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Infinite Tensor Products of von Neumann
Algebras, II
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Yoshiomi NAKAGAMI*

§ 1. Introduction

This paper is a continuation of a previous one with the same title

[JT], in which we have shown the following results on infinite tensor

products of operators and those of normal positive linear functionals:

Theorem 3.2. Assume that Ii\\Tt\\^ + oom

I. // Tt G 3lt , then the following three conditions are equivalent :

(0 (8)^(8)31,.

(ii) For any CE.T and any (X)£c, (T t^ t)Gc or $§Ttxt = Q.

(iii) (8) Tt is a strong limit of { Tj : /<g! 1} , where Tf= ((g)/r4)(g)l(/c)

for /C/.

ii. // r.ear, then <8>rte(<8>3U+.
in. // r.ea;, then (g) Tt e (®a,)'.
Theorem 4.2. Let §Xt Z>g a finite von Neumann algebra with the

coupling operator Ct for every c € /.

(i) Let cpt be a normal trace on Slt for each t€.I such that

0<n>t(l)< + °°. // S^t((l~O+)< + °°3 £^0w ^er^ is one and only

one normal trace <p on (g)2lt such that

(ii) L0£ (p be a normal trace on (g)Slt w^A ^(1)^1 fl«d ^6 a normal

trace corresponding to the restriction of (p to 2lt by the natural isomorphism

between 21, «^J Slt. // (p(YlK^.t) = TlK(pt(^t) for At^^t and every
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then

Corollary 4.2. Let 3lt be a von Neumann algebra and cpt a normal

positive linear functional on 2lt for each c G /. Let c be a characteristic

class of (#0- Let G, and G be the carrier projections of cpL and §§cpL

respectively. Then G = ((g)Gt)P(c).

Making use of these results we will try to give an explicit one to

one correspondence between a normalized finite normal trace <p on an

infinite tensor product of von Neumann algebras and a probability measure

v on an infinite product of compact spaces. We shall use the reduction

theory of von Neumann algebras which has been systematically studied by

von Neumann ^11], Segal Q8] and others. The terminologies and nota-

tions concerning the reduction theory will be taken from Dixmier [jT].

In section 3 we will consider a correspondence of a normal positive

linear functional on an incomplete infinite tensor product of von Neumann

algebras to a protective system, with some additional conditions, of normal

positive linear functionals of finite tensor products of von Neumann algebras,

in analogy with the Kolmogoroff 's extension theorem on probability measures.

Through the aid of such a consideration on states, we will find that if SX4

is a finite factor for each c £E /, then the finite part of 031* is carried by

one minimal central projection P(c) whenever it exists in (§)§lt. This

corollary enables us to continue a further investigation on the structures

of a finite normal trace on 021,.

In section 4 we will give a partial answer to the problem which we

have been aiming at from the beginning of our study of infinite tensor

products of von Neumann algebras. The main argument will be presented

as a series of lemmas mainly about the decomposition of infinite tensor

products of Hilbert spaces, vectors, operators, von Neumann algebras and

traces. The final conclusion of the present paper can be summarized as

Theorem. Let ZL be a compact Hausdorff space, vt a probability

Radon measure with the carrier Z0 C— >^pt(O a v ̂ measurable field of non

zero Hilbert spaces on Zt, C*~>2-T.4(Ct)
 a v ,-measurable field of von Neumann

algebras on £>4(O on Zt,
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3. the algebra of diagonalizable operators on §t. Assume £to / is

countable, Zt satisfies the second axiom of countability, 3lt is finite, 3* *s

rte center of 31. ««d EHO- — O+ l l< + °° w^m? C. is rte coupling operator

of 31. . TAew f Aere is owe <zwd onty OH* finite P(c0), C0 6 T, iw {P(c') : cr 6 F}

and there is a ^^ .-measurable field £>-*$l of normal traces on Z=TlZt

for each Pc<SP(c0) with the following two properties:

(i) // cp is a normal trace on 0SI-, with 0>(1) = 1, then there is a

probability measure v on Z, absolutely continuous with respect to ®v4,

such that the restriction of <p to ®c21i i^

(ii) i/" v is a probability measure on Z, absolutely continuous with

respect to ®V4 5

exists and is a normal trace on ®CS14 with ^(1) = 1, whose extension to

is fl/so « finite normal trace on

§2. Preparatory Notations and Definitions

In what follows we will have to assume that the reader is familiar

with the elementary properties of von Neumann algebras which are given

n

von Neumann algebra: Let § be a Hilbert space, x a vector in

§ and 21. a von Neumann algebra on £>. C§ and S(§) stand for von

Neumann algebras of all scalar operators and all operators on § respectively.

