Finiteness of the Number of Discrete Eigenvalues of the Schrödinger Operator for a Three Particle System II*

By

Jun Uchiyama**

§4. Introduction

The present paper is the continuation of [2] with the same title. In the previous papers [1| [2], we have studied the Schrödinger operator of the form

(4.1)
$$H = -\varDelta_1 - \varDelta_2 - \frac{Z_1}{r_1} - \frac{Z_2}{r_2} + \frac{Z_3}{|r_1 - r_2|},$$

where $Z_1 \ge Z_2$ and Z_3 are positive constants. There we have shown the results:

i) If $Z_2 > Z_3$, *H* has an infinite number of discrete eigenvalues in $(-\infty, -Z_1^{\circ}/4)$.

ii) If Z_1 , $Z_2 < Z_3$, H has at most a finite number of discrete eigenvalues in $(-\infty, -Z_1^2/4)$.

In this article we shall study the case $Z_1 \ge Z_3 > Z_2$. In this case, the conditions in [1] or [2] are not satisfied, but we have the same results as (ii) by modifying slightly the proof of Theorem 1 in [2].

The theorems proved in this paper assert that the number of discrete eigenvalues of the operator H of the form

(4.2)
$$H = -\varDelta_1 - \varDelta_2 + q_1(r_1) + q_2(r_2) + P(r_1, r_2)$$

Received January 27. 1970.

Communicated by S. Matsuura.

^{*} This research was partly supported by the Sakkokai Foundation.

^{**} Mathematical Institute, Kyoto University of Industrial Arts and Textile Fibres.

depends essentially on the behavior of $q_2(\mathbf{r}_2)$ in the region $r_2 \ge R$, and $P(\mathbf{r}_1, \mathbf{r}_2)$ in $|\mathbf{r}_1 - \mathbf{r}_2| > R$, if

(4.3)
$$\mu_1 < \mu_2$$

where

(4.4)
$$\mu_{i} = \inf_{\varphi \in \mathcal{D}_{L^{2}}^{2}(R^{3})} \frac{(H_{i}\varphi, \varphi)_{R^{3}}}{\|\varphi\|^{2}} \quad (i=1,2),$$
$$H_{i} = -\Delta_{i} + q_{i}(r_{i}) \qquad (i=1,2).$$

On the other hand the condition (4.3) depends on the behavior of $q_1(r_1)$ and $q_2(r_2)$ not only at infinity, but also in the whole space \mathbb{R}^3 . Then the structure of the spectrum of the operator of the form (4.2) is complicated.

Since the proofs of the theorems are essentially the same as the one applied in [1] and [2], we shall only sketch the outline. For the convenience, we shall use the same notation as the one introduced in [2].

§5. Some Theorems and Proofs

Let H of the form (4.2) satisfy the conditions:

(5.1)
$$q_i(r_i) \in L^2_{loc}(R^3)$$
 $(i=1,2)$ and $P(r_1,r_2) \in Q_\alpha(R^6)$

(for some $\alpha > 0$) are real-valued functions,

(5.2)
$$q_i(\mathbf{r}_i)$$
 $(i=1,2)$ converge uniformly to zero as $r_i \rightarrow \infty$,

(5.3)
$$P(r_1, r_2) \ge 0 \text{ in } R^6$$
,

(5.4) $P(r_1, r_2)$ converges uniformly to zero as $r_1 \rightarrow \infty$

whenever r_2 is fixed, and as $r_2 \rightarrow \infty$ whenever r_1 is fixed (see (2.2)—(2.5) in [2]). Then it is known that

i) if the domain D(H) of H is $\mathcal{D}_{L^2}^{\mathbb{L}}(\mathbb{R}^6)$, H is a lower semi-bounded selfadjoint operator in $L^2(\mathbb{R}^6)$,

ii) if $\mu_1 \leq \mu_2$, where $\mu_i(i=1,2)$ are defined by (4.3) and (4.4), $\sigma_e(H) = [\mu_1, \infty)$ (see Theorem 1 in [2]).

