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On Asymptotic Solutions of the Functional
Difference Equations Associated with Some
Nonlinear Difference Equations
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Sen-ichiro TanNaka*

0. Introduction

Let

(0.1) y(x+1)=g(x, y)
be a system of m nonlinear difference equations for the vector-valued func-

tion y(x)=(y1(x), y2(x), ---, ym(x)) of a complex variable x. g(x, y)
is an analytic function of m+1 complex variables (x, ) defined in the

region X, X Yy, where

XoZ

>R,

Yoiliyli<r  llyli=max|yl,

R, r being positive constants. When we consider the expansion

(0.2) g(x, y)=go(x)+A(x)y+ MZ &r(x) y?,

Z2
the case in which go(x)5%0 was discussed in [17], and the case in which
go(x)=0, A(x)~£0 was discussed in [2]]. We shall deal with some cases
in which go(#)=0 and A(x)=0.

In Part II we shall discuss about a system of nonlinear difference equa-

tions of the form:

(0.3) wat =T Pl ) G=1, 2, -, m)
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where A;;s are nonnegative integers such that

™

lﬁZZ (l‘:l) 2, -y m)

)

ji=1

and fi(x, y) are analytic functions of x and y in the region X, x Yo such
that fi(eo, 0)7=0 (=1, 2, ..., m). Under the further assumption that

each eigenvalue 1; of the m X m matrix A=(4;;) is absolutely greater than
one it may be shown that without loss of generality we may assume
f i(°°> 0)=1'

In §6 we shall prove the existence of a transformation of the form:

(0.4) yi:ui(l+Iklzz:lp;af))k;...kmx_kou’flulzzz"'ufnm) (Z=1> 2a Tty m)

by which the equation (0.3) are transformed into the most simple equa-

tions
(0-5) ut(x+1)=ﬁ u?“ (Z=13 27 ] M),
i=1

so that we can conclude that the equation (0.3) has a formal solution of
the form (0.4) in which u; is substituted by any solution u;(x) of the
equation (0.5).

On the basis of this situation we find it effective to regard the solu-
tion (0.4) as a function y(x, u) of m+1 independent variables x, ui,

uy, ---, Un satisfying the following equations:
T M5 TT o LY
(0.6) yi(x+1, H1 ul, Hlui”’ ey IIlu],mJ)
iz i= iz

=j11j1 y;fu(x, u) fi(x, y(x, u)) (i=1, 2, ..., m)

which we shall call a system of functional difference equations associated
with the original system of difference equations (0.3). In §7 we shall
give a detailed discussion on this matter.

In §8 and §9 we shall prove the existence and the uniqueness of an

analytic solution of (0.6) of the form
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OD) 5w W=wi+ 3 plthpas ubiute w5, )
(@=1, 2, ..., m)
such that the inequality
lawl| <M A{] x|~ N D4 lu]f ™1

holds with some arbitrary constant M in a certain region of (x, u) space.
In §9 we shall show the existence of an asymptotic analytic solution of
(0.6).

In preparation for the discussions in Part II, we shall deal with a

following particular case of equation (0.3) in Part I:

(0'8) yt(x"*_]-):y:%ft(x: y) (l:]-: 2, m’))

where 1;’s are integers =>2.
Equations of the form (0.8) are important in themselves since they
appear in the study of some important nonlinear difference equations. For

example, consider a nonlinear difference equation of the form:
0.9) z(x+1)=a¢(x)+ar(x)z(x)+ tan(x)z"(x)  (m=2),

where a;(x)(j=0, 1, ..., m) are analytic functions of x in the region
|x| >R such that a,(o0)=0. By the transformation z=1/y, equation
(0.9) is transformed to the following equation of the form (0.8):

(0.10) yx+D=y"f(x, y),

where

fx, y)=(en(x)+anr(x)y+--- +a0<x)ym)—1.

Any solution of (0.9) that approaches to oo as x tends to oo is then ob-
tained from a solution of (0.10) that approaches to 0 as x tends to oo.
In conclusion the author expresses his hearty thanks to Professor
HUKUHARA, Professor SIBAGAKI and Professor URABE who had through
the preparation of this paper incessant interest on our problem and gave

many criticisms and improvements.
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Part I. On the System of Nonlinear Difference Equations of the
Form yi(x+1)=y¥fi(x,y)  G=1,2, ..., m)

1. Formal solutions. We consider the system of nonlinear dif-

ference equations of the form

(11) yi(x+1):y?zf1(xa Y1s Y25 - yer) (7’:1’ 2) S m)
where ;s are integers greater than one and f;’s are analytic functions of

% and y=(y1, ¥z, ---, ym) which are defined in the domain X,X ¥,
={x| x| >R} x {y|llylI<r} (||y||=max| y;|) and satisfy the conditions
i

(12) fi(oos 0) Os ) O):ﬂz#o (l':l: 2: H) m)'

We remark that we may assume x;=1 (i=1, 2, ..., m) without loss
of generality. Indeed, setting & =gx}®1 and introducing the unknown

z;=¢&;yi, we have for z; the equations
zt(x—l_l):z?zgt(xa 21y B25 vvy Zm),

where gi(x: 21y Z25 cvvs zm)z/“;lfi(xa 5;121, €31z, oy E;nlzm) for which
it holds

gi(°°a 05 O’ s 0):1 (Z:]-: 2, Tty m)
Owing to the assumptions just made we have the expansions
filxy y1, yay -y ym)=1+ lmZila,ﬁf,’kl___kmx‘k°yf1y§2-~~yf,,m

where |k|=ko+ki+ - +kpn.
In finding a formal solution of the system of equations (1.1) we will

show that a transformation of the type
(1.3) =il |k|2>1p;e€)lel...kmx—kuu’flu§z' S Upm)

is effective, the coefficients pji), .., being suitably chosen.

