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Introduction

Recently real submanifolds of complex manifolds have been studied
by several complex analysts, differential geometers. Ever since Lewy

[5] studied the holomorphic extension problem for pseudo-convex hy-

persurfaces in C2, Lewy [6] , Wells [12] , [13] , Greenfield [2] obtained
many results on the hull of holomorphy of lower-dimensional real sub-
manifolds in complex manifolds. On the other hand Tanaka [9] , [10] ,

[11] studied the pseudo-conformal equivalence between real submanifolds

as 'an example of geometry of differential systems and at the same
time he introduced in a group-theoretic manner an ideal class of real

submanifolds in complex vector spaces which are called 'standard real
submanifolds'. In this paper we attempt to study the hulls of holomor-
phy for a special kind of standard real submanifolds, i.e., those of the
second kind and further to solve the holomorphic extension problem for
those real submanifolds. We shall now give a precise formulation of

the holomorphic extension problem.
Let M be a real submanifold of a complex manifold M and TC(M),

TCCM) the complexifications of the tangent bundles T(M), T(M)

of M, M respectively. For any ptEM, Tf (M) is a subspace of Tf (M)

and we shall denote by <SP the intersection of Tf (M) with Tj
that is,

Here we have set T?-l\M) = {x+iIx; #<ET,(M)}. (/ is the automor-

phism of T,(M) defining the complex structure of T/M).) We assume
that dim Sp does not depend on p. Then we obtain a unique vector
bundle <S whose fiber at each p of M is Sp. This subbundle <S of TC(M)
is called the tangential Cauchy-Riemann bundle of M. A continuous

function / on an open subset U of M is called cS-holomorphic in U if
it is a (distribution) solution of the following differential equation

-X/=0.

This equation is called the tangential Cauchy-Riemann equation of M.

From definition of S it follows immediately that the restriction of a
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holomorphic function to the intersection of its domain with M is always
cS-holomorphic. The converse is, however, not true in general. Thus
it is an interesting problem to examine under various condition on M

to what extent an S-holomorphic function can be continued into a

holomorphic function. More precisely it may be formulated as the

following

Problem H. Let M, M be as above. Given an open subset U

of M, find an open subset U of M, whose closure contains U with

the property that one can extend every S-holomorphic function in U

to a continuous function v in C7U U so that v is holomorphic in U.

This is the holomorphic extension problem. The investigation of

this may be divided into the following two steps. The first is to show
that a holomorphic function u defined near U can be holomorphically

continued to a neighbourhood of 17 U U and that this U can be chosen

at once for all u. The next is to show that in the set of cS-holomorphic
functions on U there densely exist restrictions to U of holomorphic

functions near U. The first step may be done by the method of Wells
and Greenfield, but we do not utilize this since a much simpler approach

is possible when M is a standard real submanifold. (However it should

be noted that our procedure is essentially based on the same idea as

theirs, i.e., the analytic discs.) As opposed to the generality of the

results obtained in [13], [2], we were able to make a fitting choice of

U because the situation is simple in our present case. In fact, for a

standard real submanifold M of second kind in a complex vector space

N we can canonically assign a domain D of N whose closure contains

M in such a way that, when M is the Silov boundary of a non

degenerate Siegel domain of the second kind, the corresponding domain

is nothing but the Siegel domain itself, moreover, in this case, the

above U can be taken so that U\JU is an open subset of M\JD. As

for the second step our discussion here is goup-theoretic and is based

on an approximation theorem which is an analogue of the famous

theorem of Harish-Chandra, Nelson and Carding in the representation
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theory, but our theorem is very special and much more complicated. In

the near future the method we exploit will be developed into a theory

of differential equations admitting a Lie transformation group and is

also interesting in its own right.

Among standard real submanifolds of second kind two classes of

them are of particular importance, one is the class of so called 'totally

indefinite' ones and the other is the class of Silov boundaries of non

degenerate Siegel domains of the second kind. One of the most remar-

kable facts concerning totally indefinite standard real submanifolds is

that every cS-holomorphic function on such a submanifold is the restric-

tion of an entire holomorphic function in the ambient complex vector

space, moreover it is also locally true, that is, every cS-holomorphic

functon on an open subset of the real submanifold can be extended

into a unique holomorphic function in a fixed open subset of the

ambient space containing the domain of the original function. As a

result we obtained in this case a hypoellipticity theorem in the real

analytic category on the tangential Cauchy-Riemann equation which

is, however, not elliptic. Further it is also proved that the space of

<5-holomorphic functions on an open subset of a totally indefinite stand-

ard real submanifold is a Montel space, so that the finiteness theorem

is obtained for cS-holomorphic vector bundles over compact locally stand-

ard real submanifolds. However, this theorem holds for a much wider

class of real submanifolds [7]. The method of [7] is based on an

estimate of Hormander used in connection with the theory of hypoel-

liptic second order differential equations [3]. But the procedure used

here leads us to a conjecture on Problem // for arbitrary totally

indefinite real submanifolds. For two integers n, k such that n^>2,

0<k<nz~ 1, it is possible to construct a totally indefinite standard

real submanifold of real dimension 2n+k in C"+k, thus its real codimen-

sion being k.
^
Silov boundaries of non-degenerate Siegel domains of the second

kind are all contained in some wider class of standard real submanifolds,

which is dual, in certain sense, for the class of totally indefinite ones.
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For this dual class we also have solved Problem H in slight stronger

form. However, the meaning of the result is not so clear in this case

as in totally indefinite case. As examples of compact locally standard

real submanifold of this type, there are the Silov boundaries of the

classical domains /*,*(£=£#)» which are all well-known [4], [8].

Because of the restriction of the argument to standard real sub-

manifolds we have received an important simplification of the method,

i.e. the homomorphisms between standard real submanifolds. (This was

informed by Tanaka in connection with the problem on the existence

of a bounded global cS-holomorphic function on standard real submani-

folds.) In fact this eliminates the necessity to attack each standard

real submanifold, at least as far as concerning our problem, and instead

we may only study a special one denoted by A (or M°). This is the

Silov boundary of certain Siegel domain equivalent to a classical domain

and for this reason the treatment is very handy.

Now we shall shortly describe the construction of this paper. In

§1 we study general real submanifolds in complex manifolds and define

standard real submanifolds. We study also elementary properties of
standard real submanifolds of the second kind, for example, a simple

method of tlieir construction, homorphism, and so on. Most of the

materials of this section are due to [10], [11]. In §2 we investigate

the shape of the holomorphic hull of an open subset of D0. In §3 we

study some special kind of differential operators on a trivial U(n)-

bundle which are invariant under the right (or left) operation of U(n)

in order to obtain an approximation theorem for solutions of those

differential operators. The results can be directly extended also for

right invariant differential operators on an arbitrary U(n) -bundle on a

C°° manifold. However, we do not include this since it is trivial. In

§4 we give a convenient parametrization of DQ in order to apply the
result of §3 to DQ. Further combining the result of §2 we solve

Problem H for A in somewhat stronger version. In §5 we extend the

result of §4 for almost all standard real submanifolds of the second

kind, i.e. the stable ones. First we shall concern ourselves with totally
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indefinite ones and mention the conjecture indicated already. Next we

study the dual class of standard real submanifolds, and as a result we

solve Problem H for Silov boundaries of non-degenerate Siegel domains

of the second kind.

Here we shall give some notational conventions frequently used.

For two subsets A, B of a vector space W we denote the set {a+b;

a^Ayb^B} by A+B. For two vector spaces V and W we shall

regard, in canonical way, V and W as subspaces of the direct sum

V+ W. If we wish to distinguish between elements of V and those

of W, V+ W will be considered to be also the direct product Vx W,

and then (#, jO means x+y when #, y lie in V, W respectively. The

letter / will mostly be used to denote the linear automorphism of

a complex vector space sending each element to that multiplied by

/=!/—!. If A is an endomorphism of a (real or complex) vector

space V, DV(A) denotes the determinant of A. When A maps a sub-

space W of V into itself, then DW(A) means the determinant of A\w*

We also denote the determinant of a matrix A by D(A). For a vector

space V, Iv is the identity map of V while /„ is the identity matrix

of type (»,»). In §§3—4 we use capital roman letter to denote

matrices and capital gothic letters to denote matrix groups. In other

sections Lie groups are usually denoted by capital roman letters. For

two subsets A, B of a topological space A, to say that A is an open

(resp. closed) subset of B means that A is open (resp. closed) in the

relative topology of B induced from A. Unless smoothness is stated

explicitly, we assume the differentiability of class C°°. For a (real or

complex) vector bundle E over a manifold M we shall denote by E,

(resp. 2£) the sheaves of germs of C°°-sections (resp. continuous sec-

tions). For p&M, Ep denotes the fiber of E over p. Similarly Stp is

a stalk of S over p if S is a sheaf over M. Ffl(S) is the set of sec-

tions over Q and F(S) denotes the set of global sections of 5. For

simplicity we use r0(E), r(jE) instead of rfl(£), F(£). For a com-

plex manifold X, H(X) denotes the set of holomorphic functions on X.
/*».

For a relatively compact subset 5 of X we shall denote by Sx the
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subset {x^X: !/(#) i<sup|/(>) | /eJ7(JT)} of X. Here the author
ZeS

apologizes to the reader for the disharmony of notations which arises

from the comparative independence of each section. In fact it might

be said that this paper grew out of many small papers.
In this occasion the author thanks to Prof. Tanaka for suggesting

the idea of homomorphism and a number of stimulating conversations.

He also thanks to Prof. Matsuura for his constant encouragement and

critical advices.

§1. Standard Real Submanifolds

1. 1. DEFINITION OF STANDARD REAL SUBMANIFOLDS. To motivate our

discussion we shall begin with the study of general real submanifolds
in complex manifolds.

Let My My <S be as in the introduction and define a distribution

(in the sense of Chevalley) D on M setting

Dp={Rex: xt=Sp}

where Rex denotes the real part of x. Assume that there exists a

series of distributions D=Dl^D2dt — , D»= T(M) such that

where Dk denotes the sheaf of germs of smooth sections Dk. Then

(1) [Dj; Dk]^D*+k.
i

Let Q' denote the quotient bundle of D' by D1"1 0';>2) and set 91 =
'A. Then the bracket operation induces a Lie algebra

structure of F(m), such that

where we have put 9*=0 if k> p..

One can easily show that

=fg[Xy Y]

Thus this Lie algebra structure is defined pointwisely, i.e., nt,=gjH —

+ 95 (£eM) has also the canonical Lie algebra structure such that
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[XP,YP] = [ X , Y ] P

The properties of mp axe the followings

( i ) mp is generated by gj

(ii) [rf,a!]=8!+i

(iii) [Re x, Re y ] = [Re (ix) , Re (yO ]

Let / be the linear isomorphism Re#-»Re — te of D, onto itself, then

(iii) is equivalent to

(iii)7 [x,y] = [Ix,Iy] x,y^Dp.

For p^M mp is called the Levi-Tanaka algebra of M at />. We as-
sume that for (£, #)eMxM there exists a Lie algebra isomorphism

6 of m, onto tnf such that tf(flj)=flt and

A real submanifold satisfying all hypotheses assumed so far is called

a strongly regular submanifold.
From now on we shall discuss only strongly regular submanifolds.

Now a question arises: Suppose that nt = gH ----- hg^ where gi is a

complex vector space, is a finite-dimensional Lie algebra satisfying fol-

lowing properties

( i ) m is generated by gi

(ii) [&, 0»] =&+* (ft=0 if l>fi)
(iii) [Ix, Iy] = [x, y] x,y<^ &

where / is the linear isomorphism of gi defining the complex structure

of ft. Is there a strongly regular real submanifold M in certain
complex manifold such that the Levi-Tanaka algebra at each point p

of M is isomorphic to nt? This is affirmatively answered in the fol-
lowing way.

