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Infinite Tensor Products of von Neumann
Algebras, II

By

Yoshiomi NAkAGAaMmI*

§1. Intreduction

This paper is a continuation of a previous one with the same title
[6], in which we have shown the following results on infinite tensor

products of operators and those of normal positive linear functionals:

Theorem 3.2. Assume that [1||T.||<+ oo.
I. If T,€U,, then the following three conditions are equivalent:

1 RT.eRY,.

(ii) For any c€l’ and any (x,)€c, (T.x,)€c or QT,x%,=0.

(ii) QT is a strong limit of {T;: JE I}, where T;=(R;T,)R1(J°)

for J&I.
. If T.€U}, then QT, € (RU)".
1. If T.€U., then QT, (XA

Theorem 4.2. Let U, be a finite von Neumann algebra with the
coupling operator C, for every ¢ € I.

(i) Let ¢, be a normal trace on W, for each ¢E1 such that
0<ITp.(L)<4oo. If 9((1—C)")< + oo, then there is one and only
one normal trace ¢ on QU, such that ¢(I1xd.)=TIxe.(4)) (I1x-¢.(1))
for A, €U, and every K L.

(ii) Let ¢ be a normal trace on QU, with ¢(1)=1 and ¢, a normal
trace corresponding to the restriction of ¢ to U, by the natural isomorphism

between U, and N.. If o(UxA)=11xp.(4) for A,€N, and every K&,
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then Y 0, (1—C)")< + oo,

Corollary 4.2. Let U, be a von Neumann algebra and ¢, a normal
positive linear functional on U, for each ¢E 1. Let ¢ be a characteristic
class of (@,). Let G, and G be the carrier projections of @, and Ro,
respectively. Then G=(RG,)P(c).

Making use of these results we will try to give an explicit one to
one correspondence between a normalized finite normal trace ¢ on an
infinite tensor product of von Neumann algebras and a probability measure
y on an infinite product of compact spaces. We shall use the reduction
theory of von Neumann algebras which has been systematically studied by
von Neumann [ 117, Segal [8] and others. The terminologies and nota-
tions concerning the reduction theory will be taken from Dixmier [4].

In section 3 we will consider a correspondence of a normal positive
linear functional on an incomplete infinite tensor product of von Neumann
algebras to a projective system, with some additional conditions, of normal
positive linear functionals of finite tensor products of von Neumann algebras,
in analogy with the Kolmogoroff’s extension theorem on probability measures.
Through the aid of such a consideration on states, we will find that if ¥,
is a finite factor for each ¢ € I, then the finite part of @2, is carried by
one minimal central projection P(c) whenever it exists in @2,. This
corollary enables us to continue a further investigation on the structures
of a finite normal trace on &@U..

In section 4 we will give a partial answer to the problem which we
have been aiming at from the beginning of our study of infinite tensor
products of von Neumann algebras. The main argument will be presented
as a series of lemmas mainly about the decomposition of infinite tensor
products of Hilbert spaces, vectors, operators, von Neumann algebras and

traces. The final conclusion of the present paper can be summarized as

Theorem. Let Z, be a compact Hausdorff space, v, a probability
Radon measure with the carrier Z,,{,—9,(&,) a v,-measurable field of non
zero Hilbert spaces on Z,, §,—U, (L) a v,-measurable field of von Neuwmann

algebras on $.&) on Z,,
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Il

B.= D@,  L={REBE)

and B, the algebra of diagonalizable operators on O,. Assume that I is
countable, Z, satisfies the second axiom of countability, U, is finite, B, is
the center of U, and X, ||(1—C,)*||< + oo where C, is the coupling operator
of W,. Then there is one and only one finite P(c), co €1, in {P(¢'):¢’ €}
and there is a Qv,-measurable field {— (i of normal traces on Z=1T11Z,
for each P, P(co) with the following two properties:

1) If ¢ is a normal trace on QW, with ¢(1)=1, then there is a
probability measure v on Z, absolutely continuous with respect to Qv,,
such that the restriction of ¢ to @, is

[Coravo,

(ii) if v is a probability measure on Z, absolutely conmtinuous with
respect to Qv,, then

&)
¢=Sz¢édv(6)

exists and is a normal trace on QU, with ¢(1)=1, whose extension to
QAU is also a finite normal trace on RU,.

§2. Preparatory Notations and Definitions

In what follows we will have to assume that the reader is familiar

with the elementary properties of von Neumann algebras which are given

in [47.

von Neumann algebra: Let $ be a Hilbert space, x a vector in
® and A a von Neumann algebra on . Cgz and 2(P) stand for von
Neumann algebras of all scalar operators and all operators on § respectively.
Denote by E(2, x) the projection onto the subspace spanned by {4x:4&2}.
Let 0 and 1 denote the zero and the identity operators. By % 2*, and
9? we mean the set of all unitary, non negative and projection operators in
2 respectively. o, is a positive linear functional defined by w,(4)=(4x, x)

for A€2. A normal trace ¢ on a factor is called the canonical trace if
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¢(1)=1. Let ¢ be a normal positive linear functional on . Define the
characteristic number v of ¢ by r=supi||x||?:¢—w,=>0}. If r=w.0),
then x is called a characteristic vector of ¢. Let p be a semi-finite faithful
normal trace of a von Neumann algebra 2 on a Hilbert space ©. Then
we have a gage space (9, 2, o) in the sence of Segal [9]. Denote by
L'(Y, o) or L'(p) the set of all integrable operators and by L2%(%, p) or
L?%(p) the set of all square integrable operators. Such a concept can be
generalized to the case where p is not necessarily faithful by restricting

the argument to the carrier space of p.

Infinite tensor product of Hilbert spaces: Let I be an infinite
index set. We shall denote J& I whenever J is a finite subset of I. We
shall use the symbols >, IT, \U and N without index set I. z' is the
set of non negative integers. Let §, be a non trivial Hilbert space, e,,
%,, --- the vectors of O, and || || the norm on O,. If 0<II||x.|]|<+ oo
for x,€9., then the set {x,:¢€ I} is called a Cy-sequence and written
by (x,). A pair of (x,) and (y,) is equivalent if 37 |(x,, y,)—1]| <+ oo,
which we denote by (x,)~(y.). Denote the set of all Cy-sequences by /7o
and the set of equivalence classes ¢ by I'=1"y/~. Let &%, denote the
complete infinite tensor product of , and (®9, the set of all finite linear
combinations of tensor product vectors @z, for (x,) €. Let ®‘9, denote

the incomplete infinite tensor product of §, with respect to c&€/.

Infinite tensor product of von Neumann algebras: Let 2, be
von Neumann algebras on §, for each ¢€ 1. Denote the zero operator
and the identity operator on £, by 0, and 1,, sometimes without suffix.
1(J) is the identity on &®;®,.. Denote A,=ARQ1(I—{}). QU is a
von Neumann algebra on X9, generated by A, satisfying 4, €9, for all
¢€l. Let ®U, be the union of [1;{4,: 4,€WU} for all J&I P.isa
projection of ®9, to K9, for c€l” and P(c) is its central carrier in
(®A). Since PE)=LmlI(J)RQE((R;cW.), @sx,) for (x,) Ec, P(c) be-
longs to the commutor of (®(H,) and hence P(c) € (RY(Y.))’. Since
P(c) e XY, and QU, CRL(D,), it follows that P(c) is a central projection of
RLUD.) as well as ®A,. If P(¢)x=0 for some x=P.x, then P.=P(c)P,.
Consequently, P(¢)= Xcer,p,<rPv. R4, or @4, is the restriction of
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P.(RA)P, or P(c)(RA,) to P, or P(c) respectively. The set of operators
Agr which are the restriction of EAE to E for A€ X, where E=P, or
P(c), forms a von Neumann algebra, which is denoted by @', or ®©U,.
Similarly &), or %, is also used. Let ¢ be a positive linear functional
on ®,. For any 4€®;U, we define ¢(A)=¢p(AR1(J)), then ¢ is a
positive linear functional on & ;2,, which is called the projection of ¢ to
X;2U,. Let ¢, be a positive linear functional on 2, with a characteristic
vector x,. The equivalence class c€/ which contains (x,) is called a
characteristic class of (g,).

