(Bs(\D;). Hence B;s: Dj,s\

Dy,CE°(BsN\D;). Since Bes:NDyCBs(\D;CcE(BsN\D;), we have

a0 B2 D CE(BsND)).
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Choose a positive number »<<1 such that
B,ND,cS.
Then we have by (10)
B ND.CE,S,
which implies that O is the interior of E,S. Q.E.D.

For a s-compact subset S of X V we shall also denote by H(S)
the closure of H°(S) in C(S). Recall that any open subset of D, is
gexeric (Proposition 1.2.1). Tterefcre by repeated use of Corollary 2.1.1

we obtain

Lemma 2.2.5. Let S be a o-star-shaped open subset of D,. Then
the restriction map H(E,S)—H(S) is a topological isomorphism
onto H(S).

Proof. We sktall fitst prove this assuming that S is bounded. Set
S,=¢,S 0<t<<l. Thken Sy is relatively corpact in S,” when #'<<#”.
Sirce ¢,E,.S=E,S,, E,S: is also relatively compact in E,S,» if ¢’ <<?".
Now, for fe H°(S) we defire E,f€ H°(E.S) by irduction;

Ef=f
E.f=E(E.f) (k=D.

Here E is the lirear map given in Corollary 2.1.1. According to the
estimate in this corollary,

ggglf(ﬁ)ligggllﬁf(p)l 0<t<1.

Thus the map f—E,f is a topological isomorpaism of H°(S) into
H°(E.,S). This is also onto sir.ce the restriction map H°(E,S)—H°(S)
is ore-to-ore by Picpesition 1.2.1. The map E, is thus extended to a
unijue topological isomorpl.ism of H(S) oato H(E,S). But the inverse
of E, is the restriction map, and we have thus obtaired the desired
conclusion when S is bounded.

In case S is nol bounded we set for k=1,2, ---

St=SN{A4, x)egx V; | A+ x|><k}.
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Then it follows easily E,S= LkJE,.S*. Put

S®=04_u(S") (k=1,2, ).
Then it also holds E,S=UE,S®. On the other hand

ES®= (O(k—i)/kE w9 C ¢ﬁ/(h+1)E W C ¢k/(h+1)E WO =E,S%*,

Thus E,.S® is relatively compact in E,S**V, Here S® is obviously
bounded, and we have thus reduced the second case to the first.
Q.E.D.

By lemmas 2.2.4 and 2.2.5 we can improve Proposition 1.2.1 for
standard real submanifold D, as follows.

Lemma 2.2.6. Let U be a domain in GxX V such that UND,#¢.
Then a continuous function w on UND such that #)vap,=0 and
#)vops H(UND) must vanish identically in UND.

Proof. Since p(D,) operates transitively on D,, we may assume
that UM D,20. Take a sufficiently small §>0 so that B:;C U and set
S=BsND,. Then we have

P N\ —_—
EScSc Bs;=Bs.
By repeated use of this argument we obtain

E.Sc Ea
and hence
E.ScBsND.

Since B;C U, there exists a positive number » such that
Bi+itl,cU 0<t<y
where I, denotes the identity map of V. Therefore, for 0<<t<y,
E.S+itl,c (Bs+itl,)N\ (D ritl,)cUND,

hence we obtain a continuous family #,(0<<f{<<y%) of elements of
H°(E,S) setting

u, (4, x) =u(A+itl,, x)
for (A, x)EE,S.
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Certainly #,—v at {—0 where we have set v=u]|zs. Thus ve H(E,S).

But the restriction map H(E,S)—H(S) is one-to-one by Lemma 2.2.5.

Thus v=0 which implies #=0 since E,S is an open subset of D.
Q.E.D.

Lemma 2.2.6 is a very powerful device for piecing together local
extensiors into a global extension as will be explained in the following.
Before proceeding we shall int:cduce some function spaces and sheaves.

The system (H(S))s:ope: a o together with restriction maps forms
a presteaf on D, and we derncte by 4 the sheaf induced from this
presheaf. For any open subset S of D,, H(S) is defined by

H(S)={feC(S): fly€ H(S") for any relatively
compact open subset S’ of S}.

A continuous function f on S is D-holomorphic in S if there exists an
open sutset U of GX V containing S and a continuous function # on
UND such that (1) #|s=f (2) #|v » is holomorphic. We dezote by
H,(S) the set of D-holcmorphic furctions on S and by 4, the sheaf
of germs of D-holomorphic functiors. Further for an open set V of D
we denote by H(V) the subspace of C(V)
H(V)={uesC(V); uly-» is holomorphic}.

As an immediate consequences of Lemma 2.2.5 we obtain

Lemma 2.2.7. H(S)crs(4p) for an open set S of D,.

For the proof one may rote that the system = {p(p)(B;N\Dy);
peD,, >0} is a fundamental system of neighbourhoods of D, and

that each element of I7 is an image by p(p) of a ¢-star-shaped neigh-
toarhocd of D,.

Lemma 2.2.8. 71'«(p)=Ho(S) for an open set S of D,.
To prove this we need a special reighbourhocd system in D of a
poirt of Dy. Let 2(z) (z&&) deuote hermitian part of z, ie.

h(z) = %(z-l—z*)

ard Cs.(2, %) (8,7>>0) the neighbourhood of (2, %,) €D, given by
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Csn(2, %) ={(2,'2)€D; |h(z—2)| <5,
[l — 2| <3, [11(2, 2)[| <=} .

We also denote by Cs, the intersection of Cs, and D, (this is obviously
independent of 7). If 0<<8<<d’ 0<<yp<<y/, it holds

Cs,v,(zo, Xy) cCys A+t (205 %0)

and (Cs4(20, %) )s.4>0 is a complete system of neighbourhoods of (2, Xo).
Now consider the retracting deformation ¢,(0<<#<C1) of D onto
D, given by
o:(2, x)=< —%I(z, x), x) .

Then
[(p:(2, 2)) =1A—D1(2 x)

h(z—izt_r(z, x))=h(z).

Therefore, for 0<<#<1,
6:Cs.2(20, %0) =Cs,1-17, (20, %o).

In particular, this implies that Cs,o(20,%0) NCs0(21, %1) #¢ and Cs,(2,, £)
NCys (21, %) is conrected whenever Cs, (2o, %0) NCs (21, 1) #¢. In
fact Cs,o(20, %0) NCs0(21, ;) is the deformation retract by ¢, of
Cs1(20, %) NCs,./ (21, 1) and Cs(20, %) NCy,0(21, 1) is connected. The
latter fact can be seen as follows; first consider the diffeomorphism ¢
of D, onto G, X V given by

0(z, 2) = (h(2), x)
where G, is the vector space of hermitian endomorphisms. Then
¢(Cs.0(20, ) ={(2,2) €8, X V: ||2—h(2) | <8, || £ — x0|| <5}
which is evidently convex and ¢(Cs (21, x1)) is also convex hence
@(Cs.0(20, %) NCs.0(21, 1)) is convex, a fortiori, it is connected.
Now we shall turn to the proof of Lemma 2.2.8.
Proof of Lemma 2.2.8. Suppose that fE€I's(Hp). Then for any

point p of S one can choose a neighbourhood V() in D of p and an
element #, of H(V( D)) such that #,|vey 1s=flvins. We may assume
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that V(p)=C;,(p) for some &, »>0 and that V(p)ND,cS. We
claim that

V(DN V(D) #o—> syl vinvar =t vy vists -

As shown before, V(p) NV(p)ND, is non-empty if V(p) N V(P #¢.
But #,—#y vy voy-po=f—f=0. Therefore we have by Lemma 2.2.6

u,=uy in V(p)NV(P)

since V(p)N V(p) is connected. Thus our claim is proved. Thus if
we define a continuous function # on USV( p) by settirg
=

ze V(p)—u(z) =u,(2),

then # is well-defined and #|.=f and # is holomorphic in ’USV( pND.
Thus fe Hy(S). Q.E.D.

Lemma 2.2.9. H,(S)C H(S) for an open set S of D.

Proof. Let S’ be a relatively compact open subset of S and U an
open subset of Gx V containing S. Suppose further that uc H(UND).
Then there exists a positive number » such that

S'+ith,cU for 0<t<y

since S’CcScU. On the other hand if #>>0,
S’+itl,cDy+itl,cD.

Therefore S’'+itl,cUND (t=>0).

Define a family f,(0<<t<(y) of elements of H°(S) setting
f(D)=u(p+ith) peS’

Then f, is well-defined and f,—f=u|s as t—=0. Thus u|s€ H(S).
Q.E.D.
In view of this lemma the natural restriction map

HU)—~HWUND,)

is well defined when U is an open subset of D such that UM D,+é¢.
For any open subset S of D, we shall now assign an open subset
U,(S) of D such that SCU,(S) and such that the restriction map
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H(U.(S)—~H(S)
is onto, that is,

Hy(S)=H(S)=H(U:(S)) .
First we set for >0
Qs={(A4, x) EDy; || Al +|lx]|><0% .
Then ; is a ¢-star-shaped neighbourhoed of 0 in D,. In fact
0Qs=@Q:s .
Let S be an open subset of D,. Put
7(p, ) =sup {n>0; o(p) (@) &S}
Q(2, S) =0(0) Qus.5)-

Then Q(p, S) is a relatively compact open subset of S unless S=D,.
Hence, for f€ H(S), there exists u,& H(E,Q(p,S)) such that
AP AP

by Lemma 2.2.5. Now denocte by 8'(p, S) the supremum of the set

{3>0; C28,28(p) CE-Q(ﬁ; S)}
and put

Vi(p, S) =Cstp.0.5'0.9( D)
U($)=UVi(p, S).