Denote by E(j&, x) the projection onto the subspace spanned by {Ax:A£$l}.

Let 0 and 1 denote the zero and the identity operators. By 2F, 31% and

2P we mean the set of all unitary, non negative and projection operators in

31 respectively. o)x is a positive linear functional defined by a)x(A) = (Ax, x}

for A G 31. A normal trace 0 on a factor is called the canonical trace if



260 Yoshiomi Nakagami

= 1. Let <p be a normal positive linear functional on St. Define the

characteristic number 7" of <p by 7" = sup{||#||2: #? — o)*^>0}. If 7 = 0)^(1)3

then x is called a characteristic vector of 0>. Let p be a semi -finite faithful

normal trace of a von Neumann algebra SI on a Hilbert space §. Then

we have a gage space (§, SI, p) in the sence of Segal [JT|. Denote by

i1^ p) or Ll(p) the set of all integrable operators and by £2(2l, p) or

L2(p) the set of all square integrable operators. Such a concept can be

generalized to the case where p is not necessarily faithful by restricting

the argument to the carrier space of p.

Infinite tensor product of Hilbert spaces s Let I be an infinite

index set. We shall denote J(^tl whenever / is a finite subset of /. We

shall use the symbols 2? 11? ̂  and A without index set /. z+ is the

set of non negative integers. Let !Qt be a non trivial Hilbert space, et,

x» ••• the vectors of §4 and || || the norm on §,. If 0<II|Xil< + °°

for # tG£>0 then the set {xt:c£l} is called a Co-sequence and written

by (X)- A pair of (X) and (j4) is equivalent if 2 | (X, yt)~l I < + °°3

which we denote by OO~(yt). Denote the set of all Co-sequences by F0

and the set of equivalence classes c by F = FQ/^^. Let (<§£>t denote the

complete infinite tensor product of $Qt and ©£>t the set of all finite linear

combinations of tensor product vectors §§xt for (X) €E/V Let 0°§t denote

the incomplete infinite tensor product of $Qt with respect to c 6 F.

Infinite tensor product of von Neumann algebras: Let Slt be

von Neumann algebras on §* for each c E /. Denote the zero operator

and the identity operator on £>t by Ot and lt, sometimes without suffix.

!(/) is the identity on ®/§4. Denote At = A^l(I—{c}}. (g)Sl, is a

von Neumann algebra on (g)£>t generated by A, satisfying AtG~$Lt for all

c£l. Let ©St. be the union of UjiA,: AL eSl,} for all /C/. Pc is a

projection of ®£)4 to ®c§. for cE-T and P(c) is its central carrier in

((g)^)7. Since P(c) = liml(/)(g)£((®/caiy,®^i) for (a;,)€c,P(c) be-

longs to the commutor of ®8(§t) and hence P(c) 6 (®8(£f)y- Since

P(c) e (g)Sl, and 021X0S(§4)5 it follows that P(c) is a central projection of

®S(©4) as well as (g)Slt. If P(c)a; = 0 for some x = P^x, then Pc/ = P(c)Pe/.

Consequently, P(c) = 2e'erfpc/£p(c)Pc'. ^'^^ or 0(c)^. is tne restriction of
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C or P(c)(0^t) to Pc or P(c) respectively. The set of operators

AE which are the restriction of EAE to E for A£(&^1L where E=PC or

P(c), forms a von Neumann algebra, which is denoted by 0l2lt or ®(c)2lt.

Similarly ©C3lt or 0(c)SIt is also used. Let cp be a positive linear functional

on 021... For any A e 0/21, we define <p(A) = (p(A(&l(Jc)), then 0 is a

positive linear functional on ®/3lt, which is called the projection of q> to

0/2lt. Let (pt be a positive linear functional on 2lt with a characteristic

vector xt. The equivalence class c£zF which contains (jcj is called a

characteristic class of (#0.