Let J&I. Then the similar arguments about infinite tensor products
of Hilbert spaces and of von Neumann algebras hold for [—J instead of
I. As it is easily seen that there is a canonical one to one correspondence
between the equivalence classes of Cy-sequences with respect to I and I—/J,
we shall use the same notation ¢ for the equivalence classes unless any
confusions arise.

The measure which appears in this paper is a Radon measure. It is
however known that the concept of measure, Radon or Borel coincide on
the completely regular space if it is the surjective image of a Polish space
by a continuous mapping [ 7].

Finally recall some results on the decomposition of von Neumann
algebra, which are referred to [4]. Let {—>9(&) be a field of Hilbert
spaces on a locally compact Hausdorff space Z and vy a positive Radon
measure on Z whose carrier is Z. We say that (&) forms a y-measurable
field of Hilbert spaces if a vector subspace & of [1;cz9(&) with the follow-
ing properties is given:

(i) For every x€® the function &—||x({)|| is y-measurable;

(i) If y€lliez() is such that, for every x€®, the function
E—(x(8), y(©)) is y-measurable, then y€®;

(iii) There exists a sequence {x1, x2, ---} of elements of & such
that, for £ €Z, {x,({):n=1, 2, ...} forms a total sequence in $(&).

The property (iii) implies that (&) is separable. If the followings

are given:

1° a v-measurable field £—>9(&) of non zero Hilbert spaces on Z;
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2° a y-measurable field £—>(&) of von Neumann algebras over £(&)
on Z, then we can construct canonically:

1° the Hilbert space
@
o={ o0 ®);

2° the von Neumann algebra B of diagonalizable operators which is
isomorphic to L=(Z, v);
3° the decomposable von Neumann algebra

1= ("uwa
=[ a@an©.

In this case we call (&), (&), --- a stalk of D, U, ... at { € Z respectively.
In section 4 we shall employ the notation indexed by ¢ €& I,

Zn ) cu @L(C:.)y %L(CL): Sgn 81 and S‘)’T'b

instead of the corresponding ones in the above respectively.

§3. Normal Positive Linear Functional on @9,

Since P(c) for c€ 1 is the central carrier of P,, the study of a normal
positive linear functional on &%, is reduced to that on each ®®I, and
also on each @9, because ®U, and ®OU, are isomorphic. In this
section we shall give a characterization of a normal positive linear func-
tional on an incomplete infinite tensor product &,.

Throughout this section we shall assume that (e,) €c and |le,||=1,
denote e(K)=Qxe, for every K C I, and use the same notation w,x, for
ooy () =(e(K), e(K)) on Qg,, QA and KF

Lemma 3.1. Let R, be an incomplete infinite tensor product of 2,.
If ¢ is a normal positive linear functional on QU,, then for any ¢>0

there exists Jo & I such that
llp—o(NQuwes|l<e
for any J&I with JoCJ, where ¢(J) is the projection of ¢ onto &;U,.

Proof. Since Lemma clearly holds if ¢ =0, it suffices to consider the



von Neumann Algebras II 263
case where ¢==0. Since ¢ is a normal positive linear functional, we have
p=72 0w,  for x,€RD,

i=1

and 0< 27 ||%:]i%= 2710, (1)=¢(1)<+co. For any ¢>0 there exists a
positive integer n, Jo&I and suitable vectors x;(Jo) € R 9., 1=1,2, ..., n
such that Z;o=n+1|ixi”2<s/4a

%= x:(Jo)®e(T DI <ep(1)™*/8n and ||x:(Jo)Re(J I = p(1)"*

for i=1, 2, ..., n. It follows that

€
oz, — 0z, up@e ol <4,

for i =1,2, ..., n, and hence

n
“ - .Zl Dx,(J9)®a(] 5) “
=

1

-

i=n+l

n
2 (02, = 02,0p0e0)

1

e
<—2—.

Define ¢=27_10:pgevd- Let ¢(J) and ¢(J) be the projections of ¢
and ¢ onto &, respectively. Then we get ¢(J)=21}7-100:,)ge-sy and

leD—pDII<llo— ol <5
Thus we have

o —o()R0. sl
<l =Ryl + (@) — o)) Qv <e. QE.D.

Corollary 3.1. Under the same assumption as that of Lemma 3.1,
the following conditions (i) and (ii) are equivalent:

Q) @ is a normal positive linear functional on QU,; and

(ii) for any >0 there exists Jo& I such that

le—o(NQRw.ysll<e

for any J&ZI with Jo CJ, where ¢(J) is a normal positive linear functional
on &Q;U,.
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Proof. (ii) implies (i) is obvious. (i) implies (ii) is clear from the

proof of the last lemma.

Definition 3.1. The family {¢(J):J& I} of normal positive linear
functionals ¢(J) on &, for any non empty J& I is called a projective
system, if J; CJ,& I, then the projection of ¢(Jz) to QU is ¢(J1).

Definition 3.2. A projective system {p(J):JZI} is c-normal, if
for any ¢>0 there exists J& I such that

llo(K) —weull<e

for every K& J°.

Definition 3.3. Given a finite family of von Neumann algebras 2;
on ;,i=1,2,...,n. Let ¢ be a normal positive linear functional on

&®7.,U; and @; its projection to ;. Define
Clo; Uy -y %I'n)=‘[¢_¢1®®¢nu

Let ¢ and ¢ be normal positive linear functionals on a von Neumann
algebra 2. We shall say that ¢ is absolutely continuous with respect to
@, if @(N)=0 implies ¢(N)=0 for Ne?.

Lemma 3.2. Let ¢ be a normal positive linear functional on Q7% _,U;
and @; its projection to W;. Then @ is absolutely comtinuous with respect
to QF-1¢i-

Proof. As ¢ is normal, we have a countable subset 1t of X%.,D;
such that ¢ = X, emw, . Therefore the carrier E (resp. E;) of ¢
(resp. ¢ |WR(Ri-;:4+,C)) is of the form E(R7-,U;, P) (resp.
EQUR(®7-1 14;8(D:), P)). Utilizing the carrier E; of ¢;, we have
E;=E;Q(®%-; ;+;1;). Since it is clear that EXFE; for j=1,2, ..., n, we

know
E g H?=1E_j:E1®' : '®En .

Since ®j_,E; is the carrier of &@%.,¢;, the null projection N of &F_,¢;
is orthogonal to @7_,E; and therefore it is orthogonal to E. Hence N is
also a null projection of ¢. Q.E.D.
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Remark 3.1. Given finite normal traces ¢; on ; (=1, 2, ..., n) and
a normal positive linear functional ¢ on ®7_,2;, then there exists a non

negative operator D in L'(®7_,;, ®%_1¢;) such that
p(4)=(01Q - Q¢.) (DA)

for A€ ®7_,; by Dye [5]. Such a D is called the Radon-Nikodym deriva-

tive of ¢ with respect to @7_,¢;. Let ngldEx be the spectral resolu-
tion of D and define

ngldEx.
0

Then we have

lg—01Q - Qeali= (01X R¢n) (1—D)G)
+(@01Q Q) (D—1) 1-6))
=(01Q-Q¢n) (|11—DJ).