First, we consider the transformation of the first step

1.4) yi=ui(1+9((>i)x_l+ji q5u;),
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which has the inverse transformation

(1.5) wi=y(1—qf'x~'— Z g i),

where ... represents the terms which are of higher degree than one in x~!

and y;. Setting x+1 for x in (1.5) and using (1.1) and (1.4) it is im-

mediately shown that the new unknown u; satisfies the following equation

wet D=ul(+gia+ 5 gfu)

X(1+Ikiz:— as o Pubuke ukng)

X(A—gfx"t+--),

i.e.,
(1.6) ui(x+1D)=wy{1+((4;—1Dg +aff) )z
+ Z (ig§ +agf)..10.0)ui+ -},

-1

where ... represents higher terms in x~" and z;. Now by the assumption

2;=2 we can choose the coefficients ¢, g3’ (j=1, 2, ..., m) so that the

-1

coefficients of ™ and u; in the right-hand side of (1.6) may all vanish,

in other words, equation (1.6) may be of the form
u(x+1)=ukr (1+ Z by hn % x oy by ke g km),

This is of the form similar to (1.1) but the terms of degree one in x~!

and u; are lacking in the right-hand expansion. Now, to this equation we

perform the transformation of the second step
J— () -k
ui—vi(l-l-lklzz T ey X PR k)

which has the inverse transformation

—k
—u,(l— Z r,5;0’k1 WX Pkl ke ),

Then, it can be shown as before that the new unknown wv; satisfies the
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equation of the form

vi(x + D= U?‘ {1 +((Ai— 1)Téio)o...o + b(zio)o.-.o)x_2

/ (1) (1) —k ki,,k k ..
Py T R L R N &

Here it is observed that the expansion { } has no terms of degree one

~1 -1

x~ " and wv;, and ... means terms of degree higher than two in x™ and wv,.
Now by 2;=2 we can choose the coefficients rii), , for |k|=2 so that
the coefficients of x2 and x *wwle...vk» for |k|=2 may all vanish, in
other words, the resulted equation for the unknown v may be of the form
vi(x+1)=v}(1+ Z el FwbIpE L pEm),

It has a form similar to (1.1) but the terms of degree one and two in
x7! and v’s are lacking in the right-hand expansion.

Repeating similar processes we have after IV steps [V transformations

‘—us(1+q(” 1+ Z q(” uf>9

—k
—’U,(l‘{‘ ¥ erkuh X valvgz'”’ugzm):

) —t
Ui N-1=1U; N(1+ Z hghynk whyubiy. . ukmy).

Here u; v; means, respectively, u;; and u;3. As composite transforma-

tion from {y;} to {u;y} we have

1.7 yi=u;n(1+ MZZl Pk, 8 b by ukny)

and the equation satisfied by u;y has the form

(1.8) win(x+1D=uly {1 +m>§+1 b stm, Ut y Ul ukny}

It is observed from the nature of the process that in all transformations

(1.7) the coefficient of x *oubufr...ukn preserves the value pi. .pn.ip for

kms!

N=|k|, |k|+1, |k|+2, - Hence we may define the coefficients in
(1.3) by setting
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(1) ()
(1.9) Plokietim = Phokretim: | kl*

Thus we have defined the transformation (1.3) from {y} to {z;}. Now,
two transformations (1.3) and (1.7) give a relation between {u;} and
{u;n} defined by

—k
w3 pllhoein outiufe uke)

=uz‘,N(1+Iklzéll’%)kl...km,,vx Poubtyulty. . ukmy)
which can be solved formally in the form
(1.10) ui=ui,N(1+lkélpiﬁ’;@“kmwx Poubiyulty. . ukry),
and as its inverse we have

(111) u,-,N=u,-(1+ X ]=7 x—kou’flugz...uf;‘m).

Kz vkmsN

By the definition (1.9) we have in (1.10) and (1.11) the relations
Pl(el;:)/e1---km,N:ﬁ%)kl---km,nr=0 (1 g | k | éN),

so that we have

_ _(4) Lk
ui=uin(L+ 20 Phokikm, o by uky . ukny)
IRIEN +1

and

— =(7) —ko, k1, k k
u,-,N—u,-(1+ 2 Pkiokr--km,zvx ogkiygke.. ykm),
|kl=N+1

When these expressions are substituted into the equation (1.8) we find

equation satisfied by {u;} are of the form:

ui(x + 1): u')i%(l + lklzzzz\Hl C;zi)kl,,_kmwx_k“uflué”...ufﬁ"').

Here NN has been an arbitrary integer, so that the equation satisfied by

{u;} is really

(1.12) ui(x+1)=ul}.
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Thus we have proved that the equation (1.1) is reduced to (1.12) when
the transformation given by (1.3) is performed on it. Consequently we can

conclude that the equation (1.1) has a formal solution of the form
(1.13) yi(x, u)=u;(1+ | 2 P ® Poubiuke oy,

KIEL
in which u; is substituted by a solution u;(x) of the equation (1.12).

2. Asscciated funciional difference equations. Making use of
the formal solution (1.13) of the equation (1.1) we shall conveniently deal

with a solution of (1.1) of the form
(21) yi<x):yi(x> u(’”)) (1,:1, 2, .y ’n)

depending on the general solution u(x) =(u1(x), uz(x), - -, um(x)) of the

system of equations: u(x+1)=u’(x), i.e.,

(2.2) ui(x+1)=uli(x) (G=1,2, ..., m).
The general solution u(x) of (2.2) is

(2.3) ui(x)= exp (w;(x)A7),

containing an arbitrary periodic function 7(x)=(mwi(x), w2(%x), ---, Tm(x))
with period 1, so that the function (2.1) corresponding to (2.3) is a general
solution of (1.1).