Then certainly U,(S) is an open subset of D such that U.(S)MND,=S.
Further is holds

Uy vio. po=J|vier Do

where we have set #,=#;|y,,5. By the same reasoning as in the proof
of Lemma 2.2.8 there exists u& I?(U](S)) such that #|y,e=u, Of
course f=u|s and we conclude

H(S)=HU(SN ¢,
which, together with Lemmas 2.2.7-2.2.9, implies
H(S)=Te(Ip) = Hy(S) = HU.(S) .
From the first identity it follows also 4 =J91.
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To sum up, we have thus proved
Theorem 2.2.1. For any open subset S of D,
H(S) =I's(H) (=T'«(I) = Hy(S)) = H(U.(S)) s

Here U,(S) is open in D.

This is the main theorem of this section. However, in later discus-
sion (especially in §5), it will be required to exploit another open
subset with certain additional property instead of Ui(S). The rest we
shall devote to the preparation for §5. In the above notation we set
for peS

35, $)=min(15(5,9),1)
V(5,8 =Cs.5.50.5 (D)
US)=UV(5,S).

U(S) is an open subset of D such that SCU(S)CUi(S), and we
have

Lemma 2.2.10. For any open subset S of D,
U(S)\aSc U.(S).

Proof. First we shall prove that 8(p,S) is continuous with
respect to pS. The continuity of »(p,S) is obvious. Note that

Q(P, S) =P(1’)Qﬂ(p.s)
=p(p)¢w(p.:)(Ql)°
Thus the relation
Cﬁﬁ(p) -gEuQ(p, S)

is equivalent to

@uir,0-10( D) Cs,5(p) SE.Q:.

The left hand side depends continuously on p and 8, while the right
hand side is the definite open subset of D. Thus &'(p, S) is continuous
by its definition, and hence also 8(p, S) is continuous.

Next we prove that

g€ V(p, S)=d(p)<3(d(g) +2)
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where we have set d(4, x)=|Al|+]|x||* for (4,x)eGxV. Set
p=(4, x), g=(B,y). Since 6(p, S)<1, we have

I2(A-B)I<1, [lDI<T, [z—yI<1

if g€ V($,S). Therefore
14l =112(4) +31(g) +ix@x*) [ <[A(A | + 3| x]|*
<IeBH+ 112+ 112(A=B)[ +Ilx—y|*
<IBll+Iyl*+2,
lzlIP<2(llyl*+1).

Thus it follows
d(p)<3(d(g)+2).

Now suppose g, U\8S and let {g,};, be a sequence from U(S)
such that ¢,—~¢q,(v—>c0). Since U (S)=}_EJSV( p,S), there exists a se-
quence {$,};21SS such that

%€ V(5 S).

But then the inequality proved above implies that {p,};~. is bounded.
Therefore we may assume that p, converges to p,=S taking a suitable
subsequence if necessary. However p, €8S contradicts ¢,€8S, for one
can see immediately &'(p,,S)—0 when p,—p,=08S. Thus p, must lie
in S. Hence the definition of V(p,S) and the continuity of &(p,S)

imply that
g < V( Do, S ).

The right-hand side is contained in Vi(p,, S) since a(p, S)
<3d(p,S). Therefore g,= U:(S). Thus we have proved
U(S)\aSc UL(S). Q.E.D.

The next lemma will also be used in $5.

Lemma 2.2.11. Let H be a subspace of G,. Suppose that an
open subset S of D, and fers(4l) are invariant by translations
paalirel to H. Then f can be extended into a function u on U,(S)
+HC so that #)\ves,=HU.(S)) and u is invariant by translations
parallel to HC. U, (S), U(S) are tnvariant by translations parallel
to H.
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Proof. The second assertion follows immediately from
Co,(p+h)=Cs,(p)+h heg,.

To prove the first assertion we shall first show that the intersec-

tion of the line
L.(p)={p+ith; tecR} heg,

with U(S) is connected. From definition of C;,(g) it follows that
L,(p)NCs.,(q) is either empty or

{p+ith; [(p) +2th=0, ||[(p)+2th| <<y, tER}.
Thus U,(S)NL.(p)={p+ith; L(p)+2th>=>0, ||[(p)-+2th||<<3 tER}
where 7=sup{d’(q, S): L.(p)N Vi(g, S)+#¢}. This is obviously con
nected.

Let us now prove the existence of # with the required property.
From Theorem 2.2.1 it follows that there exists #'€ H(U,(S)) such
that #'|s=f. However, by assumption

u(Ui(S)) =U.(S)

(=S
where h€ H and r, is the translation p—p+h. Thus Lemma 2.2.6
implies
) F()=u heH.
Since #’ is holomorphic in U;(S)ND and since L,(p)NU:(S) is con-
nected, we obtain for he H
(10) w'(p+ih)=u'(p) if pe U, (S)ND, p+ihe U,(S).

Now suppose only p, p+ithe Ui(S). Choose a positive definite
h<G,. Since U,(S) is an open subset of D, there exists 6>0 such

that
p(s)=p+ish,c Ui(S)

() +ihe U(S)
when 0<s<j.

On the other hand
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(@), p(s)+iheD 0<s.
Thus, by (10), we have for 0 <<s<<¢
u' (p(s) +ih) =u'(p(s))

from which it follows
w(p+ih)=u'(p).

Thus we have proved (10) provided only that p, p+ihe U,(S) and
he H. Therefore there exists a unique extension # of #’ to U.(S)
+iH="U,(S)+ H¢ which is invariant by translation parallel to iH.
Thus we conclude in view of (9) that # is the desired function.
Q.E.D.

It is not known for us whether the function # above is continuous
or not. However, in §5 we shall prove using Lemma 2.2.10 the con-
tinuity of the restriction #lyes).» provided that H contains no semi-
definite endomorphism except O.

§3. Approximation Theorems

3.1. ArprroxmMATION THEOREM ON U(z). In the preceding section
V was an #n-dimensional Hilbert space, & the endomorphism ting of V.
Let {e, e, -+, .} be a fixed orthonormal base of V. Set, for Z€gG, Z
=%‘ Zue;Qef. Then the mapping Z—(Z;) gives an identification of &
with the ring of complex (#,#)-matrices, which we shall preserve in
whole discussion of this section. Let G denote the group of invertible
elements of &, i.e.,, the general linear group of order #, and K the
unitary group of V. Thus K in the abbreviation of U(®). & is a
Lie algebra by the usual cross-product and should be regarded as the
Lie algebra of G, and then the algebra of K is the Lie subalgebra of
anti-hermitian endomorphisms of & denoted hereafter by X.

Let dZ denote the G-valued 1-form on G such that dZ, gives the
usual identification of the tangent space at A of & (or G) with & for
" AEG, and let Z denote the G-valued function on G given by the inclu-
sion G—G. Then the G-valued form 6Z=Z"'dZ is the Maurer-Cartan
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form of G, that is
@ 3Z(A)=A Aeg
where A denotes the left invariant vector field on G which is the

generator of the l-parameter transformation Resp:.s. (R denotes the
right multiplication by Z.) The 8Z is left invariant and it holds

@ R:i(0Z) =ad(A™)éZ.

In terms of the coordinate system (Z,) on G, 6Z can be written as

follows:
0Z= (%(Z N;dZy)

where (Z™%),, Z; must be considered as functions on G.

The restriction ¢*(6Z) to K of 6Z, where ;. K—G is the inclusion
map, is K-valued and is the Maurer-Cartan form of K. In the follow-
ing, we often use o instead of *(8Z7).

Take a non-zero element v, of 7\JC * and define an #*form on K
Va= (A'au) (vo) AeK

where ‘ws denote the transposed of ws. Then v is left invariant, v is
also right invariant by (2) since
3) Dix(ad(A™))=1 AekK

where D.x(f) denotes the determinant of an endomorphism f of X.
The formula (3) follows immediately from compactness of K. Let [K]
be the generator of H,.(K,Z) such that va>0. Replacing v, by
cv.(¢=>0) if necessary, we could choose v, so that

(€Y) va=1.
Let T denote the subgroup of G given by
T={AcsK: A;=0 for (j,k) such that j#£k},
and 9 the Lie algebra of T, i.e.,
T={AcK; A;=0 for j+Fk}.
Set also
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JC1= {AEJC: A11=Azz="'=Ann=0}o

Then we have

) K=K.DT K*=K¥Ppa*
(6) ad(T)JC1=JC1 TeT
@) ad(TH9=9 TeT.

As usual we shall make the canonical identification A (K}¥EPIT*)
= AKFR N\T*, the right hand side of which should be interpreted as
the tensor product of the two graded algebras A\ K¥ and AS*. Then

® A= (N HHSAT*.

Now choose v&é(xt)fﬁ" and v’ € ;\ET * so that

©)) 0o =0Qv5

and define an #-form ¢* on T and an #(#n—1)-form ¢ on K
(10) vi=Nwr(vs) TeET

(11) va=Nos(\N'm(m)) AEK

where n; is the projection of X onto K, in the splitting (5) and o’
is the Maurer-Cartan form of T (i.e., the restriction to T of w). Then
v’ is left invariant and satisfies the following relations:

12) R (") =Dsx:(ad(T™) | x)v =0
(13) A W=0 Aed.