Thus, in particular, if ¢ is a finite normal trace and ¢; is its projection
to A;, =1, 2, ..., n, then

where D is the Radon-Nikodym derivative of ¢ with respect to @%_;¢;.

Remark 3.2. Let 2; be a finite von Neumann algebra and ¢; a faithful
normal trace on ; with ¢;(1)=1 for i=1,2, ..., n. Then ¢o=Q7_,¢;
is a faithful normal trace on ®7_,%; and L%*(¢)=Q&7_;L*(¢;). Let ¢;
and ¢ be normal positive linear functionals on U; and &@7_,2; such that
¢:(1)=¢(1)=1 and ¢ is absolutely continuous with respect to ®7_;¢;. Then
there are Radon-Nikodym derivatives D=d¢/d¢ in L'(¢), D;=d¢;/de;
in L'(¢;) and T in LA(®7-1¢:) with ¢(-)=(®f-1¢:) (T-T*). Since

9)=(& ) (T-TH= (T D) T),

we have D= T*(®%_,D;)T in L'(¢). In particular, if each ¢; is a trace
for i=1,2,...,n, then D=(X%_.,D;)| T|% and hence, since D'? and

7_.D¥2 are vectors in a Hilbert space L?(p), we may consider their
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inner product with respect to ¢
12 sy PUZY— o DUZYDLIZY — (S0
(D™, ®IDZ- )—¢((®ID¢ )D )—(®1¢i>(|T|>:
i= i= i=

which is a generalization of the quantity introduced by Araki [1; p. 1360 ]
and Araki and Woods [2; p. 166 ], but which is somewhat different from

ours;
9= 69 6ll=(& ¢ (11— T12])

by Remark 3.1, since | T|? is the Radon-Nikodym derivative of ¢ with
respect to @%_q¢;.

Theorem 3.1. Let QU, be an incomplete infinite temsor product of
von Neumann algebras U, with respect to c.
G) If ¢ is a normal normalized positive linear functional on QU,,
then the family {o(J): J& I} of projections ¢(J) of ¢ to @;U, for JI
is a c-normal projective system with

(*) inf sup C(p(J2); KA, & A)=0;
Jo JoCJ1CJ2 J1 J2=J1

Gi) o {e(J): J& I} is a c-normal projective system of normal posi-
tive linear functionals p(J) on Q;U, with (*¥), then there exists uniquely
a normalized normal positive linear functional ¢ on Q2U, such that ¢(J)
is the projection of ¢ to Q;U, for each JI.

Proof. (i) Let ¢(J) be the projection of ¢ to &,A,. Then it is
clear that {¢(J):J& I} is a projective system of normal positive linear
functionals ¢(J). According to Lemma 3.1, since ¢ is normal, for any
e¢>0 there exists Jo& I such that

lig—o(NNQwerl<e

for any J& I with J,CJ. Hence for any K& J; we have
lo(K) — ool
= sup Ho—9(J0)Rwer) (LKHIRA)| <,

AEQkUHIAI=1

from which we know that {¢(J):J& I} is cnormal. Moreover for any
J1 and Jp with JoCJq C]zé], we obtain
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le(J2) —o(J)Re(J2— T
<l|l¢(Jz) — ¢(J)Rwe s, 1yl
+iip()R(eJe—J1) — 0o 7,- 1)1 < 2.

Thus infh Sup,uC]lChC((a(Jz); ®]19/I-1.9 ®]z—]1%I‘L):0'
(ii) Let {¢(J): JEI} be a cnormal projective system. Denote a
positive linear functional ¢(J)Qw,.y by ¢;, where (e)€c and |le,|/l=1.

From our assumption

inf sup C((O(JZ); ®S‘)I'L9 ® %I.L)IO,
Jo JoCJ1CJ2 J1 J2—J1

it follows that for any £>0 there exists J3& I such that

Cle(Js); @2%, ]Q_@h W) =llos) —o(JDRe(Js— o)l <e

for any J3CJyCJs &1 Since {¢p(J):J& I} is cnormal, for any ¢>0
there exists Jg& I such that

llo(Un) —wepll<e
for any J,&I with JsN\J;=¢. Denote Koy=Js\JJs. Then for any K; &I
with Ko CK; (i=1, 2)
iox,— x| =0, — 0rnr, |l +ilox,— 0x x|
={lp(K1) — o(KiNK2)Q0e(x,-x |
+ oK) — 9 (KiNK2) Qe (k- x|
<lp(K1) — p(KiNK2)Q (K1 —Ky)l|
+o(KiNK2) Q@K1 —K3) — 0ok, -k )|
+ oK) — p(KiNK2) Qe (K, — Kyl
+llp(KiNK)R(p(K2— K1) — 0ok, 1)l < de.

Thus {¢;: J& I} is a Cauchy net in the uniform topology. So the uni-
form limit ¢=Ilim ¢; is a normal positive linear functional satisfying that
the projection of ¢ to @;U, is ¢(J). Uniqueness is clear from the fact
that (&Y, is weakly dense in &Q,. Q.E.D.
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Remark 3.3. In the last theorem the c-normality of {¢(J):J& I}
does not implies the condition (*) as shown in the following example which
is suggested by Kubo. The similar ideas are orally communicated by Araki
from physical points.

Let I=z%, Iy=z"— {0}, O, be a two dimensional Hilbert space and
2, be the maximal abelian von Neumann subalgebra of &(D,) for ¢ € I,.
Then 2, is identified with the diagonal matrix algebra, by choosing a
suitable complete orthonormal base {e,;, e,2} in §,. Denote the projection
of , to the subspace spanned by e,; by E,; for j=1 or 2. Then 2, is
generated by {E.;, E,;}. Define e,=(1/y2) (e, +e.). Put eo = Qye.,
o= 19, and U, =AU, , where ¢, is an equivalence class which contains
(e.:c€ ). Then Uy is generated by (Q;E,;)R1(Io—J), j.=1 or 2 for
J& I,. Define a normalized positive linear functional ¢ on (®;%, by

1/2" it j=ji
p(F(ji: e NQ(RE;)RLK)) =

7 0 otherwise
where ¢ is an equivalence class containing (e,:¢€1), F(ji:¢c€J)
=(RENQLK) €(D0), J& Iy, K=Iy—J, j, or ji=1 or 2 and n is the
cardinal number of J. Then the projection of ¢ to U, is w., and to
Rk, is Qgw,, for K& I—{0}. Denote by ¢(J) the projection of ¢ to
R,;U, for J&I. Then {p(J):JEI} is a c-normal projective system,

since

H(o(K)—we(K)Hzo

for any K& {0}°. However, if 0€J; J, and m is the cardinal number
of J,—Ji, then ||o(J2)—o(J1)RQe(J:—J1)i|=2(1—2""). Thus for any
H&I

sulréhI|<0(Jz)—<o(J’1)®¢(Jz—J1>H=2-

0

Moreover the c-normality of {p(J): J& I} does not follow from the
condition (*). This is clear from the following example.

Utilizing the notations in the above example and define ¢, = (0, ,+ w.,,)/2,
which is a normalized positive linear functional on £(9,). Define ¢(J)=& ¢,
for J&1I,. Then over ®Q(D,) the condition (*) holds for all J& I,
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although {¢(J): J& I} is not c-normal.