Now substitute (2.1) and (2.2) into (1.1), then we have
(2'4) yz(x+1, u)h):y:"l(xa u)f,-[x, y(x, u’)] (Lzls 29 Tty m)

This equality holds formally in x and u, because y= y(x, u) is a trans-
formation reducing (1.1) to (1.12) formally in x and u. Let us write
(2.4) briefly as

(25) yz(x+1s uh):y?Lfi(xa y) (I,:l, 2y ey m’)

and call this equation an associated functional difference equation of (1.1).
Clearly y(x, u) given by (1.13) is a formal solution of (2.5). In

order to prove the asymptoticity of this formal solution, let us put



Functional Difference Equations 213

yi(x: u):ui(PiN(x: u)+3iN<x: u))a
where
N )
Piy(m, u)=1+ 2\ pihinx Mubiultoubr  (=1,2, ..., m),
1kI=1
thus introducing new unknown function zy(x, u).
Substituting them in (2.5), the equation for zy becomes
ZiN (JC + 1) uX)
=(Pin(x, u)+zin(x, ) fi(x, u(Py+2zn) —Pin(x+1, u*),

where for simplicity we use the notation u(Py+ zy) for the vector
{ul(P1N+ le)) uZ(P2N+zZN>; city um<PmN + sz)}- Let %’N(x, u, z) and
cin(x, u) be defined by

@in (%, uy 2)=(Pin+zin)"fi(x, u(Py+25))— Py fi(x, uPy),
cin(x, u)=PlYy fi(x, uPy)—Piy(x+1, u"),
then we get
(2.6) zin(x+1, uM)=pn(x, u, 2)+cin(x, ) (i=1,2, ..., m).

Writing zin, @in, Cin, respectively, as zj, ¢;, c; in (2.6) for simplicity, we
have

(27) 51’(:‘;—1_1) uk)zgai(x) U, :)+Ci(x7 u) (1’21: 29 Tty I)L).

Owing to the assumption made on the functions f; in (1.1), and to the
fact that Py in (2.1) are polynomials in x~! and u; we see that there

exist positive constants R, rp such that c;(x, u) are defined and analytic
in
(28) [ >Rey  ull<ra.

Referring to the fact that (1.3) is a formal solution of (1.1) we can con-

clude that there exists a positive constant L such that the inequality

(2.9) lle(w, W= L{l2 | D+l
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holds in the region (2.8). Choosing positive constants Rj, r3 suitably we

see that ¢;(x, u, z) are analytic in the region
(2.10) 2| >Rs, [iull<rs, |lzll<rs,
and moreover we have
@i(x, u, 0)=0 (=1, 2, ..., m).
Therefore we may write ¢(x, u, z) in the form:
o(x, uy, 2)=B(x, u)z+ ¢(x, u, 2).

Here B(x, u) is an m by m matrix B(x, u)=(0;:(x, u)), whose elements

are analytic functions in the region |x|>Rjs, ||u]|<rs such that
0
bii(xa u)':"a—z: (ai(xa U, 0)
_ Ay —1 r, O
‘—liPii fi(x, U'P)""uipilﬁj_fjfi(x; u'P)a

0 .
bik(x: u)zukP?ca—ykfi(xa uP) (l#k)a
so that it holds
B(OO, 0)= d1ag (11, lz, ceey lm)-

¢(x, u, z) is an analytic function in the region (2.10), and there exists a

positive quantity K such that the inequality
lg(x, u, D|| K|zl

holds in (2.10). Thus (2.6) may be written as

(2.11) zi(x+1, ut)=ci(x, u)‘l‘k}f}l bir(x, u)zp+¢i(x, u, z).

3. Existence theorem. In this section, we shall prove that the

functional difference equation (2.11) has an analytic solution such that

(3.1) llzCo, )| SM{] o0 [~ + w71}
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in a certain region I' X U such as

F:|x|>013 {argx|<6s
U:llu|| <p(<1),

where M and § are arbitrary but fixed constants such that M > L and
0 <%, and the constants p; and p, will be determined in the course of

proof. We shall employ the Fixed-Point Theorem to prove this.
Let F be a family of functions z(x, u) that are analytic and satisfying
the inequality (3.1) for x and u in the region I'X U. F is a convex set,

because if f(x, u) and g(x, u) belong to F the inequality
A f (%, u)+(1—2) g(x, w)l

=2l f (s wll+ Q=D g, vl

S M| x| "D lu][M Y
holds in 7" X U for any A such as 0<A<1. F is a closed set, because if
{z;(x, u)} is a sequence of functions belonging to F, and converging
uniformly in any compact set in /" x U, then the limiting function z(x, u)
satisfies (3.1) and is analytic in /" x U, which means that z(x, u) belongs
to F.

Now, referring to the equation (2.11) consider the mapping 7T defined

as
(3.2) z(x, u)=T (2(%, u))
:A_l'{z<x+1s u)»)_(:(x’ u)_H<x: u)z_(/j(xa u, 2)}

where H(x, u)=B(x, u)—A, A= diag (A1, 42, ---, 4m). We may choose
positive constants L, B, K, R’, r’ (<1) and r” (<1) such that the inequali-
ties

lle(w, Wl < L{|x |~ "D+ |Jul™1,
1Hx, Wl < Bl x|+ [lull},
g%, u, 2)[| < K||<|]*
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hold in the region |x|>R/, ||lu||<r’ and ||z]|<r”. We notice that if
z(x, u) € F, then z(x+1, u*)€F.

Now, [{47"(|= max l{lg—;— and M>L, we have from (3.2)

liz(x, w)l|

S;—{Ilz(ﬂﬁla uM+lle(x, wll+I1H (x, Wl llzll+ilg(x, u, 2)il}

< w1y

X [1 +7L[/_T +B(|x| '+ HuH)—I—KM([x|-(N+1)+||u||N+1)],

so that choosing p; sufficiently large and p;<<1 sufficiently small we have
12(a, w|| < MA{] x|~ VD4 [V}

in the region I'x U. Thus the mapped function z(x, u) which is clearly
analytic in /"X U belongs also to F.

If {z,(x, u)} is a sequence of functions that belong to F and con-
verges uniformly in any compact set in I” X U, then the sequence {z,(x, u)}
of the mapped functions clearly converges uniformly to a function z(x, u)
in I'x U which is the image of the limiting function z(x, u).