The last relation follows immediately from A_l| A’z (v;) =0. Therefore
there uniquely exists an (#—1)-form »* on K/T such that

14 v=p*(v")

where p is the canonical projection K—K/T. We could choose #; so
that S[x/1'11)1=1 for a suitable generator [K/T] of H,..(K/T, Z).
(Note that K/T is orientable since K/T is simply-connected.)

Now set N=KXT, N=K/TxT. Then as made before we have
the following canonical identifications:
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ANTWN) = A\NT(KOQN\T(T)
ANTN)=N\NT(K/T)QN\T(T).
Consider the map ¢ : N'—K defined by
o(A, T)=ATA™".

Since T is abelian, there exists a uniquely smooth mapping ¢ : N—=K
for which the following diagram is commutative:
N/

N— K
¢

Then our key lemma is the following:

Lemma 3.1.1. ¢*(v) =e0"®v* where ¢ denotes the function on
T defined by

d(T)=HI]’}j—TkAz:HIl-‘Tj}THIz for TE T.
i<k i<k

Proof. Since v@v*=p*(v'Quv*), it suffices to prove
15) 6*(v) =V Q2.

For (A4, T)E N’ let fiar be the linear mapping of KPT into K
which makes the following diagram commutative:

T(K)DT(T) 242, 3o g

ON (d(b)(A,T)l lf(a,r)
Ta(K) > K

(07

To determine f(ar, We set
A,=ATA™.
Then we have
dAi=(dA)TA*+A@T)A*—ATA'(dA)A™
=AT(Ad(T™)—1)3A- A7+ AToTA?
where A=A"'dA, 8T=T"dT. Thus we obtain
0A:=A7'dAi=ad(A) ((Ad(T™) —1)8A+4T).
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Therefore, for Xe X, YedJ,
(16) Sun(X, Y)=ad(A)(Ad(T)-1)X+Y)
= ad(A)gr(m@idg:) (X: Y)

where gr denotes the endomorphism (Ad(T™)—1)| 4 Didgp of K (=
K.DI). Hence

an N fan()=A '(nl@idg,) (A'gr(m))

=D 4 (gr) ((N\'m)Qid g ) (0@w0')

=a(T) N\'n:(06) Qu5’
since D 4(gr)=0¢(T). Consequently we deduce from (10), (11), (17)
and diagram (*).,

* () =t R’
Thus Lemma 3. 1.1 is proved.
Now let K, be the set of elements of K whose characteristic values

are mutually distinct, then ¢ *(K,)=K/TXxT, where T,=K,NT.

Obviously the measures of K\K,, N\¢ *(K,) are zero. Therefore for
a suitable generator [N] of H,.(N,Z) we have

(n! )‘IS[N]avl®v’= S v

K]

since gol,,_1( N is an z!-hold covering. Thus applying Fubini’s theorem,
for the generator [T] of H,(T,Z) such that [K/T]QX[T]=[N], we
obtain

2t
18) S[ﬂa?} n!.

However, for a suitable constant c,

1)2=Ct1 tz"'t,.dtl’"dt,

where we denote by ¢; the function T—7T;; (T T). Consider the
mapping s from R" onto T defined by

e'%
wonemr= ().
e
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Then
s*(ov®) =z"‘ch&Ik |&%i—e'®x |2y, N\ -+ \dp, .

Simple computation shows

27 27
(o leri—emi dpy--dpu= 2mym1,

0 0 i<k

Therefore we have by (18) ¢=(2r¢)™, and hence
19) V2= 2ni) "ty dts \ -+ \dt, .
Now let 7, (0<<p<<1) denote the diffeomorphism of T onto itself
T—>(T—ol)T.—pT)™.
Then simple calculation shows
2(a0) = (ILP(s, 1)) 00"

where
Plo,t)=(1—p*/|1—0pt|? for ¢ such that [¢]|<1.

Set w,=t¥(ov)/n!, then we have the following identities:

(20) as=(ILP(p, )"0y
21) {01
@3) 110 @, =0* (pr0)

where p, is the function on K given by
po(A)=A—-p)"/|D(L,—pA|* AEK.
(21) follows from (18), and (23) follows from the fact that
(ILPGp, £))"=0* (90)-

From (23) we can deduce

@8 [, po=1

Let us now proceed to prove an approxXimation theorem for conti-
puous functions on T. Define a neighbourhood of the identity W;
(0<<6<<2) setting
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Ws={T< T; Re(1—t;)<<a}.
Then the first approximation theorem is the following

Theorem 3.1.1. There exists a continuous function c(8,p)=>0
(0<<o<<?2, 0<<p<<1) such that

(25) linln c(3,0)=0  for fixed s.

@0 ||, fol<splADI+e@ Il fectn
where || fllz=sup| F(T)|.
Proof. Set
P01, o) =([LP(,e7))" T |e%—e]2
Then by (21) we have
@ 560 o dou= (2 m1
and

@y nt|{ fou =|[" {7 gCon - 09 01+, 00

where g=s*(f).
If 1—cose;<<6 for j=1,2, -, n, then

(28) 1&g (@1 =+ @) |9(0s @1y =+, <"~>S$E£J S 9o, @1+, ou).

If 1—cos¢g;=>d, then
(29) 12 (@1, =+ @) |9(0s @1, =+, 0) <C (A —0) (0®) | Fll 20 (o, @25 ***5 @)
for some constant C=>0, for we have then

P(Pa P15 % ‘Pn)/p(p’ P25 "% ¢n)
=P(p, &)1 P(p, &%) I1 | €71 — €%+ |?
1<j 1<k

<(ze) (&) zer-ca-o/er

using the following inequalities:
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: 1—¢’ 1-p* _ 2
, €%1) = <
b0, €7) (A1—p)*+20(1—cosp)™ (1—p)* " 1—p

1—/° 1—p° 1—p
+24;(1—cosgol)£20(1—<=OS<01)S I

P(p, e"?’x) = (1 _0)2

Thus we obtain, if one sets 1—cosé’=8§ 0<<0'<<nm,

20 n! lgpr
<{ G e 10 o) oo
1P, 1<¥ 1Pl <8
W el 18 e 15601 s 0 i do,

d%gl“‘gllg(% w+, 0a) |90, @1+, 0u) A1+ -du s
<@t sup| F(T) |+ 20y CA—0) G0 I f 12

+...+S

1—cos P,<8

where we used (27), (28), (29) in the last step. Thus

i

where ¢(p,d) = —C%p—)— . Q.E.D.

Now we shall prove an approximation theorem for continuous

<sup|f(T) | +c(od)|fl~

functions on K. First we prepare some notations. Given a continuous
function f on K, let f, (0<<p<<1) denote the continuous function f, on
K given by

(30) fay={ Li(Hno  AcK

where L, denotes the left multiplication by A. In view of the invariance
of v, f, can be also given by

(31) fly={ fLi@ro Ak

From (30) we have
(32 Li(fo=(L%i(f)). A€K
and from (31) and the fact that L¥(p,) =R3%(p,) BEK it follows
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(33) 1(f)=(RE(f))» AEK

(31) shows also the real analyticity of f, since L%-1(p,) is real analytic
with respect to A. Now our second approximation theorem is the

following
Theorem 3. 1.2. pr—fllx=§gglf,,(A) —f(A) | =0 as p—1.

Proof. Denote by V; the neighbourhood of the identity in K
given by

Vs={A= K : Re(1—¢)< for any & such that D(¢l,—A) =0},

that is, Vi=¢(K/TxXW;) (or K/TXxW;=¢"(V;5)). Then {Vs}ocscz
forms a complete system of neighbourhoods at the identity of K.
Since K is a compact group, f is ejuicontinuous on K, ie., for any
e=0 there exists & (0<<0<<2) such that

31 §lelgall’i(f)(3)—f(x4)|£e.
On the other hand we have by (24)
(35) JFo(A)—f(A)= SK(Li(f )—f(A))pov.

Therefore, if one sets ga=¢*(L%¥(f)—f(A)), then by (34)
Sup lgA<m) T) lge)

n, TYEK|TxWs

in particular

(36) sup| ga(T) |<e
Tew;

where we have set
A R 1
2=\ gutm, Trv.

Using Fubini’s theorem we deduce from (23), (35)

fy-f =\ g.'Qa,

= Gaw, .
S[r]gA ¢

Therefore by Theorem 3.1.1 and (36)
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| fo(A) —f (A | <e+co, D8l
<e+2c(0,8) | flx.

Since the right hand side is independent of A, we obtain
I fo=Flle<e+2¢(0, 3| fllx-
Letting p tend to 1 from below,
lim| f, —f]| x=<e.
p>1
Since e is arbitrary, we finally obtain
lim||f, —f ] ==0. QED.
p>1
Corollary 3.1.1. For f€C(K) there exists a holomorphic func-
tion f¥ on G, such that fF|x=f,, where G, denotes the open set
{Z<G; 0 ,>ZZ*>pL,}.
To prove this we assume the following lemma.
Lemma H: (Hua [4]). For Z<G, and for A< K, the matrices
I.—oZ*A, I,—pAZ
are non-singular.
Proof of Corollary 3.1.1. In view of this lemma define p?=C(K),
setting

@D p(AD=QA—-p"/(D(Li—pZ*A)D(1,—pA™Z))" ZEG,.
Note that pf=L*,(p,) for A= K. Thus, if one sets for Z&G,

38) 2@ =\ rem,

it holds f*|x=f, and fF is holomorphic since p?(A) is holomorphic
with respect to Z in G.. QE.D.
3.2. ArrLicaTioN To SoME TyPE OF VECTOR FIELDS ON TriviaL U(#)-

BunpLe. Here we shall study how the map f—f, (resp f—f*) relates
left K-invariant vector fields on the product of K (resp G,) with an

open subset in R".
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Let p¥ denote the function on KXG,
(4, Z)—p; (4.
Then p¥ satisfies the following relation
(39) %2 (AB, Z) =p; (A, ZB™) =p; (B, A" Z).