Let mc be the complexification tn+i'm of nt, Mc the simply con-
nected Lie group whose Lie algebra is Tnc, and exp the exponential
map of ntc into Mc. Then exp is a holomorphic isomorphism of mc

onto Mc since mc is nilpotent. Set
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S, S are abelian subalgebra of mc and N is an ideal of trtc. Set
further M'=exp(tn), #=exp(S), JV=exp(JV). M', H are Lie sub-

groups of M°. N is a normal subgroup of Mc. Since exp is one to
one and mnS=(0), we obtain

In other words the restriction to Mf of the canonical projection n : M°

->MC/H is one to one on Mr. Then real submanifold M—n(M'} of
complex manifold MC/H is the desired real submanifold. To see this
let ffp be the isomorphism of tnc onto T#(M

C) defined by the Maurer-

Cartan form of Mc. Then the sequence

0 -> S -> mc -- > T^(MC/H}-+ 0
is exact where / is the inclusion map. Denote by fp the isomorphism
of mc/S onto T^^(MC '/H) such that the following diagram is com-
mutative:

canonical I f fp

mc/S

Let $ denote the restriction to m of the canonical projection mc-»inc'/S.

t> is an isomorphism into mc/S since mnS=(0). For p^Mf we have

while we obtain by simple calculation

where t>c=£®C: mc^-(mc/S)c. (For a complex vector space V we
shall denote by F(0ll) the subspace of V° given by

yco,D= {x+iix: X(E V}

where 7 is the automorphism of V which defines the complex structure
of F.)

Therefore we obtain
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where S is the tangential Cauchy-Riemann bundle of M and n is the
restriction to M' of n. This implies that

since m can be regarded as the Lie algebra of left invariant vector

fields M'. Therefore mp=^ D^/Df1 can be canonically identified with
A* *=1

tft=]S& an(i this identification is a Lie algebra isomorphism.

A finite-dimensional Lie algebra m with properties (i), (ii), (iii)
is called a fundamental algebra of the prth kind and the real sub-
manifold M constructed above is called the standard real submanifold

corresponding to m, which will be denoted by M(m) hereafter.

Remark. Since JVpl H= (e) the restriction to N of the canonical

projection MC->MC/H is a holomorphic isomorphism onto MC/H, the

inverse of which we shall denote by Tf. Since exp | N is a holomorphic
isomorphism of N onto N, T=(exp)~1oT/ is also a holomorphic iso-
morphism of MC/H onto N. Thus, if we identify MC/H with N by

T, M can be considered as a real submanifold of N, further extending

the linear isomorphism of & onto S given by #-»!(# — Hx) to a linear

isomorphism of gi+gf H ----- hgf onto N in obvious manner, we shall

consider M as a real submanifold of

Remark. By p(£) we shall denote the canonical left operation
on MC/H of an element p(=Mc. Then for p^M' p(£) leaves M

invariant. Thus the holomorphic transformation group p(Af') operates
transitively on M. In other words M is homogeneous.

Above arguments show that standard real submanifolds are the
most typical and important ones.

1.2. ELEMENTARY STUDY OF STANDARD REAL SUBMANIFOLDS OF THE SECOND
KIND. From now on we shall concern ourselves only with standard
real submanifolds corresponding to fundamental Lie algebra of the

second kind, which will be called shortly '2-standard real submanifolds.'
First we give a method of construction of all 2-standard real sub-

manifolds.
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Let V be an w-dimensional complex vector space and 7 the linear
isomorphism of V onto itself which defines the complex structure of
V, i.e., 7 maps x into V^x for #e F, let 77(F) denote the vector
space of hermitian forms on V*, i.e.,

ff( TO = {*e Si( V) ;

where S^(F) denotes the vector space of symmetric elements of
V®V. Further let n be a linear mapping of H(V) onto a vector

J2

space W and set &= V, g2 = W, m (70=81 + 82. Then we can define
the bracket operation [ , ] on m(7r)xm(7r) so that m(n) is a funda-
mental Lie algebra of second kind. For this we must set

[a, &] = [&, a] = (o).
As to [ , ] on fliXgi we set

It is easily checked that m(?u) satisfies properties (i), (ii), (iii). We
shall denote by M(n) the standard real submanifold of gi + gf corre-
sponding to in(n). By direct computation we have

Here we write (jt,2) for jc +2, regarding gi + g2
c as

We can obtain any 2-standard submanifold in this way. To see
this let *n = gi + g2 be a fundamental Lie algebra of the second kind
and set V=0i, W=QZ. We define a linear mapping 0 of T7* into

setting

Then 0 is one to one because of property (i) of m. Hence n=*<l> is a
linear mapping of H(1T) onto TT, and we have w=m(n). Details
of the verification shall be left to the reader.

Now we shall introduce 'homomorphism' between standard real
submanifolds, which makes it unnecessary to study all standard real
submanifolds. (In fact it suffices to study only special one, namely
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Consider the following commutative diagram

% W

> w
where n, n, p are all surjections. Then the linear mapping p=i
of N= F® Wc onto JV'= F® W/c maps M(;r) onto Mtf), p is obvi-
ously a holomorphic mapping and the restriction p to M(TT) of p is
called homomorphism induced by p. Now consider the following diagram:

> W

Then we obtain homomorphism n of M° onto MOr). Thus every
2-standard real submanifold is the homomorphic image of M°. This
fact allows us to deduce many information concerning our problem for
M(jt) from those for M°. For example, if / is <5-holomorphic in an
open set U of M(n), then £*(/) is also cS-holomorphic on
This is easily seen from

where <S°, <S are the tangential Cauchy-Riemann bundles of M°, M(n)
respectively. Conversely if, for a continuous function / on an open
subset U of M(n), £*(/) is <5-holomorphc in 7r~1(C7), then / is also
cS-holomorphic in U. Further, if / is the restriction of a holomorphic
function in a neighbourhood of £7, £*(/) is also the restriction of a
holomorphic function in a neighbourhood of ^(C/). But it is not
quite evident that / is the restriction of a holomorphic function defined
near U whenever £*(/) is the restriction of a holomorphic function
defined near IT1 (IT). Fortunately it is true. This follows from

Proposition 1.2.1. Let S be the tangential Cauchy-Riemann
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bundle of a real submanifold M of a complex manifold M (assum-
ing that S is well-defined}. Suppose that (2) complex fiber dimen-
sion of S+ complex dimension of M=real dimension of M. Then
every holomorphic function u on a domain U of M such that C/n
M¥=$ and u\unM=Q must vanish identically in U.

Proof. Condition (2) implies that for p^M T#(M) is the unique
complex subspace of itself containing T^(M). To show this let pi be
the projection of Tf(M) onto T^'0)(M) in the direct sum Tf (M)

= T£'0)(M)0Tf1}(M) and pi the restriction to Tf(M) of pi. Then
condition (2) implies that

dimension of Tf(M)— dimension of Kernel of pi
= dimension of

since <SP= Kernel of pi. Thus pi is onto; in other words Tf(M)
+ Tf1)(M) = T£(M). Now let L be a complex subspace of T,(M)
containing T#(M), then we have

where Z^'^Z^nTf 1}(M), L™=Lcr\T¥M(T)- Therefore

Tf (M) = Tf (M) + T?

which implies that Z(lf0)=TJli0)(M). Consequently we have

Our assertion is proved.
Now let u be a holomorphic function in a domain U of M such

that UnM^<t> and ^Ii/nM=0. Suppose that u does not vanish identi-
calty. Then we obtain a series of proper analytic sets Vi, F2, ••• of
f/such that Fi={^eC7: w(2)=0}, Vk is the set of singular points of
Vk-i (^2). Since dimF,<dimF&_i and since Fi^Mfl^ it holds for
some i that
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(For V^MH U, ( V>\ F*+1) R (MR Z7) =0 imply Vw=>Mn K) Choose

Then

T,(7,)2T,(M) since 7,2 (MR DO-

As we have showed above this implies T#(K) = 7^(M) i.e., dim 7,

=dimM which contradicts the properness of K. Thus u=0 is proved.
Q.E.D.

Let us now study the aspect of homomorphisms more in detail.
Let M'(m°), M'(n) be the simply connected Lie groups corresponding
to m°(=m(ttfjy(F))), tnOr) respectively. Then the linear map idv@n of

m° onto tn(w) is a Lie algebra homomorphism. Let n be the homomor-

phism of M'(ttto) onto M(n) induced by idv@n, the Lie algebra of the
kernel K(n) of n is the kernel of n when one regards H ( F) as a sub-

space of m°= F+jy(F). By direct inspection we obtain

0 - jrGO-*M'(m°) -^ M^TT) ~> 0

M°

where the vertical arrows denote the canonical identifications. The
first horizontal sequence is exact. On the other hand we can easily
see that the transformation p(exp #) (#e.H"(F)c) is the translation

by x in NQ= V+H(V)C. Thus we obtain

while

w^GK*)) =^+ (Ker TT)C

Remark. In the next section, by identifying M'Cm0) with M°

in canonical manner, we often regard M° as a group manifold. Then

the left operation Lp of />(£eM°) can be uniquely extended to an
affine transformation p(£') of N° when £' is identified with p under

the identification.

Now let us prove our assertion stated before Proposition 1. 2. 1.
Let U be a domain of M(n) and / a continuous function on U such
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that £*(/) is the restriction of a holomorphic function uf on a domain
U' in AT0 containing ^'(t/). Let rh(h^H(Vy) denote the translation

x-+x+h (#ejV°) and let 0* be the vector field which generates 1-

parameter transformation group (r«)/6«. Note (8*«01*-1cs)=8
for /ieKerTr. Thus Proposition 1.2.1 implies

9^=0 AeKer*.

Note that uf is holomorphic. Hence it follows also

Thus ur is constant on each component of the intersection of linear
variety p+(Kern)c with Uf for each p^U'. This implies that, for
any continuous map d of V+n(H( T0)c into N° such that n°d is the

identity, the function u=u'od on rf~(Z7') is holomorphic. If, moreover,
rf(M(7r))^M°, then u\u=f. Thus the only task is to give such a

map d. But this can be obtained in the following way. Let <? be a
linear map of W=n(H(V')') into H(V) such that n^=idw. Set

Wc

where [ , ], [ , ]o are the bracket operations of tt\(n) tn0, respectively.
It is evident from [ , ] =n[ , ]0 that d is the map with the desired

properties. Q.E.D.

In the next section, instead of M°, we shall study an equivalent

real submanifold DQ which is the Silow boundary of certain Siegel
domain of the second kind. The equivalence of DQ with M°, though

almost obvious, will be firstly showed in §5.

§2. Holomorphic Hulls for Open Subsets of D0

This section is divided into two parts 2.1 and 2.2. The first half

consists of long, rather tedious but important preparation for the second

half. For this reason the motivation of the first half is not clear for
the readers who want to know the meanings of notations, lemmas,
propositions and so on. Here we indicate only that all of these are
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made to be fitted for the application to A, D introduced at the begin-
ning of the second half.

2.1. BASIC CONTINUATION THEOREM. Fix an ^-dimensional complex
Hilbert space V with the inner product ( , ) and denote by 3 the
vector space of linear operators of V into itself. For 4e<? we shall
denote by A* its adjoint, i.e., (4#, jy) = (#, A*y~) x,y^V. As usual
we call A hermitian if 4=4*. For a hermitian operator A, 4>0

(resp. 4;>0) means that (Ax, #)>0 (res. (4*,*)^0) for 0=£#e V.

For jye F the mapping #-*(*, >0 is a linear form on F, which we
denote by y*. Then #(S>,y* can be regarded as an element of 3 since
F®F* can be canonical identified with 3. Further we denote by I
the mapping of Sx V into 3 defined by

1(4, *) =(4-4*) -#®** ^5; #e F.

I (4, #) is obviously hermitian. Let Si denote the unit sphere of V and
A the unit disc in C, i.e.,

where M1 =(#,#). We shall shortly denote by 6 the product space
<?X FxSiX( — 00,00) and by <?° the open, dense subset {(-A,#, J>, r);

(1(4, ^)^,^)=^0} of <?. For later purposes we shall regard A,x,y,r

as the projections of 8 onto 3, F, Si, ( — 00,00) respectively, i.e.,

e=(4(e), x(e)9y(e)9 KO) for ee<?, and further introduce some con-
venient notations setting

Define a continuous function A on <?° and a continuous mapping a of

<?° x C into SxV setting
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Then 6 has the following properties.

(1) 0e is a holomorphic mapping of C into Sx V where we denote by

0e the mapping JBC-^CO^^Ce, C).

(2) 7r

In fact n(B)=68\- and K.) . By simple computation we can

obtain

(3)

In particular, if |Cl =1,

(3)' !(„(., O) =K«(t)) - I (XO, >(«)) l-^Ce)®^ (0*.

Set, for a subset S of Gx V,

Then we have

(4) ScT^ES^ET U£SAc£(USA)

A

Further, for a bounded set S,

(5)

Here S means S^xF. (5) follows from (1) and (2).

Lemma 2.1.1. // 0 is an open set of SxV, then E°0, EO are
open sets.