Let /(^ /. Then the similar arguments about infinite tensor products

of Hilbert spaces and of von Neumann algebras hold for I— J instead of

/. As it is easily seen that there is a canonical one to one correspondence

between the equivalence classes of C0-sequences with respect to / and J— /,

we shall use the same notation c for the equivalence classes unless any

confusions arise.

The measure which appears in this paper is a Radon measure. It is

however known that the concept of measure, Radon or Borel coincide on

the completely regular space if it is the surjective image of a Polish space

by a continuous mapping Q7].

Finally recall some results on the decomposition of von Neumann

algebra, which are referred to [JT]. Let C~*&(C) be a field of Hilbert

spaces on a locally compact Hausdorff space Z and v a positive Radon

measure on Z whose carrier is Z. We say that §(O forms a v-measurable

field of Hilbert spaces if a vector subspace ® of Hrez§(C) with the follow-

ing properties is given:

(i) For every x 6© the function £—>||#(£)|| is v-measurable;

(ii) If jElIrez^(C) is such that, for every ^G@, the function

C—>(#(C)5 j(0) is v-measurable, then j6@;

(iii) There exists a sequence {#1, x2-> • • • } of elements of © such

that, for C^-Z, {xn(£): 71 = 13 2, • • • } forms a total sequence in §(£)•

The property (iii) implies that §(O is separable. If the folio wings

are given:

1° a v-measurable field C^&CC) of non zero Hilbert spaces on Z\
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2° a v -measurable field C~ »3l(0 of von Neumann algebras over

on Z, then we can construct canonically:

1° the Hilbert space

2° the von Neumann algebra 3 °f diagonalizable operators which is

isomorphic to L°°(Z^ v) ;

3° the decomposable von Neumann algebra

In this case we call £>(C), 2I(C), ••• a ste/A of £>, 21, ... at C£^ respectively.

In section 4 we shall employ the notation indexed by c G /,

£., v., c, &(c.), a.(c,), §., 3. and a,
instead of the corresponding ones in the above respectively.

§3. Normal Positive Linear Functional on (g

Since P(c) for cEF is the central carrier of PC5 the study of a normal

positive linear functional on (g)SIt is reduced to that on each (g)(c)2Xt and

also on each ®C210 because (8>c2ii and 0(C)S14 are isomorphic. In this

section we shall give a characterization of a normal positive linear func-

tional on an incomplete infinite tensor product ®c§lt.

Throughout this section we shall assume that (e t )Ec and ||ej| = l3

denote e(^) = 0#et for every K C I? and use the same notation (Oe(K) for

on ®A, (g)^lt and 0^.

Lemma 3.1- L^^ ®c2lt ^ «^ incomplete infinite tensor product of §!.,.

// cp is a normal positive linear functional on ®C§14? then for any £>0

there exists Jo<^I such that

for any J(^.I with /oC/5 where #>(/) is the projection of <p onto 0/2-tt-

Proof. Since Lemma clearly holds if ^ = 0, it suffices to consider the
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case where <p=?^Q. Since <p is a normal positive linear functional, we have

i* =1

and 0<Zr=ill*»li2 =Sr=i0^(l) = ^(1)< + °°- For anY £>0 there exists a
positive integer TZ, JQ(^.! and suitable vectors #,-(/o) 6 ®/0§o i — 1, 2, - • - , ^

such that Sr=»+ili*il

/2/8i and !l*,-(/0)

for i — 1, 2, - . - , iri. It follows that

for i =1, 2, • • - , 71, and hence

+

Define 0= E^i^(/0)®e(/0
c)- Let ^(/) and 0(/) be the projections of ̂

and 0 onto ®/2lf respectively. Then we get 0(J)— S?=i^(/)®«(/-/o) and

Thus we have

.(/*)||<e. Q.E.D.

Corollary 3.1. Under the same assumption as that of Lemma 3.1,

the following conditions (i) and (ii) <zr0 equivalent :

(i) #? zs a normal positive linear functional on ®G3lt;

(ii) /or any £>0 ^ere e^fs^s JQ<^.! such that

;f^ /oC/3 where <p(J) is a normal positive linear functional

on
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Proof, (ii) implies (i) is obvious, (i) implies (ii) is clear from the

proof of the last lemma.