Remark 3.4. Let ¢ be a normal positive linear functional on ‘%,
with ||¢||=1. Then for any ¢>0 there exists Jo& I such that

l@(A7,47)— (A7) (A7) | <ellA[l-[ 4]l

for any J;&I (=1, 2) with JiNnJ;=¢ (i7~j and i, j=0, 1, 2), where
AJ) e ®,; AU, and 4;,=AT)R1(J{) (i=1, 2). Really, by the last theo-
rem, for any &¢>0 there exists Jy& I such that

I|¢(K)—we(K)||<%
for every K& I with KN\Jy=¢. Thus we obtain that
lo(A4s,45)—o(47)e(A47)]

= o1V I)(ADRAU2) — ¢(J1) (A1) e(J2)(A(T2) |
<!o(J1Y)(A1)QA2) — 0e 7,01y (A(T1)RA(T2)) |

+ oy (AU || (@ery— oT2)) (A(J2)) |

+ [(@ery— @) (AU || 0(J2) (A(T2)) |
<ell4y]l-ll4z,]l.

Corollary 3.2. Let ¢ be a normal positive linear functional on @ U,
with ||¢p||=1 and {p(J): J& I} a projective system corresponding to ¢.
If @A, is an element of KU, obtained in Theorem 3.2 of [6] and
TI(4.e., €.) =0 for some (e,) Ec with |le,||=1, then

¢(®°AL)=li;n e(J) (Gj@flb)-
Proof. Since @A, is non zero, there is a constant M>1 with
M <||®4l <M

for any J& I In the case where ¢(®°4,) is non zero, let 2¢ be smaller
than its absolute value. By Lemma 3.1 we may select I,& I such that

lo—oWND@weml| <37
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for every J&I with I,CJ. Hence we have
) | p(&°4.) — (AU w75 (AUT)) | <,
where A(J)=® 4, and A(J?)=Q%4,. Thus
lo(J) (AT))0ere)(AUT)) | =e.

From this we find that for ¢>0 in the above there exists I; &I with
Iy, C I, such that

|07 (AJ))—1] <e
for every J& I with I; CJ. Consequently
lo(&°A4)—¢(J) (AU |
S 1@ 4)— () (AU w75 (AU) |
+ 1o(J) (A) (@) (AT —D) |
<@1+M)e.

Next consider the case where ¢(®°4,)=0. According to Corollary 4.1 in
[6], we have w.s)(®°4,)=IlIw.(4,). Since II(4.e., e)70 for some
(e,) €c, we have w,1)(®°A4,)5~=0 and hence for any &> 0 there exists
Jo& I such that

(**) | 0o (AT —1] <e
for every J& I with Jo,CJ. Thus by the above (¥) we obtain
lo(1) (AN = e(J) (A(])) (1= w5 (AUT))) |
+ o) (AU))we7e(AT)) |
<(M+1)e. Q.E.D.

Remark 3.5. This corollary tells us that if ||¢||=1 and ®°4,5~0,
then

lim ¢(J°) (4(J))=1.
J

Indeed, by Theorem 3.1 there exists J; & I such that

llw(K)—we<K>|I<7f4—
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for K& I with KNJi=¢. If ®°A,#0, then there exists (e,)€c such
that lle,||=1 and II(4,e,, e,)5~0 and hence by the formula (**) we have

|0)e(JC><A(JC)>'"1\ <e

for J& I with JoCJ. Therefore by Corollary 3.2, there exists J,& I with
Jo\WJ1 CJz such that

| 0oy (AT)) — 0oy (AK)) | <e
and
lo(J) (AT*) — o(K) (AK)) | <e
for every J& I with J;CJ and for some K& J°. Thus we get
lo(J%) (AN — 1< o(J°) (AWT9)) — o(K) (AK)) |
+ [o(K) (A(K)) — 0.y (A(K)) |
+ [ 0oy (AK)) = 0o (7o (AT |
+ [ wese(AJ?)) — 1]
< 4e.

Corollary 3.3. Given a normal positive linear functional ¢ on QU,
with ¢(1)=@(P(c)), and a projective system {o(J):JZ I} corresponding
to the restriction ¢ |QU,. Let G and G(J) be the carrier of ¢ and ¢(J)

respectively. Denote G;=G (J)QE(R,2L), e(J°)) and G7=G(J)RQ1(J°).
Then

G < 1lim G, P(c)=1lim G7P(c).
J J

Proof. 1t is easily seen that {G;: J& I} is a monotone decreasing
Cauchy net in the weak topology, whose limit is a projection G,. Hence
for any ¢>0 and for any x=(Qx,x,)Re(K]) and y=(Rx,y.)Re(K3)
with K; &I (i=1, 2) there exists I,& I such that

[(Cx—Go)x, y)| <e

for any K& I with I, CK. Denote [;=K;\UK,\JI,. Then for any J&I

with I; CJ we have G;x=G,x and G;y=G}y, and hence for any J& I
with 1 CJ
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1[(Gr—Go)=x, y)| <e.

Since the subset of vectors of the above form is total in Q°9,, the similar

evaluation holds for every vectors in ®°9,, which shows that {G;P.: J& I}

and {G,P.: J& I} have the same limit, and hence so do {G;P(c): J& I}

and {G7P(c): J&I}. Inequality is obvious from G<G’; by Lemma 3.2.
Q.E.D.

If ¢ is of the form of tensor product, then the carrier is calculated

in Corollary 4.2 in [6], which shows that G=lim ;G P(c). In general, it

is not obvious whether equality holds or not.

Remark 3.6. Even if a uniformly convergent sequence or net
{pr: A€ A} of normal positive linear functionals ¢y, 1€4 with ¢,(1)=1
is given, we cannot necessarily conclude that the carrier of the limit
functional may be approximated by the carriers of ¢,, A €4 in the weak
topology. Indeed, let © be a two-dimensional Hilbert space and {ei, es}
its orthonormal base. Define ¢=w,, and ¢.=(1—¢)w,, +ew,, for 0<e<1.
Then ¢. and ¢ are normal positive linear functionals on £(9) such that
9:(1)=¢(l)=1, and their carriers are the identity 1 and the projection
E onto {ae,:a €C} respectively. Hence we have ((1—E)ez, ez)=1, while

[lo— el|=2¢.

Corollary 3.4. Let U, be a finite factor on ., of at least two
dimension for ¢€ 1, each of which has the coupling constant C, with
Jmax{l—C, 0} <+oo. Let x,€9, be a characteristic vector of a normal
trace ¢, on W, with ¢, (1)=1. Then QVU, is a finite factor if and only
if P(0) (®x)=Qx..

Proof. By Theorem 4.2 and Corollary 4.2 in [6] ®¢, is a normal
trace on @A, whose carrier is P(c). Hence ®©U, is a finite factor, if
P(0) (®x.)=Qx,.

On the contrary, if ®“’, is a finite factor, then there is a normal
trace ¢ on U, with (P()=¢(1)=1. Let (e,)€c and ¢ be the
restriction of ¢ to @“,. Then the family {¢(J):J&E I} of projections
of ¢ to @;U, is a projective system and for any €>0 there exists Jo & I
such that
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g — ()Rl <e

for any J& I with JoCJ. Since ¢(J) is a normal trace on &;A,, we
have ¢(J)=&;¢, and hence

eI 4)=¢(®4)R(R 1) =T¢.(4.)
K K K° K

for any K& and 4,€%,. Thus ¢=Q¢, by Theorem 4.2 in [6]. We

conclude that P(c¢")=P(c). Q.E.D.
As we know the circumstances of the finite part of a complete infinite

tensor product of finite factors in the last corollary, we can develop our

study in more detail in the following section.