In fact E°O is an open set in <?° by the continuity of * and n is

an open mapping 6 onto <?X V. Therefore E°O=n(E°O) is open.

Now we are in a position to study holomorphic extendibility from
S to ES for a subset S satisfying some conditions. Let (pt(t>fy be
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the holomorphic automorphism of £?X V defined by <pt(A, oc] = (t*A9 tx).

A subset S of Sx V is said to be cp-star-shaped if S contains 0 and

if <ptS^S for 0<#<1. All ^-star-shaped sets are connected. If S is

^-star-shaped, then ES is ^-star-shaped as is evident by the following

relation:

p,o*C4, x,y,r\ C) =0(t2 A, tx,y, rV,*).

Now the key of our discussion is the following.

Proposition 2.1.1. Let O be a <p-star-shaped open subset of

SxV. Then, for any /e#(O), there exists uniquely Ef of H(EO)

such that Ef\Q=f.

For the proof of this we need some notation and lemmas. For a

holomorphic function / on O, we define a continuous function E°f on

E°O setting

where P(^, z) is the Poisson kernel for the unit disc in C, i.e.,

Lemma 2.1.2. Suppose that O is a bounded open set. If f is

the restriction to O of a holomorphic function u in a neighbourhood

of 6, then

Proof is evident if one observes that, for any

so that /(rffC^)) is the boundary value to dA of the holomorphic func-

tion tt(<Tfi(C)) in a neighbourhood of A.

To formulate next lemma we need a new notion: Let & be a C°°

manifold, 3f(jf) the space of distributions on Q. A mapping

from an open interval (tf, #) into .2X(£) is called an analytic

valued function on (a, b) if, for any C°° density ty with compact sup-

port, the function </(0»Vri> is (real) analytic in (a, b).
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Lemma 2.1.3. Let P(U) be a scalar differential operator on Q

and f(f) be an analytic 3)' (^-valued function on (a, ft"). Suppose

PCD)/(£)=0 for t in a non-empty open subset of (0,6). Then

P(P)f(f)=Q for any *e(fl,ft).

Proof. Obvious.

Now define a function space on E°0 setting

£=

Lemma 2.1.4. Let f(f) be a continuous &(E°O')-valued function

on (0, 1] a nalytic in (0, 1] such that, for t in a non-empty open

subset of (0,1),

Proof. This follows immediately from Lemma 6 since there exist
scalar differential operators Pr(Z)) (r = l, 2, • • - , m) on E°O such that

X is the set of solutions in 3f(E*GT) of the overdetermined elliptic
system of differential equations

Pi(Z>)i;=0,-, P.(Z))i;=0.

The construction of such Pr(^) is easy and shall be left to the reader.
Now we are ready to prove Proposition 2.1.1.

Proof of Proposition 2.1.1. Any ^-star-shaped open set O can

be represented as the union of an increasing sequence of ^-star-shaped

bounded open sets Oi,O2, ••-. It follows easily

and each EOj is connected as was remarked before. Therefore we

may assume that O is bounded. For 2eC, we denote by <p, the holo-
morphic mapping of Sx V into itself

G4,*)-(*2A2*).

Let bf denote the open set in C given by

and let ty be a C°°-f unction on E°O with compact support K. Then
each bfCe^JS") contains a fixed neighbourhood b# of the [0,1] since b£
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depends continuously on e and since [0, 1] cb£(ee£<0O). Define a con-
tinuous function F' on bKxE°Oxd4

Then F' is obviously holomorphic with respect to z in b*. Therefore,

for a fixed volume de on £"°0,

o
JB°0

is also analytic in b* when one puts

F(Z, e) =

for (2, e) such that 2^bf. In particular

is real analytic with respect to t in (0, 1), thus the continuous
) -valued function

on [0, 1] is analytic in (0, 1). Therefore in order to show £"°/=F(l,-)
e «£*, it suffices to prove that, for sufficiently small t, F(t, • ) is in X

(Lemma 2.1.4.).

For this purpose let &,(0</<1) denote the holomorphic function
defined on q>7*O=<p<L/tO setting

and /, the restriction to O of ut. Then we have

Therefore, for t such that <pi/f) contains O, we have by Lemma 2.1.2,

(6) F(*,e) =«,(*«).

But, for sufficiently small t, Oc^i/,O since O is bounded. Thus, for

sufficiently small t, F(£,-)e_£ which proves that E°f^X. In other
words there exists a holomorphic function E°f such that
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£°/(.) =£"/(*(«)) •

Now what remains to be proved is that, in the intersection of O and

E°O,

(7) E°f=f.

To show this we set, for e^E°O such that 7r(s)eO,

Then by (6) G(0 vanishes when £ is sufficiently small. Since, more-

over, G(t) is real analytic in t, G(l)=0 and (7) is proved. Thus, if

one defines a holomorphic function Ef on EO setting

we obtain the desired holomorphic extension £/ of /. The uniqueness

of Ef is obvious since EO is corrected. Q.E.D.

For any subset S of £x V let #°(S) dsnote the set of the restric-

tions to S of holomorphic functions defined on some neighbourhood of

S. Then in terms of jff°(5) we can give a more convenient formula-

tion to Proposition 2.1.1.

Corollary 2.1.1. // S is a cp-star-shaped subset of SxV, then

there exists a linear operator E from fl"°(S) into H°(ES^) such

that
Ef\s=f

sup | £/(!>) | = sup |

for f<=H°(S). In particular the restriction map

is onto.

Proof. Suppose /e#°(S). Then there exists an open subset

of <?X V and a holomorphic function g in U such that g\s=f-

Then the set

V:

is ^-star-shaped and open in <?x V. Certainly O contains S. Thus we
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can assume that U=O. But then Egs=H°(ECT) and Eg\0=g in the

notation of Proposition 2.1.1. Set Ef=Eg\BS* From the explicit con-

struction of Eg, Ef is given by the formula

Thus it follows

Q.E.D.

2.2. APPLICATION TO A. From now on we shall apply the result
•v

obtained so far to the holomorphic continuation from the Silow boundary

of the Siegel domain

Set for k=Q, 1,2, •••

D*={(A9x);=l(A,x')'^Q9 rank of I (A
•v

Each Dk is a closed subset of <7x F. A is the Silow boundary of D

(See Piatetski-bapiro [7]). Further dD = Dn-i, /? = #„= £>„+! = ••-. Now

set

Then we have

Lemma 2.2.1. Let e be an element of <5°. Then ee<?&° e/ and

only i/<fc(ad)£A-i.

Proo/. From (3)' it follows that ^(S^e/)^ if and only if the

rank of the hermitian endomorphism

=!(*(*))

is less than A and cJf(e)i>0. Now suppose ee<5&°. Then I6*

rank of I(^(e))<^, ard (XO,XO)*0. Hence (j^(«),^(e)) = (!(«(«))

, and thus

Therefore Jf(e)^(e)=0, while lOrWXO^to^O. On the other hand

Thus, once c^(e)^0 is
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proved, it follows

rank of Jl(s)<k-i ,
i.e.,

To show cJJ(s)I>0 we shall first observe that

for £eC. Hence we obtain

(XO,XO) (!(»(•))*, *) - I (Xe), *) |2I>0 .

But the left-hand side is equal to (>f(s),^(e))(c^(s)jC, x). Therefore

Thus e^?(e)^0 and <fc(SJ)cZVi is proved.

Conversely suppose that <_^(e);>0 and that rank of cJf(e)<& — 1.

The image of I(rc(e)) is contained in the sum of the image of

and the I-dimensioaal subspace generated by J>(e). Thus

rank of I(Xe))<rank of (^(e)) plus l<k .

On the other hand

Thus 7r(e)eA, that is, e <=<?£. Q.E.D.

By this lemma the restriction ak of a to the set <?fe°x9J is a

continuous map of <?° into Z)*_i. Further if S is a subset of A-i,

then £°S-{ee£*°; (y£(9J)eS}. Note that the restriction nk of n to

<?&° is an open mapping from 6? onto Dk. Thus we obtain

Lemma 2.2.2. For an open subset S of A-i, E°S is open in Dk.
Let Ek denote the &-th power of the set operation E, that is, EkS

is defined as follows:

(i) EQS=S
(ii) EMS=E(E&.

Then we have

Lemma 2.2.3. EkllS = S\JE°(E,S}
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Proof. For k=0, there remains nothing to be proved. Assume
that the case k=j is proved. Then we have

since £°(£yS)c£°CE/+1S). Thus the case k=j + l is proved.
Q.E.D.

Proposition 2.2.1. // the subset S of A is open in A, then
EkS is an open subset of Dk.

Proof. First we prove this proposition assuming the following
lemma.

Lemma 2.2.4. Under the assumption of Proposition 2.2.1, S
is contained in the interior of EkS.

Let us now prove Proposition 2.2.1. For k=0 nothing remains to
be proved. Suppose that EjS is open in Dj. Then E°(EjS) is open
in Z?/Ti by Lemma 2.2.2. But by Lemma 2.2.3. we have

Therefore by Lemma 2.2.4. £/+iS is open in Z)y+1. Q.E.D.

Before proving Lemma 2.2.4 we shall recall the group-theoretic
aspect of Do, which will facilitate the proof of Lemma 2.2.4. For a
point p of A define an affine transformation p(p) by setting

where p=(A, x) A^Q #e V. By simple computation

Thus p(p) leaves each Z)y invariant. In particular p(p)p'^DQ for
p, p'^Do, so we can define a multiplication of a pair of elements of
A setting

This multiplication is associative
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This follows immediately from

If C4,*)eZ)0, then (-4+i*®#*,-#)eA and

*, — *) =0 .

Further p-Q=Q'p=p. Therefore D0 is a Lie group with this multiplica-
tion. The map D0^p-^p(p)^AFc(.Sx V) is a Lie group isomorphism
into. The group p(A) operates transitively on DQ. Further we have

In fact

Thus, in order to prove Lemma 2.2.4, we may assume that
and it suffices to show that 0 is in the interior of EkS in Dk.

Proof of Lemma 2.2.4. First we shall introduce a norm on
Sx V setting:

\\p\\=m+\\x\\
where p=(A,x~) and \\A\\ denotes the operator norm of A. By Bs we
denote the open ball of radius 8 in Sx. V:

Bs={p<=3xV; \\p\\<d}.

Suppose that p^D, \\p\\<l. Then \\l(p~)\\<2Q\p}\ + \\p\\^^4\\p\\.
Therefore IU(A^O)I(^|| = ||I(^||/||i(/>)v.yi|^||I(j>)1/I||^2||^||1'1, hence
for

(8)

Now suppose that />e (J5(5/g)«n An)\ A (5<1). Then there exists
such that (i(p~)y,y~)>0 which implies a(p, y, 0, 9 J)cDy. But by (8)

^c.Bs. Thus peE°(Bs HA). Hence £(8/5)2 RA+A
Since ^(j^nAcB.nAc^B.nA), we have
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Choose a positive number ^<Cl such that

Then we have by (10)

jSc
which implies that 0 is the interior of EkS. Q.E.D.

For a <;-compact subset S of 5x V we shall also denote by

the closure of #0(S) in C(S). Recall that any open subset of A is
generic (Proposition 1.2.1). Therefore by repeated use of Corollary 2.1.1

we obtain

Lemma 2.2.5. Let S be a <p-star-shaped open subset of A. Then

the restriction map H(EnS}-+H(S} is a topological isomorphism

onto H(S).

Proof. We shall first prove this assuming that 5 is bounded. Set

St=<ptS 0<£<1. Then St
f is relatively coirpact in S," when t'<t".

Sirce <plEHS=EnSt, EnSt' is also relatively compact in EnSt" if tf <t".

Now, for/e^°(5) we defire Ekf^H°(EkS} by irduction;

Here E is the lirear map given in Corollary 2.1.1. According to the
estimate in this corollary,

sup |/(£) | =sup|£,/(£) | 0<*<1 .
pG=St PcEnSt

Thus the map /->£"„/ is a topological isomorphism of H°(S) into

HQ(E,,S). This is also onto since the restriction map H° (EnS^H0 (5)
is one-to-one by Picpcsition 1.2.1. The map En is thus extended to a
unique topological isomorpLism of #(S) oato H(E»S). But the inverse
of Ea is the restriction map, and we have thus obtained the desired
conclusion when S is bounded.

In case S is not bounded we set for k = l, 2, •••

V;
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Then it follows easily EnS=UEnS
t. Put

(k=l, 2, ••••).