Moreover we remark the fact that if we assume conditions (5.1) and (5.2), and if $D(H_i) = \mathcal{D}_{L^2}^1(\mathbb{R}^3)$, then $H_i(i=1,2)$ are a lower semi-

bounded selfadjoint operator in $L^2(\mathbb{R}^3)$, $\sigma_{\epsilon}(H_i) = [0, \infty)$ and $\mu_i \leq 0$. Now we have

Theorem 3. If we assume for the operator H of the form (4.2) the conditions (4.3), (5.1)–(5.4) and

(5.5)
$$P(\mathbf{r}_1, \mathbf{r}_2) + q_2(\mathbf{r}_2) \begin{cases} \geq \frac{C}{r_2^{2\beta-\varepsilon}} & \text{for } k \leq \frac{r_2^{\beta}}{r_1} \leq k' \text{ and } r_2 \geq R \\ \geq 0 & \text{for } k' < \frac{r_2^{\beta}}{r_1} & \text{and } r_2 \geq R \end{cases}$$

for some constants k, $k'(1 < k < k' < +\infty)$, $\beta(0 < \beta \le 1)$, $\varepsilon > 0$, R > 0 and C > 0, then H has at most a finite number of discrete eigenvalues in $(-\infty, \mu_1)$.

Proof. Let g(t) be a function having the following properties: $g(t) \in C^{\infty}(0, \infty), g(t) \equiv 1$ for $t \geq k', g(t) \equiv 0$ for 0 < t < k and $0 \leq g(t) \leq 1$ for $0 < t < +\infty$. By the conditions (4.3) and (5.2), we can choose R > 1 large enough to satisfy the following inequalities:

(5.6)
$$q_1(r_1) > \frac{\mu_1 - \mu_2}{3} \text{ for } r_1 > \frac{R^{\beta}}{k'}$$

$$q_2(r_2) > \frac{\mu_1 - \mu_2}{3}$$
 for $r_2 > \frac{R^{\beta}}{k'}$,

(5.7)
$$t^{4}g(t)g''(t) + CR^{\varepsilon} \ge 0 \quad \text{for} \quad k \le t \le k',$$

(5.8)
$$\frac{\mu_2 - \mu_1}{3} - \frac{1}{R^{2\beta}} |g(t)g''(t)t^4| \ge 0 \text{ for } k \le t \le k'.$$

Then we define domains $\{\mathcal{Q}_i\}_{i=1,\dots,4}$ in the same way as in [2], namely

$$\mathcal{Q}_{1} = \{r_{1} < R \text{ and } r_{2} < R\}, \quad \mathcal{Q}_{2} = \left\{r_{1} \ge R \text{ and } r_{2} \le \frac{r_{1}^{\beta}}{k}\right\},$$
$$\mathcal{Q}_{3} = \left\{r_{2} \ge R \text{ and } r_{1} \le \frac{r_{2}^{\beta}}{k}\right\} \quad \text{and} \quad \mathcal{Q}_{4} = R^{6} - \bigcup_{i=1}^{3} \mathcal{Q}_{i},$$

and for $\psi \in D(H) = D_{L^2}^2(R^6)$

(5.9)
$$L[\psi] = (H\psi, \psi)_{R^6} = \sum_{i=1}^{4} \{ \| |\mathcal{V}_1\psi| \|_{L_i}^2 + \| |\mathcal{V}_2\psi| \|_{L_i}^2 + (q_1\psi, \psi)_{g_1} + (q_2\psi, \psi)_{g_1} + (p\psi, \psi)_{g_1} \} \equiv \sum_{i=1}^{4} L_i[\psi]$$

Then we have in the same way as in [2] (see Lemma 1, Lemma 3 and Lemma 4 in [2])

Lemma 7.

- (i) For any $\psi \in D(H)$, $L_3[\psi] \ge \mu_1 \|\psi\|_{\mathcal{U}_3}^2$.
- (ii) For any $\psi \in D(H)$, $L_4[\psi] \ge \mu_1 \|\psi\|_{\mathcal{Q}_4}^2$.

(iii) There exists some finite dimensional subspace \mathfrak{M} in $L^2(\mathbb{R}^6)$ such that for any $\psi \in D(H) \cap \mathfrak{M}^1$, $L_1[\psi] \ge \mu_1 \|\psi\|_{c_1}^2$.

In fact we have only to take into account for (i) that we have for any $\varphi \in \mathcal{D}_{L^2}^2(\mathbb{R}^3)$ $(H_1\varphi,\varphi)_{\mathbb{R}^3} \ge \mu_1 \|\varphi\|_{\mathbb{R}^3}^2$, and for (ii) $\frac{\mu_1 - \mu_2}{3} > \frac{\mu_1}{2}$ because of $\mu_1 < \mu_2 \le 0$.

Now we shall show by modifying the proof of Lemma 1 in [2].

Lemma 8. For any $\psi \in D(H)$, $L_2[\psi] \ge \mu_1 \|\psi\|_{-2}^2$.