Definition 3.1. The family {^(/):/c^/} of normal positive linear

functionals #?(/) on ®/2lt for any non empty /(<£/ is called a protective

system, if /iC/2^/, then the projection of cp(J%) to 0^2^ is

Definition 3.2. A projective system {^(/):/(^/} is t-normal, if

for any s>0 there exists /<§!/ such that

for every

Definition 3.3. Given a finite family of von Neumann algebras 21;

on fei, j = l3 2 5 . . - 3 n. Let <p be a normal positive linear functional on

0?=i2l/ and ^,- its projection to 21,-. Define

Let ^ and 0 be normal positive linear functionals on a von Neumann

algebra 21. We shall say that 0 is absolutely continuous with respect to

(p, if 0>CAT) = 0 implies <f>(N) = 0 for

Lemma 3.2. Let (p be a normal positive linear functional on 0?=i2X;

and cpi its projection to 2lz-. Then <p is absolutely continuous with respect

to <8>7=1^.

Proof. As <p is normal, we have a countable subset TO of (S)7=i§»

such that ^? = 2 *,€E5m^ • Therefore the carrier E (resp. £}) of (p

(resp. ^131/0(0?=! WC/)) is of the form £(®J=12i;, 3K) (resp.

)3 2ft))- Utilizing the carrier £} of 0>y, we have

Since it is clear that E^Ej for y = l, 2, ..., TI, we

know

Since §§n
i=lEi is the carrier of 0/=i<^, the null projection N of 0J=1^,-

is orthogonal to 0J=1-B/ and therefore it is orthogonal to E. Hence N is

also a null projection of <p. Q.E.D.
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Remark 3.1. Given finite normal traces <pi on 21.,- (i = l, 2, ..., 71) and

a normal positive linear functional <p on (§)?=i21z? then there exists a non

negative operator D in L1(0;=12l/5 (8)*=i^«) such that

for .4e<8>*=13l/ by Dye [5]. Such a D is called the Radon -Nikodym deriva-

tive of cp with respec

tion of D and define

tive of cp with respect to ®/=i0>,-. Let D=\AdEx be the spectral resolu-

Then we have

Thus, in particular, if <p is a finite normal trace and <pi is its projection

to 3l/, i = l, 2, ..., ra, then

where J9 is the Radon-Nikodym derivative of <p with respect to ®?=i^f-

Remark 3.2. Let §lz- be a finite von Neumann algebra and cpi a faithful

normal trace on 21,- with ^(1) = 1 for i = l, 2, • • - , TI. Then #> = ®?=i^

is a faithful normal trace on ®J=12l/ and L2(^) = 0"=lJL
2(^z-). Let 0;

and 0 be normal positive linear functional on 31,- and C3)?=i3l* such that

0«(1) = 0(1) = 1 and 0 is absolutely continuous with respect to (8>?=i0i • Then

there are Radon-Nikodym derivatives D=d</)/d(p in Ll(<p\ /?,-=

in L1^-) and T in £2((g)?=10;) with 0(0 = (®7-i0«) (r-T*). Since

we have />= r*(0J=1D/)r in Ll(cp). In particular, if each 0/ is a trace

for £ = 1,2, . . . , T I , then -D=(<8>J=i/)i) | T| 25 and hence, since D1/2 and

are vectors in a Hilbert space L2(<p\ we may consider their
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inner product with respect to <p

CD1'2, <

which is a generalization of the quantity introduced by Araki [JL ; p. 136(T]

and Araki and Woods Q2;p. 166], but which is somewhat different from

ours;

by Remark 3.1, since | T \ 2 is the Radon-Nikodym derivative of 0 with

respect to ®/=i0».

Theorem 3.1. L^ ®°3l* ^^ ^ incomplete infinite tensor product of

von Neumann algebras 3lt with respect to c.

(i) // <p is a normal normalized positive linear functional on (S)°310

then the family {#>(/): /(^ /} of projections (p(J) of <p to ®/2l4 for

is a c-normal projective system with

(*) inf sup
7o /oC/iC/2

(ii) (/" {^(/): /C^/} zs fl ^-normal projective system of normal posi-

tive linear functional s #?(/) °^ ®/Sit ^^ (*), ^/z^^ ^/z^rg exists uniquely

a normalized normal positive linear functional <p on ®cSlt such that <p(J)

is the projection of <p to (g)/^* for each /eg: /.