Then it also holds E»S=\JE,SW. On the other hand
k

Thus EUSW is relatively compact in £'«SC*+1). Here Sw is obviously
bounded, and we have thus reduced the second case to the first.

Q.E.D.

By lemmas 2.2.4 and 2.2.5 we can improve Proposition 1.2.1 for
standard real submanifold DQ as follows.

Lemma 2.2.6. Let U be a domain in Sx V such that

Then a continuous function u on Uf\D such that u\Ut-}DQ=0 and

u\u{\D^H(Ur\D) must vanish identically in U{~}D.

Proof. Since p(A) operates transitively on A, we may assume
that C/HABO. Take a sufficiently small 5>0 so that B8dU and set
S = Bsr}D<>. Then we have

ESdSc:B8=B8.

By repeated use of this argument we obtain

EttSc:B8

and hence

EnSc:B8r\D.

Since B8dU, there exists a positive number ? such that

B8+itIvc:U 0<t<v

where Iv denotes the identity map of V. Therefore, for 0<£<i?,

EttS+itIvc: (Bs+itly) R (D \-itIy) c UHD ,

hence we obtain a continuous family ut(Q<it<ir}) of elements of
H°(EttS) setting

ut(A, x) =u(A+itIv, x)
for (
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Certainly ut-*v at f->0 where we have set V=U\EH^ Thus
But the restriction map H(EnS)-*H(S) is one-to-one by Lemma 2.2.5.

Thus v=0 which implies u=0 since EttS is an open subset of D.

Q.E.D.

Lemma 2.2.6 is a very powerful device for piecing together local

e?:tei]siors into a global extension as will be explained in the following.

Before proceeding we shall introduce some function spaces and sheaves.

The system (-fir(S))s.-opeainp0 together with restriction maps forms
a presheaf on D0 and we dencte by M the sheaf induced from this

presheaf. For any open subset S of A, H(S) is defined by

for any relatively

compact open subset S' of 5}.

A continuous function / on S is D-holomorphic in S if there exists an

open subset U of SxV containing S and a continuous function u on

Ur\D such that (1) u\s=f (2) u\v D is holomorphic. We denote by

-Ho(S) the set of D-holcmorphic functions on S and by MD the sheaf

of germs of Z)-holomorphic functions. Further for an open set V of D

we denote by H(V) the subspace of C(F)

H( V") = {u e C ( V) ; u \ v r D is holomorphic} .

As an immediate consequences of Lemma 2.2.5 we obtain

Lemma 2.2.7. JfiT(5)cr.s(c^D) for an open set S of DQ.

For the proof one may note that the system ZT={p(/>)(J5«nA);
P&DQ, d>0} is a fundamental system of neighbourhoods of A and

that each element of 77 is an image by p(^) of a <p-star-shaped neigh-

to orhocd of Do.

Lemma 2.2.8. r5G#i>) =/£>($) /or on <#*« set S of D0.

To prove this we need a special neighbourhood system in D of a

point of A. Let h (z) Oe^?) denote hermitian part of z, i.e.

and Cs.TjC^o, #0) (fl, T?>0) the neighbourhood of Oo,#o)^A given by
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We also denote by Cs,0 the intersection of C^ and A (this is obviously

independent of 17). If 0<d<<?' 0<?</, it holds

and (Cs^Cso, *O))S,TJ>O is a complete system of neighbourhoods of (20, #o).

Now consider the retracting deformation 0*(0:<£;<1) of D onto

Do given by

0,(*,*) = (z —%-l(z, x), x).
\ £ J

Then
1(0,(2, *)) = (1 —Ot(*i *)

*(«—!j-i(z,x)}=h(z).

Therefore, for

In particular, this implies that Cs.oCso,^) nCs'.oC^i, JiCi) =£0 and C5f1j(2o, ^°)
nCs'^'C^i, #1) is connected whenever Ca.^C^o, ^o)nC6',,/(2i, x^) =£</>. In

fact Cs.oC^o, ^o)nC8'.o(-2:i, #1) is the deformation retract by 0* of

C^Oo, ^o) nCV,-/(2i, ^i) and C5(20, ^o) nCs'.oCsi, ^i) is connected. The

latter fact can be seen as follows; first consider the diffeomorphism <p

of DQ onto Sh x V given by

where Sh is the vector space of hermitian endomorphisms. Then

0>(CMU, *0)) = (U ^)e^?Ax F: ||«-A(2b)||<«, ll^-^o |<^}

which is evidently convex and ^(C5',o(2i, #1)) is also convex hence

0>(Cs,o(2o, ^o)nC5',o(2i, ^0) is convex, a fortiori, it is connected.

Now we shall turn to the proof of Lemma 2.2.8.

Proof of Lemma 2.2.8. Suppose that /ers(c#D). Then for any

point p of S one can choose a neighbourhood V(p) in D of p and an

element up of #(F(p)) such that «,|y<» is^/U^ns- We may assume
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that Vr(^)=C«.,(/>) for some S, ?>0 and that F(£)nAcS. We
claim that

As shown before, F(/OnF(£')n A is non-empty if

But up—Up'\vw F(/)-DO=/— /=0. Therefore we have by Lemma 2.2.6

«,=«/ in

since V(/On V(/0 is connected. Thus our claim is proved. Thus if

we define a continuous function u on U V(p) by settirg
P>=S

*eF(J)-*«GO =«,(*),

then & is well-defined and u\f=f and & is holomorphic in U

Thus/eE#D(S). Q.E.D.

Lemma 202.9. JffD(5)c5r(5) /or an 0£0w 5rf 5 of A.

Proof. Let 57 be a relatively compact open subset of S and £7 an

open subset of £x V containing 5. Suppose further that

Then there exists a positive number 77 such that

U for

since •S'cScfT". On the other hand if

Therefore S'+itlydUnD (<>0).

Define a family /,(0<£<T7) of elements of J5T°(S) setting

Then /, is well-defined and ft-*f=u\8' as i-»0. Thus w|5
Q.E.D

In view of this lemma the natural restriction map

is well defined when £7 is an open subset of Z3 such that

For any open subset S of A we shall now assign an open subset

£/i(S) of D such that S^Ui(S') and such that the restriction map
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is onto, that is,

First we set for

(

Then Qs is a ^-star-shaped neighbourhood of 0 in A. In fact

(ptQs=Qts •

Let S be an open subset of A. Put

Then 0(^,5) is a relatively compact open subset of S unless S=DQ.

Hence, for/EE#(S), there exists u'p^H(EnQ(p,S^ such that

by Lemma 2.2.5. Now denote by 5'(£, S) the supremum of the set

{3>0; C25.2
and put

Vi(p, S) =

Then certainly Z7i(S) is an open subset of D such that Z7i(S)nA = S.
Further is holds

^Ul(*.5) D0— /|Fi(^5) Do

where we have set up=Up\Yl<tt&. By the same reasoning as in the proof

of Lemma 2.2.8 there exists «e.ff(K(S)) such that u\v^p^=up. Of

course f=u\s and we conclude

which, together with Lemmas 2.2.7-2.2.9, implies

/T(S) =r5(c«D) = «,(S) = ̂ (^(5)) I ,

From the first identity it follows also 3i=MD>
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To sum up, we have thus proved

Theorem 2.2.1. For any open subset S of A

Here #i(S) is open in D.
This is the main theorem of this section. However, in later discus-

sion (especially in §5), it will be required to exploit another open
subset with certain additional property instead of t/i(S). The rest we
shall devote to the preparation for §5. In the above notation we set
for p<=S

C7(S) is an open subset of D such that Sct/(S)c[/1(S), and we
have

Lemma 2.2.10. For any open subset S of A

Proof. First we shall prove that d ( p , S ) is continuous with
respect to p^S. The continuity of y(p, S) is obvious. Note that

Thus the relation

is equivalent to

The left hand side depends continuously on p and d, while the right
hand side is the definite open subset of D. Thus <5'(/>, 5) is continuous
by its definition, and hence also d(p, S) is continuous.

Next we prove that

V(p,
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where we have set d(A, *)H|4|| + ||#||2 for (A,x)*=£xV. Set
p=(A, #), #=CB,;y). Since 5(^, 5)<1, we have

if #<E F(£,S). Therefore

Thus it follows

Now suppose qQ^U\0S and let {qv}~=i be a sequence from C/(S)
such that tfy-^oG'-*00). Since £7(5) = U F(/>, S), there exists a se-

*e=s
quence {^}r=i^S such that

But then the inequality proved above implies that {pv}T=i is bounded.
Therefore we may assume that pv converges to p0^f> taking a suitable
subsequence if necessary. However po^dS contradicts #0$9S, for one
can see immediately 5/(^v,5)-^0 when pv-*pQ^9S. Thus pQ must lie
in S. Hence the definition of V(p, S) and the continuity of 3(p, S)
imply that

,5).

The right-hand side is contained in Vi(p<>, S~) since S(/>, S)
Therefore <?0e t/i(S). Thus we have proved

Q.E.D.

The next lemma will also be used in §5.

Lemma 2.2.11. Let H be a subspace of Qh. Suppose that an
open subset S of DQ and /er5(^) are invariant by translations
paallrel to H. Then f can be extended into a function u on £/i(S)
+ HC so that wit71(S)e^r(C71(S)) and u is invariant by translations
parallel to Hc. C/i(S), C/(S) are invariant by translations parallel
to H.
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Proof. The second assertion follows immediately from

To prove the first assertion we shall first show that the intersec-

tion of the line

with J7(S) is connected. From definition of Cs>n(<?) it follows that

(?) is either empty or

Thus Di
where v=sup{5'(#, S): Z*(£)n Vi(?, S)=£0}. This is obviously con

nected.

Let us now prove the existence of u with the required property.

From Theorem 2.2.1 it follows that there exists w'e JY(t/i(S)) such

that u'\s=f. However, by assumption

where h^H and rk is the translation p-*p + h. Thus Lemma 2.2.6

implies

(9) rf(lO=« / *e^.

Since wr is holomorphic in K(S)nC and since Z,A(£)n tfi(S) ^s con"
nected, we obtain for h^H

(10) tfCP+i'A) =«'(£) if

Now suppose only ^, p+ith^Ui(S). Choose a positive definite

*. Since tt(5) is an open subset of Z), there exists 3>Q such
that

when

On the other hand
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0<5.

Thus, by (10), we have for Q<s<3

from which it follows

Thus we have proved (10) provided only that p, £+iAe#i(S) and
Therefore there exists a unique extension u of uf to Z7i(S)

Ui(S) + Hc which is invariant by translation parallel to iH.

Thus we conclude in view of (9) that u is the desired function.

Q.E.D.

It is not known for us whether the function u above is continuous

or not. However, in §5 we shall prove using Lemma 2.2.10 the con-

tinuity of the restriction U\U^\-*H provided that H contains no semi-

definite endomorphism except 0.

§3. Approximation Theorems

3.1. APPROXIMATION THEOREM ON U(n). In the preceding section

V was an ^-dimensional Hilbert space, Q the endomorphism ring of V.

Let {#1,62, * • •>£«} be a fixed orthonormal base of V. Set, for Z^S, Z

= ^Zjkej<S)ef. Then the mapping Z-*(Zjk) gives an identification of 3

with the ring of complex (n,ri) -matrices, which we shall preserve in

whole discussion of this section. Let G denote the group of invertible

elements of 3, i.e., the general linear group of order n> and K the

unitary group of V. Thus K in the abbreviation of Z7(n). Q is a

Lie algebra by the usual cross-product and should be regarded as the

Lie algebra of G, and then the algebra of K is the Lie subalgebra of

anti-hermitian endomorphisms of Q denoted hereafter by JC.

Let dZ denote the ^-valued 1-form on G such that dZA gives the

usual identification of the tangent space at A of Q (or G) with Q for

A^G, and let Z denote the <?- valued function on G given by the inclu-
sion G-^3. Then the <?- valued form 8Z=Z~*dZ is the Maurer-Cartan
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form of G, that is

(1) dZ(A)=A A^Q

where A denotes the left invariant vector field on G which is the
generator of the 1-parameter transformation R^pfA. (R* denotes the
right multiplication by Z.) The dZ is left invariant and it holds

(2)

In terms of the coordinate system (Z,-A) on G, dZ can be written as

follows:
aZ=(S(Z~%rfZ,*)

where (Z"1)^ Zjk must be considered as functions on G.
The restriction **(#Z) to K of dZ, where c: K-*G is the inclusion

map, is JC-valued and is the Maurer-Cartan form of K. In the follow-
ing, we often use a* instead of **(5Z).