Proof. Making use of the relation $(H_2\varphi, \varphi)_{R^3} \ge \mu_2 \|\varphi\|_{R^3}^2$ for any $\varphi \in \mathcal{D}_{L^2}^2(\mathbb{R}^3)$, we have in the same way as the proof of Lemma 1 in [2].

(5.10)
$$L_{2}[\psi] \ge \int_{\gamma_{2}} \left\{ \mu_{2}g\left(\frac{r_{1}^{\beta}}{r_{2}}\right)^{2} + g\left(\frac{r_{1}^{\beta}}{r_{2}}\right)g''\left(\frac{r_{1}^{\beta}}{r_{2}}\right) \cdot \frac{r_{1}^{2\beta}}{r_{2}^{4}} + q_{2}(r_{2})\left(1 - g\left(\frac{r_{1}^{\beta}}{r_{2}}\right)^{2}\right) + P + q_{1}\right\} |\psi|^{2} dx$$

for any $\psi \in D(H)$. Let $\frac{r_1^{\beta}}{r_2} = t$, and we have by (5.6)-(5.8)

(5.11)
$$(1-g(i)^2)(-\mu_2+q_2(r_2))+(\mu_2-\mu_1)+\frac{1}{r_1^{2\beta}}g(t)g''(t)t^4 +q_1(r_1)+P(r_1,r_2)\geq 0$$

for $t \ge k$ and $r_1 \ge R$. In fact $g(t) \equiv 1$ and $g''(t) \equiv 0$ for $t \ge k'$, and $(1 - g(t)^2)(-\mu_2 + q_2(r_2)) \ge \frac{\mu_1 - \mu_2}{3}$ for $k \le t < k'$ i.e. $r_2 \ge \frac{r_1^{\beta}}{k'} \ge \frac{R^{\beta}}{k'}$, $P(r_1, r_2) \ge 0$, and $q_1(r_1) \ge \frac{\mu_1 - \mu_2}{3}$ for $r_1 \ge R \ge \frac{R^3}{k'}$. Therefore for any $\psi \in D(H)$, we have $L_2[\psi] \ge \mu_1 \|\psi\|_{L_2}^2$ by (5.10) and (5.11).

Making use of Lemma 7 and Lemma 8 in the same way as applied in the proof of Theorem 1 in [2], we have the assertion of Theorem 3.

196

Remark 6. The operator of the form (4.1) has at most a finite number of discrete eigenvalues in $(-\infty, \mu_1)$, if $Z_1 \ge Z_2 > Z_2$. In fact $\mu_1 = -\frac{Z_1^2}{4} < \mu_2 = -\frac{Z_2^2}{4}$ and the condition (5.5) is satisfied (see, Remark 1 in [2]).

If $q_2(\mathbf{r}_2)$ tends to zero more rapidly than the conditions given in Remark 1 in [2] which satisfies (5.5), we have only to assume (5.3) in place of (5.3) and (5.5) as for $P(\mathbf{r}_1, \mathbf{r}_2)$. Namely we have

Theorem 4. If we assume (4, 3), (5, 1)-(5, 4) and the condition

(5.12)
$$q_2(r_2) \ge -\frac{1}{4} \frac{1}{r_2^2}$$
 for $r_2 \ge R$,

the Schrödinger operator H of the form (4.2) has at most a finite number of discrete eigenvalues in $(-\infty, \mu_1)$.

Proof. Let

(5.13)
$$T = -\Delta_1 - \Delta_2 + q_1(r_1) + q_2(r_2).$$

If $D(T) = D(H) = \mathcal{D}_{L^2}^2(R^6)$, T is a selfadjoint operator in $L^2(R^6)$ and $\sigma_e(T) = \sigma_e(H) = [\mu_1, \infty)$. By (5.12) H_2 has at most a finite number of discrete eigenvalues in $(-\infty, 0)$. Let the discrete eigenvalues of H_2 be $\lambda_1^{(2)} = \mu_2 \leq \lambda_2^{(2)} \leq \cdots \leq \lambda_m^{(3)} < 0$ (m is finite), if they exist, and let those of H_1 be $\lambda_1^{(1)} = \mu_1 \leq \lambda_2^{(1)} \leq \cdots \leq \lambda_n^{(1)} < 0$ (n may be infinite). Then by the method of the separation of variables, we have, by the method applied to the proof of Lemma 6 in [2],

Lemma 9. If λ is an eigenvalue of T smaller than μ_1 , then $\lambda \in \{\lambda_k^{(1)} + \lambda_l^{(2)}\}_{k=1,\dots,n,l=1,\dots,m}$.