Proof, (i) Let <p(J) be the projection of <p to 0/31^ Then it is

clear that {<K/) : /^ ^} is a projective system of normal positive linear

functionals #?(/). According to Lemma 3.1, since q> is normal, for any

£>0 there exists /0<<£/ such that

for any J(^I with /0C/« Hence for any K(^J°0 we have

sup

from which we know that {<K/):/<§S/} is c-normal. Moreover for any

/i and /2 with /o C /i C /2 ̂  /, we obtain
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Thus inf /0 sup/oC/lC/2C(<K/2); , 2-

(ii) Let {#>(/) : /^ ^} be a c-normal projective system. Denote a

positive linear functional 0> (7)® ft) «(/<>) by $?/, where ( e jGc and ||eJ! = l.

From our assumption

inf sup c(<K72) ; <8>a, , (g) a.) = o,
/O /oC/lC/2 /I /2-/1

it follows that for any £ > 0 there exists /3 (^ / such that

/4

for any /sC/4C/5<C^- Since {^(/) : /(^ 1} is c-normal, for any £>0

there exists /eJ such that

for any /7($S/ with /eA/?^^. Denote KQ = J^J6. Then for any K

with X"oC^- (i = l, 2)

Thus {^/ : /(^ /} is a Cauchy net in the uniform topology. So the uni-

form limit <2? = lim <pj is a normal positive linear functional satisfying that

the projection of cp to ®/2lt is ^(/). Uniqueness is clear from the fact

that ©% is weakly dense in (g)cSlt. Q.E.D.
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Remark 3.3. In the last theorem the c-normality of {#>(/) : J^S. /}

does not implies the condition (*) as shown in the following example which

is suggested by Kubo. The similar ideas are orally communicated by Araki

from physical points.

Let I=s+, I0 = z+— {0}, §t be a two dimensional Hilbert space and

Slt be the maximal abelian von Neumann subalgebra of 8(^0 for c€lQ.

Then 21, is identified with the diagonal matrix algebra, by choosing a

suitable complete orthonormal base {eti, et2} in §t. Denote the projection

of £>t to the subspace spanned by et}- by EtJ- for j=l or 2. Then 9lt is

generated by {Etl, El2}. Define e, = (!/>/ 2) (e,i + ei2). Put e0 = ®/0et,

§o = ®/S€)* anc* ^lo = ® /jSl* 5 where C0 is an equivalence class which contains

(e^E/o). Then St0 is generated by (®/£,yf)®l(I0-/), ;\ = 1 or 2 for
Define a normalized positive linear functional ^ on ©/214 by

fl/2» if /,=;•;
( : c € /)® ((g)^, )(8)1(^)) -

•^ ( 0 otherwise

where c is an equivalence class containing (et :<:£:/) , F ( j ' t : c£.J)

= (®/^/)®l(^)^S(©o), /C^o, K=IQ-J, j\ or /: = ! or 2 and n is the

cardinal number of /. Then the projection of (p to S10 is o)eQ and to

0^Et is ®K(*>et for ^^^""{0}- Denote by cp(J) the projection of <p to

0/Sli for /(^/. Then {^(/):/(^/} is a c-normal projective system,

since

for any K(^.{Q}°. However, if OG/iC/2 and TTC is the cardinal number

of /2-/i, then ||^(/2)-^(/1)(g)^(/2-/1)i|-:2(l-2-w). Thus for any

sup
/oC/iC/2

Moreover the c-normality of {^(/) : /(^ /} does not follow from the

condition (*). This is clear from the following example.

Utilizing the notations in the above example and define 0t =

which is a normalized positive linear functional on S(§t). Define 0(/) =

for /(g!/o. Then over <g>/58(&) the condition (*) holds for all
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although {0(/): /(gl/o} is not c-normal.

Remark 3.4. Let q> be a normal positive linear functional on ®€Slt

with ||^|| = 1. Then for any £>0 there exists Jo^I such that

for any /,-<^/ (j' = l, 2) with /,-n/y = 0 (i^y and i,j = Q, 1, 2), where

^(/O e (g)A§lt and Afi = A(Ji)^(JCi) (* = 1, 2). Really, by the last theo-

rem, for any £>0 there exists /0(<C/ such that

for every K(^.I with Kr\J 0 = 0. Thus we obtain that

Corollary 3.2. Let <p be a normal positive linear functional on ®°Slt
with ||^|| = 1 and { < p ( J ) : J ( ^ I } a projective system corresponding to (p.