§4. Decomposition of a Finite Normal Trace on Some ®2!,

If A and W are finite, then the coupling operator C of U satisfies
that 0<C()< + oo y-locally almost everywhere on Z. In case where 2
is finite and 2 is not finite, decompose ¥’ into a finite YU, and a properly
infinite A{_; with GEANW)? and define C=C; on G and + oo on
(1—6G) where C¢ is the coupling operator of ;, which we also call the
coupling operator of 2.

Let Z be a locally compact space and let vy and # be positive Radon
measures on Z such that u is absolutely continuous with respect to v,
that is, du=fdy by a locally y-integrable f with 0=<f({)<+oo for
CeZ Let Y={(€Z:f(¢)>0}. Then Y is y-measurable and the restric-
tions #|Y and v|Y of # and v to Y are equivalent. Thus

[Co@ane)  wa  [Co@dn©
z Y
are isomorphic,

[(p©d@ ana Co@a©

are isomorphic and the last one is a subspace of

@
f,20a0.
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Therefore an isomorphism of

[To©du@ oo e

maps a square u-integrable field £—>x({) to a square y-integrable field
Cﬂdﬁx({). Let £—>A(¢) denote a u-measurable field of operators.
Define B(&)=A() for {€Y and B(&)=0 for {€Z—Y. Then {—>B(&)
on Y is u]Y-measurable and hence it is vy|Y-measurable. Since Y is
y-measurable, —>B({) is a y-measurable field on Z. Thus for any u-
measurable field {— A4(£) we can obtain a y-measurable field {— B({) such

that
zZ zZ )

Consequently we may consider the set of g-measurable fields of operators
is contained in the set of y-measurable fields of operators by the modifica-

tion of a x-null set.

Lemma 4.1. Let Z be a locally compact space, v and p positive
Radon measures on Z such that p is absolutely continuous with respect to

v,
2={"p0b0©, 1=[Ca0wE

and C—@; a field of normal trvaces. If the field {—>¢, is v-measurable,

then it is p-measurable.

Proof. If {—>A() is a u-measurable field of operators, then there is

a y-measurable field {— B({) such that
4@ au = B@)aue
z = z '

By the hypothesis that {—¢,(B(£)) is v-measurable, we have that it is

uy-measurable. Since Y is g-measurable, the field {—¢.(4()) is u-

measurable, which implies the desired result. Q.E.D.
In the following, the notations Z,, v,, &,, £.(€.), 2.(&), ., 8. and U,

are used as in the introduction and a series of lemmas is stated, assuming
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some of the following seven conditions:

(A1) I is countable;

(A2) Z, is compact;

(A3) Z, satisfies the second axiom of countability;

(A4) |ll=1;

(A5) 9, is finite;

(A6) 3, is the center of 2,; and

(A7) 21— C)*||< 4 oo, where C, is the coupling operator of 2.

Among these conditions, (Al) is needed to construct measurable fields
of an incomplete infinite tensor product of Hilbert spaces and of von
Neumann algebras, because the method we will employ in this paper is
developed under the hypothesis that each stalk is separable. (A2) is needed
to make Z=TJIZ, locally compact, because the reduction theory on a com-
pletely regular space which is not locally compact is not yet prepared.
From (A3) and (A5), we know that stalks of a von Neumann algebra are
finite locally almost everywhere on Z. By (A4) we can avoid the com-
plexity of the product measure &v,. The boundedness of measure, (A4),
implies the countable decomposability of the von Neumann algebra. The
countable decomposability also follows from (A3). (A6) is needed to ensure
the factor decompositions. (A7) is the condition that the infinite tensor
product of finite normal traces on some stalks of finite von Neumann
algebras can be defined on the infinite tensor product of respective stalks
of von Neumann algebras.

The following notations are sometimes used:

Let 4 be the set of all functions i defined on [ and having the
values in z' such that i(¢)=0 on I—J with J&I. Denote Z=I]Z, and
Z(J)=T11;Z, for JCI. Let B be the set of all continuous functions of the
form g=(R;g)X1(J°) defined on a compact space Z for every J&I,
where g,€C(Z,) and 1(J°) is a constant 1 function on Z(J°). Then the
x-algebra Cy(Z) generated algebraically by P is uniformly dense in C(Z)
by the Stone-Weierstrass theorem.

Let £,—9.(&,) be a v,-measurable field of Hilbert spaces on Z, and let
®, be a vector subspace of [12.9.(¢,) defining the y,-measurable field and
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@
o.={, 8.C)dv(c)

for every ¢€ 1. The subset {x,.; i€ A} of &, is a fundamental sequence
of y,measurable field {,—>x;,.({,) of vectors in $ (), for which we
may assume that ||x;q).(£.)||=1 for all £, by multiplying a suitable y,-
measurable function. Denote by ¢ or ¢(&) for {=({,) in Z an equivalence
class of Cy-sequences for 9,’s and 9,({,)’s for ¢€ I respectively. Sup-
pose (xo,)€c and (x0,.(L))€c(®). Put x;,=xiu., %:,.(8)=2%iu), ),
(®x)i=Rx;, and (Qx):({)=Q=x;.(£,) in the following of this paper.
Then &= (£)—>&®©9,(€,) is a field of Hilbert spaces on Z and {—>(®x):(&)

is a field of vectors on Z such that

((&®%):(8), (¥2);(€)=I1(#:.(£), %5,.(6.)

is @y,-measurable and the set of (Qx);({) with i€4 forms a total
subset in @°¥9,(Z,). Denote by @°®, the subset of z() in [1:&“9.(&.)
such that (z2(£), (Qx);(&)) is ®vy,-measurable for all i € 4. Then, utilizing
this @®,, we can obtain a &y,-measurable field

=)@,
of Hilbert spaces on Z.

Lemma 4.2. Assume (Al), (A2) and (A4). If (x,,)E€c and
(%0,.(E))EC®) for £E=(&)), then R°D, is isomorphic to

[ 00.£)d@Q.

Proof. As (x;,)€c and

Xi, = Sf‘xi,L(CL) dVL(CL)’

¢, —x; (&) is y,-measurable and (x;,(£,)) €c(). Since the set of all finite
linear combinations of g,x;, for every g, &€C(Z,) and for every i€4 is
dense in 9, for every ¢€ I, it follows that the set of all finite linear
combinations on g(®x);=& g, x;, for every g=R g, in P and for every
i€4 is dense in ®'D,. On the other hand, if g=@Q&g, belongs to P,
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then g()(®x):(0)=&g.(£)%:,.(L.) and {— g(£) (R®%):(0) is ®y,-measur-
able. Since B is total in C(Z), the set of all finite linear combinations
of these fields {—g({) (®x)i({) for g€ and i€ 4 is a dense linear
subset of

[Ceoped@w) ©.

Since for any =g, . €P
”Zi:gi(®x)i“2: ile(gf(®x)i, 81(&x);)
:i§(®gi,bxi,n> ®gj;bxf,4)

= ;_.;H(gi,bxi,b > &ii%i0)

1, (8. (€)%1.CD, 8. E)2a (C)dv.(C)

2,7

|

20, T8 ()1, (E, 3,C)%,.(Ed®2) @)

% (8O@UO, (0 @), ©)

={,IZe@ @»:0lFa@v) ©,
the similar equality holds for any g; €& Co(2),
IZs(@0P= |12 6@ @OIFd@») ©.

It follows that the linear mapping which transforms 2;;g:(&®x); to the field
{—21:8(0) (®=x)i(¢) is extended to an isometric linear mapping 6 of
X9, onto

®
[ ®@)d@v) ©. QED.

