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Finiteness of the Number of Discrete
Eigenvalues of the Schrodinger Operator
for a Three Particle System II*

By

Jun Uchivama™*

§4. Introduction

The presert parper is the co-tinuation of [2] with the same title.
In the previous parers [1| [2], we have studied the Schrédinger

operator of the form
4.1) }I:—Al—&#éﬁé&_;__ Zs

¥i 7y |ri—r|’

where Z,>Z, and Z,; are positive constants. There we have shown the
results:

i) I Z,>Z;, H has an infinite number of discrete eigenvalues
in (—oo, —Z3i/4).

i) If Z,, Z,<Z,, H has at most a finite number of discrete eigen-
values in (—oo, —Z1}/4).

In this article we shall study the case Z,>>Z,>Z7,. In this case,
the conditions in [1] or 2] are not satisfied, but we have the same
results as (ii) by modifying slightly the prcof of Theorem 1 in [2].

The theorsms proved in this pager assert that the number of

discrete eigenvaltes of the operator H of the form

4.2) H=—d,—4o+q:(r1) +q:(r2) + P(ry, 12)
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depends essentially on the behavior of ¢.(r.) in the region 7,>R, and
P(ry,r.) in |r—r.| >R, if

(4.3) s,

where

@O e 6L
H=—4+qG) (=1, 2).

On the other hand the condition (4.3) depends on the behavior of
q:(r.) and ¢.(r.) not only at infinity, but also in the whole space R°
Then the structure of the spectrum of the operator of the form (4. 2)
is complicated.

Since the proofs of the theorems are essentially the same as the
one applied in [1] and [2], we shall only sketch the cutline. For
the convenience, we shall use the same notation as the one introduced
in [2].

§5. Some Theorems and Proofs

Let H of the form (4.2) satisfy the conditions:

(5.1 g:(r)ELL(R) (i=1,2) and P(ri, r:) EQu(R’)
(for some «>>0) are real-valued functions,

(5.2) q:(r;) (i=1,2) converge uniformly to zero as #,—>co,
(5.3) P(ry, r.)>0 in R',

(5.4) P(yy, ) converges uniformly to zero as 7;—>oco

whenever r, is fixed, and as 7,—>cc whenever r; is fixed (see (2.2)—
(2.5) in [2]). Then it is known that
i) if the domain D(H) of H is 9;.(R%), H is a lower semi-bounded
selfadjoint operator in L2(R®),
i) i m<<p,, where 2 (¢=1,2) are defined by (4.3) and (4.4),
6.(H)=1{m, o) (see Theorem 1 in [2]).

Moreover we remark the fact that if we assume conditions (5.1)
and (5.2), and if D(H,) =9:.(R*), then H;(?=1,2) are a lower semi-
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bounded selfadjoint operator in L*(R?), ¢.(H;) =10, =) and 2, <<0. Now

we have

Theorem 3. If we assume for ithe operator H of the form
(4.2) the conditions (4.3), (5.1)-(5.4) and

> C  tor k=" <F and r>R
7%13—8 7y T

(5.5)  P(ri, 1) +q:(rs)

B8
>0 for k’<LZ and 7,>R
71

for some constants k, K (1<<k<<k/'<<+ o), p(0<<p<1), >0, R>0 and
C>0, then H has at most a finite number of discreie eigenvalues in
(— oo, ﬂl)-

Proof. Let g(¢) be a [unction having the following properties:
g(HeC=(0, =), g(t)=1 for i>F, g(i)=0 for 0<<t<<k and 0<<g(®)
<1 for 0<<f<<+oo. By the conditions (4.3) and (5.2), we can
choose R>1 large enough to satisfy the following inequalities:

(5.6) B> for n>%
@ (r) > for 7f2>£f—,
3 A
(5.7 Hg(Dg" (D) +CRE>0 for k<t<Fk,
(5.8) =t L e hg"(D# >0 for k<i<FK.

