On the Existence of the Discrete Eigenvalue of the Schrödinger Operator for the Negative Hydrogen Ion*

Bv

Jun Uchiyama**

In this note, we shall consider the Schrödinger operator of the form

(1)
$$H = -\Delta_1 - \Delta_2 - \frac{Z_1}{r_1} - \frac{Z_2}{r_2} + \frac{Z_3}{|r_1 - r_2|},$$

where $\Delta_i = \sum_{\nu=0}^2 \frac{\partial^2}{\partial x_{3i-\nu}^2}$, $r_i = |r_i| = (\sum_{\nu=0}^2 x_{3i-\nu}^2)^{1/2}$ (i=1,2), $|r_1-r_2| = (\sum_{\nu=1}^3 (x_{\nu} - x_{3i+\nu})^2)^{1/2}$, and $Z_1 \ge Z_2 > 0$, $Z_3 > 0$ are constants. Let $C_0^{\infty}(R^6)$ be the space of all C^{∞} functions with compact support, and $\mathcal{D}_{L^2}^{n}(R^6)$ be the completion of $C_0^{\infty}(R^6)$ with the norm $||f||_{\mathcal{D}_L^{n_2}(R^6)} = \left(\sum_{|\alpha| \le n} \int_{R^6} |D^{\alpha}f|^2 dx\right)^{1/2}$, where $D^{\alpha}f = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_6^{\alpha_6}} f$ and $|\alpha| = \alpha_1 + \cdots + \alpha_6$. If the domain of H is $\mathcal{D}_{L^2}^2(R^6)$, H is a lower semi-bounded selfadjoint operator in $L^2(R^6)$ and the essential spectrum $\sigma_e(H)$ of H consists of $[-Z_1^2/4, \infty)$ (see Žislin [4], or the introduction of the author [1]).

In case $Z_2=Z_3$, it is interesting whether H has a discrete eigenvalue in $(-\infty, -Z_1^2/4)$ or not. In fact the Schrödinger operator for the negative hydrogen ion has the form (1) with $Z_1=Z_2=Z_3$. In other cases, there are some results as for the existence of discrete eigenvalues in $(-\infty, -Z_1^2/4)$ (see the author [1], [2] and [3]). Especially if Z_1 and Z_2 are smaller enough than Z_3 , H has no discrete eigenvalues in $(-\infty, -Z_1^2/4)$ (see the author [2]). Here we shall show that the operator of the form (1) with Z_1 and Z_2 , which are close to Z_3 , has

Received January 27, 1970.

Communicated by S. Matsuura.

^{*} This research was partly supported by the Sakkokai Foundation.

^{**} Mathematical Institute, Kyoto University of Industrial Arts and Textile Fibres.

at least one discrete eigenvalue in $(-\infty, -Z_1^2/4)$. Namely we have

Theorem. There exists some constant $\delta > 0$ depending only on Z_3 such that for any Z_1 and Z_2 satisfying $Z_3 + \delta \geq Z_1 \geq Z_2 \geq Z_3 - \delta$, the Schrödinger operator H of the form (1) has at least one discrete eigenvalue in $(-\infty, -Z_1^2/4)$.

Proof. Let for any $\psi \in \mathcal{D}_{L^2}^1(\mathbb{R}^6)$

(2)
$$L[\psi; Z_{1}, Z_{2}, Z_{3}] \equiv \int_{\mathbb{R}^{6}} \left\{ |\mathcal{V}_{1}\psi|^{2} + |\mathcal{V}_{2}\psi|^{2} - \frac{Z_{1}}{r_{1}}|\psi|^{2} - \frac{Z_{2}}{r_{2}}|\psi|^{2} + \frac{Z_{3}}{|r_{1} - r_{2}|}|\psi|^{2} + \frac{Z_{1}^{2}}{4}|\psi|^{2} \right\} dx$$

$$= \int_{\mathbb{R}^{3}} + \int_{\rho_{2}} \equiv L_{1}[\psi; Z_{1}, Z_{2}, Z_{3}] + L_{2}[\psi; Z_{1}, Z_{2}, Z_{3}],$$