Through this isomorphism 6 we shall identify X°9, and

@
[ @@c)d@») ©
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in the following.

Remark 4.1. In the last lemma it should be noted that the assump-

tion (A2) is not necessary if I is finite. By the above identification, if
@
w={ w@)an@)

with ||x,(&,)||=1, then @z, is considered to be equal to

[C@=ra@w) ©.

If a field £,—9,(£,) of Hilbert spaces is given, we shall denote the
identity on 9,(¢,) by 1(¢,). Let J& I If £,—~A,(L,) with 4,(£,)€8(D.(8.)
is a y,-measurable field of operators on Z, and A4,(£,)=1(&,) for ¢ ¢ J, then

(=)~ 40)=84.)

is a field of operators on Z for &®9.(&). I =()—z(&) with
z2() e ®W9,(¢€) is a ®v,-measurable field, then

(4(©)z(0), (®%):(0))=(2(0), ®ALL)*x:,.(£.)

is ®v,-measurable for all £=(&,)—>(®x);(¢) with i € 4. Hence {—A;&)
=®¥4,(¢) is a @v,-measurable field of operators on Z.
Let

@
4= 4 ).

Then the field &,—A4,({,) is v,-measurable and y,<-essentially bounded on
Z,, and hence {— A4;() is also Qy,measurable and v, -essentially
bounded for J& I. If

(&)
Xi, = SZ xi,L(CL) dub(CL))
then
@
i,zxi,t:SZfi,t(C;)xi,L(C;)dpL<Ct>

for any f;,€ C(Z,) and hence
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A froms )= A f1.E)w, ) (C.

Here we denote A;=&‘A4, with A,=1 for ¢#J. Then by Lemma 4.2
AJ(Zz:fl(®x)l>=A]Z® i X,

= ;®A4<fi,in,b)
= 2 @A) £1.C)m. DA ©

= 2 (7 4O E)%:. D A@) ©

I

= 4@ d@r) ©)

(], 4@ d@») ©)(E f:@2)

for any fi=@&)f:, in ®B. Similar calculation holds for every element in

Cy(Z) instead of in P by a slight modification of notations. Consequently
the following lemma is obtained.

Lemma 4.3. If

&)
4= 46y
Zl
for ¢€ 1, then
@
® 4= @ 0a)a@) ©
Jor £=&,) € Z, where A,=1 and A,)=1 for ¢¢J and J< L

From this lemma we have the following.

Lemma 4.4. Assume (Al), (A2), (A3) and (Ad). If

2[5 %[L CL dl‘ 2 CL
f01 (4 E I, then

@U={ RN AR ©)
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for £=(&)EZ.

Proof. Since

o, = (“ar,c)a
={, 1@,

there is a sequence {,—>4;,,.({.) of y,measurable field of operators for
i €4 such that 2,(£,) is the von Neumann algebra generated by the count-
able set {4 .({.):i€ 4} v,almost everywhere on Z,. Define 4,,=1,
and A4o,({)=1(). Denote A4;,=A;,, and 4;,£)=4iw, () in the

following. According to Lemma 4.3, if
®
Ai,L = SZ Ai,n(Cn) d”b(CL)
for ¢€ I and i€ 4, then
[4 ® [1¢4
®4;,= | @O 4,.C)d®») @,

for £=(&,), in which we denote by 4;=®"4;, and also 4;({)=&*® 4; ,(&)).
Since A is countable set by (A1), @, (¢,) is generated by the countable
set {4;(©):i€ A} Qy,-almost everywhere on Z and hence

=)~ QALK

is a ®vy,-measurable field of von Neumann algebras. Since @, contains

{4;:i€ A}, we have that
®
0> [ @OAEABY) ©
for {=(¢,)€Z. According to (A3), we have
@
w={ Ay dn ).

Since in the previous Lemmas 4.2 and 4.3, we have not use the assump-

tion (A5), repeating the similar arguments as above, we can conclude that

@A ROy A ©.

Here we apply the results on the commutation theorem in an incomplete
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infinite tensor product [3;p. 94 ], then we have (QU,)=9QA.. Again
from (Al) and (A3), we get

@y > ([T oncra@n) ©). QED.

Lemma 4.5. Let Y be a compact Hausdorff space, y a positive

Radon measure on 'Y with ||uli=1, &) a y-measurable field of Hilbert
spaces on 'Y, W) a u-measurable field of von Neumann algebras on
D) on Y, L—¢, a field of normal traces on (&) on Y,

&) @
o=, 20, u={ a0

and Wy a weakly dense sub-x-algebra of U. Denote the decomposable
operator A in U by

@
4= 4@©du@).

Then, if {—>¢(A)) is pu-measurable for every A€W, then ¢, is p-

measurable. Further, if there is a normal irace ¢ on U such that

o() =0 (A@)dn)

for every A€W, then

o( )=o) an@
Jfor every A&

Proof. As U is countably decomposable, if 4 €2l, then by the density
theorem of Kaplansky, there is a sequence {4;:i=1,2, ...} in 2, such
that A; converges strongly to A4 as i tends + oo and ||4;]|<||4||. Since
each A; is decomposable, say

@
4= 40)au©),

there exists a subsequence {4;:j=1, 2, ...} satisfying that there is a -
null set NV such that ||4;;(€)||<||4]| and 4;;(&) converges strongly to A(Z)
as j tends to +oo for €Z—N. Hence there is g-null set N’ with
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NCN’ such that ¢.(A4;/(&)) converges to ¢.(A(L)) for {&€Z—N'. This
tells us that a sequence of g-measurable functions —¢.(4;;({)) converges
u-almost everywhere, boundedly to some function &—¢,(A4(£)), which is

u-measurable. Hence by the bounded convergence theorem of Lebesgue
{ ocas@nane~{ oa@)an

as j tends to +oo. On the other hand, ¢(4;) converges to ¢(4), hence
the desired equality is obtained. Q.E.D.

Lemma 4.6. Assume (A2), (A3), (A5), (A6) and JZI. Then

(i) there is a Qv -measurable field L=(£,)>(Rs0)r of mnormal
traces with |[(Q;0)ell=1 X sv,-almost everywhere on Z(J); and

(ii) the necessary and sufficient condition that ¢ is a normal trace

on Q;U, with ¢(1)=1, is that there is a Qv -integrable function f on
Z(J) with ||flli=1 such that

@
o=, fO@prd@»)©.

Proof. By (A3), (A5) and (A6), there is a y,-null set N, such that
A.(€,) is a finite factor for £, €Z,— N, and for ¢€J. Hence a decomposi-

tion obtained in Lemma 4.4,
®
@u.={" U@ ©
7 zUay J 7

is a factor decomposition. Since ,(£,) is a finite factor for {,€Z,—N,,
there is a canonical trace ¢y, on 2,({,) and hence there is a canonical trace
(®s¢)e=Q1¢¢, on a finite factor &,A,(£,) for {=({,) € Zy=11,(Z,—N,) and
(®sv) (Z)=1. Define (&;¢);=0 for {€Z(J)—Zy. Then {—->(KsP)¢
is a field of normal traces on Z(J). On the other hand, ¢ is a normal
trace on @A, with ¢(1)=1, then by (A3) there exists a &);y,-measurable
field =@, of normal traces on @;%,(£,) such that

¢=gi/) w;d@m) (@

and ¢, is a finite normal trace for £ € Z,—N with (&,v,) (N)=0. Since
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R;AN.(Z) is a finite factor for £ E€Z,, we have ¢,=¢;(1) (Q;¢), for
¢e€Zy,—N. Define f({)=¢(1). Then f({) is &@;v,-measurable. Since
& U, is countably decomposable, we may choose a finite faithful normal trace
as ¢ and hence {—¢, is a &;y,-measurable field of finite faithful normal

traces. Therefore {—>¢,(1) is non zero @v,-almost everywhere. Define

(0;-(1)_1 if @;(1)1}&0 and CEZO—N
g(C)Z{

otherwise.