Lastly we notice that the family of the mapped functions forms a
normal family in /"X U. This is clear from the fact that z,(x, u) are
analytic and equibounded by [\z,(x, u)|| << M{| x| P+ 4 ||u|¥*1}.

Hence all the necessary assumptions of the Fixed-Point Theorem were
shown to be satisfied in our case, so that we have the following existence

theorem.
Theorem 1. Let fi(x, y) be analytic in the region XoX Y, such as
-XO: ixl >Rs

Yo:liyll<r where || y||=max | y;|

and let us comsider the functional difference equation
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(2.5) yix+1, u)= yiifi(x, ¥),

where y=y(x, u) is a function of independent variables x and u=(u1, us,

vy Um). Then in accordance with the following formal solution

yi=uiilt 21 Phibitn o~ oultufrugm}

of (2.5) there exists correspondingly to an arbitrary but fixed quantity M
(which is greater than the quantity L introduced in (2.9)) an analytic

solution

N
(s) yi=ui(1+ lk,lzlp;ml I AT B 2D
such that the inequality
lanll S M{] x| @D+ |luf 1)

holds in a ceriain region I yX Uy which is defined for a sufficiently large
quantity 01n and a sufficiently small quantity 0,y <1 as

I'y:|x|>01n, ]argx|<6<<—27r—>,
Uy :lluil<pzn.

4. Uniqueness theorem. We shall consider the uniqueness of

the solution of the functional difference equation
(2.11D) z2(x+1, u*)=c(x, u)+ B(x, w)z(x, u)+¢(x, u, 2).

We have proved that it has an analytic and bounded solution in a region
I'x U. We shall show that such a solution is unique.

Supposing two solutions z;(x, u) and z;(x, u) we set
v(x, u)=2zy(x, u)—z1(x, u).
Then v satisfies the equation
4.1 v(x+1, u*)=B(x, u)v+¢(x, u, z21+v)—¢(x, u, z1).

Expanding the right-hand side in power of v, we can write the above
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equation in the form
(4.2) v(x+1, ur)=A(x, u, z1)v+¥(x, u, z1, v)

where ¥ denotes the part containing terms of degrees higher than one in
v. By assumption A(x, u, z1) is analytic in the region X; X U;x Z; and
¥(x, u, 21, v) is analytic in the region X; X U; X Z; X V', where

D : x| >Ry, | arg x| <0,

Uyt ul|<ry,
Zy |z <7,
Vil <m

for some suitable quantities Rj, ry, 71, 71, and it holds A(co, 0, 0)=4. Set
H(x, u, z1)=A(%, u, z,)— 4.

Since 4o = min A; =2, we can select a number p such that 1, > 0> 1.

Then for the positive quantity 4—po we choose Rj; > 0 sufficiently large,
r2<0 sufficiently small so that in the region V=D;X U; X Zy; X V, such as

D;: |x| >R, | arg x| <0,
U, : ||ul|<r2,
Zy ¢zl [ <M (R; MV 1),
Vaillol| <2M Ry NP +r*1)
the inequality
|H (%, uy 20)v+¥ (%, u, 21, V)| < (Qo— 0|0l
holds. It follows that
|l 4v]| = |42, u, 2)o+P (%, u, 2, v)|| < (Xo—0)][v]l.
Since 4ol|v||<|i4v||, we have ultimately
1 4(%, u, 21) +¥ (%, u, z1, V)| = ollvll,

so that by (4.2) we have
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(4.3) llv(x+1, uM)l| = ollv(, w)li.
Since v(x, u) is bounded in the region D, x U,, putting
S= sup {lv(x, w)l
D3xU;
we get S=pS where p>1. So we must have S=0. Hence zi(x, u)

=zy(x, u) in Dy X U,. Since the solution is analytic " X U, such a solu-

tion is unique in /"X U. Thus we get the following theorem.

Theorem 2. Under the conditions of Theorem 1 the solution siated

in it is unique.

5. Existence of an asymptotic solution. We have proved that

for the equation
(2.5) yi(x+1, u)=yYfi(x, y) (G=1,2,...,m)
there exists an analytic solution

yi=ui(Piv (%, u)+zin (%, u)),

where
N W —koy ki b k
Piy(x, u)=1+ |ksZ1 Phokik ‘wug. uym

such as ||zy| < M{| x| ¥V +[|u|[¥*!}, and that such a solution is unique
in I'yx Uy. The solution y;= y;,(x, ») might depend on N, so that tem-
porarity let us denote it by y[N]. Then

YL N]=u;(Pin(x, u)+zin(x, u)),

where ||zy||<M{| x| ¥ * V4 |lu||"} in I'yx Uy. Now this can be

rewritten as
YiLN1=ui(P;y-1(x, u)+vin-1(x, u))
where

171 N—l(x: u)" Z p;azu)ln koullaluéz"'ufhm—}‘zilv(x’ u)'
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Since ||zx|| < M{| x| VD +||u]i¥*} in ['yx Uy, it follows that
lovoall| =My {| o]+ [lul¥},

where M’'y_, is some positive quantity. On the other hand, according to

uniqueness theorem the solution such as
yil N=1]=u;(Pin-1(x, u)+z; n-1(x, u))

where ||zy_1||<My_1{| 2|V +]|u||™} in I'y_13 Uy_, is unique, so that
it must hold

yi[N]=y[N—1]
and consequently

ziv-a(e, u)= lkIZ‘:N P hin® Fubtutr b 2y (%, w)

in (I'yoxNT ) X (UnoiN\Up).