«2

Take a non-zero element 00 of /\JC* and define an w2-form on K

where W denote the transposed of COA. Then v is left invariant, v is
also right invariant by (2) since

(3)

where Djc(f) denotes the determinant of an endomorphism / of JC.

The formula (3) follows immediately from compactness of K. Let [K]

be the generator of Hn2(K, Z) such that ^mi>>0. Replacing VQ by
if necessary, we could choose VQ so that

Let T denote the subgroup of G given by

T={A^K: Ajk=0 for (/,&) such that J

and £T the Lie algebra of T, i.e.,

£T=UeJC; 4y,=0 for y

Set also
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Then we have

(5) JC=

(6) «/(T)JC,=JC, TeT

(7) 0rf(T)£r=£T TeT.

As usual we shall make the canonical identification
— f\<K*®/\3*, the right hand side of which should be interpreted as
the tensor product of the two graded algebras f\<X* and f\3*. Then

(8) AJC* = (lA1>^i*)®(A2'*).
»(»-!) »

Now choose v'Q<= /\JC? and v'Q'<=/\3:* so that

(9) uo=t>ft8>flS'

and define an w-form #2 on T and an w(w— l)-form #' on K

(10) t*=A

(11) »i=A

where wi is the projection of JC onto JCi in the splitting (5) and a/
is the Maurer-Cartan form of T (i.e., the restriction to T of o>). Then
*/ is left invariant and satisfies the following relations:

(12) fl?(t

(13) 4Ji/=0

The last relation follows immediately from AJ A*7ri(^o)=0. Therefore
there uniquely exists an (»— l)-form e;1 ow £/T such that

(14) !/=»>*(*)

where p is the canonical projection K-*K/T. We could choose t;J so
ihatliK/T^ = 1 for a suitable generator [K/T] of H«^>(f./T,Z).
(Note that K/T is orientable since K/T is simply-connected.)

Now set N'=KxT, N=K/Tx T. Then as made before we have
the following canonical identifications:
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Consider the map $ : N'-*K defined by

Since T is abelian, there exists a uniquely smooth mapping ^ : N-*K
for which the following diagram is commutative:

N'

JV — >#
0>

Then our key lemma is the following:

Lemma 3.1.1. q>*(y'}=6Vi®v2 where a denotes the function on
T defined by

U\Tjj-Tkk\
z=U\l-TjjTkk\

z for

Proof. Since v'®v2 = '^(vi®vz}y it suffices to prove

(15) <i>*(y}=<sv'®v2.

For 04, T)eJV7 let /Mir) be the linear mapping of JC02* into JC
which makes the following diagram commutative:

JC
(0A

To determine /u.n we set

Then we have

where *^4=-4"1rf-4, 8T=T~ldT. Thus we obtain
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Therefore, for X<=JC, FeS",

+ F)

, F)

where gT denotes the endomorphism (Ad(T~1')— 1) Ij^©*^ of JC( =

JCi©30. Hence

(17) A'/Ur>(fo) = A'(

since Z)jC(^r)=tf(T). Consequently we deduce from (10), (11), (17)

and diagram (*)i,

Thus Lemma 3. 1. 1 is proved.

Now let I£r be the set of elements of K whose characteristic values
are mutually distinct, then qT1(K,')=K/TxT, where Tr = KrriT.
Obviously the measures of K\Kr, N\<p~1(Kr') are zero. Therefore for
a suitable generator [N] of Htt2(N, Z) we have

= t;

since ^U_i / a r , is an n!-hold covering. Thus applying Fubini's theorem,
(.JKr)

for the generator [T] of #B(T,Z) such that [K/T]®[T] = [N], we
obtain

(18)
^ J [5T]

However, for a suitable constant c,

where we denote by tj the function T-»T,V (TeT). Consider the

mapping 5 from Hs onto T defined by

€?*•
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Then

Simple computation shows

Jo Jo /<*

Therefore we have by (18) c=(2idY\ and hence

(19) v*= (2rt)~"fe-/'*i A

Now let rp (0<(8<1) denote the diffeomorphism of T onto itself

Then simple calculation shows

where

P(p,0 = (l-V)/|l-|<rf|2 for if such that

Set <of=T*(av)/n\, then we have the following identities:

(20) «P=(nP(ft /,))•«„

(23)

where fp is the function on K given by

(21) follows from (18), and (23) follows from the fact that

From (23) we can deduce

(24)

Let us now proceed to prove an approximation theorem for conti-
nuous functions on T. Define a neighbourhood of the identity W$

(0<S<2) setting
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W8= {Te T; Re(l-*y)<S}.

Then the first approximation theorem is the following

Theorem 3.1.1. There exists a continuous function c(d,p)>Q
(0<5<2, 0<p<l) such that

(25) Km c(», p) =0 for fixed d.

||/||r=8Up|/(T)|.
Ter

Proof. Set

1>G», ft, • • •, P.) = (n P(ft ei?0)• n
/=! l<

Then by (21) we have

(27) T — f Kft^i, -,fc
J_7T J-W

and

= \ ^- - - l

where £=
If 1— cos^-<5 for y = l, 2, •••, w, then

(28)

If 1— cos^>5, then

(29) |£-(<PI, — , y.) IK

for some constant C>0, for we have then

using the following inequalities:
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Thus we obtain, if one sets 1— cosd'=3 0<5'<7r,

\ /"\ ,g"Gpi» • • •>?*JINKS' JINKS'

\ d<pA • • • ! |^(^i, •••,^«) IK/0, #>i> •~,<p
Jl-COS^j^S J-7T J-7T

f» PTT PTT

h\ rf^.t •••! |^r(^, •••,?>«
Jl-COR5»B<8 J-7T J-7T

where we used (27), (28), (29) in the last step. Thus

T€=WS

where g ( p , g ) = ~ . Q.E.D.

Now we shall prove an approximation theorem for continuous
functions on K. First we prepare some notations. Given a continuous
function / on K, let /P (0<Cp<Cl) denote the continuous function /P on
K given by

(30)

where Z,^ denotes the left multiplication by A. In view of the invariance
of v, fp can be also given by

(31)

From (30) we have

(32) «

and from (31) and the fact that If (&)=#!(&) jBeK it follows
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(33) «(/,) = («(/))P A^K.

(31) shows also the real analyticity of fp since Z,*-i(£p) is real analytic

with respect to A. Now our second approximation theorem is the
following

Theorem 3.1.2. \\fP-f\\K=sup\fp(A)-f(A)\-*Q as <?->!.
A^K

Proof. Denote by Vs the neighbourhood of the identity in K

given by

V5={AtEK : Re(l-?)<3 for any f such that D(£I9-A)=Q},

that is, V^vtK/TxWs) (or JC/TxWr«=^-1(Vi)). Then {V,}Q<S<2

forms a complete system of neighbourhoods at the identity of K.

Since K is a compact group, / is equicontinuous on K, i.e., for any
e>0 there exists 3 (0<<5<2) such that

(34) sup|LK/)OB)
Af=Vg

On the other hand we have by (24)

(35) MA)-)

Therefore, if one sets g*=?*(£?(/) -/(-A)), then by (34)

sup

in particular

(36)

where we have set

Using Fubini's theorem we deduce from (23), (35)

Therefore by Theorem 3. 1. 1 and (36)
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Since the right hand side is independent of A, we obtain

ll/p-/ll*£«+2

Letting p tend to 1 from below,

Since e is arbitrary, we finally obtain

/|U=0. Q.E.D.

Corollary 3. 1. 1. For /eC(JC) there exists a holomorphic func-
tion f* on Gp such that f*\K=fP, where Gp denotes the open set

To prove this we assume the following lemma.

Lemma Hi (Hua [4]). For ZeGp and for A&K, the matrices

L-pZ~lA, L-pA^Z

are non-singular.

Proof of Corollary 3.1.1. In view of this lemma define tfeC(Jf ),
setting

(37) tf(A) = (l-pzr7(D(L~pZ-*A)D(L-~PA-*Z»»

Note that tf=L*Afa') for A^K. Thus, if one sets for

(38)

it holds f*\K—fp and f* is holomorphic since t>P(-4) is holomorphic
with respect to Z in Gp. Q.E.D.

3. 2. APPLICATION TO SOME TYPE OF VECTOR FIELDS ON TRIVIAL U(n)-

BUNDLE. Here we shall study how the map /->/P (resp /->/p*) relates
left JE -invariant vector fields on the product of K (resp fi>) with an
open subset in RN.
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Let £* denote the function on KxGp

Then £* satisfies the following relation

(39) tf (AB, Z) =tf (A, ZB-1) =p* (£, ^Z).

Choose a K -invariant volume v* on G (which certainly exists since

K is compact) and for i|r»eC;r(Gp) define a function on K setting

(40) ^ G

where £fp) is the function on Gp defined by £fp)(Z)=£* (A Z). Here,
for definiteness, the orientation of G in the integration should be the
natural orientation of G as a complex manifold. From the invariance

of v* and from (39) it follows that

(41) £A(^(P)) = (£^)(P)

(42) ^(^p>) = (A*)cp>

where A^K. From (33), (41) we obtain

Proposition 3. 2. 1. For A<= K

(43)

(43)'

In (43) -4 in the left hand side should be the left invariant vector

field corresponding to A on K and -4 in the right should be that on G.

Later we also need

Proposition 3. 2. 2. For A^K and for <?,

(44) \ (
JG

Proof. Note that

*=o

But \ 2?*exPM(^)^* is independent of t because of the JK>invariance ofJG
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#*, therefore (44) is proved.

In the same way we obtain

Proposition 3.2.2'. For A<=K and for /,

(44)'

Now let J2 be a domain in RN and denote by M, M the product
manifolds Kxti, GxQ, respectively, then TUfje)(M), T(Zf,)(Af) can be
canonically identified with TA(K}@TS(&), T,(G)@r,C0) respectively
and under this identification we call a vector field on M (resp M) a
vertical vector field if its value at each point 04, #) of M (resp (Z, #)
of Af) lies in TA(JC) (resp T*(G)), further a vector field on M (resp
M) is called a horizontal vector field if its value at each point 04, # )
of M (resp(Z,#) of Af) lies in T,(£). Then every vector field X
on Af (or on Af ) can be uniquely written as the sum of a vertical
vector field and a horizontal vector field. The former is called the
vertical part of X and denoted by Xs and the latter is called the
horizontal part of X and denoted by Xh. A vector field X on M

(respAf) is called left invariant if, for any A of K (respZ of G),

= X (resp. rf

where I,,*, Z,z are transformations given by

) U', *) e M,

) (Z', *) e M

The horizontal part and the vertical part of a left invariant vector
field X on Af (resp. on Af) can be written as follows:

(resp

where (^, —, ̂ ) is the system of coordinates of RN and £/(#) are C°°
functions on Q, and A(x) (respZ(^)) is a JC (resp ^)-valued function

on &. Here A(JC) means the vector field which assigns to each point
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(A *) of M a vector 0400)* in Tu.

should be interpreted in the same way. Note that also A(x) can be

regarded as a ^-valued function, therefore for a left invariant vector

field X on M, there uniquely exists a left invariant vector field X on

M such that

XP=XP for
x\

We call this X the extension of X A left invariant vector field is

called typical if Xk has constant coefficients, i.e., it can be written as

follows:
N Q

Xh = ̂ ] d— — (d, • • • , CN are constants) .

Now let t?, i?* be volumes on M, M defined by

where dx = dxl~-exN. Then we have

Proposition 3. 2. 3. The formal adjoint with respect to volume
xs <~~>

v (resp i?*) of a typical vector field X on M (resp X on M) is — X
x\

(resp —JSO, *".£.,

(45)

resp B

x\

Proof. (45) for the horizontal parts of Jf, X is obvious, and for

the vertical parts it is an immediate consequence of Propositions 3. 2. 1 ,

3. 2. 2 and Fubini's theorem.

Now we shall extend mappings /->/P, f-^f* for /eC(K) and

mapping ^->^cP) for -^eCr(Gp) into mappings of C(M) and of

Cr(Mp) where MP=Gpxti. For /eC(Af) and ^e,G let /* denote the

function on £ given by /'(-A) =/(-4, *) (^4e JBT), and define /p by

and /p* setting
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In the same way we shall define ifop) for

where ty* denotes the function on Gp given by ^*(Z)=-^(Z, #). Then
we obtain an analogy of Theorem 3. 1. 2.