Choose a K-invariant volume v* on G (which certainly exists since
K is compact) and for v»=C¢(G,) define a function on K setting

(40) Vo= ypior*  ASK

where p¢, is the function on G, defined by p&,(Z)=p*(A4,Z). Here,
for definiteness, the orientation of G in the integration should be the
natural orientation of G as a complex manifold. From the invariance
of v* and from (39) it follows that

(41) La(yrey) = (La¥r) o
(42) Ri(¥iny) = (Ravr) o>
where A= K. From (33), (41) we obtain

Proposition 3.2.1. For A=K
(43) AWe) =Ap e  $eCr(6y)
(43)’ A(f)=(Af), feC=(K).

In (43) A in the left hand side should be the left invariant vector
field corresponding to A on K and A in the right should be that on G.

Later we also need

Proposition 3.2.2. For Ac K and for ¢,4=C7(6G)

(49) { @y + oFyy0 0.

Proof. Note that

[ c@rvrocasn = Awr=[-L{ Rrupuloirr*]

t=0

But SgR*exp,A(«p)v* is independent of # because of the K-invariance of
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v*, therefore (44) is proved.
In the same way we obtain

Proposition 3.2.2". For A=K and for f, g€Cs(K)

(44)’ SK(If Ygv+ SKf (Ag)v=0.

Now let 2 be a domain in R" and denote by M, M the product
manifolds KX @, GX &, respectively, then Ta.,(M), Tez.)(M) can be
canonically identified with TW(K)DT.(2), T:(C)PT,(2) respectively
and under this identification we call a vector field on M (resp M) a
vertical vector field if its value at each point (A, x) of M (resp (Z, x)
of M) lies in Ta(K) (resp T2(G)), further a vector field on M (resp
M) is called a horizontal vector field if its value at each point (4, x)
of M (resp (Z,x) of M) lies in 7.(2). Then every vector field X
on M (or on M) can be uniquely written as the sum of a vertical
vector field and a horizontal vector field. The former is called the
vertical part of X and denoted by X° and the latter is called the
horizontal part of X and denoted by X*. A vector field X on M
(resp M) is called left invariant if, for any A of K (resp Z of G),

dL,(X)=X (resp.dL;(X)=X)
where L., L; are transformations given by
Li(A,x)=(A4, %) A, xeM,
L(Z\,x)=(ZZ"x) (Z',x)EM.
The horizontal part and the vertical part of a left invariant vector
field X on M (resp. on M) can be written as follows:

X":% c(x)_a__.
= 0x;

X ’=z‘iz56) (resp ?06))

where (%, **+, Zy) is the system of coordinates of R" and c¢;(x) are C~
functions on 2, and A(%x) (resp Z(x)) is a K (resp &)-valued function

~~
on 2. Here A(x) means the vector field which assigns to each point
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~o N
(4, x) of M a vector (A(%))a in Tao(M)=T(K)DT.(2): Z(x)
should be interpreted in the same way. Note that also A(x) can be
regarded as a G-valued function, therefore for a left invariant vector

field X on M, there uniquely exists a left invariant vector field X on
M such that

X=X, for pcM.
We call this 5(\ the extension of X. A left invariant vector field is

called iypical if X* has constant coefficients, i.e., it can be written as

follows:

N
Xr=3 c;—éi— (¢, +++, €y are constants).

i=1 i

Now let v, v* be volumes on M, M defined by
r=dxQv, v*=dxQv*
where dx=dx"---exy. Then we have
Proposition 3.2.3. The formal adjoint with respect to volume
v (resp v*) of a typical vector field X on M (resp X on M) is — X
(resp 's ), i.e.,

| xpgo+| rxpo-0  rgecran
(resp Sﬁ(f¢)¢v*+sﬁw(f¢)v*=0 o, vE CE"(M))-

Proof. (45) for the horizontal parts of X, )/(\ is obvious, and for
the vertical parts it is an immediate consequence of Propositions 3. 2.1,
3.2.2 and Fubini’s theorem.

Now we shall extend mappings f—f. f—fF for feC(K) and
mapping Y—>yr,, for »EC7(G,) into mappings of C(M) and of
Cy (M) where M,=6,x9. For feC(M) and x= let f* denote the
function on K given by f*(4)=f(4, x) (A=K), and define f, by

SolA, 2)=(f).(4)
and fF setting
X Z,x)=(f5(Z) Ze6..
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In the same way we shall define yr, for Y=C§ (M):
Y (4, %) =P)w(A) AEK, €2

where 4~ denotes the function on G, given by ¢*(Z) =v(Z, x). Then
we obtain an analogy of Theorem 3. 1.2,

Theorem 3.1.2. For fC(M), f, tends to f in the topology
of C(M) as p/1.

Proof. Let K be a compact subset of 2, then the set {f*:x€ K}
is compact in C(K) since the map x—f, is continuous. But the con-
vergence g,—>g in C(K) is uniform on any compact subset of C(K)
since by definition

lgl=<lgle g€C(K).
Thus
sup | fo(4, x)—f(A4,%)|—>0 asp/1

(4,x)eKx

Now (43), (43)’ are generalized as follows.

Proposition 3.2.4. If Xisa typical vector field on M, then
(46) XNe=X({f) feCM)
4D XP)=X(w)  wECr(il).

These formulae are evident by Proposition 3.2.1 and the structure
of typical vector fields on M.

QED.

Theorem 3.2.1. Let X be a typical vector field on M and f be
a continuous function on M such that Xf=0 in the distribution sense.
Then we have Xf,=0, X fX=0.

Proof. Continuous mappings f—X(f.), f—(Xf), of C(M) into
9'(M) coincide on dense subset C=(M) of C(M), therefore there coincide
on the whole space C(M). X(f,)=0 is proved. In view of Proposi-
tion 3.2.2 X(£2)=0 is equivalent to {_£*(X#)e*=0 (peCs ().
But by Fubini’s theorem

V72 @nor={ rEner={ XG0
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where in the last step we have used Proposition 3.2.4. Since r, has
compact support, we have by the hypothesis

Saf *(Xpyv*=0. QED.

Remark. Evidently Propositions 3.2.3 and 3.2.4 and Theorem
3.2.1 are still valid for a differential operator X+:X’, where X, X’
are typical vector fields. Such an operator will be called also a typical
vector field.

To end this section we add an interesting approximation theorem
for solutions of certain overdetermined system of differential equations,
but we do not use this in later discussion.

Theorem 3.2.2. Let Xi, -+, Xy be rveal analytic typical vector
fields such that the differential operator with constant coefficients
X!, -, X& are linearly independert. Then the set of real analytic
solutions of the system of equations

-le=0’ ) XNf=0

is dense in the space of all continuous solutions of it with respect
to the relative topology induced from C(M).

Proof. In view of Theorem 3.1.1' it suffices to prove that f, is
real analytic for a solution f, which follows immediately from the real
analyticity of f*. By Theorem 3.2.1 we have

(48) )?lfp*=0’ R X\pr =0.
Moreover since f.¥(Z, x) is holomorphic in variables Z, (1<j, k<n),

we have

P .
49 —fr=0 A<j, k<n).
(49) aZ,,,f a<j n)

Since the system of differential equation (48), (49) is elliptic by
the assumption of the theorem, f; is real analytic.
QED.
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§4. Problem H for D,

4.1. A LocaL PARAMETRIZATION OF D,. In this section we investigate
Problem H for the Silov boundary D, of the Siegel domain of second
kind D in Section 2. For this purpose we shall give a more convenient
parametrization of D, in order to apply the results of the preceding
section to D,.

Recall that D, was given by

Do— {(Z, 0EaX V; %(Z—z*) —-x®x*>o}

where V is an #-dimensional complex Hilbert space and & the endo-
morphism ring of V. Fixing an orthonormal base {ei, *:*,e,} of V as
before, we shall identify V with C*, ¢ with M,(C), where C* should
be regarded as the space of column vectors with # components. Let
H denote the subgroup of G given by

ks O
H={< ); hy, -+, h,EC\ {0}}
0 &

and ) the Lie algebra of H, ie.,

hy O
5={< .'. ); h’l’ "',h,EC}.
0 h.
hi O
67'—‘{( .'. )Eb; h,'#:hk if j:'&k}.
0 &

Now define a mapping ¢ of 6XJ, into GX V by setting

o(Z,H)=(ZHZ, Z-%); ZE€6, He),

1
where xo=<--
1
(dp), is non-singular at each point p of GxY,. Let us determine

#(GxH,). For this purpose let &G, be the set of elements in & whose
characteristic polynomial has mutually distinct roots, i.e.,, G={Z€g:

We set further

) Then by simple calculation one can easily see that

the discriminant of equation in 4 D(1l,—Z) =0 is non-zero} and for any
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permutation ¢ of # letters {1, 2, ---, n} define (¢) =G as follows:

1 if o(k)=j

()= {o it o(k)#7.

Further we shall denote by W the set of all (s). Then W is a finite
subgroup of G and we have

(0)H(0)*=H.

Therefore N=WH=HW is a subgroup of G. It is well-known that
N is the normalizer of H in G. Obviously

N/H=W.