Therefore we can conclude that there exists an analytic solution which
does not depend on N in some region of the form previously denoted by
I’ x U, having the property that it holds

yi(%, u) =u;(Pin (%, u)+ zin (%, u)),
lizn (2, w)|| S My{| 2| " VD4 u||M in I'xT,

which means that we have asymptotically
_’)’i(x, u)’\/ui(l—l- Ik§1 Pg])k;.-.kmx_knu}flugz'-~ufn’")
in I'x U. Thus we have

Theorem 3. Under the conditions of Theorem 1 there exists an

analytic asymptotic solution of the equation (2.5) such as

5.1) yi(o, ) ~u;(L+ 2 pii ez Foukigke ykm)
|

k=1

in the region I' x U.
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Part II. On the System of Nonlinear Difference Equations of the
Form y;(x+1)= ﬁy}“f;(x, ¥) (i=1,2, ..., m)
i=1

6. Formal solutions. We consider the system of nonlinear dif-

ference equations of the form:
(6.1) yi(x+1)= 'H1 y;wf,.(x, ¥) (G=1,2, ..., m)
j=

m
where ;s are nonnegative integers such that }; ;=2 (:=1, 2, ..., m).
i=1

We assume that fi(x, y)=fi(%, y1, ¥2, ---» ¥m) are analytic functions of

x and y=(y1, y2, ---, ¥m) defined in the region X,X Yo={x||x|>R}

x {y [yl <r} (ly]|=max | y;|). Clearly functions fi(x, y) then can be
7

expanded in the following form:
(62) fi(x> y) zat()io)..-o+ lkIZ:21 a},f',);zl...kmx"k"yflygh .. yf”m’

where |k| means ko+ki+ - +kn We assume that fi(co, 0)=afl) =u;
#+0 (i=1, 2, ..., m). Furthermore we assume that each eigenvalue A; of
the m by m matrix A=(4;;) is absolutely greater than one.

We may assume fi(oo, 0)=px;=1 (i=1, 2, ..., m) without loss of
generality. Indeed, putting

(6.3) z=&y; (=12,..,m)

with undetermined constants &; and substituting (6.3) in (6.1), we get the

following system of difference equations for z={(z1, 22, ---, 2Zm):

(6.4) T §5zi(x+ 1)=& 11 zjigi(w, z)  ((=1,2,...,m)
e

j=1

where

(65) gi(x3 z):gi(xa 21y B2y *v0y Zm)

:ﬂ;lfi(xa Sflzla €120, -5 Exlam).

By our assumption one is not an eigenvalue of the matrix A=(4;;) so that
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the constants £;(i=1, 2, ..., m) can be so chosen that the equalities
mo .

(6'6) Hlsjij = Siﬂi (lzla 23 Tty m)
iz

hold. By such choice of the constant &=(&i1, &2, ---, €m), (6.4) has the

required form:
m
zi(x+1)= le}”g,-(x, z) G@G=1, 2, ..., m).
=
gi(x, z) are analytic functions in Xy X% Z, where

Xo: |x|>R,
Zo : Izl <7 (*'=r min |§;]),

and they can be expanded in the same form as (6.2) but with a{i ,=1.
In this section, we shall show that we can find a formal solution of

(6.1) by means of a transformation of the form:
(6.7) yizu,‘(1+ IkIZZIP;efl)kl"'kmx_kﬂu,flugz”'ufnm)‘

Adopting the same idea used in Part I, we shall decompose the transforma-
tion (6.7) in a series of steps.
First we take uo(x)=y(x). Then we consider the transformation

from y(x) to u;(x) defined by the relation of the form
. m .
(6.8) y,-:u,-l(l—l—qf)"x_1+ Zlqﬁ,‘)um),
oy

which has the inverse transformation

. m .
(6.9) win=yi(—gt" % = 2 g5 yut o),
oo
where ... represents terms which are of degree higher than one in x7 %,
Y15 Y25 -y Yme Setting x+1 for x in (6.9) and using (6.1) and (6.8), it
is immediately shown that the new unknown u; satisfies the following

equation
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(610) uil(x+1): ﬁ u; ’(1-1'!](’) T+ i q;;j)unl)k”
i=1 n=1

(i) —ko,, k k2 E
x (1+ lklz 25 S T TR S 7% LR T2

x(1— g(” — )

Let E be the unit matrix and M=(y;;) be the m by m matrix defined by
M=A—E. Then (6.10) becomes

(6.11) uin(x+1)= ﬁlu ’{1+(Z 2iq5 +ald). ox !
iz

& () i gl
Z (Z i7"+ olo...om...o)unl‘{““'}-

By the assumption one and zero are not the eigenvalue of A, so that A
and M are regular matrices. Hence we can determine the constants g’

) 1

and ¢\’ appearing in (6.8) so that the coefficients of x~

right-hand side of (6.11) may all vanish.

and u,; in the

The next step which transforms u;(x) to u(x) is similar. Induc-
tively let us assume that we already have the system of difference equa-

tions for uy_; of the form:

(612) wina(et D= 0t T Bk vorn uliyoseul).
We shall show that a transformation from uy_; to uy of the form
(6.13) uin-1(x+1)=u;n(1+ ””ZJNTl(zf)}el.-.km,Nx-kuuklNuk Bneunry)

can be determined in such a way that we may have the system of differ-

ence equations for uy of the form:

(6.14) ui,N(x+1):]_1;Il wi(14+ X B%}n whiyubiy- - ukmy).

IHEN+ km, v %

Now (6.13) has the inverse transformation

(6.15) =i noa(1 = lkIZ=N T ot y® Uy o ubmy ),
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where ... shows the terms which are of degree higher than N in x7%,

L1 N_1, U2, N-1y -y Umn-1. Setting x+1 for x in (6.15), (6.12) and (6.13),

it is immediately shown that the new unknown u; y satisfy the following

equations
UinN (x + 1) ].—.[ uhil (1 + Z Tkok1 km, Nx‘kﬂu )X”
x(1+ xkéN Bml."km,N—W_k"ulﬁv up )
X(l r?f%) ONx +):
i.e.,

(6.16) wiw(w+1)= 1L uj§ {1+ (2 7 oo+ BHooy-D)5™"
7= 7=

—k k
+ MZN (]Z 2T B, Bl N-1) % whly..uln
fox

+---}.

Since the matrices M=(y;;) and A=(4;;) are regular, we can determine
the coefficients r},f,,’h__,km, y So that in the right-hand side of (6.16) all the
coefficients of the terms of degree N in x7%, uiy, -+, Umy may vanish,
that is, (6.6) may be of the form (6.14).