Theorem 3.1.2'. For /eC(M), /P fewrfs to / m fte topology
of C(M) 0s

Proof. Let jRT be a compact subset of £, then the set
is compact in C(l£) since the map *-*/, is continuous. But the con-
vergence gir+g in C(J§0 is uniform on any compact subset of
since by definition

\\gP\\K<\\g\\K *eC(K).
Thus

sup | /P(A ̂ ) -/(-4, ̂ ) | ->0 as p/l.
QE D

Now (43), (43)' are generalized as follows.

Proposition 3. 2. 4. // X is a typical vector field on M, then

(46)

(47)

These formulae are evident by Proposition 3. 2. 1 and the structure
of typical vector fields on M

Theorem 3. 2. 1. Z^ X be a typical vector field on M and f be
a continuous function on M such that Xf=0 in the distribution sense.
Then we have Xfp=Q, Xf?=0.

Proof. Continuous mappings /->JST(/P), /-K-X/)p of C(M) into
•2X(M) coincide on dense subset C°°(M) of C(M), therefore there coincide
on the whole space C(M). JT(/P)=0 is proved. In view of Proposi-

tion 3. 2. 2 £(/*)=0 is equivalent to Jff/p* (£*>*=()

But by Fubini's theorem
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where in the last step we have used Proposition 3. 2. 4. Since ^(P) has
compact support, we have by the hypothesis

"u- Q.E.D.

Remark. Evidently Propositions 3.2.3 and 3.2.4 and Theorem

3.2.1 are still valid for a differential operator X+iXf, where X, X'

are typical vector fields. Such an operator will be called also a typical
vector field.

To end this section we add an interesting approximation theorem
for solutions of certain overdetermined system of differential equations,
but we do not use this in later discussion.

Theorem 3.2.2. Let Xit ••-, XN be real analytic typical vector

fields such that the differential operator with constant coefficients

Xi, ••• , XN are linearly independent. Then the set of real analytic

solutions of the system of equations

•y f f\ v f AAi/—U, ••- , A/,/ — U

is dense in the space of all continuous solutions of it with respect

to the relative topology induced from C(M).

Proof. In view of Theorem 3.1.17 it suffices to prove that fp is
real analytic for a solution /, which follows immediately from the real
analyticity of f*. By Theorem 3. 2.1 we have

XX XX

(48) Jfi/P* = 0, • • - , XNf*=Q.

Moreover since f*(Z,x) is holomorphic in variables Zjk (!<./, k<ri),
we have

(49) |̂r-/p* = 0
jk

Since the system of differential equation (48), (49) is elliptic by

the assumption of the theorem, f* is real analytic.
Q.E.D.
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§4. Problem Jff for DQ

4.1. A LOCAL PARAMETRIZATION OF DQ. In this section we investigate

Problem H for the Silov boundary DQ of the Siegel domain of second

kind D in Section 2. For this purpose we shall give a more convenient

parametrization of DQ in order to apply the results of the preceding

section to DQ.

Recall that D0 was given by

where V is an ^-dimensional complex Hilbert space and Q the endo-

morphism ring of V. Fixing an orthonormal base {#1, •••, £„} of V as

before, we shall identify V with C", Q with Af.(C), where C* should

be regarded as the space of column vectors with n components. Let

H denote the subgroup of G given by

and the Lie algebra of H, i.e.,

Now define a mapping V by setting

where XQ = I ••• . Then by simple calculation one can easily see that
\1/

(d<i)P is non-singular at each point p of Gx$r. Let us determine

$(Cxf)y). For this purpose let Qr be the set of elements in Q whose

characteristic polynomial has mutually distinct roots, i.e., S={Z^3:

the discriminant of equation in ^ D(Xln— Z) =0 is non-zero} and for any
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permutation a of n letters {1,2, •••,»} define Gr)eG as follows:

if *(*)=/

Further we shall denote by W the set of all (<r). Then HF is a finite
subgroup of G and we have

Therefore N=WH=HW is a subgroup of G. It is well-known that
N is the normalizer of H in G. Obviously

N/H=W.

Suppose that Ce<?r, then, by Linear Algebra, there exists an element
Z of G and an element H of £)r such that

Define a mapping 5: Sr-*G/N setting

where TT is the canonical projection of G onto G/N. The S(C) is inde-
pendent of the choise of such Z, and S is well-defined. It is also
evident that 5 is a holomorphic mapping. Define a function /0 on V
setting

and set for (Z, *) e G x

1(Zj!V,A:) = (D(J/V))"2/1(Z,^) for JVeiV. Therefore, if one sets

we have /2(ZJV, jf) =/2(Z, jc). Hence there exists a function /3 defined
on G/JVx y such that
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Set /(C, *) =/3(5(C), x) for (Cx#)e5rx V. Then / is a holomorphic
function on Gr X F.

Let R be the subset of Sr x F defined as follows

Since the complement of Qr x F is an analytic variety and since / is
holomprphic, Dr=Rr\D0 is open, dense in generic submanifold A. We
claim that

fy') is obvious, in fact ZHZ'^S',
0 for (Z, #)<ECxij r. To show R<^<p(Gx$r} note that for

any (C,*)eJ? there exists (Z, H)<=Gx%r such that

(i) ZHZ-*=Z.
Then we have

since /(C, ^) ^/sUCZ), ^r) =/2(Z, ̂ ) =/0(Z-^)Z)(Z)2. By the definition
of /o there exists HQ of jff such that

(2) Hi1Z~1x=x0.

By (1), (2) <p(ZHQ,H) = (£,%*). Thus ^e^(Gx^) is proved. As
noted before, ^ is holomorphic and regular. While by an easy compu-
tation we have

?-'(«>, #) = {(Z- (<,),#); We IF}.
N/ NX

Therefore <p is an ^!-fold convering onto R. Set D=^~1(Dr). Then Z)
is a real submanifold of Gx§f which is in local holomorphically equi-
valent to Dr since <p is holomorphic. Thus we may consider our problem

^y

for D instead of Dr.
NX \X

Now let us determine Z) explicitly. Suppose (Z, -ST) e D. By Linear
Algebra Z can be written uniquely as follows

Z=AP

where A&K, P is a positive definite hermitian matrix. Then by the
difinition of DQ we have



Holomorphic Extension Problem 165

= ̂ (4- (PHP-1 - P-'#P) - Px,'xP\A-\

Thus

PHP'1 - p-1HP=iPx.'x, P,

or equivalently

Hence, if we set Q=P~2, we have

(*,-*".)<&.=* (/, k=l, 2, .», n)

where //Zi 0
J5T= '- .

\0 A.

In particular because of the positive definiteness we obtain

(3) Imhj>0 O' = l,2,-f»).

Then automatically

Ay-At^O O',A = l,2,-f»)
and we get

Conversely for .Hel)r which satisjfies (3), the matrix (i/(Ay— A*))

is certainly positive-definite. For, determinants of its principal minors

are all positive. This follows immediately from the following lemma

Lemma H2 (Hua [4]). Set ajk= - , a=(ajk).

Then
1n

where d(x') = Ii(xj—xk).
3<k

Now define Q(H) by setting
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fa 0\
where H=[ '• el), Im^>0 (j = l, 2, ••-,»), further set

\0 *./

is well-defined since Q(-ff) is positive definite. Then we
have from above argument

): A<=K

- f /*! 0\ ]
where $H#= '-. e§,; Im^>0 (; = l,2,-,«)[.

I \0 *J J
N/

Define a real analytic diffeomorphism ty of Gx§ onto itself by setting

Further set •^=<^!JK-X^. Then ^ is a real analytic diffeomorphism of

Kx$ onto D.

4. 2. SOLUTION OF PROBLEM H FOR A . Let o/ denote the Maurer-

Cartan form of § when § is regarded as an abelian Lie group. Define

an endomorphism /(z.m of 5+1) for any (Z, jfiQeGxf) so that the
diagram

is commutative. To determine /CZ.HJ denote by fa the linear mapping
of Ij into ^" so that the following diagram is commutative:

fn

(C)-55«-»

and set Z^=ZP(H). Then

Therefore
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Thus

From this it follows that for A^K,

(4)

Denote by 5(0§1) the subspace of the complexification Qc=Q-\-iQ of

given by

where / is the linear isomorphism of Q which defines the complex

structure of Q. Then we have

Thus by (4), for H^$ and for £el)(0il) there exists a unique

of JCC such that

where i denotes the vector field on f) such that o/(Z,)=Z, and ^co>1) is

the subspace similar to ^?(0>1) for § instead of ^?. In other words we

have

Theorem 4. 2. 1. Z,e£ L be an element of §(0fl).

a unique typical vector field X(L) on M=Kx§ such that X(L)h = L

and d^(JT(L)) is a section of the tangential Cauchy-Riemann bundle

of D.
^/

Here we have used word 'typical' setting Q=$ in the preceding
section. From this theorem we deduce

Corollary 4. 2. 1. Under the notation of §3 the following system

of differential equations is equivalent to the Cauchy-Riemann equation

§u=Q of Gxlj :
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Here (fc, •••, &«) is a system of coordinates of § and (Z,-*) is the
system of coordinates of G as defined before.

Now let Q be a domain of f, then we have an approximation

theorem for cS-holomorphic functions on DQ='\}r(Kx£). For this purpose

we have to extend mappings of C(Mfl) (M0 = JCx^) /-*/P, /-*/P* to
mappings of C(Dfl) by ofn and ^, i.e., we set for /

Here /p* is a function on MB,p=Gpxfi.
NX

Lemma 4. 2. 1. /,#£ / be an S-holomorphic function on DQ, then

is holomorphic in

Proof. By Theorem 4. 2. 1, Corollary 4. 2. 1, Theorem 3. 2. 1 and
the definition of <S-holomorphicity we have

in the distribution sense. Since 9 is elliptic, f* is holomorphic.
Q.E.D.

In view of this lemma Theorem 3. 1. 2' implies

Theorem 4. 2. 2. In the closed subspace of S-holomorphic func-
•v — •

tions on Da of C(Do) the set of restrictions of holomorphic functions
NX

near Da is dense with respect to the topology induced from C(M).

Now define an action of K on Sx V setting

A>G4) (Z, *) = (AZA*, Ax) A^ K, (Z, x) ^Sx V.

Then A, Dr are K-stable. Note that

Thus every K-stable open subset S of Dr is given by 5=
NX

for some open subset Q of \ Therefore, for any X-stable open subset
S of Dr the set of restrictions to S of holomorphic functions near S is
dense in the space of cS-holomorphic functions on S, the same is true
for p-S=p(p)S (£eZ)0), P being defined in §2.2.

But the system of open subsets of DQ
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is a complete system of neighbourhoods. This can be seen as follows:

Although 0$A, we can choose a sequence (/O n=l,2, ••• of points
of Dr such that pn^B^n since Dr is open and dense in A. Then

{p( AT1) (API #i/«): n = l, 2, ••-} is certainly a complete system of neigh-
bourhoods of 0. To see this note that for any 3>Q there exists a
positive integer n such that

because A is a group manifold. Consequently for any £>0 we can
choose n^N so that

r1) (Arm/,,) c£5n A .
Thus our assertion is proved, and hence even

K^XArm,*): P^Do, n=l,2,-}

is a complete system of neighbourhoods of A.

Therefore we conclude that there exists a complete system of neigh-

bourhoods n such that for Sell rs(^) = fir(S) where J^ denotes
the sheaf of germs of cS-holomorphic functions, i.e., the solution sheaf
of the tangential Cauchy Riemann equation. Thus we have proved that

=M. Combining this with Theorem 2.2.1 we obtain

Theorem 4. 2. 27.

for any open subset S of A.

§5. Application to Standard Real Submanifold of Second Kind

5. 1. BASIC NOTATIONS AND DEFINITIONS. Let V be an n-dimensional
complex Hilbert space and H(V} the space of hermitian forms on V*.

In §1, V* was considered to be Hom^CF, JR). However Hom^CF, K)

can be canonically identified with Homc(V, C) by the map

F, 1?) B/-J(/-e/o/) €EHomc(F, C).
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Here / denotes the automorphism of V defined by I(x)=ix(xG. TO-
Now we shall prove the equivalence of D0 with M°. Recall that

standard real submanifold M° in NQ=VxH(Vy is given by

o

Here lm(a) is the element of H(V) such that a—

that is, Im(oj) =-^-(a—a*} where * indicates the conjugation of /?( F)c

fixing H(V). Consider the linear isomorphism nQ of Qh onto

defined by

7roC4) (Re**, Rej;*) ( = <*,CA), Re**®Rej;*» =iRe(^, 3;)

where we have used the notations in §2. Computing directly we obtain

Let 7T0 be the linear isomorphism of Sx V onto NQ defined by n*(A,x)

= (^,7Toc(^l)). Then n maps A onto Af°. The image of the Siegel
domain D by TTO is the domain

Note that M°, D are obtained once the complex structure of V is given,
i.e., they do not depend on the inner product on V.