Suppose that < 4,, then, by Linear Algebra, there exists an element
Z of G and an element H of Y, such that

ZHZ=¢.
Define a mapping S: 4,—G/N setting
S ==(Z)

where = is the canonical projection of ¢ onto G/N. The S(¢) is inde-
pendent of the choise of such Z, and S is well-defined. It is also
evident that S is a holomorphic mapping. Define a function fo on V
setting

X1
Jo(x) =223 x=( : )

Xn
and set for (Z,2)e6GXV

F1(Z, %) =fo(Z7%).
Then fi(ZN, x) =(D(N))*f,(Z,x) for NeN. Therefore, if one sets
f(Z,2)=D(Z)*f1(Z, x),

we have f,(ZN, x)=f.(Z, x). Hence there exists a function f; defined
on 6/NX V such that

fs(n(Z), %) =f(Z, x).
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Set (&, ) =13(S(), x) for € xx)=G,x V. Then f is a holomorphic
function on G, x V.
Let R be the subset of G, X V defined as follows

R={¢ xed,xV; f(& x)+0}.
Since the complement of &G, X V is an analytic variety and since f is
holomprphic, D,=R( D, is open, dense in generic submanifold D,. We
claim that
R =¢<G X 61) .

R2¢(GxY,) is obvious, in fact ZHZ'€G", f(ZHZ™, Zx,=D(Z)*
Xfo(%) #0 for (Z, H) 6 XY,. To show RCy(GXxY,) note that for
any (&, x) R there exists (Z, H)=6G XY, such that

Q1) ZHZ=¢.
Then we have
fo(Z7%) #0
since (¢, x) =fs(=(Z), x) =f=(Z, x) =fo(Z*x)D(Z)? By the definition
of f, there exists H, of H such that

(2) Hi'Z7'x=x,.

By (1), (2) o(ZH,, H)=(¢,x). Thus RC¢p(GXxH,) is proved. As
noted before, ¢ is holomorphic and regular. While by an easy compu-

tation we have
¢ (o, H)={(Z- (o), H); (0)EW}.

Therefore ¢ is an »!-fold convering onto K. Set 1\)/=(o_1 (D,). Then D
is a real submanifold of & XY, which is in local holomorphically equi-
valent to D, since ¢ is holomorphic. Thus we may consider our problem
for D instead of D,.

Now let us determine b explicitly. Suppose (Z, H) El\)/. By Linear
Algebra Z can be written uniquely as follows

Z=AP

where A€ K, P is a positive definite hermitian matrix. Then by the
difinition of D, we have
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0= %(ZHZ“ (ZHZ ) — Zxi %' Z

- A(%(PHP“ _ P HP)— Pxo‘aEP>A'1.
Thus
PHP-— P-*HP—iPx,'% P,
or equivalently
HP~— P2 H—ix/%, .

Hence, if we set @= P2, we have

(h}——il—k)ijzi (j) k=1’ 27 °% n)
where (hn.

0
. )» Q= (ij)-
0 &,

In particular because of the positive definiteness we obtain
(3) Imh;>0 (7=1,2, -, n).
Then automatically

hi__’;lrio (j’ k=17 2, °% n)
and we get

Q= (ij) = (z/ (h, “le))-

Conversely for HeY, which satisfies (3), the matrix (G/(h;—hs))
is certainly positive-definite. For, determinants of its principal minors
are all positive. This follows immediately from the following lemma

Lemma H, (Hua [4]). Sef aj.=7}7, a=(au).
Then
D(@) =28y 1,

where 0(x) = 13» (x;,—x,).

Now define Q(H) by setting

J k

mﬂh=hi-
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h O
where H=( K h>el'), Imh>0 (j=1,2, :--,n), further set
0 n

P(H)=Q(H)™"
P(H) is well-defined since Q(H) is positive definite. Then we

have from above argument

D={(AP(H), H): AcK HEY)

o ha O
where (1={H=< '-ﬁ)el’;,; Ima,>0 (j=1,2,--, n)}.
0 .

Define a real analytic diffeomorphism +r of GX\E onto itself by setting
w(Z, H)=(ZP(H), H) Z<G, He).
Further set ¥»=+vr|xxy. Then v is a real analytic diffeomorphism of
K x\b/ onto 5
4.2. SorutioN oF ProBLeEM H For D,. Let o denote the Maurer-
Cartan form of ) when § is regarded as an abelian Lie group. Define

an endomorphism fizz of G+9 for any (Z, H)e6GX) so that the
diagram

Teem(@x)) =TAQGTu®) 22D . oy
é‘l"(z, ml 7 , l fam
T (6 X5) = Tonean (€) D T () 2zzDon, gy

is commutative. To determine f(;,» denote by f» the linear mapping
of § into G so that the following diagram is commutative:

To(5) —2% 3
(4P | £
TP(H)(G) Qe 4

and set Z,=ZP(H). Then
dZ,=(dZ)P(H)+ZdP(H).

Therefore
0Z,=2'dZ,=ad(P(H)™)éZ+sP(H).
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Thus
fam=ad(P(H)™)+fat+idy.

From this it follows that for A= K, HE),

@) oaranPoi( Tuam(D))
={(ad(p(H)™) (B)+fa(L),L); BeKX Lebh}.
Denote by G the subspace of the complexification G¢=G+iG of G
given by
GOV=AZ+4IZ, Z=G}
where I is the linear isomorphism of & which defines the complex
structure of G. Then we have

gevnKe=(0)
Gevy Ke=ge,

Thus by (4), for HE} and for Leh? there exists a unique B(L, H)
of K¢ such that

dbcam (B, H) a+ L) € TEH(EX5) N T (D)

where L denotes the vector field on § such that o’(L)=L and §¥ is
the subspace similar to GV for §) instead of &. In other words we
have

Theorem 4.2.1. Let L be an element of H°V. Then there exists
a unique typical vector field X(L) on M=K XE such that X(L)*=L
and d¥r(X(L)) is a section of the tangential Cauchy-Riemann bundle
of D.

Here we have used word ‘typical’ setting .Q=B/ in the preceding
section. From this theorem we deduce

Corollary 4.2.1. Under the notation of §3 the following system
of differential equations is equivalent to the Cauchy-Riemann equation
ou=0 of GX}:

w(f( a{;z ))u=o, dq»()?( a‘%ﬂ ))u=o a‘az‘,.“=0 A<j, k<n).
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Here (i, -+, h,) is a system of coordinates of § and (Z,) is the
system of coordinates of G as defined before.

Now let 2 be a domain of ff, then we have an approximation
theorem for S-holomorphic functions on 5,,=w,lr(K X 2). For this purpose
we have to extend mappings of C(M,) (Mo=KX2) f—f., f—>fF to
mappings of C (Do) by Y and v, i.e., we set for feC (59)

Fo= (@ D*@*f)0)
FF=((Plema)™D*(P* .
Here fF is a function on ﬁp,p= G, X Q.

Lemma 4 2.1. Let f be an S-holomorphic function on b/,,, then
* is holomorphic in (M,,).

Proof. By Theorem 4.2.1, Corollary 4.2.1, Theorem 3.2.1 and
the definition of S-holomorphicity we have

ofr=0

in the distribution sense. Since § is elliptic, f.* is holomorphic.
Q.E.D.
In view of this lemma Theorem 3. 1.2’ implies
Theorem 4.2.2. In the closed subspace of S-holomorphic func-
tions on 59 of C(Z),,) the set of restrictions of holomorphic functions
near D, is dense with respect to the topology induced from C(M).

Now define an action of K on GX V setting
w(A)(Z,x)=(AZA* Ax) AcK, (Z,x)eigx V.
Then D,, D, are K-stable. Note that
@oLa=p,(4)og.

Thus every K-stable open subset S of D, is given by S =¢(5g)
for some open subset 2 of B/ Therefore, for any K-stable open subset
S of D, the set of restrictions to S of holomorphic functions near S is
dense in the space of S-holomorphic functions on S, the same is true
for p-S=p(p)S (pED,), p being defined in §2. 2.

But the system of open subsets of D,
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o= {p(p)(D,NBs): pED,, 0<d<+oo}

is a complete system of neighbourhoods. This can be seen as follows:
Although 0&D,, we can choose a sequence (p.) #=1,2, - of points
of D, such that p,= By, since D, is open and dense in D,. Then
{p(p7H(D,NBy): n=1,2, -} is certainly a complete system of neigh-
bourhoods of 0. To see this note that for any 60 there exists a
positive integer # such that

(B1»M Do) ™ (B11.N Dy) € Bs( Do

because D, is a group manifold. Consequently for any 6>0 we can
choose nE N so that

P(p;l) (DrmBllu> CBsﬂDo .

Thus our assertion is proved, and hence even
{P(pp:l) (DrmBlln) : pEDo, n=1, 2, "'}

is a complete system of neighbourhoods of D,.

Therefore we conclude that there exists a complete system of neigh-
bourhoods IT such that for Sl I's(Hs)=H(S) where g denotes
the sheaf of germs of S-holomorphic functions, i.e., the solution sheaf
of the tangential Cauchy Riemann equation. Thus we have proved that
Hs=9. Combining this with Theorem 2.2.1 we obtain

Theorem 4.2. 2,
Is(Ils) =T's(H) =£(S) =Hy(S)=H(U.(S)) |s
for any open subset S of D,.