Now, by the composition of the mappings

yi(x)=ui0(x):

uio=u;1(1 +q"’x‘1+ f:lq&“un,l),
fore

_ (i) —ko,, k1 k2 k
uil—ui2(1+IklZ:_sz;kL..km,Zx ‘Uralzz - Ums)s

— %) ko By k2 !
ui.N—l—ui,N(l+lklZ:NTk’ak1,,,km'Nx L TRE TR NI T 8

(l=1, 23 ttty m)’

we get the following transformation from y to uxy:
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— (4) —kg, k1 _ k2 k
(6.17) y’._uiN(]'-i—[klzz:lpk;klmkm,lvx 0u1Nu2N...um’3‘v .

It is observed from the nature of the process that in all transformations

(6.17) the coefficient of x *u¥yuf%...ufm preserves the value J A
for N=|k|, |k|+1, |k|+2, ---. Hence we may define the coefficients in
(6.7) by setting

(6.18) Pihikn= P;e';)k,...km,lkl .

Thus we have defined the transformation (6.7) from y to u. Now, the
two transformations (6.7) and (6.17) give a relation between u and uy
defined as

(6.19) u,-(l—l— ”eél-p;";l)kl---kmx_kouflulzez'"ufnm)
k k1 k2 km

— (i) -
=u;n(1+ |klzz1pk’°k""k""Nx LITRE NS THC VO Tht B

which can be solved formally in the form

. (3 —ky. k1 | k2 k
(6.20) ui=uin(1+ lkél Piikyhm N U NUG N U
and as its inverse we have
_ =( —k k
(6.21) u;N—u,-(1+ Z pi’,,’kl...km,Nx "u’{‘u’gz..-ul\}").

lklZ1

By the definition (6.18) we have in (6.20) and (6.21) the relations

=(1) — =(i) —
Plokybm, N = Dhokykm, v = 0

for £k such as 1<|k|< N, so that we have

— =(1) —kg, k1 __ k2 k
(6.22) ui=u;n(1 +Iklz§+lpk;kl...km,Nx UINU N UmN)s
and
— =(i -k
(6.23) UiN= ui(1+lk|§v+1p"’°}‘l"'km'1"x °u’f1u§2---u,’§,M).

When these expressions are substituted into the equation (6.14) we find
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that the equations satisfied by {u;} are of the form

(6.24) u(x+1)= ImI w4+ 3 e Nx_k“u’{lu’gz...ufn"‘).
it :

EIZN+1
Here N has been an arbitrary integer, so that the equation satisfied by
{u;} is really

(6.25) wi(x+1)=IT uv.
i=1

Thus we have proved that the equation (6.1) is reduced to (6.25)
when the transformation given by (6.7) is performed on it. Consequently

we can conclude that the equation (6.1) has a formal solution of the form
(6.26) yilx, w)=u;(1+ X p;’;)kl___kmx_k”u’{lugz...uf,;”)
S

in which u; is substituted by a solution u;(x) of the equation (6.25).

7. Associated functional difference equation. Making use the
formal solution (6.7) of the equation (6.1) we shall conveniently deal with

a solution of (6.1) of the form

(71) yi(xa u(x>) (l:]-: 2, m)

depending on the general solution u(x)={(u1(x), uz(x), ---, un(x)) of the
system of equations

(7.2) wx+ D=1 u(x)™ (=12, ..., m).
i=1

The general solution u(x) of (7.2) may be found easily by putting v;(x)

=log u;(x). u(x) contains an arbitrary periodic function 7(x)=(7w.(x),

7o(x), -+, Tm(x)) with period one, so that the function (7.1) correspond-

ing to the general solution u(x) of (7.2) is a general solution of (7.1).
Substitute (7.1) and (7.2) into (6.1), then we have

(7.3) ¥t 1, mut)= 11 e, w) filx, (e, )]

(l=1, 23 Ty m)a
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where the left-hand side denotes the rather complicated quantity
m m N
yz(x+1 H qu H u?Zj, “eey H ujmi).
i=1 i=1

Similarly to (2.4), equality (7.3) holds formally in x and u for y(x, u)
given by (6.7). In what follows, we shall call (7.3) an associated func-
tional difference equation of (6.1).

Corresponding to the formal solution (6.7) of the associated functional

difference equation (7.3), let us put

(7.4) yi(x: u):uiP(i)(xa u),
(7.5) yi(%, u)=u;(Pin (%, u)+ zin (%, u))
where

G () k1 b k
PO(x, u)= 1+ Z szokl % “Foykiyfe. .yl

(7.6)
N
,N(x, u) 1+ Z Pézu)kl kouflugz...ufhm,
151=1
Substituting (7.5) in (7.3) the equation for zy becomes
zin(x+1, 7u?)
n
= IT (P (2, )tz (w, w)) £, u(Prt-2n)

- iN(x'l‘l, ”uA)a

where

fi(w, u(Py+zn))
=fi(xs u1(Pin+zin), ua(Pon+2z28), -5 Um(Pun+ 2mn)),

and
Piy(x+1, mu?)

m m
=Piy(x+1, II ujY, Hu’”’f cooy IT w)m™).
i=1 i=1
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Let ¢;n(%x, u, z) and c;y(x, u) be defined by
(7.7) vin(x, u, z):}.i:ll(PjN‘*'ZjN)k”fi(x, u(Py+zn))
— IT () 2file, uP),
(7.8) cin(x, u)=]ﬁ11(PjN(x, u)ifi(x, uPy)—Pin(x+1, mu?).

Then we get
ziN(x+1, n'u,")=(o,-N(x, U, z)+CiN(xa u’) (1215 2, m)'

Writing for simplicity z;y, ¢in, cin, respectively, as z;, ¢;, ¢; in this equa-

tion we shall study the following functional difference equation:
(7.9) zi(x+1, 77.'u")=¢,-(x, u, z2)+ci(x, u) @=1,2, .., m).