3 K

Then we define domains {@};.1,.... in the same way as in [2], namely

B
@ — (<R and r,<R}, 9,— {an and 7,< "} }

8
2s= {1’221'3 and 7,<< 7:,:

} and [24:]\’6—@52,-,
and for = D(H) =D3%(R")
(5.9 Lol = (B, 4)ae= 35 7o 2. Pl 12,

(@b, Vo (@b ), (0 90} =1L ).
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Then we have in the same way as in [2] (see Lemma 1, Lemma 3

and Lemma 4 in [2])

Lemma 7.
(1) For any = D(H), L[] >3,

(ii) For any e D(H), L[] =>m|lpll5.

(iii) There exists some finile dimensional subspace M in L*(R®)
such that for any & D(H) NI, Li[v] >z, .

In fact we have orly to take irto account for (i) that we have

for any o€ DL(RY) (Hip, ¢)w>mlolks, and for (i) i‘g"—”&> ‘;

because of #,<<u,<<0.

Now we shall show by modifying the prcof of Lemma 1 in [2].
Lemma 8. For any v=D(H), L[y ]=mlly|?,.

Proof. Makirg use of the relation (Hap, ¢)r>t|lp|ks for any
v D3 (R?), we have in the same way as the nrcof of Lemma 1 in [2].

(5.10) Lyl = {uzg< Y g () g (1) 22

2 Vo 7o ¥ 75

+q2(r2)(1~g< :B >2>+P+q1} e |2dx

B

for any v=D(H). Let :1 =¢, and we have by (5.6)—(5.8)
2

I

-
738

gg" (D

<5' 11> O— _g(i>2)(*/""2+qz(?‘z))+(ﬂz‘”ﬂ1>+
+ G+ (FI) + P(F'l , Tz)_>_0

frr >k and v,.>R. In fact g(¢)=1aad g”"(#)=0 for {>Fk/, and (1—

_ B B
2D (—t+q(ra)) >4 3’"& for k<<i<<F i.e. 1’2>—21,—>%, P(r,,
My T

— 3
r.) >0, and ql(rl)}_—’u‘—g 2 for 7/1>R>—};, . Therefore for any +&

D(H), we have L, > |+]7, by (5.10) and {5.11).

Making use of Lemma 7 and Lemma 3 in the same way as ap-

plied in the proof of Theorem 1 in [2], we have the assertion of

Theorem 3.
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Remark 6. The operator of the form (4.1) has at most a finite

number of discrete eigenvalues in (—oo, ), if Z\>Z,>Z,. In fact
_ if <y — Zz
Remark 1 in [2]).

If ¢,(r.) tends to zero more rapidly than the conditions given in
Remark 1 in [2] which satisfies (5.5), we have only to assume (5.3)
in place of (5.3) and (5.5) as for P(r,r,). Namely we have

M=

and the condition (5.5) is satisfied (see,

Theorem 4. If we assume (4.3), (5.1)-(5.4) and the condition

(5-12) Gr)=— S for =R,
the Schridinger operator H of the form (4.2) has at most a finite
number of discrete eigenvalues in (—oo, ).

Proof. Let
(5.13) T=—4i—4o+q:(r) +q:(r2).

If D(T)=D(H)=9%(R%, T is a selfadjoint operator in L*(R®)
and ¢.(T) =0¢.(H) = [#, o). By (5.12) H, has at most a finite number
of discrete eigenvalues in (—oo,0). Let the discrete eigenvalues of
H, be 32 =p,<JP<---<aP<<0 (m is finite), if they exist, and let
those of H, be A" =p,<AP<---<AP<<0 (% may be infinite). Then by
the method of the separation of variables, we have, by the method
applied to the proof of Lemma 6 in [2],

Lemma 9. If 1 is an eigenvalue of T smaller than u,, then
2€ AP+ 2P} et mimt, e

Taking into consideration that {A®+A},_1 . /-1,... concentrates
at most {A®},_1,...., T has at most a finite number of discrete eigen-
values in (—oo, #;) by Lemma 9 and the condition (4.3). Let N be
the finite dimensional subspace in L*(R®) spanned by the eigenfunc-
tions belonging to the eigenvalues of T in (—oo, ). Then by (5.3)
and ¢,(T) = [#, o) we have for any & D(H) NI,

(5.14) (Hyry ) o= (T, ) o=t
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which asserts that Theorem 2 holds.