where $|\mathcal{V}_i\psi|^2 = \sum_{\nu=0}^2 \left|\frac{\partial \psi}{\partial x_{3i-\nu}}\right|^2$ $(i=1,2), \ \Omega_1 = \{x = (r_1,r_2) = (x_1,\cdots,x_6) \in R^6; r_1 \geq r_2\}$ and $\Omega_2 = \{x \in R^6; r_2 \geq r_1\}$. If and only if $L[\psi; Z_1, Z_2, Z_3] < 0$ for some $\psi \in \mathcal{D}^1_{L_2}(R^6)$, the Schrödinger operator H of the form (1) has at least one discrete eigenvalue in $(-\infty, -Z_1^2/4)$ (see Theorem 1 in \check{Z} islin [4]). Then we shall look for some suitable function to satisfy $\psi(x) = \psi(r_1, r_2) \in \mathcal{D}^1_{L^2}(R^6)$ and $L[\psi; Z_1, Z_2, Z_3] < 0$. In case $\psi(x) = \psi(r_1, r_2)$ depends only on r_1 and r_2 , we have

(3)
$$\int_{2_{1}} \frac{|\psi|^{2}}{|r_{1}-r_{2}|} dx = 2\pi \int_{\mathbb{R}^{3}} dr_{1} \int_{0}^{r_{1}} |\psi|^{2} r_{2}^{2} dr_{2} \int_{0}^{\pi} \frac{\sin\theta \, d\theta}{(r_{1}^{2}+r_{2}^{2}-2r_{1}r_{2}\cos\theta)^{1/2}}$$

$$= 2\pi \int_{\mathbb{R}^{3}} dr_{1} \int_{0}^{r_{1}} |\psi|^{2} r_{2}^{2} \left(\frac{1}{r_{1}r_{2}} (r_{1}+r_{2}-|r_{1}-r_{2}|)\right) dr_{2} = \int_{\Omega_{1}} \frac{|\psi|^{2}}{r_{1}} dx,$$

and similarly

(4)
$$\int_{1/2} \frac{|\psi|^2}{|r_1 - r_2|} dx = \int_{\Omega_2} \frac{|\psi|^2}{|r_2|} dx.$$

Therefore by (3) and (4) we have for any $\psi(x) = \psi(r_1, r_2) \in \mathcal{D}_{L^2}^1(\mathbb{R}^6)$

(5)
$$L_{1}[\psi; Z_{3}, Z_{3}, Z_{3}] = \int_{\Omega_{1}} \left\{ |\mathcal{V}_{1}\psi|^{2} + |\mathcal{V}_{2}\psi|^{2} - \frac{Z_{3}}{r_{2}} |\psi|^{2} + \frac{Z_{3}^{2}}{4} |\psi|^{2} \right\} dx,$$

$$L_{2}[\psi; Z_{3}, Z_{3}, Z_{3}] = \int_{\Omega_{2}} \left\{ |\mathcal{V}_{1}\psi|^{2} + |\mathcal{V}_{2}\psi|^{2} - \frac{Z_{3}}{r_{1}} |\psi|^{2} + \frac{Z_{3}^{2}}{4} |\psi|^{2} \right\} dx.$$

Moreover if $\psi(r_1, r_2) = \psi(r_2, r_1)$, we have $I_1 | \psi; Z_3, Z_3, Z_3 | = L_2 | \psi;$ $Z_3, Z_3, Z_3, Z_3, Z_3, Z_3$. Taking into consideration the fact that $e^{-(Z/2)r}$ is an eigenfunction of the operator $-\Delta - (Z/r)$ in $L^2(R^3)$ belonging to the least eigenvalue $-Z^2/4$, we put

(6)
$$f(x) = \begin{cases} e^{-(\varepsilon Z_3/2)r_1} e^{-(Z_3/2)r_2} & \text{for } r_1 \ge r_2 \\ e^{-(Z_3/2)r_2} e^{-(\varepsilon Z_3/2)r_2} & \text{for } r_2 \ge r_1. \end{cases}$$