Owing to the assumption on the functions f; in (7.8) and to the fact that

1

P;y in (7.6) are polynomials in x™* and u;, we see that there exist positive

constants Ry, r; such that c;(x, u) defined by (7.8) are analytic in the

region
(7.10) |%| >Rz Jul|<re.

Referring to the fact that (6.7) is a formal solution of (7.3), we get

the formal equalities

1_1’;-’11 WPO(x+1, mut)= ijl(ujP(j)(x, W) fi(xy uP (%, w)),
that is,
(7.11) ,ﬁl POz, w))if iz, uP (%, u))—PD(x+1, mut)=0

(i=1, 2, - m)'

By (7.6), (7.11) and the definition (7.8) of c;(x, u), we get the estima-

tion

ci(x, w)=0(| x| "MVt [lu|1) (=1, 2, ..., m).
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Therefore we can conclude that there exists a positive constant L such
that

lleCr, Wl =L{la| @D+ [ul[™ 7}

holds in (7.10). Choosing positive constants Rj, r3 suitably we see that

¢i(x, u, z) are analytic in the region
(7.12) 2| >Rsy  ull<rs,  lzl[<rs,

and moreover we have ¢;(x, u, 0)=0 (=1, 2, ..., m). Therefore we may

write ¢=(¢1, @2, ---» ¢n) in the form
(ﬂ(xa U, Z):B(JC, w)z+¢(x, u, :)-

Here B(x, u) is an m by m matrix B(x, u)=(b;,(x, u)) whose elements

are analytic in |x|>Rj3, [lu]|<rs such that

Ai_ "
bis(e, w)="p' =TT (Pa)*if i(, uPy)

m 0 ;
+urIT (Pjn)o 0f (%, uPy).
j=1 Yi

Hence we have
B(OO, 0)‘—‘(1;1;)—“/1

¢(x, u, z) is an analytic function in (7.12), and there exists a positive

quantity K such that the inequality
1¢(x, u, 2)|| <Kl|2]1?

holds in (7.12). Therefore (7.9) may be written as

(7.13) zi(x+1, ru)=ci(x, u)+ ‘21 bij(x, u)z;+ ¢i(x, u, z)
i~
<l=1: 2, - m)-
Let us put dg=min |1;|]. By assumption we have 2,>1. For an
i

arbitrary but fixed constant § such as
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(7.14) Ao—1>0>0
there exists a regular matrix S such that
(7.15) A;=8714S  (4=),
where A; is a Jordan’s canonical form of 4:
{ 4y 0 \II ( A 0; W
4, 3 0 |
) . ‘
|

0

(7.16) 4;= | A,-=;

| |

{ A \
and each 0;, satisfies the following inequality

1074] = 0.

Denoting the diagonal matrix diag (A1, ---y A1y A2y ---5 A2y =<5 A1y -+5 &) DY

Ap, we have
(7.17) ll4;—4p|| < 0.
Now, putting

(7.18) z2(x%, u)=Sw(x, u),
and substituting this in (7.13), we have the equation for w
(7.19) w(x+1, ru®)=S"tc(x, u)+ S B(x, u)Sw+ S ¢(x, u, Sw).
For simplicity, we put

€(x, u)=S"'e(x, u),

B(x, u)=S"'B(x, u)S,

V(x, u, w)=S"'¢(x, u, Sw).

Then (7.19) becomes

(7.20) w(x+1, rud)=%(x, u)+%(x, Ww+(x, u, w).
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We may choose R* sufficiently large and r* (< 1) sufficiently small so
that the following conditions (A.I), (A.II) and (A.IIl) may be satisfied.
(A.I) The components of #(x, u) are analytic in X x U where

X:|x|>R*, U:flu|| <r*,
and the inequality
(721) |18, I Li{|= |~ P+ [wi™} La=[ISTL)

holds in Xx U.
(A.II) The inequality

(7.22) |#(x, u)—Apl| <0+ B{| x|~ +[ull}

holds in X x U.
(A.III) The components of ¥ (x, u, w) are analytic in Xx UX W such as

X:|x|>R*, U:llu||<r*, W lw|| <r¥,
and the inequality
(7.23) 12 (%, u, w| SKallw|® (K =KI[|ST|IIS]1*)
holds in Xx UXx W.

8. Existence theorem. In this section, we shall prove that the

system of the functional difference equation (7.20) has an analytic solution
such that

(8.1 llw(ae, u)fl < M{| 2| =¥+ 4 {lu]¥+1}
in a certain region I' x U, such as

I':|x|>p4, |arg x| <a,
(8.2)

Up:ilul| <oz (<L)

where M and « are arbitrary but fixed constants such that M > L

/(Ag—1—0) and 0<a’<%, and p; and Q. are constants to be determined
in the course of the proof. We shall employ the Fixed-Point Theorem to
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prove this.

Let F be a family of vector-valued functions w(x, u) whose elements
are analytic and satisfy the inequality (8.1) for (x, u) in the region
I'x U,.

Now, rewriting the equation (7.20), we have
w(x, u)=Ap {w(x+1, ru?) —€(x, u) — (B (x, u) — Ap)w—¥ (x, u, w)}
where Ap is the diagonal matrix diag (41, ---, A1, Azy ---5 A2y oo s Aty oy A
Consider the mapping T : w(x, u)—>@(x, u) defined by
(8.3) w(x, u)= T (w(x, u))
=Ap {w(x+1, ru’)—%(x, u)
—(B(x, u)— Ap)w—¥ (%, u, w)}.

The most important fact to be proved is that if w(x, u) € F then also
w(x, u)€F. We shall prove this only, since the rests may be proved
similarly as in Part I.

We shall notice that if (x, u) €l x Uy then (x+1, wu?) €l x U,, i.e.,
if w(x, u)€F, then also w(x+1, ru?)€F. On the other hand, by (A.I),
(A.Il) and (A.III) the inequalities

(7.21) 1% (e, | S Lod |~ D+ [JufiV*1}
(7.22) 18 (0, w) — Apl| <0+ B{| x| " +lul]}

hold in the region XX U and the inequality
(7°23) “W<xs U, w)”éKlll'sz
holds in the region Xx UX . By these facts we may get the inequality

llw(x, w)l| S |45 T+ L) ([ [~ D 4 [ul|¥*5)
+ @+ B x|+ ul)M x| ~FD ][
F KM 2| TV ] .