In case #,<<#,, in order to obtain the result that H has at most
a finite number of discrete eigenvalues in (—oo, #), we must impose
some conditions on the behavior of ¢:(r;) for ,>R, and P(r,,r,) for
|ri—7r:{>>R in addition to (5.5) or (5.12) (see, for example, Theorem
1 or Theorem 2 in [2]). Otherwise there exists the case that H has
an infinite number of discrete eigenvalues in (—oo,#,). Namely we
have

Theorem 5. If we assume (5.1)-(5.4) and
(5.15) sy ="ty

(5.16) G(r)<——5 for 7.=R,
2

< ARTRYE | <R,

T Y
dRE*
(5. 17) OSP(71, 7’2) é IT - IBI for R2£!r1——r2[£]€1)
1 2
d
<—F—— for Ri<|ri—r:|,
\ lrl_r2|8

for some constants B(0<<p<2), y(0<<y<<3/2), B (max(B,r)<<p'<<3),
>0, d>0, R,(0<<R,<<1) and sufficiently large R,>0, R, >0, and

f>0 for 0<<p<<2,

(5.18) c—d

1>% for p=2,

then there exist an infinite number of discvete eigenvalues in (—oo,
29).

Proof. We can prove the above theorem in a manner similar to
[1].

By (5.16) and (5.18) ((5.18) is necessary for f=2), H, has an
infinite number of discrete eigenvalues in (—oo,0). Then taking account
of (5.15) and ¢.(H,) =¢.(H,) =10, o), 2, is a discrete eigenvalue of
H,. Let a nermalized eigenfunction belonging to # be ¢y(r) € D(H;) =
9D#.(R®). Moreover we can choose the function having the following
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property (see Lemma 5 in [1]); for ¢>0 satisfying the relation ¢—

d— 1 >0 in case c—d>‘1~,
4—¢ 4

| &) ECTRY), llgille=1, g1(r)=0 for 7r,<R,
Lg l 1(1’2)1 dr22/\4_e)g l71g1[2di'z-
R3 7’ R3
Let ga(r) =a’?gi(ar:) and +ra(x) =¢y(r:)g«(r:), where « is a

positive parameter, we have |[Jrlz=1 and Yu(x)cD(H)=D-(R°).
Then taking account of the relation

(5. 20) }img loo(rogilr) |* gy g 180" g, for any  8(0<c8<3),
RS R3

a->0 16!1’1—1'2' )

(see Lemma 4 in [1]), there exists some constant ay(0<<ap<<C1) such

that for any a(0<Za<<ay) we have

(B, )+ M [ (o= dyel| 180 e, s e

% e
l (for 0<<p<<2)
,

1 g1 2 |g:]°

4 (C d 4—¢ )ac SR3 7 dr.

(for g=2),

(5.21)

where M and M’ are constants independent of a (see (4.9) or (4.9)
in [1]). Then by (5.18) and (5.21) there exists some constant
o (0<<ay<<ay) such that for any a(0<<a<mp,) we have

(5.22) (Hra, Yra) geltts.

Now we assume that H has at most a finite number of discrete
eigenvalues in (—oo, /). Let their number be p, and the subspace
in L*(R") spanned by their eigenfunctions be M. Then we can choose
{a}i 1. i1 such that 0<<ey.:<Zlap<<l--<<lay<<ay, and the support of
g.,(r.) and that of gu,(r.) aie disjoint in R® for i#j. Since the di-
meusion of the subspace spauned by {po(r1)ga,(72)} o1, 51 18 P+ 1, we
can choose constants {¢,};.1...,.1 such that gc,mlra,(x)EWELﬂD(H) and

pr+1
Sel*=1. Let f(x)zzlc,wa,(x). Then by (5.22) and the condition
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that the supports of g., and g., are disjoint for each i#j, we have
Ifllze=1 and

(5.23)  (HS, o= 31| (B, e o 33 1= 1.

On the other hand by feWYND(H) and || flle=1, we have (HY,
f)re=>tt,, which contradicts (5.23). Thus the assertion of Theorem 5
is proved.
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