Now let n be a linear mapping of H(V^) onto a real vector space
W. Then we can construct the fundamental Lie algebra m(n) and the

corresponding standard real submanifold M(TT) as in §1. Further consider
the canonical linear map n of JN°= V+H(V)C onto N(n) = V+ Wc.

Then n=n\M» is the canonical homomorphism. In what follows we shall
identify D, D0 with D, M° respectively by the map n0 , and use rather
D, Do instead of D, M° to avoid inessential complication of notaion. For
example, n, n should be interpreted as the maps from D0 , S x V onto
MOO, N(n) respectively. Under this convention the image by n of D

is denoted by D(n). D(n) also does not depend on the inner product
on V.

We shall now introduce function spaces and sheaves for M(n)
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which are similar to those for A. For a subset S of M(n)9

is the set of restrictions to S of holomorphic functions defined near S.

In case S is <r-compact, #(S) is the closure of J?°(S) in C(S). For

an open subset S of MOO, #(S) is the set {/eC(S); /U/efTCS7)

for any relatively compact subset S' of S}. 5 is the sheaf induced

from the presheaf given by the system (-fiT(S))s:oPen with natural re-

striction maps. For a subset U of D(n) such that Ur\D(n) is a non-

empty open subset and such that UdUr\D(n)9 <fiT(Z7) is the set

{weC(C7); w 1 1; n BOD is holomorphic}. Here the second condition on U

means that every continuous function on U is determined by its re-

striction on Ur\D(n). Further we set for any open subset S of M(n)

where C/C^CS)) has appeared already in Lemma 2.2.10. Z7W(S)

satisfies condition Z7W(S) c Z7ir(S) fl^GO and Kr(S)n0GO is open.
The first assertion follows immediately from

which is obvious since t/OT^S)) is an open subset of I?. The second
follows from

Lemma 5.1.1. // U is an open subset of D, then n(lT)r\D(n)

Proof. Suppose x^n(U)r\D(n). Then there are p& U,
such that 5 (£)=£(£)=#. Set for 0<t<l

Then I(£(0) = (1-OK£)+«(«)>0 when 0<^<1. For 1(^)^0 and
But C7 is open in D, hence there exists £>0 such that
for 0<^<5. Thus p(f)^U^D for 0<£<5. Therefore
7c(^(0)e7r(t7nD). We have thus showed 7r(t7)n#«
. Since the opposite inclusion is obvious, the proof is complete.

We shall now define two important classes of standard real sub-
manifolds which are the main objects in this paper. The standard real
submanifold M(n) is said to be totally indefinite or ^-indefinite if
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every O^^ePF* the symmetric bilinear form

oL(xJy) x,y<=V

is indefinite. If every non-zero element of Kerrc is indefinite, then

M(n) is dually V-indefinite. This terminology derives its origin from

the fact that we can assign its dual for every M(n) so that M(n) is

V-indefinite if and only if the dual is dually V-indefinite. This is done

as follows. Let Kd be the image of the transposed of n and nd the

canonical projection from .ff(F*) onto Wd = H(V**)/Kd. Then nd gives

rise to a standard real submanifold M(nd} in complex vector space
Nfa) = 7* x (Wdy. M(nd°) is the dual of M(w). Note here that the

dual of the dual does not coincide with the original one in general.

In fact (nd}d is the projection of £T(F) onto H(V^)/Kern. However

we may consider that M(ji), M((nd}d} are essentially the same. For,

they are mutually equivalent by the canonical map p induced from the

commutative diagram

Lemma 5. 1. 2. M(n) is V-indefinite if and only if M(n<i) is

dually V-indefinite.

This follows immediately from

Lemma 5. 1. 3. For a subspace L of #( V) the following state-

ments are mutually equivalent:

(i) L contains a (positive) definite element.

(ii) Z,1={re^T(F*); <r, v>=0 V7?e£} contains no semidefinite

element except for 0.

Here < , > is the bilinear form on H( V) x H( F*) which gives

the canonical identification of /f(V*) with #(F)*. For the proof of

this see L. L. Dines [1] or Lemma 3 of L Naruki [7] . Note that, in

this notation, Ker;rrf= (Ker/r)1, in view of which Lemma 5.1 2 is obvious.

If M(x) is either V-indefinite, or dually V-indefinite, then M(n) is
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said to be stable. The standard real submanifold which is not stable
is called unstable one. The meaning of the word is the following:

Let Gk denote the Grassmann manifold consisting of all ^-dimensional
subspaces of #(F). Given an H^Gk, MH denotes the standard real
submanifold induced from the canonical map nH : H(V)-*-H(V)/H.
Then the set {H^Gk : MH is unstable} is closed in Gk and of the first
category, i.e., without interior, while the sets (H^Gk : MH is V-inde-
finite}, {jEfeG* : MH is dually V-indefinite} are open in G*. Thus one
may say that almost all standard real submanifolds are stable.

In this paper we shall only concern ourselves with stable ones and

the main objective is to show

when S is an open subset of a stable standard real submanifold. The

proof is given first for V-indefinite case and next for dually V-indefinite
case.

5. 2. V-INDEFINITE CASE. In this case the study is based on the
following

Lemma 5.2.1. If M(n) is ^'-indefinite, then N(n)=

Proof. It suffices to show D+(Kezn)c=N0 = VxH(V)c. By
assumption and Lemma 5. 1. 3, Kern contains a positive definite element

r0 of #(F). But, for any p<=NQ l(£)+fr0 is positive definite for
sufficiently large £>0, i.e., p + itrQ belongs to D. Hence p^D+i Kern.

Thus we have proved N0 = D+iKern=D+(Kern')c. Q.E.D.

Now we shall prove a stronger version of the statement announced
at the end of 5. 1 for totally indefinite M(n).

Theorem 5. 2. 1. If S is an open subset of an V-indefinite M&),

then Z/w(S) is an open subset of N(n) and

Here we have put

Proof. Suppose /ers(^). Then 7c*(/)ers/(^) where, for
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simplicity, we have set S/=7r"1(S). From Theorem 4.2.2' it follows
the existence of He/?(K(S')) such that «|s/=w*(/). Note that both
**(/) an<l S' are invariant under translations parallel to Kerrc. Thus
Lemma 2.2.11 implies that there exists a function v on C
=w(0i (50) such that

Note that the combination of Lemmas 5. 1. 1 and 5. 2. 1 implies that T T | D
is open. Thus the continuity of z; is obvious.

On the other hand we have

where we have used Lemma 5. 2. 1 in the first step and Lemma 5. 1. 1
in the last. This implies that £/^(S) is open in N(n). Furthermore,
since U\VI&UD is holomorphic, v is also holomorphic. Hence f=v\s

jy0(C77r
1(S))U. Thus we have proved

which, together with obvious inclusions
=> (S)=)^(^(S)) U, implies

Q.E.D.
From this theorem it follows trivially

Corollary 5. 2. 1. // M(n) is ^-indefinite, then every S-holomor-
phic function in an open set of M(n) is real analytic.

Note that C71(A)=5" by the construction of K(S). Therefore
n^=N(n) by Lemma 5.2.1. Thus we obtain

Corollary 5. 2. 2. Every S-holomorphic function on M(n) is the
restriction of an entire holomorphic function of N(n) if M(n) is V-
indefinite.

By means of Theorem 5. 2. 1 we shall show that Ps(.Ms) is a
Montel space.

Corollary 5.2.3. Under the hypothesis of Theorem 5.2.1 the
map
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is a compact operator for 0?

Proof. Since the restriction map r : #(£7(S))-^Fs(c#j) is a conti-

nuous bijection and since J?(f7(S)), rs(Ms) are Frechet spaces, the
inverse ^ of r is also continuous (by Banach's theorem). Note that

H(U(S» = H(U(S» since C/(S) is an open set of #(*). Therefore

the map C

is compact where ^ is a function of C<r(Z7(S)) such that

Therefore the map

is compact. Q.E.D.

Now we shall extend this Corollary for a somewhat wider class of
real submanif olds. Let M be a real submanif old of a complex manifold

M M is called a locally flat real submanif old of type M(n) if for

any p of M there exist a neighbourhood U in M of p and a biholomor-
phic mapping <p of U into JV(TT) such that ^(C/HM) is open in M(TT).

Corollary 5. 2. 3'. Suppose that M(n) is totally indefinite and M

is a locally flat real submanif old of type M(n). Then the map

is a compact operator for an open set S of M and ^

This corollary implies the finiteness theorem for cS-holomorphic
vector bundles on a compact locally flat real submanifold. Let M be
a real submanifold of a complex manifold such that the tangential

Cauchy-Riemann bundle of M is well-defined. A complex vector bundle

E on M with a subsheaf S of E is called an cS-holomorphic vector
bundle on M if, for any point p of M, there exist a neighbourhood U
and sections s1, s2, •••,5 l (I = fiber dimJ?) over U of S such that

i
i, •••,/! are cS-holomorphic in U.
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By Corollary 5. 2. 3', we obtain

Proposition 5. 2. 1. Let M be a compact locally flat real sub-

manifold of type M(n) where M(n) is totally indefinite and (E, S)
an*S-holomorphic vector bundle over M. Then F(S) is finite-dimen-
sional.

Proof. Obvious since r(S) is a locally compact Banach space by
Corollary 5. 2. 3'.

This proposition is a special case of more general theorem of

Naruki [7] proved by using the method of Hormander. But the reason
why we have proved Proposition 5. 2. 1 using the holomorphic extension
is that the method of this paper suggests us a conjecture on holomor-
phic extension. Let M be a real submanifold of a complex manifold

jj.
for which Levi-Tanaka algebras are well-defined and let KiP=^Qk

P be

the Levi-Tanaka algebra of M at p. Then m* = gj+g* is also a funda-
mental Lie algebra under the convention that

M is called totally indefinite if for any p^M ml is totally indefinite
(i.e., the corresponding standard real submanifold M(ntJ) is totally inde-
finite). Now our conjecture is the following.

Conjecture: Let M be a totally indefinite real submanifold of

a complex manifold M. Then there exists a neighbourhood U in M
of M such that the restriction map

is onto.

If this conjecture is true, it will be almost obvious that the space

of global sections of an cS-holomorphic vector bundle over a compact
totally indefinite real submanifold is finite-dimensional, which is a main
theorem of [7].

Remark. For any compact, locally flat and totally indefinite real
submanifold M <5-holomorphic functions are constant on each component
of M. This can be proved as follows. Let H be the vector space of
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<5-holomorphic functions on M. Then by Proposition 1 this is a finite-
dimensional algebra over C. Therefore any element of H satisfies an
algebraic equation

P(/)=0 PeC[*].

Suppose that Ci, c2, •••,£* are the roots of P, then

Therefore / takes only a finite number of values. Since / is continuous,
/ is, constant on each component of M.

As an example, we shall now give a compact, V-indefinite and
locally flat real submaifold, which is an orbit of a subgroup of the
holomorphic transformation group on a complex Grassmann manifold.

Example (Tanaka). First we construct many linear groups:

G=GL(m, C) (m=n+2nf n=p+q

/

\ iL.

IP
_f

-iL, \

1

Then the Lie algebras 5°, 3', X of G°, G', L are given by

: n,=0 if

Q'=G«<T\J1.

By direct calculation one sees that 3° is the set of matrices of the
following form



178 Isao Naruki

nr n n'

( r

?

\
where a, C are h(

/

g2= <

\

jrmi

V

E

tia

€

A
/

\
($

n, E

C N

m

r

-w

I!' rJ>'
-r* )}n'

+ I"E=0. We shall set

\
N

\

)

: feM../(C) ^
J

Then m is a subalgebra of 5° such that [&,&] Cg2, [32,82] =
=0. We shall make gi a complex vector space so that th
mapping r

/
f

\ -«'£/'

\

y
is a complex linear isomorphism of M«,«/(C) onto &. Thus
fundamental Lie algebra and m^ can be identified with the su
of M«(C) consisting of matrices with the following form
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by the mappings

\

\

and

The connected Lie subgroup of G° with Lie algebra m (resp mc) shall

be identified with M' (resp Mc) introduced for m in §1. Under this
identification we have

S =

\

where S is the abelian subalgebra of in introduced in §1. Denote by
H the Lie subgroup of G with Lie algebra S.