§5. Application to Standard Real Submanifold of Second Kind

5.1. Basic NoraTions AND DeriniTiONs, Let V' be an #-dimensional
complex Hilbert space and H(V) the space of hermitian forms on V*.
In §1, V* was considered to be Homg(V, R). However Homg(V, R)
can be canonically identified with Homq(V, €C) by the map

Homg(V, R)2f—3(f—ifel) EHom(V, C).
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Here I denotes the automorphism of V defined by I(x) =ix(x€ V).
Now we shall prove the equivalence of D, with M°. Recall that
standard real submanifold M° in N°=VX H(V)¢ is given by

M= {(%,a) € Vx H(V)®; Im() ——;—(x®x+lx®lx) —0}.

Here Im(a) is the element of H(V) such that a—iIm(a) H(V),
that is, Im(a) =—§z—(a—a*) where * indicates the conjugation of H( V)¢
fixing H(V). Consider the linear isomorphism =, of &, onto H(V)
defined by

m(A) (Rex*, Rey*) (=<{m(A4), Rex*@Rey*)) =iRe(4x,y) A€G,
where we have used the notations in §2. Computing directly we obtain
7 (2Qx*) =+ (aQRx + IxR Ix).

Let # be the linear isomorphism of &X V onto N° defined by #,(4, x)
=(x,7nf(A)). Then 7 maps D, onto M°. The image of the Siegel
domain D by #, is the domain

D— { (x,2): Im(a) ——%—(x®x+lx®lx)>0}.

Note that M°, D are obtained once the complex structure of V is given,
i.e., they do not depend on the inner product on V.

Now let = be a linear mapping of H(V) onto a real vector space
W. Then we can construct the furdamental Lie algebra m(z) and the
corresponding standard real submarifold M(z) as in §1. Further consider
the canonical linear map # of N°=V+H(V)" onto N(z)=V+ WE€.
Then #=#|,» is the canonical homomorphism. In what follows we shall
identify D, D, with D, M° respectively by the map #,, and use rather
D, D, instead of D, M° to avoid inessential complication of notaion. For
example, #, # should be interpreted as the maps from D,, & X V onto
M (%), N(xz) respectively. Under this convention the image by # of D
is denoted by D(n). D{x) also does not depend on the inner product
on V.

We shall now introduce function spaces and sheaves for M(x)
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which are similar to those for D,. For a subset S of M=), H°(S)
is the set of restrictions to S of holomorphic functions defined near S.
In case S is o-compact, H(S) is the closure of H°(S) in C(S). For
an open subset S of M(n),(_H(S) is the set {feC(S); flss H(S")
for any relatively compact subset S’ of S}. & is the sheaf induced
from the presheaf given by the system (H(S))s.open With natural re-
striction maps. For a subset U of D(z) such that UND(z) is a non-
empty open subset and such that UcUND(@), H(U) is the set
{usCU); ulvnpm is holomorphic}. Here the second condition on U
means that every continuous function on U is determined by its re-
striction on UM D(z). Further we set for any open subset S of M(x)

U(S) =#(U#(S)))

where U(#*(S)) has appeared already in Lemma 2.2.10. U.(S)
satisfies condition U,(S)cU,(S)ND(x) and U.(S)ND() is open.
The first assertion follows immediately from

U@ (S)cUGE*(S)HND

which is obvious since U(#*(S)) is an opea subset of D. The second
follows from

Lemma 5.1.1. If U is an open subset of D, then #(U)ND(x)
=z(UND).

Proof. Suppose x=#(U)ND(x). Then there are pcU, gD
such that #(p)=#(g) =x. Set for 0<t<1

p@®=QA-Dp+iq.

Then [(p(®)) =1 —1)I(p)+t(g)>0 when 0<¢<1. For [(p)>>0 and
1(¢)>0. But U is open in D, herce there exists 6>0 such that
p@eU for 0<t<s. Thus p(B)eUND for 0<<t<s. Therefore
x=7(p)=7(p@#))eax(UND). We have thus showed #(U)ND(x)
c#(UND). Since the opposite inclusion is obvious, the proof is complete.

We shall now defire two important classes of standard real sub-
manifolds which are the main objects in this paper. The standard real
submanifold M(x) is said to be totally indefinite or v-indefinite if
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every 0#a& W* the symmetric bilinear form
a(x, Iy) x,yeV

is indefinite. If every non-zero element of Kerz is indefinite, then
M(z) is dually v-indefinite. This terminology derives its origin from
the fact that we can assign its dual for every M(z) so that M(x) is
V-indefinite if and only if the dual is dually v-indefinite. This is done
as follows. Let K, be the image of the transposed of z and =, the
canonical projection from H(V*) onto Wa=H(V*)/K,. Then =, gives
rise to a standard real submanifold M(z;) in complex vector space
N@@)=V*x (W) M(xn,) is the dual of M(z). Note here that the
dual of the dual does not coincide with the original one in general.
In fact (z.). is the projection of H(V) onto H(V)/Kerr. However
we may consider that M(x), M((ns)s) are essentially the same. For,
they are mutually equivalent by the canonical map § induced from the
commutative diagram

HV) T > W

0
HV) ey BV /Kerr .

Lemma 5.1.2. M(x) is V-indefinite if and only if M(z,) is
dually v-indefinite.

This follows immediately from

Lemma 5.1.3. For a subspace L of H(V) the following state-
ments are mutually equivalent:

(i) L contains a (positive) definite element.

(i) Li={HeH(V*); {n9)=0 Y9y&L} contains no semidefinite
element except for O.

Here ( , > is the bilinear form on H(V) X H(V*) which gives
the canonical identification of H(V*) with H(V)* For the proof of
this see L. L. Dines [1] or Lemma 3 of I. Naruki [7]. Note that, in
this notation, Kerz,= (Kerz)!, in view of which Lemma 5.1 2 is obvious.

If M(=) is either v-indefinite, or dually V-indefinite, then M(z) is
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said to be slable. The standard real submanifold which is not stable
is called unstable one. The meaning of the word is the following:
Let G, denote the Grassmann manifold consisting of all k-dimensional
subspaces of H(V). Given an HEG,, My denotes the standard real
submanifold induced from the canonical map =z : H(V)—H(V)/H.
Then the set {HEG, : My is unstable} is closed in G, and of the first
category, i.e., without interior, while the sets {HEG, : My is V-inde-
finite}, {H=G, : My is dually Vv-indefinite} are open in G,. Thus one
may say that almost all standard real submanifolds are stable.

In this paper we shall only concern ourselves with stable ones and
the main objective is to show

H(S)=Ts(I) =Ts(Is) = HU(S) s

when S is an open subset of a stable standard real submanifold. The
proof is given first for V-indefinite case and next for dually V-indefinite
case.

5.2. V-INDEFINITE CASE. In this case the study is based on the
following

Lemma 5.2.1. If M) is v-indefinite, then N(z)=7(D)=D(x).

Proof. It suffices to show D+ (Kern)¢=N'=VXH(V)? By
assumption ard Lemma 5. 1. 3, Kern contains a positive definite element
7, of H(V). But, for any pN°® [(p)+ir, is positive definite for
sufficiently large {>0, i.e.,, p+itr, belongs to D. Hence p=D+i Kerx.
Thus we have proved N°=D+i Kerr=D+ (Kern)®. Q.E.D.

Now we shall prove a stronger version of the statement announced
at the end of 5.1 for totally indefinite M(x).

Theorem 5.2.1. If S is an open subset of an V-indefinite M(x),
then UL(S) is an open subset of N{n) and

H(S)=Ts(ID) =Ts(Hs) =H(Ur(S)) |s=H*(Uz(5)) Is.
Here we have put Ur(S)=z(U,(#*(S))).

Proof. Suppcse feTr's(4ls). Then #*(f)Ers(I9s) where, for



174 Isao Naruki

simplicity, we have set S’=72"(S). From Theorem 4.2.2" it follows
the existence of uc H(U;(S’)) such that #|s=#*(f). Note that both
#*(f) and S’ are invariant under translations parallel to Kerz. Thus
Lemma 2.2.11 implies that there exists a function » on UX(S)
=7(U,(S")) such that

v(@(P))=u(p)  pU(S).

Note that the combination of Lemmas 5.1.1 and 5. 2.1 implies that |,
is open. Thus the continuity of » is obvious.
On the other hand we have

#(U(S) =#(U:(S))ND (=) =#(U:(S)ND)

where we have used Lemma 5.2.1 in the first step and Lemma 5.1.1
in the last. This implies that U}(S) is open in N(z). Furthermore,
since #|y(sup is holomorphic, » is also holomorphic. Hence f=v]|s
e HUXS)) |s=H°(UL(S))|s. Thus we have proved I's(Hgs)C
H(U*(S))|s which, together with obvious inclusions I's(Hs) DI's(H)
:)E(S)DH(U,:(S))is, implies
H(S) =Ts(H) =T's(Hs) =H(Ux(8)) |s=H*(Uz(S)) 5.
Q.E.D.
From this theorem it follows trivially

Corollary 5.2.1. If M(x) is V-indefinite, then every S-holomor-
Dhic function in an open set of M(x) is real analytic.

Note that U,(D))=D by the construction of U;(S). Therefore
UXM())=N() by Lemma 5.2.1. Thus we obtain

Corollary 5.2.2. Every S-holomorphic function on M(x) is the
restriction of an entive holomorphic function of N(z) if M(z) is v-
indefinite.

By means of Theorem 5.2.1 we shall show that I's(Hs) is a
Montel space.

Corollary 5.2.3. Under the hypothesis of Theorem 5.2.1 the
map
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Is(Js) o f |- of €CF(S)
is a compact operator for o=C7(S).