Then we have $f(x) = f(r_1, r_2) = f(r_2, r_1) \in \mathcal{D}_{L^2}^1(R^6)$ and

$$(7) \qquad L_{1}[f; Z_{3}, Z_{3}, Z_{3}] = \frac{(4\pi)^{2}}{Z_{3}^{4}} \left\{ \frac{\varepsilon^{2}}{4} \int_{0}^{\infty} e^{-\varepsilon r_{1}} r_{1}^{2} dr_{1} \int_{0}^{r_{1}} e^{-r_{2}} r_{2}^{2} dr_{2} \right.$$

$$\left. + \frac{1}{4} \int_{0}^{\infty} e^{-\varepsilon r_{1}} r_{1}^{2} dr_{1} \int_{0}^{r_{1}} e^{-r_{2}} r_{2}^{2} dr_{2} - \int_{0}^{\infty} e^{-\varepsilon r_{1}} r_{1}^{2} dr_{1} \int_{0}^{r_{1}} e^{-r_{2}} r_{2} dr_{2} \right.$$

$$\left. + \frac{1}{4} \int_{0}^{\infty} e^{-\varepsilon r_{1}} r_{1}^{2} dr_{1} \int_{0}^{r_{1}} e^{-r_{2}} r_{2}^{2} dr_{2} \right\}$$

$$= \frac{(4\pi)^{2}}{Z_{3}^{4}} \left\{ \frac{\varepsilon^{2}}{4} \int_{0}^{\infty} e^{-\varepsilon r_{1}} r_{1}^{2} (2 - 2e^{-r_{1}} - 2r_{1}e^{-r_{1}} - r_{1}^{2}e^{-r_{1}}) dr_{1} \right.$$

$$\left. - \frac{1}{2} \int_{0}^{\infty} e^{-(1+\varepsilon)r_{1}} r_{1}^{4} dr_{1} \right\}$$

$$= \frac{(4\pi)^{2}}{Z_{3}^{4}} \frac{(2\varepsilon - 1)(5\varepsilon - 1)}{(1+\varepsilon)^{5}} .$$

Then if we choose ε to satisfy $1/5 < \varepsilon < 1/2$, we have $L_1[f; Z_3, Z_3, Z_3] = L_2[f; Z_3, Z_3, Z_3] < 0$, and then

(8)
$$L[f; Z_3, Z_3, Z_3] < 0.$$

Now fix $\varepsilon > 0$ to satisfy $1/5 < \varepsilon < 1/2$ and f defined by (6). By (8) and

(9)
$$L[f; Z_1, Z_2, Z_3] = L[f; Z_3, Z_3, Z_3] + (Z_3 - Z_1) \int_{\mathbb{R}^6} \frac{|f|^2}{r_1} dx + (Z_3 - Z_2) \int_{\mathbb{R}^6} \frac{|f|^2}{r_2} dx + \frac{Z_1^2 - Z_3^2}{4} \int_{\mathbb{R}^6} |f|^2 dx,$$

there exists some $\delta > 0$ such that for any Z_1 and Z_2 satisfying $Z_3 + \delta \ge Z_1 \ge Z_2 \ge Z_3 - \delta$ we have

(10)
$$L[f; Z_1, Z_2, Z_3] < 0.$$

By (10) we have the assertion of the theorem.

References

- [1] Uchiyama, J., Finiteness of the number of discrete eigenvalues of the Schrödinger operator for a three particle system, Publ. RIMS, Kyoto Univ. 5 (1969), 51-63.
- [2] _____, Corrections to the above article, Publ. RIMS Kyoto Univ., this issue.
- [3] ______. Finiteness of the number of discrete eigenvalues of the Schrödinger operator for a three particle system II, Publ. RIMS, Kyoto Univ., this issue.
- [4] Žislin. G. M., A study of the spectrum of the Schrödinger operator for a system of several particles, Trudy Moskov. Math. Obšč. 9 (1960), 82-120 (Russian).

Note added in proof (July 1, 1970): After this work was finished, we found the review article by A. G. Sigalov, "The mathematical problem in the theory of atomic spectra", Russian Math. Survey 22, No. 2 (1967), 1–18, in which he said that P. Gombás ["Theorie und Lösungsmethoden des Mehrteichenproblems der Wellenmechanik" Birkhäuser, Basel, 1950, p. 170] had also given a trial function to ensure the existence of a discrete eigenvalue in $\left(-\infty, -\frac{Z_1^2}{4}\right)$ for the case $Z_1 = \cdots = 1$.