By ||45t|=1/24¢, the inequality
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L,

@0 o Wl <] 1+ 5 +0+ B2l i)

KM D [l [ M| ] )

holds in the region X x U.
Let us choose M so that M>L;/(Ay—1—07), and let us take p;(> R*)
sufficiently large and p;(<r*) sufficiently small. Then we have

M=L/{do—1=0—B(| x|+ |lul) — KiM(|[| ]I~ D+ [[u] ¥}

in the region I'x U, which is contained in XX U. Hence we get the

inequality

1
i+

in I'x Uy. Therefore by (8.4), we have

L
Th 484+ B(la ] ) + KM (||~ <1

llw(x, w)l| < M| 2| =D+ [u]| 77}

for any w(x, u) € F. Hence the mapped function @(x, ) which is clearly

analytic in I" X U, belongs also to F. Thus we get the following
Theorem 4. Consider the system of functional difference equations
(7.20) w(x+1, tu)=%(x, u)+B(x, vwlx, u)+¥(x, u, w(x, v))

where €(x, u), B(x, u) and ¥(x, u, w) satisfy the conditions (A.I), (A.II)
and (A.IIl) in §7. Equation (7.20) then has an analytic solution such
that

llew(x, w)l| < ML | =D+ [u ]|V}

in a certain region I' x Uy={x||x|>01, |arg x| <a} x {u]|llull<p,<1},
where M and o are arbitrary but fixed constants such that M>L,/(Ag—1—0)

T
and O<a¢<—2—, and 01, P2 are suitable comstants.

9. Uniqueness theorem. In this section, we shall consider the

uniqueness of the solution of the functional difference equation
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(7.20) w(x+1, tu®)=%(x, u)+B(x, Ww(x, u)+¥ (%, u, w(x, u))

under the conditions (A.I), (A.II) and (A.III) in §7. We shall prove that if
(7.20) has an analytic solution satisfying ||lw(x, u)||<M{|x| YD+ ||ulV+1}
in the region I X U,, then such a solution is unique.

Let us assume that there exist two solutions w;(x, z) and wy(x, u).

Put

9.1) v(x, u)=ws(x, u)—wi(x, u),

then v satisfies the following equation

9.2) v(x+1, Tu)=B(x, W+ (x, u, w1 +v)—¥(x, u, v).

Expanding the right-hand side in power of v, we can write the above

equation in the form
(9.3) v(x+1, rut)=A(x, u, w)v+Z1(x, u, w, v),

where ¥'; denotes the part containing terms of degrees higher than one in
.

Let us choose constants R; (= max (0;, R*)) sufficiently large, and
71 (= min (ps, *)) sufficiently small, and consider the regions D;, U;, W,
and V', defined by

D, : |x| =Ry, | arg x| <«
U :lul| <71,

Wi lwi|| < MRy VP 4741,
Viclol| < 2M(R7WVHD 47+,

Then we may assume that A(x, u, w;) is analytic in the region D, x Uy x W,

and the equality
(9.4) A(e0, 0, 0)=4;

holds, where A; is the Jordan’s canonical form (7.16) of 4=(Z;;). On the
other hand, ¥;(x, u, wy, v) is analytic in the region DX Uy x W1 X V;
and the inequality
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lg1(, u, wr, O)|| S Ksllv]|?
holds in D, X U; X W1 x V1, where K, is a constant suitably chosen.
Set H(x, u, wi)=A(x, u, w;)— Ay, then (9.3) becomes
(9.5) v(x+1, rut)=U;+ H(x, u, w))v+¥ (x, u, wi, v).
As is easily seen, the inequality
(9.6) 147 0ll = (2o —)llol|
holds for any v, where Ao= min |4;| and ¢ is a constant satisfying
(7.14) Ao—1>0>0.
Now let us choose an arbitrary but fixed positive constant ¢; such that
9.7 Ao—1—0>01>0.
Then, choosing suitably the constants Rj, 73, 72 and 7; the inequality
(9.8) NH (2, uy w)o+T1(x, u, wy, v)|| < 01||v]|
holds in the region V=DyX Uy X Wy X V, such as
Dy :|x|=R; (=Ry), | arg x| <a,
Uz :|ull <72 (=70),
Waiilwil| < MRz VP 471 =7,
Vo i ||lo]| S2M RNV +7+1) =7,.
By (9.5), (9.6) and (9.8), we have
9.9 llv(x+1, zu?)|)
=||Ad;v+H (%, u, w)v+¥ (%, u, wy, v)||
= | 4roll —[|H (x, w, wi)v+T (%, u, w, V)|
=(20—0)||v]| 04[]l
=(Ao—0—01)]|v||

in the region V. Putting p0=21,—0—0; we get p>1 by (9.7). Then
the inequality
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(9.10) lo(x+1, wuf)|| Zoll]l

holds in the region V. Since v is bounded in the region D, X U,, putting

S= Sup llv(x, u)]! we have S=>pS where p>1. Hence S=0, i.e.,
2% U2

wi(x, u)=wz(x, u). The solution being analytic I"x U, such a solution

is unique in I"xX U. Thus we get the following

Theorem 5. Under the condilions of Theorem 4 the solution stated
in it is unique.

The existence of an analytic asymptotic solution can be proved in a
similar manner as in Part I by using Theorem 4, Theorem 5 and the

inequality ||z||<<||S|||lw|| in (7.18). Thus we have

Theorem 6. Under the conditions of Theorem 4 there exists an

analytic solution of (7.3) for which we have the asymptotic expansion

yi(z, u) ~u;(1+ 1klglpi’;)h...kmx_k“uf‘u’z’z- ukm)

in the region I' x U.
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