Then g(¢) is @ v,-measurable. Thus {—g({)¢; is @ v,-measurable and
therefore {—(&Q);¢); is & ,v,-measurable. Q.E.D.

Remark 4.2. Denote by v the measure defined by dv({)=f(£)d(&v.)().
Then a normal trace ¢ with |lg|j=1 and a probability measure v have
a one to one correspondence. Moreover, the field {=({)—=>(®;¢); is v-
measurable for every y which is associated with ¢ on &;%,.

If {¥(J):JE&I} is a projective system on Z=IIZ, of probability
measures ¥(J) on Z(J)=TI,;Z, then it is well known that there exists a

unique probability measure y on Z whose projection onto Z(J) is v(J) for

JEI, [7].

Lemma 4.7. Assume (A2), (A3), (A5) and (A6). Given a normal
trace ¢ on Q°WU, with ¢(1)=1. If v(J) is a probability measure on Z(J)

corresponding to the projection o(J) of ¢ to Q;N, as Remark 4.2 such
that

oD={, @D @

for £=(&,)€Z(]), then {v(J): JE I} is a projective system of probability
measures and so there is a probability measure v on Z such that
y=lim v(J).

Proof. Suppose JCKEZI If A€@;U, and 1€ Xx_;2, such that
@
z

®
Azgz(])A(C)dv(J) () and 1:8 (K_])l(mdy(K_J) (),

then by Lemma 4.3
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4R1={7 4O ANRHE—D) € 7).
By the definition of y(K),
o(&) (4BD = (@O €, ),
where £=(,)€Z(J) and y=(y,) € Z(K—J). Further
oD (D= (@D ©.

Combining the last two equalities, we find that p(J) is the projection of
v(K) by the arbitrariness of 4€&;¥,. Q.E.D.

Lemma 4.8. Assume (A2), (A3), (A4), (A5) and (A6). Then there
exists a Qv -integrable function f such that dv=fd(Qv,) on Z, therefore

v is absolutely continuous with respect to Qv,.

Proof. According to Remark 4.2 there is a &Q);y,-integrable function
f(J) such that dv(J)=f(J)d(Q;v,) on Z(J) for JCI We define
vi=v(J)R(Rsev,). Let B(J) be the o-algebra of & ;y,-measurable sets
and B; the set of B(J)x Z(J°) for every B(J)€B(J). Then {B;: JC I}
is a monotone increasing net of ¢-algebra which is contained in the o-
algebra B of Qy,-measurable sets, when J tends to I by the order of set
inclusion. Denote by E{-|B;} the conditional expectation with respect to
By for J& I Define f;=f(J)R1L(J®), where 1(J°) is a constant 1 func-
tion on Z(J°). Then {f,;: J&I} is a martingale with respect to @v,,
because E{fx|B,;}=f; except on @y,null set whenever JCKZI It
follows from the convergence theorem of martingale [10] that there is a
&v,-integrable function f on Z such that f; converges to f in the L'-mean
and [[f|[i=1 due to [|f/|li=1. Here we denote du=fd(®v,). Then x
is a Radon measure on Z with ||#||=1. Let %3 be the union of all sets
of functions g=g(J)KR1(J°) for g(J) < C(Z(J)) when J runs over J I
Then, by means of the Stone-Weierstrass theorem, {5 is uniformly dense
in C(Z). From this we know that du=fd(&v,) and v=}iﬂ v(J) coincide
on Y and hence u=vy on C(Z). Q.E.D.

It is immediate from this lemma that @y,-measurability implies
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y-measurability.
Let Y be a compact Hausdorff space, # a positive Radon measure on
Y whose carrier is Y, {—>9({) a px-measurable field of non null Hilbert

spaces on Y,

® ®
o= 20,  a={ w@du©

a finite decomposable von Neumann algebra on £ with the coupling
operator C and 3 the algebra of diagonalizable operators identified with
L=(Y, ¢). Suppose that the center of 2 is B and Y satisfies the second

axiom of countability. Then it is known that for any x in © with

@
5= 2©du

we have

B, )= B, x@©)du)

and

EQ, 0= B0, x@)du).

Denote the canonical Y-mapping on 2 to 8 by @. Let {—>¢, be a u-
measurable field of canonical normal traces on 2(&) on Y.

Since ¥ is finite and B is the center of ¥, there is a g-null set N
such that ({) is a finite factor for each £ € Y—N. Hence the canonical
i-mapping @, on () is a scalar valued function with ¢ (EQUZ)’, x(%)))
=@ (0 (ERQL), x()))) for £€Y—N and hence O(EQRIQ), %))
= (EQUE), x(&))) for € Y—N. Thus we have

OEQU, )= 0. (B, %) du().

Similarly if 9’ is finite, then there is a #-null set N’ such that ()’ is
finite {€ Y—N'. Denoting the canonical §-mappings on 2’ and (&) by
@ and @; for L€ Y—N’, we have

O(EQL, )= OHEQE), O du(®).
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Since J is identified with L=(Y, x), C is an element 3+, that is, a non
negative u-measurable function on Y, which may be written formally in

the form;

C= @C d
=( c@ano.

Consequently the function {—@.(EQWE)’, x())) coincides with the func-
tion £—>C(QOHEQRUE), x(£))) except a u-null set N, with N\UN'C Ny,
that is, C(&) is the coupling constant of 2({) for each £ & Y—N,, which

is written in the form;
[, 0:BQUCY, 2@ @)=} CODUBAUE), 5@)da).

When 2’ is not finite, it is decomposed into a finite ¥ and a properly
infinite A{_; by the projection G in UNA'. Cg, the coupling operator of
s is similarly treated as above on GO. On the other hand C;_g= -+ oo
on (1—G)9 and

A= Ao (©)dO)
where
@
1-6={1-6) ©au©.

Since 2;_¢ is properly infinite, there is a #-null set V; such that 2 _¢, ()
is a properly infinite factor for £ € Y—N;. Hence we can define the
coupling operator of (&) by C(&)=+ oo for &€ Y—N;. Consequently,
C(¢) is the coupling constant ux-almost everywhere on Y.

By virtue of these considerations we have the following Lemma.

