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On the Existence of the Discrete Eigenvalue
of the Schridinger Operator
for the Negative Hydrogen Ion*

By

Jun Ucnivama™*

In this note, we shall consider the Schridinger operator of the form
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— %3, DY, and Z,>7Z,>0, Z;>>0 are constants. Let C;7(R%) be the
space of all C= functions with compact support, and 9;:(R®) be the

completion of C;°(R®) with the norm HfH_CDP(RG):( > S lD"‘flzdx>1,2,
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where D* f R

2.(R%), H is a lower semi-bounded selfadjoint operator in L*(R®) and

lal =n JRE

f and |&| =ay+ - +as. If the domain of H is

the essential spectrum ¢.(H) of H consists of [ —Z3/4, =) (see Zislin
[4], or the introduction of the author [1]).

In case Z,=Z,, it is ioteresting whether H has a discrete eigen-
value in (—oo, —Z3/4) or not. In fact the Schridinger operator for
the negative hydrogen ion has the form (1) with Z,=Z,=27,. In other
cases, there are some results as for the existence of discrete eigenvalues
in (—oo, —Z%/4) (see the author |1], [2] and [3]). Especially if Z;
and Z, are smaller enough than Z;, H has no discrete eigenvalues in
(—oo, —Z%/4) (see the author [2]). Here we shall show that the
operator of the form (1) with Z; and Z., which are close to Z;, has
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at least one discrete eigenvalue in (—oo, —Z7/4). Namely we have

Theorem. There exists some constant 6>0 depending only on
Zy such that for any Z, and Z, satisfying Z;+o6>7Z.>>7Z,>>7Z;—3d, the
Schrodinger operator H of the form (1) has at least one discrete
eigenvalue in (—oo, —Z7/4).

Proof. Let for any e 9D(R%)
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ri>r,t and ={x<SR% r,>r,y. If and only if L[r; Zy, Z», Z5]<<0
for some € 91,(R%), the Schriodinger operator H of the form (1) has
at least one discrete eigenvalue in (—oo, —Z7/4) (see Theorem 1 in

where !V,-«]plzzi

v=0

Zislin [4]). Then we shall look for some suitable function to satisfy
(%) = (71, 7:) ED(R®) and Llyr; Zy, Zo, Z;]<<0. In case (x)=
(71, 7.) depends only on 7, and 7., we have
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and similarly
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Therefore by (3) and (4) we have for any (%) = (74, 72) € D} (R
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Moreover if (71, 7:) =r(7s,71), we have [ilr; Zs, Zs, Zs| =L, |r;
Zs, Z3, Zs,). Taking into consideration the fact that ¢ %™’ is an eigen-
function of the operator —4— (Z/7) in L*(R®) belonging to the least
eigenvalue — Z%/4, we put

g (EZaIDT1 g (Zal D2 for 7:>7,
(6) fx)= (e=0)

g FalDr: g (EZalDr2 for 7,>7..

Then we have f(x) =f(ry, 7)) =f (2, 71) € D.(R®) and
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Then if we choose & to satisly 1/5<<e<C1/2, we have L,[f; Zs, Zs, Z3]
:Lg [f; Zg, Za, Zs] <0, and then

) Lif: Zs, Zs, Z5) <Q.
Now fix ¢=>0 to satisfy 1/5<Ce<<1/2 and f defined by (6). By (8) and

) Lif; Zi, Z,, Z,) =L f; Zs, Zy, Zs] + (Zs— Z1) Sae—l{idx

+Z-2z)| A ars &
R6 Vo

there exists some 6>>0 such that for any Z; and Z, satisfying Z;+3
>7Z>Z,>7Z,—3 we have

(10) L [f, Zs, Zz, Zs] 0.

By (10) we have the assertion of the tlieorem.
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Note added in proof (July 1, 1970): After this work was

finished, we found the review article by A.G. Sigalov, “The mathema-
tical problem in the theory of atomic spectra’, Russian Math. Survey
22, No. 2 (1967), 1-18, in which he said that P. Gombéas [“Theorie
und Losungsmethoden des Mehrteichenproblems der Wellenmechanik”
Birkh&user, Basel, 1950, p. 170] had also given a trial function to

ensure the existence of a discrete eigenvalue in < — oo, —
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) for the

case Z,=-+=1.,