Proof. Since the restriction map 7 : H(U(S))—Ts(Hs) is a conti-
nuous bijection and since HUS)), I's(9ls) are Fréchet spaces, the
inverse » of 7 is also continuous (by Banach’s theorem). Note that
H(U(S))=H(U(S)) since U(S) is an open set of N(z). Therefore
the map

HU(S))su > yuesCs (U(S))

is compact where +» is a function of Ci(U(S)) such that 4|s=¢.
Therefore the map

rs(‘-%S) Bf [~ ¢f=C°ﬂ(f) ISECE’(S)
is compact. Q.E.D.

Now we shall extend this Corollary for a somewhat wider class of
real submanifolds. Let M be a real submanifold of a complex manifold
M. M is called a locally flat real submanifold of type M(z) if for
any p of M there exist a neighbourhood U in M of p and a biholomor-
phic mapping ¢ of U into N(z) such that ¢(UNM) is open in M(z).

Corollary 5.2.3. Suppose that M(x) is totally indefinite and M
is a locally flat real submanifold of type M(z). Then the map

I's(9s) of = efeCr(S)
is a compact operator for an open set S of M and o=Ci(S).

This corollary implies the finiteness thecrem for S-holomorphic
vector bundles on a compact locally flat real submanifold. Let M be
a real submanifold of a complex manifold such that the tangential
Cauchy-Riemann bundle of M is well-defined. A complex vector bundle
E on M with a subsheaf S of E is called an S-holomorphic vector
bundle on M if, for any point p of M, there exist a neighbourhood U
and sections s’, s?% --+,s! ({=fiber dim E) over U of S such that

I3
éfks’el‘u(S)@fl, -+, f1 are S-holomorphic in U.
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By Corollary 5. 2. 3’, we obtain

Proposition 5.2.1. Let M be a compact locally flat real sub-
manifold of type M(x) where M(x) is totally indefinite and (E,S)
an”S-holomor phic vector bundle over M. Then T'(S) is finite-dimen-
sional.

Proof. Obvious since I'(S) is a locally compact Banach space by
Corollary 5. 2. 3'.

This proposition is a special case of more general theorem of
Naruki [7] proved by using the method of H6rmander. But the reason
why we have proved Proposition 5.2.1 using the holomorphic extension
is that the method of this paper suggests us a conjecture on holomor-
phic extension. Let M be a real submanifold of a complex manifold
for which Levi-Tanaka algebras are well-defined and let m,=§g’,§ be
the Levi-Tanaka algebra of M at p. Then m}=g;+g} is also a funda-
mental Lie algebra under the convention that

la g3] = a3, g3] = (0).

M is called totally indefinite if for any p M mj is totally indefinite
(i.e., the corresponding standard real submanifold M(mj}) is totally inde-
finite). Now our conjecture is the following.

Conjecture: Let M be a totally indefinite real submanifold of
a complex manifold M. Then there exists a neighbourhood Uin M
of M such that the restriction map

HO)— ru(Ys)
is onto.

If this conjecture is true, it will be almost obvious that the space
of global sections of an S-holomorphic vector bundle over a compact
totally indefinite real submanifold is finite-dimensional, which is a main
theorem of [7].

Remark. For any compact, locally flat and totally indefinite real
submanifold M S-holomorphic functions are constant on each component
of M. This can be proved as follows. Let H be the vector space of
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S-holomorphic functions on M. Then by Proposition 1 this is a finite-
dimensional algebra over C. Therefore any element of H satisfies an
algebraic equation

P(f)=0 PeClx].
Suppose that ¢y, ¢, -+, ¢, are the roots of P, then
(f=e)(f—c2) - (f—ca) =0.

Therefore f takes only a finite number of values. Since f is continuous,
f is constant on each component of M.

As an example, we shall now give a compact, V-indefinite and
locally flat real submaifold, which is an orbit of a subgroup of the
holomorphic transformation group on a complex Grassmann manifold.

Example (Tanaka). First we construct many linear groups:
G=GL(m,C) (m=n+2n" n=p+q p,q>0)
G'={AcG: AJ'A=]} J= —il,

-1,

il

L= {A= (a,-,)EG : a;i=0 if n’<i§m, 1§j§n’}
G'=GNL.

Then the Lie algebras G°, G’, L of G°, G/, L are given by

@'={AeM,(C) : AJ+]J'A=0}
L={A=(a;)EM,(C) : a;=0 if w<i<m, 1<j<n'}
G@'=GN_L.

By direct calculation one sees that &G° is the set of matrices of the
following form
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o |—i¢l'| —r*

where o, ¢ are hermitian, EI’+I”"E=0. We shall set

gl= $ : EEM.,.I(C)}
4
g = : fo=0 aEM.,(C)}
¢
m=g,+g.

Then m is a subalgebra of G° such that [gi, @] €., [gz, 8] -
=(0. We shall make g, a complex vector space so that th
mapping =

El>| ¢

—i &l

is a complex linear isomorphism of M, .(C) onto g,. Thus
fundamental Lie algebra and m¢ can be identified with the su
of M,(C) consisting of matrices with the following form

4 /

” n ”n
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by the mappings

€ : gF DR+ Qi |- | &+if

(¢ —i'e)I y

and

g 2 (6Q1+4 Qi) |-

o+io

The connected Lie subgroup of G° with Lie algebra m (resp m¢) shall
be identified with M’ (resp M€) introduced for m in §1. Under this
identification we have

5= [ : $€ M, (C)
| |

§

where S is the abelian subalgebra of m introduced in §1. Denote by
H the Lie subgroup of G with Lie algebra S.

S=LNm¢, H=LNME¢C.
Then the canonical map
M°¢/H—-G/L

is one to one and regular (not onto).

On the other hand the canonical map
M'—-G'/G’

is also one to one and regular. In fact G’ M’'=(e) and m+G'=G".
Moreover the following diagram is commutative

M — G/G

M¢/H— G/L
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where all arrows are canonical. Thus G°/G’ contains a locally flat open
subset. But the canonical left operation of G® on G/L is holomorphic.
Therefore G°/G’ itself is locally flat.

Now we take K=U(m)G* as a maximal compact subgroup of
G° and denote by K the Lie algebra of K. Then

G'=K+g'.

Therefore orbits of K in G°/G’ are open, and it is obviously compact.
Since G'/G’ is connected, K operates transitively on G°/G’, and G*/G’
itself is compact. Thus G°/G’ is a compact locally flat real submani-
fold of G/L. (Note that G/L is a Grassmann manifold.)

In order to show that G°/G’ is totally indefinite one may investigate
Lie algebra m. Recall that g, is isomorphic to M, (C) by . Note
that

[c(®), k()] ="e"p+"31'¢ .

We shall prove that for any non-zero hermitian (#/, #")-matrix A,

the symmetric form

LA] (&, 7) =Sp(A[z(&), Ir(x)])

is indefinite. Denote by S, the subspace of M, . (C) of kth column
vectors and set A= (a:;)1=i.j<n’-
1) Suppose that @;#0 for some {#j. For any #&S;, veS;

[Al (u+v,u+v)=2 Re(a(é u.ﬁ.—kélu.ﬁ.))

where we set a@;=a. Choosing a suitable €' so that ¢'¥ a is real, we
have

? ”
[A] (eu+v, e®u+v) =2¢'2a Re (E By~ %‘, L2 Ds)

which can obviously be made positive as well as negative by taking
suitable #%, v.
2) Suppose a=a;#0 for some i. Then, for u=S;

[A4] (u, %) =2a(‘ﬁ=1u.ﬂ,.—k=2:} "),

Thus the restriction of [A] to S; is indefinite.
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To sum up we conclude that G°/G’ is a compact, locally flat and
totally indefinite real submanifold of G/L.

5.3. DuaLLy V-INDEFINITE CASE. As announced before the objective
of this paragraph is to prove the following

Theorem 5.3.1. If M(z) is dually v-indefinite, then we have
H(S) =Ts(I) =T's(Hs) = HU(SN s
for any open subset S of M(xn).

To prove this we need a lemma concerning closed cones in real
vector spaces.

Lemma 5.3.1. Let K be a closed come in a real vector space
W, and H be a subspace of W such that HNK=(0). Then the set
(B+H)NK is bounded if B is a bounded set of W.

Proof. Choose a fixed norm || || on W. Suppose that (B+H)NK
is not bounded while B is bounded. Then there exist sequences
{%,}2.SB and {h,}>,C H\{0} sach that {x,+A,}:-.CK and such that
||| o0 (y—>o0). Set ||h||=|k||*k,. Since [|Ah,|=1, we may assume
that %4, converges to some h,& H when y—>oo. Then A =1, and
further ||A,||7*(x,+h,)—h, (—>o0). On the other hand, since ||A,/7*(x,
+h)eK, h, also belongs to K=K. But then HNK=(0) implies
ho=0, which, however, contradicts [k =1. Thus (B+H)NK is
bounded. Q.E.D.

Proof of Theorem 5.3.1. Suppose feTI's(Hg). Set for simplicity
H=Kerz, S'’=#(S). Then #*(f)Ers(Hs). Moreover #*(f) to-
gether with S’ is invariant by translation parallel to H. Hence by
Lemma 2.2.11 and Theorem 4.2.2" there exists a function # on
U.(S") + HE, such that u|s=4*(f), #|vesne H(U(S")), and =F (u) =u
(he H®). Here v, is the translation p—p+h (p=N°).