Lemma 4.9. Assume (Al), (A2), (A3), (Ad), (A6) and (A7). If
QU, has a non trivial finite part for c€1, then there is a normal trace
0y on R OUL) for Qv,-almost everywhere on Z such that for every
probability measure v associated with a normal trace ¢ on Q'U, with
lloll=1, ¢% is a canonical trace on QU () for v-almost everywhere on
Z.
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Proof. By (A3), (A5) and (A6), there is a v,-null set N, such that
2A,(Z) is a finite factor for each £, €Z,—N,. Hence there is a canonical
trace ¢, on A(L,) for {,€Z,—N,. According to the above arguments,
there is a v,-null set N, with N,C N, such that C,(&,) is the coupling
constant of () for {,€Z,—N,. Since (1—C,)"(&,)=max{l1—C.(&,), 0}
y,-almost everywhere and (A7), there is a v,null set N/ with N, CN/
such that max {1—C,(&,), 0}<||(1—C,)*|| for &, €Z,—N/. Therefore we

have

2max {1—C(£), =X |lA—-C)"[[< o0

for any {=({,) in Zy=TI(Z,—N/!), and hence a normal trace ¢,=Q¢;,
on ®A,(,) can be defined for £ € Z, and (Qv,) (Z,)=1.
Let (e,) E€c,

0= Sjemcoduxcg,

lle.(€)Il=1 and (e,(£.)) €c(). Let x,(£,) be a characteristic vector of ¢,
and ¢({)" a characteristic class with (x,(¢,))€c¢{%)’. Then by Corollary
3.4, the carrier of ¢, is majorated by P(c()’). According to Theorem
3.1, for any ¢>0 there exists J& I such that

oK) —w. x| <e

for every K& J°. Denote A(K)=RxA, and AK) )=RxA.(&.) for
any K& 1. Since by (A3), Remark 4.1 and Lemma 4.4

EQUEY, o) = BQUO @, oK) ©)ds(K) @),

we have |¢(K) (EQUK)', e(K)))—1]|<e and
o(K) (EQUKY, e(K)))

= @EUI) ©', oK) @)K (©),
(K) K

and hence there is a (K )-measurable set M C Z(K) such that »(K)(M)<+e
and

(&9 (EQUK) (€)', e(K) () —1] <Je
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for £€ Z(K)— M. For any >0, put g;=c%/4% for i=1, 2, .... Then for
these ¢; there is J;& I such that J;1I and

Hgﬂ(Ki)—we(Ki)H <E1',

where K;=J;,1—J;. Thus for every i there is a y(K;)-measurable M;
such that v(K;) (M;)<+ & and

| (§¢):(E(%I(Ki) @), e(K) ©ON—11<V e

for £€Z(K;)o—M;, where Z(K;)o=I1x(Z,—N/!). Denote J=J: and
M(J)=\J5-1M; x Z(J°—K;). Then M(J°) is & v -measurable,

v(J) (MUIN=Zv(J) (M; x Z(J*—K))<e
and

I (Q}c)sb):(E@I(J DY, e(J) (ON—1]<e

for £€Z(J%)o—M(J°), where Z(J°)o=I1s(Z,—N/). Consequently by
Corollary 4.4 in [6] we have e, (&) =P((0)) (Re&)), that is,
P(e(&)=P(c(&)) for L€ Zy— M, where M=\J7-,M;x Z(K¢) is y-measur-
able. On the other hand, since @“®U,(£,) and @CEIY,(&,) is isomorphic,
we may consider ¢, for { €Z, to be a normal trace on ®“®U,(Z,) by the
restriction, which we denote by ¢¢. Owing to the arbitrariness of ¢ we
may select a monotone decreasing sequence of y-measurable sets M Z,
when ¢ tends to 0. Denote the limit set by M;. Then y(M;)=0 and
¢% is a canonical trace on @A, (&) for £ € Zy—M,. Q.E.D.

Lemma 4.10. Assume (Al), (A2), (A3), (Ad), (A5), (A6) and (AT7).
If ¢ is a normal trace on Q°YU, with ||l¢||=1 and v its associated pro-
bability measure on Z, then the field {—¢% of normal traces in the last

lemma is y-measurable and

®
o= oran@.

Proof. It A€ Q;U, for J&I such that
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4= a@ad
={,, a@a@») ©,

then, by Lemma 4.6, {—>(®Q; ) (A(&)) is v(J)-measurable. Let 1(£(J%))
be the identities in ®%&A,(£,), where C(K)=({.:¢€K) for any KCL
Denote A;(&)=AJ)R1(&(J?)). Then the field

E—=¢u(4,(0))= (<§§>¢):(1)(A(C INLET)

is y-measurable on Z. Thus, by Lemmas 4.5 and 4.8, we find that {— ¢}

is y-measurable and there is a normal trace ¢ on @, such that
@ 4
o=, p00.

Since ¢ is a normal trace on @', with ¢(1)=1, and ¢(J)=¢(J) for
all J& I, it follows Theorem 3.1 that ¢p=¢. Q.E.D.
If P, and P+ for c¢,¢' €I have the same central carrier projection,
then ‘Y, and @Y, are isomorphic. But if their carriers are different,
then @, and ®“Y, are not always isomorphic. This situation becomes

much clear from the following lemma.

Lemma 4.11. Assume (A2), (A3), (A4), (A5), (A6) and (A7).
Given normal traces ¢ on QU, and ¢ on Q'U, with ¢(1)=¢1)=1,
which are associated with probability measures v and p as in Lemma 4.7

respectively. If P()P(¢)=0, then v and u are singular.

Proof. Let E and F be the carriers of ¢ and ¢ such that

E={ EOd@2) ©) and F={FOA@») ©.

It follows from EF=0 that E({)F()=0 Qv,-almost everywhere on Z.
Denote by 4 and B the sets of £€Z with E(Q)=1() and F(&)=1()
respectively. Then 4 and B are @y,measurable and (Qv,) (ANB)=0.
According to the last lemma

1=¢(8)={_SE@)@),
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hence the carrier of vy is contained in A4 y-almost everywhere. Denote by

A’ the carrier of vy and define

B Sfo'(C)d((@VJ ©.

Then we have

P(B)=| 9ea @)@ =1

and therefore E<CE’, that is, 4 is y-almost everywhere contained in A’
Hence by Lemma 4.8, A©SA" is a v-null set and similarly BOSB' is a
u-null set, where B’ is the carrier of 4. Since (Qv,) (ANB)=0 and
Lemma 4.8, we have v(4)=1 and #(4)=0, moreover v(B— A4)=0 and
u(B—A)=1. Q.E.D.

Lemma 4.12. Assume (Al), (A2), (A3), (A4), (A5), (A6) and (AT7).
Then there is a one and only one central projection P(c) in the set of all
P(c'Ys for ¢/ €@ satisfying thal

() KON, is finite;

() if

& U= ROUCIA®) ©),

then there exists a Qv ,-measurable field —¢% of normal traces on
R OU(E) on Z such that ||¢i|=1 Qv,-almost everywhere; and

(i) if @ is a normal trace on KW, with ¢(1)=1 and v a probability
measure on Z associated with ¢, then Qv,-measurable field {—% in the

above is v-measurable.

Proof. (i) By (A4), ¥, is countably decomposable for each ¢& I.

Hence there is a faithful normal trace ¢, on 2, such that

@
@,= SZ ¢{,dvl.(c;)

with ||¢@¢,||=1 v,-almost everywhere on Z,. Since 2 ¢.(1—C)")
<2 I(1—=C)*||< + oo, we have a normal trace Q¢, on &, by Theorem
4.2 in [6]. Then there is a central P(c) such that the carrier of &g,
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is P(c) by Corollary 4.2 in [6]. If there is another P(c") which satisfies
that a non trivial part of ®“’, is finite, then a probability measure
associated with a non zero finite normal trace on X, exists and is
absolutely continuous with respect to @y, by Lemma 4.8, but it is singular
to @y, by Lemma 4.11, which is a contradiction. Thus we obtain the
uniqueness of P(c).

(ii) Define a finite normal trace on I, by

]
0=, 0r.dv (€.

Then ¢, is faithful and ¢, (1)=1. Applying the same arguments as
Lemma 4.8, we can associate ¢, with @v,. Then by Lemma 4.9 we
have a @y, -measurable field {—>¢§ of normal traces on @“®A,(¢,) on Z
such that ||¢}||=1 Qv,-almost everywhere.

(iii) It is immediate from Lemma 4.1. Q.E.D.

The main result is summarized already as Theorem in Section 1.
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