Then the canonical map

MC/H->G/L

is one to one and regular (not onto).

On the other hand the canonical map

M^GVG7

is also one to one and regular. In fact G'{~\M'=(jB) and

Moreover the following diagram is commutative

M' - > G°/G'i i
MC/H — > G/L
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where all arrows are canonical. Thus G°/G' contains a locally flat open
subset. But the canonical left operation of G° on G/L is holomorphic.
Therefore G°/G' itself is locally flat.

Now we take K=U(m)f\G* as a maximal compact subgroup of
G° and denote by JC the Lie algebra of K. Then

£•=<%+£'.

Therefore orbits of K in G°/G' are open, and it is obviously compact.
Since G°/G' is connected, K operates transitively on G°/G', and G°/G'
itself is compact. Thus G°/G' is a compact locally flat real submani-
fold of G/L. (Note that G/L is a Grassmann manifold.)

In order to show that G°/G' is totally indefinite one may investigate
Lie algebra m. Recall that & is isomorphic to M«,^(C) by r. Note
that

We shall prove that for any non-zero hermitian (V, ft') -matrix A,
the symmetric form

is indefinite. Denote by Sfc the subspace of M«,XC) of k-th column

vectors and set A =(«,-/) !<.•,/<»' •
1) Suppose that a^^O for some *=£/. For any u^Siy

where we set ai}=a. Choosing a suitable ei9 so that ^I9> a is real, we
have

[-4] (e?*u+v, e?*u+v) =2ei9a Re(S«*»*- S w*i;*)
*-l *=#+!

which can obviously be made positive as well as negative by taking
suitable u, v.

2) Suppose a=au^Q for some i. Then, for

[A] (u, u) =2a(lukuk- S ukuk}.k=i *=0+i

Thus the restriction of [A] to St is indefinite.
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To sum up we conclude that G°/G' is a compact, locally flat and
totally indefinite real submanifold of G/L.

5. 3. DUALLY V-INDEFINITE CASE. As announced before the objective
of this paragraph is to prove the following

Theorem 5. 3. 1. // M(n) is dually V-indefinite, then we have

for any open subset S of M(n).

To prove this we need a lemma concerning closed cones in real
vector spaces.

Lemma 5. 3. 1. Let K be a closed cone in a real vector space
W, and H be a subspace of W such that H{~\K=(&. Then the set

is bounded if B is a bounded set of W.

Proof. Choose a fixed norm || || on W. Suppose that
is not bounded while B is bounded. Then there exist sequences

and {hv}"=1dH\{0} such that {xv+hv}^idK and such that
(*-»<*>)• Set 11/^11 = llWr1^- Since ||#ll = l, we may assume

that hi converges to some h0^H when y-»oo. Then ||Ao||=l, and
further \\hy\\~* (xv+ &*)-*>& (v-*oo). On the other hand, since H/MI"1^
+ hv)^Kt hQ also belongs to K=K. But then H^K=($) implies
^o=0, which, however, contradicts ||A0||=1. Thus (B + H^K is
bounded. Q.E.D.

Proof of Theorem 5.3.1. Suppose /^rs(c^^). Set for simplicity

H=Kem, S^r^S). Then £*(/)erSf (*#,$). Moreover **(/) to-
gether with S' is invariant by translation parallel to H. Hence by
Lemma 2.2.11 and Theorem 4. 2. 2' there exists a function u on

, such that «U=**(/), u\Ul<S'^H(Ui(S'')'), and rf(«)=w
Here r* is the translation p-*p + h (p^N0').

Now we shall prove the continuity of 0=a|ro')+Htf. First recall
that f/(SO + J7= Z/GSO , so that



182 Isao Naruki

Observe that the following statement is sufficient for v to be continuous:
From every sequence {#v}r=iCi£7(S ')+*"# converging to xQ&
+iH, it is possible to choose a subsequence {xVk}T=i such that
-*u(Xo) (£->oo). Let us prove this statement. Write each xv (y=0,
1,2,—) in the form xv=pv+ihv (£,eE/(SO, hv^H). Then l(xv}
=t(pv)+hv and I(A>)I>0, that is, I (A) Hes in the closure K0 of the
cone KQ consisting of positive definite elements of H(V). Here we

have set as in §2, l(x,€*)=Im(&)—-(x®x + Ix®Ix) for (jc,os)eV
_ o _

x H( TO c- By the assumption fTf! K0 = Ker n fl KQ = (0) . Hence Lemma
5. 3. 1 implies that {hv}~=i is bounded. Thus there certainly exists a
subsequence {hvk}~=i which converges to some h'Q of H. But then {pVt}T-i
also converges to pQ=Xo—ih'Q^U(iS'). However p'Q^dS' implies that

0=I(#i)=I(*o)-*I=I(A)+*o-AI, from which l(p^=h!*-h^K^H
= (0), that is, pQ=p'Qe:dS', contradicting p0<= C7(50. (Recall S'= £7(S')

Thus ^ie C7(SO \8S, which, according to Lemma 2.2.10, implies
Since ^ is continuous in C/i(S) it follows

when j/-»oo. The required statement is thus proved, hence v is conti-
nuous. Recall now that u, hence also v are invariant by r* (h^.Hc}.

Thus there exists a continuous function w on £4(5) =£(£7(5')) such
that «0 (£(£))=»(£) ^e£7(SO. The function M; is certainly holomor-

phic in Kr(S)n0GO, for C7w(S)n/5W=7r(?/(S/)n^) by Lemma
5. 1. 1 and z; is holomorphic in C7(50 fl A Thus /=w|se fT(J7w(S)) |s-
And thus we have proved

(1)

Now let ro be a positive definite form in ^(F) and 5X a relatively
compact subset of S. Then there exists a relatively compact subset
S" of r'CS) such that «(S/0=S/. Since ET^CS)) is open in A
S"-f#ro is contained in U(n'\S^nD for sufficiently small
Thus, for a sufficiently small £>0,

Therefore, arguing as in the proof of Lemma 2. 2. 9, we obtain
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(2)

In view of obvious inclusions #(S)eFs(c^)er(c^), (1) and (2)
<—

imply

Q.E.D.

Here it should be remarked that n(D)=D(n) when M(n) is dually
V-indefinite. This follows from

000 = {*(*,«); *(!(*,«

The last relation is an immediate consequence of Lemma 5. 3.1.

Note that £/*•(£) never swells up to Z?00 even if S=M(n). How-
ever we can prove the result parallel to Corollary 5. 2. 2 also in the
present case.

Theorem 5. 2. 2. // MOO is dually V-indefinite, then the restric-
tion map H(P(n)}-*r(Jls) is a topological isomorphism.

For the proof, first note that Z/i(A)=A next use the relation
instead of U(S}\dS ciUi(S'). Then the proof of

Theorem 5. 3. 1 can be applied without further change.

Now we shall show that the maximal open subset of D(n) contained
in J7W(S) always contains S if M(n) is dually V-indefinite. The proof
of this wilt require some preparations. Let H be a subspace such that

dffn^o=(0). For p<=D+iH we set

d*(/0=sup{||&||; K/0+te*> (or p+ih<=DJ}.

Then certainly 0<rfff(^)< + oo according to Lemma 5. 3, 1, and further
=Q if

Lemma 5. 3. 2. The function ds is continuous at each point of

A.

Proof. Suppose that dH is not continuous at p0^D0, that is, there
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exists £>0 and a sequence {pv}^dD+iH converging to pQ such that

<k(AO^& For *> = !, 2, ••• choose &ve./y such that l(pv^)+hv^K09

\\hv\\>d/2. Then according to Lemma 5. 3. 1 {/Ur=i *s bounded. Hence
we may assume that hv converges to some h^H. The closedness of

K0 implies that l(pQ)+h0<=K0, from which it follows h0=0. But this
contradicts ||/y^/2>0. Q.E.D.

Lemma 5. 3. 3. Suppose that M(n) is dually ^-indefinite. If U

is an open subset of D, then the maximal open subset of D(n) con-

tained in n(lT) always contains ^(

Proof. Instead of proving the conclusion we shall prove the

following equivalent statement: // p^D^U, then p lies in some

open subset of D+HC contained in U+HC.

Suppose p<=D0nU. Set H=Kem. For qs=~D+iH the set

certainly intersects D by the definition of dH . Now choose an open subset

U of N° such that U=DHU. Since p^D0, S(^) = {^}cC7. There-
fore, according to the continuity of ds at p, there exists a neighbourhood
VE)p in N° such that S(#)c*7 when q^(D+iH^r\V. But then

s(^)nc/n5=s(^)n5^0. Thus un(q+nr)*+, that is,
Thus Vr\(D+iH)cU+iH and this implies the required

statement.

In view of this lemma S lies in the maximal open subset of D(n)
contained in £7^(5), which we shall denote by Kr(S). Then it follows
from Theorem 5. 3. 1 that the restriction map

is a topological linear isomorphism. This and Theorem 5. 2. 1 imply
the following stronger form of the solution of Problem H mentioned in

the introduction for stable standard real submanifolds.

Theorem A. // M(n) is a stable standard real submanifold,

then, for any open subset S of M(n), there exists an open subset U
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of the closure of the domain D(n) such that Set/, and the restric-
tion map

15 a topological linear isomorphism (onto

Now we shall devote tLe rest for the study of nondegenerate Siegel

domains of the second kind. Each of them is D(n) for some map

n : H(V)-*W, taking suitable V and W. M(n) is the Silov boundary
of D(n) then. First of all we begin with the definition. Let W be a

real vector space and K an open convex cone in W which does not

contain any line. Further let V be a complex vector space. A Wc-

valued sesqui-linear fcrm F(x,y^) (#, jye F) is called ./f-hermitian form

on Fif

(1)

(2)

(3)

where the map cxr+a* is the conjugation of Wc fixing W. Denote by

D(F, K) the domain in Fx Wc

, - -

If Z)(F, jfiT) is affine homogeneous, that is, the group of affine trans-

formation leaving D(F, jRT) invariant operates transitively onZ)(F, jK"),

D(F, K} is called a Siegel domain of second kind. If moreover the

set |4-(F(#,;y)-F(;y,#))j generates W, we call D(F,K) non-de-

generate. For a non-degenerate Siegel domain we shall assign a funda-

mental Lie algebra m(F) setting

Then as proved in §1 we obtain a (unique) linear mapping n of H( F)

onto PFsuch that tn(w) =tn(F). Af(w) is then the Silov boundary of
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D(F,K). (See [7].)

Lemma 2. The map n being as above, D(n)=

Proof. Let jP0 denote the JTo-hermitian form on V given by

where [ , ] denotes the bracket operation of m°= V+H(V). Then

and D is certainly non-degenerate. Since K0 is the convex closures of
the set of positive semi-definite hermitian forms of rank 1, condition (2)
implies that w(JTD) cjr. Hence wCR) ̂ K. Thus Z>00 ^D(F, #).

In order to prove D(n)^.D(F,K} we need the following theorem
of Piatetski-Sapiro [8].

Theorem P. Every affine transformation of D(F, K} is of the
following form

where As=End(W) BeEndc(F) and AF(x, y}=F(Bx, By) (x,y
eT).

Suppose that g is the affice automorphism of D(F, K) indicated
in the above theorem. If we denote by S2(5) the restriction to
of B®B, then the map g0 of N*= F©jy(F)c given by

is an affine automorphism of D=D(FQjKo). Thus we obtain a group-
isomorphism g-*gQ of the affine automorphism group of D(F, K ) into
that of D such that n°g0=g°n. Therefore any orbit of the affine auto-
morphism group of Z)(jP, K} is contained in the image by n of an
orbit of the affine automorphism group of D. In particular D(n)

). Q.E.D.

Now we shall prove that the Silov boundary of a non- generate
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Siegel domain J9(F, K^) is dually totally indefinite. Since K does not
contain any line, there exists a hyperplane P of W such that Pf}K
= (0). Suppose that P is given by P= {<*e W: l(*) =0} where le Tf *.
Without loss of generality we may assume that z^K^l(xj>§. Then
the hermitian form

ItfX*, JO) x,y^V

is certainly positive definite. In fact if

ICF(*,*))=0,

then F(#,#)€EPnjS>(0), i.e., F(#,#)=0 and by condition (3) we
obtain x=Q. Thus we conclude that the Silov boundary of D(F,K^)
is dually totally indefinite.
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