Taking into consideration that $\{\lambda_k^{(1)} + \lambda_l^{(2)}\}_{k=1,\dots,n,l=1,\dots,m}$ concentrates at most $\{\lambda_l^{(2)}\}_{l=1,\dots,m}$, T has at most a finite number of discrete eigenvalues in $(-\infty, \mu_1)$ by Lemma 9 and the condition (4.3). Let \mathfrak{N} be the finite dimensional subspace in $L^2(\mathbb{R}^6)$ spanned by the eigenfunctions belonging to the eigenvalues of T in $(-\infty, \mu_1)$. Then by (5.3) and $\sigma_e(T) = [\mu_1, \infty)$ we have for any $\psi \in D(H) \cap \mathfrak{R}^1$,

(5.14)
$$(H\psi,\psi)_{R^6} \ge (T\psi,\psi)_{R^6} \ge \mu_1 \|\psi\|_{R^6}^2,$$

which asserts that Theorem 2 holds.

In case $\mu_1 \leq \mu_2$, in order to obtain the result that H has at most a finite number of discrete eigenvalues in $(-\infty, \mu_1)$, we must impose some conditions on the behavior of $q_1(r_1)$ for $r_1 \geq R$, and $P(r_1, r_2)$ for $|r_1 - r_2| \geq R$ in addition to (5.5) or (5.12) (see, for example, Theorem 1 or Theorem 2 in [2]). Otherwise there exists the case that H has an infinite number of discrete eigenvalues in $(-\infty, \mu_1)$. Namely we have

Theorem 5. If we assume (5.1)-(5.4) and

$$(5.15)$$
 $\mu_1 \leq \mu_2,$

(5.16) $q_2(\mathbf{r}_2) \leq -\frac{c}{r_2^{\beta}} \quad \text{for} \quad r_2 \geq R_0,$

(5.17)
$$0 \le P(r_1, r_2) \begin{cases} \le \frac{dR_1^{\beta'-\beta}R_2^{\gamma-\beta}}{|r_1-r_2|^{\gamma}} & \text{for } |r_1-r_2| \le R_2, \\ \le \frac{dR_1^{\beta'-\beta}}{|r_1-r_2|^{\beta'}} & \text{for } R_2 \le |r_1-r_2| \le R_1, \\ \le \frac{d}{|r_1-r_2|^{\beta}} & \text{for } R_1 \le |r_1-r_2|, \end{cases}$$

for some constants $\beta(0 < \beta \leq 2)$, $\gamma(0 < \gamma < 3/2)$, $\beta'(\max(\beta, \gamma) < \beta' < 3)$, c > 0, d > 0, $R_2(0 < R_2 < 1)$ and sufficiently large $R_0 > 0$, $R_1 > 0$, and

(5.18)
$$c-d \begin{pmatrix} >0 & \text{for } 0 < \beta < 2, \\ >\frac{1}{4} & \text{for } \beta = 2, \end{pmatrix}$$

then there exist an infinite number of discrete eigenvalues in $(-\infty, \mu_1)$.

Proof. We can prove the above theorem in a manner similar to [1].

By (5.16) and (5.18) ((5.18) is necessary for $\beta = 2$), H_2 has an infinite number of discrete eigenvalues in $(-\infty, 0)$. Then taking account of (5.15) and $\sigma_e(H_1) = \sigma_e(H_2) = [0, \infty)$, μ_1 is a discrete eigenvalue of H_1 . Let a normalized eigenfunction belonging to μ_1 be $\varphi_0(\mathbf{r}_1) \in D(H_1) = \mathcal{D}_{L^2}^2(\mathbb{R}^3)$. Moreover we can choose the function having the following

198

property (see Lemma 5 in [1]); for $\varepsilon > 0$ satisfying the relation $c - d - \frac{1}{4 - \varepsilon} > 0$ in case $c - d > \frac{1}{4}$, (5.19) $\begin{cases} g_1(r_2) \in C_0^{\infty}(R^3), & \|g_1\|_{R^3} = 1, g_1(r_2) \equiv 0 \quad \text{for} \quad r_2 \leq R_0 \\ \int_{R^3} \frac{|g_1(r_2)|^2}{r_2^2} dr_2 \geq (4 - \varepsilon) \int_{R^3} |\mathcal{V}_1 g_1|^2 dr_2. \end{cases}$