Now we shall prove the continuity of v=u|ys.ec. First recall
that U(S")+H=U(S’), so that

USH+He=U(S")+iH.
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Observe that the following statement is sufficient for » to be continuous:
From every sequence {x,};..CU(S")+iH converging to x.=U(S’)
+iH, it is possible to choose a subsequence {x,}v.. such that u(x,)
—u(x,) (b—=0). Let us prove this statement. Write each x, (=0,
1,2,---) in the form x,=p,+th, (p,€U(S"), h,=H). Then [(x,)
=[(p,) +h, and [($,)>0, that is, [(p,) lies in the closure K, of the
cone K, consisting of positive definite elements of H(V). Here we
have set as in §2, [(x, @) =Tm(a) —§ +Qr+ xQIx) for (x,2)V
X H(V)€. By the assumption H K,=Kerz(K,=(0). Hence Lemma
5.3.1 implies that {A,};~. is bounded. Thus there certainly exists a
subsequence {%,,} -, which converges to some %, of H. But then {p,,}i.
also converges to po=x,—ihec U(S’). However p,=a8S’ implies that
0=I1(ps) =I(%0) —hy=1(po) +ho—hsy, from which [(p) =h—hcK,NH
=(0), that is, po=p.€08S’, contradicting p.= U(S’). (Recall S’=U(S’)
UD,.) Thus pee U(S”)\8S, which, according to Lemma 2. 2. 10, implies
D U, (S). Since # is continuous in U,(S) it follows
u () =u(p,)—>u( po) =u (%)

when y—co, The required statement is thus proved, hence v is conti-
nuous. Recall now that #, hence also v are invariant by =, (he H°).
Thus there exists a continuous function w on U,(S)=#(U(S’)) such
that w(z(p)) =v(p) p=U(S’). The function w is certainly holomor-
phic in U.(S)ND(x), for U.(S)ND&)=#(U(S")ND) by Lemma
5.1.1 and v is holomorphic in U(S")ND. Thus f=w|s€ HU.(S))|s.
And thus we have proved

€)) T's(Is) SHUS)) |s.

Now let 7, be a positive definite form in H(V) and S’ a relatively
compact subset of S. Then there exists a relatively compact subset
S” of #*(S) such that #(S”)=S’. Since U#*(S)) is open in D,
S”+itr, is contained in U(@*(S))ND for sufficiently small #>0.
Thus, for a sufficiently small {>0,

S’'+itre(r) SUS)ND(x).

Therefore, arguing as in the proof of Lemma 2. 2.9, we obtain
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@) HU(S)) [s< H(S).

In view of obvious inclusions H(S)Cr's(H)cr(dls), (1) and (2)
imply
H(S) =T's=(Is) = HUS) s.
Q.E.D.

Here it should be remarked that #(D)=D(z) when M(x) is dually
V-indefinite. This follows from

D={(x,a) : [(x,@) Ky}
—ZTTE) = {ﬁ(x’ w) ’ ﬂ([(x’ “)) E”(Ko)}
n(K,) =n(K,).

The last relation is an immediate consequence of Lemma 5. 3. 1.

Note that U,(S) never swells up to D(z) even if S=M(z). How-
ever we can prove the result parallel to Corollary 5.2.2 also in the
present case.

Theorem 5.2.2. If M(x) is dually v-indefinite, then the restric-
tion map I?(D(n))-»l"(ﬂlg) is a topological isomorphism.

For the proof, first note that U,(D,)=D, next use the relation
U,(D,)=U,(D,) instead of U(S)\aS cU,(S). Then the proof of
Theorem 5.3.1 can be applied without further change.

Now we shall show that the maximal open subset of D(x) contained
in U,(S) always contains S if M(x) is dually V-indefinite. The proof
of this will require some preparations. Let H be a subspace such that
HNK,=(0). For pcD+iH we set

da(p) =sup{|hll; [(p) +h=>0 (or p-+ihe Dy)}.

Then certainly 0<{d,(p)<<+oo according to Lemma 5. 3.1, and further

Lemma 5.3.2. The function dx is continuous at each point of
D,.

Proof. Suppose that dy is not continuous at p,& D,, that is, there
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exists >0 and a sequence {p,}:.CD+iH converging to p, such that
dz(p,)>0. For v=1,2, --- choose h,=H such that I(p)+heK,,
[|14,]|>6/2. Then according to Lemma 5.3.1 {A,};=: is bounded. Hence
we may assume that %, converges to some h,=H. The closedness of
K, implies that 1(p,) +h& K,, from which it follows A =0. But this
contradicts | A,||>>3/2>0. Q.E.D.

Lemma 5.3.3. Suppose that M(z) is dually v-indefinite. If U
is an open subset of D, then the maximal open subset of D(x) con-
tained in #(U) always contains =(UND,).

Proof. Instead of proving the conclusion we shall prove the
following equivalent statement: If peD,N\U, then p lies in some
open subset of D+ H€ contained in U+ HF.

Suppose peD,NU. Set H=Kern. For g D+iH the set
S(@)=q+i{he H : |h|<d»(q)}

certainly intersects D by the definition of dz. Now choose an open subset
U of N° such that U=DN U Since peD, S(p)={p}C U. There-
fore, according to the continuity of dz at p, there exists a neighbourhood
Vap in N° such that S(¢)cU when g= (D+iH)N V. But then
S(@NU=S@NUND=S(@)ND#¢. Thus UN(g+iH)+¢, that is,
geU+iH. Thus VN (D+iH)cU+iH and this implies the required
statement.

In view of this lemma S lies in the maximal open subset of D(x)
contained in U,(S), which we shall denote by V.(S). Then it follows
from Theorem 5. 3.1 that the restriction map

H(VA(8S))—>Ts(Is)

is a topological linear isomorphism. This and Theorem 5.2.1 imply
the following stronger form of the solution of Problem H mentioned in
the introduction for stable standard real submanifolds.

Theorem A. If M(x) is a stable standard real submanifold,
then, for any open subset S of M(x), there exists an open subset U
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of the closure of the domain D(z) such that SC U, and the restric-
tion map

HU) (s
is a topological linear isomorphism (onto T's(Hg)).

Now we shall devote tiie rest for the study of nondegenerate Siegel
domains of the secord kird. Each of them is D(z) for some map
n: H(V)—W, taking suitable V and W. M(x) is the Silov boundary
of D(n) then. First of all we begin with the definition. Let W be a
real vector space and K an open convex cone in W which does not
contain any line. Further let V be a complex vector space. A WZ¢-
valued sesqui-linear fcrm F(x,y) (x,y€ V) is called K-hermitian form
on Vif

@ F(x,y)=F(y,x)*
(2 F(x,2)eK
(3 F(x,2)=0=>x=0

where the map a—a* is the conjugation of W€ fixing W. Denote by
D(F, K) the domain in Vx W¢

{(x, &); - (@—a®) —F(s, x)eK}.

If D(F,K) is affine homogeneous, that is, the group of affine trans-
formation leaving D(F, K) invariant operates transitively on D(F, K),
D(F,K) is called a Siegel domain of second kind. If moreover the

set {%(F(x, y)—F(y, x))} generates W, we call D(F,K) non-de-
generate. For a non-degenerate Siegel domain we shall assign a funda-
mental Lie algebra m(F) setting

=V, a=W, m=g+g,
[gzv gl] = [92’ 92] = (0)7
[%,5) = (F@& N —-F(3,9) %6

Then as proved in §1 we obtain a (unique) linear mapping = of H(V)
onto W such that m(z) =m(F). M(x) is then the Silov boundary of
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D(F,K). (See [71.)
Lemma 2. The map n being as above, D(z) =D(F, K).

Proof. Let F, denote the Kyhermitian form on V given by
Fuo(x, ) =3([Ix,y] +i[x,5])  x,y€V
where [ , ] denotes the bracket operation of m°= V+ H(V). Then
D=D(F,, Ky)

and D is certainly non-degenerate. Since K, is the convex closures of
the set of positive semi-definite hermitian forms of rank 1, condition (2)
implies that z(K,) CK. Hence =(K,) K. Thus D(x) SD(F, K).

In order to prove D(x) 2 D(F, K) we need the following theorem
of Piatetski-éapiro [81.

Theorem P. Every affine transformation of D(F, K) is of the
following form

a—>Aa+2iF(Bx,b) +iF(b,b)
x—Bx+b

where A€End(W) Be€End.(V) and AF(x,y)=F(Bx, By) (x,%
eV).

Suppose that g is the affire automorphism of D(F, K) indicated
in the above theorem. If we denote by S2%(B) the restriction to H(V)
of BQB, then the map g of N°=V@H(V)C given by

a—>S?(B)a+2iF,(Bx,b) +iFy,(b,b)
x—>Bx+b

is an affine automorphism of D=D(F,, K,). Thus we obtain a group-
isomorphism g—g, of the affine automorphism group of D{F, K) into
that of D such that 7og,=go# Therefore any orbit of the affine auto-
morphism group of D(F, K) is contained in the image by # of an
orbit of the affine automorphism group of D. In pe-ticular D(n)
2D(F, K). Q.E.D.

Now we shall prove that the Silov bourdary of a non-gererate
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Siegel domain D(F, K) is duaally totally indefinite. Since K does not
contain any line, there exists a hyperplane P of W such that PNK
=(0). Suppose that P is given by P={e€ W : 1(e) =0} where & W*.
Without loss of generality we may assume that x& K=I[(x)>0. Then
the hermitian form

I(F(x,9) xy€V
is certainly positive definite. In fact if
I(F(x,x))=0,

then F(x,x2)ePNK=(0), ie., F{(x,x)=0 and by condition (3) we
obtain x=0. Thus we conclude that the Silov boundary of D(F, K)
is dually totally indefinite.
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