Let $g_{\alpha}(\mathbf{r}_2) = \alpha^{3/2} g_1(\alpha \mathbf{r}_2)$ and $\psi_{\alpha}(\mathbf{x}) = \varphi_0(\mathbf{r}_1) g_{\alpha}(\mathbf{r}_2)$, where α is a positive parameter, we have $\|\psi_{\alpha}\|_{R^6} = 1$ and $\psi_{\alpha}(\mathbf{x}) \in D(H) = \mathcal{D}_{L^2}^2(R^6)$. Then taking account of the relation

(5.20)
$$\lim_{\alpha \to 0} \int_{\mathbb{R}^6} \frac{|\varphi_0(\mathbf{r}_1) g_1(\mathbf{r}_2)|^2}{|\alpha \mathbf{r}_1 - \mathbf{r}_2|^{\delta}} d\mathbf{x} = \int_{\mathbb{R}^3} \frac{|g_1|^2}{\mathbf{r}_2^{\delta}} d\mathbf{r}_2 \text{ for any } \delta(0 < \delta < 3),$$

(see Lemma 4 in [1]), there exists some constant $\alpha'_0(0 < \alpha'_0 < 1)$ such that for any $\alpha(0 < \alpha < \alpha'_0)$ we have

(5.21)
$$(H\psi_{\alpha},\psi_{\alpha})_{R^{6}} \leq \mu_{1} + M\alpha^{\beta'} - \begin{pmatrix} \frac{1}{2}(c-d)\alpha^{\beta} \int_{R^{3}} \frac{|g_{1}|}{2\gamma_{2}^{\beta}} dr_{2} + M'\alpha^{2} \\ (for \ 0 < \beta < 2) \\ \frac{1}{4} \left(c-d - \frac{1}{4-\varepsilon}\right) \alpha^{2} \int_{R^{3}} \frac{|g_{1}|^{2}}{r_{2}^{2}} dr_{2} \\ (for \ \beta = 2), \end{cases}$$

where M and M' are constants independent of α (see (4.9) or (4.9') in [1]). Then by (5.18) and (5.21) there exists some constant $\alpha_0(0 < \alpha_0 < \alpha'_0)$ such that for any $\alpha(0 < \alpha < \alpha_0)$ we have

$$(5.22) \qquad (H\psi_{\alpha},\psi_{\alpha})_{R^6} < \mu_1$$

Now we assume that H has at most a finite number of discrete eigenvalues in $(-\infty, \mu_1)$. Let their number be p, and the subspace in $L^2(R^6)$ spanned by their eigenfunctions be \mathfrak{M} . Then we can choose $\{\alpha_i\}_{i=1,\dots,p+1}$ such that $0 < \alpha_{p+1} < \alpha_p < \dots < \alpha_1 < \alpha_0$ and the support of $g_{\alpha_i}(\mathbf{r}_2)$ and that of $g_{\alpha_j}(\mathbf{r}_2)$ are disjoint in R^3 for $i \neq j$. Since the dimension of the subspace spanned by $\{\varphi_0(\mathbf{r}_1)g_{\alpha_i}(\mathbf{r}_2)\}_{i=1,\dots,p+1}$ is p+1, we can choose constants $\{c_i\}_{i=1,\dots,p+1}$ such that $\sum_{i=1}^{p+1} c_i \psi_{\alpha_i}(x) \in \mathfrak{M}^1 \cap D(H)$ and $\sum_{i=1}^{p+1} |c_i|^2 = 1$. Let $f(x) = \sum_{i=1}^{p+1} c_i \psi_{\alpha_i}(x)$. Then by (5.22) and the condition

Jun Uchiyama

that the supports of g_{α_i} and g_{α_j} are disjoint for each $i \neq j$, we have $\|f\|_{R^6} = 1$ and

(5.23)
$$(Hf,f)_{R^6} = \sum_{i=1}^{p+1} |c_i|^2 (H\psi_{\alpha_i},\psi_{\alpha_i})_{R^6} < \mu_1 \sum_{i=1}^{p+1} |c_i|^2 = \mu_1.$$

On the other hand by $f \in \mathfrak{M}^{\perp} \cap D(H)$ and $||f||_{\mathbb{R}^6} = 1$, we have $(Hf, f)_{\mathbb{R}^6} \ge \mu_1$, which contradicts (5.23). Thus the assertion of Theorem 5 is proved.

References

- Uchiyama, J., On the discrete eigenvalues of the many-particle system, Publ. RIMS. Kyoto Univ Ser. A 2 (1966), 117-132.
- [2] , Finiteness of the number of discrete eigenvalues of the Schrödinger operator for a three particle system, Publ. RIMS, Kyoto Univ. 5 (1969), 51-63.