If (&At is an element of ®§lt obtained in Theorem 3.2 of \JcT\ and

for some (e t)Ec with ||ej| = l, then

Proof. Since ®^4t is non zero, there is a constant M>1 with

for any /(^ /. In the case where (p(§§'A^ is non zero, let 2e be smaller

than its absolute value. By Lemma 3.1 we may select IQ(^.! such that
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for every /(^ / with /0 C /• Hence we have

where A(J) = ®jAt and A(Jc) = <gfj<At. Thus

From this we find that for £ > 0 in the above there exists /i (<C / with

/o C /i such that

<£

for every /(^ / with /i C /• Consequently

Next consider the case where ^(0C^,) = 0. According to Corollary 4.1 in

|̂ 6], we have coe(i->((S)cAL') = ~n.(i>el(Al). Since TKA.e,, et~)=^=Q for some

(e,)£c, we have ^(/jC&^J^O and hence for any £>0 there exists

Jo C I such that

(**) K(

for every /(cC Z" with /0 C /• Thus by the above (*) we obtain

Q.E.D

Remark 3.5. This corollary tells us that if |M| = 1 and (g)c^,

then

lim ^(/C)U(/C))-1.
/«/

Indeed, by Theorem 3.1 there exists Ji^.1 such that
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for K(^I with Kr^Ji = $. If ®c^t^0, then there exists (e.)6c such

that ||ej| = l and IlC^e,, e t)=^0 and hence by the formula (**) we have

for /(§!/ with /oC/- Therefore by Corollary 3.2, there exists /2(^/ with

such that

and

i p(/0 W)) - <P(K) (A(K» \<e

for every /(^ / with JzdJ and for some K(^J°. Thus we get

Corollary 3.3. G^f^^ « normal positive linear functional cp on

^(l) = ^(P(c))? anJ a projective system {<p(J)\ J(^I} corresponding

to the restriction <p \ (g)c3lt . Let G and G(J) be the carrier of (p and (p(J)

respectively. Denote G/=G(/)(g)JE'(((g)/,2ti)
/
? e(/c)) and G> = G(/)(g)l(/c).

Then

<; lim G7P(c) = lim G>P(c).

Proof. It is easily seen that {G}:/(^/} is a monotone decreasing

Cauchy net in the weak topology, whose limit is a projection GQ . Hence

for any £>0 and for any x = (®Klxt)<g)e(Kl') and y = (®

with Ki^I (&' = 1, 2) there exists IQ^.! such that

for any K(^ I with /0C^- Denote Ii = Kl^JK2^J IQ. Then for any

with /iC/ we have Gjx = GjX and Gjy—G'jj^ and hence for any

with
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Since the subset of vectors of the above form is total in 00©*? the similar

evaluation holds for every vectors in (S)c£>t , which shows that {GjPc : /(cS /}

and {GjPc: J(^I} have the same limit, and hence so do {G/P(c): J(^I}

and {GjP(c); /<§!/}. Inequality is obvious from G<^Gj by Lemma 3.2.

Q.E.D.

If <p is of the form of tensor product, then the carrier is calculated

in Corollary 4.2 in [J5], which shows that G = limjGjP(c). In general, it

is not obvious whether equality holds or not.

Remark 3.6. Even if a uniformly convergent sequence or net

{<px : /I 6 A} of normal positive linear functionals <px, &&A with #>x(l) — 1

is given, we cannot necessarily conclude that the carrier of the limit

functional may be approximated by the carriers of (p^ A £E A in the weak

topology. Indeed, let § be a two-dimensional Hilbert space and {el3 e2}

its orthonormal base. Define <p = a)ei and <ps = (l — s)a)ei + ea)e2 for 0<£<1.

Then (p£ and cp are normal positive linear functionals on SOg) such that

#?£(1) = ^(1) = 1, and their carriers are the identity 1 and the projection

E onto {ae1;a£C} respectively. Hence we have ((1 — £T)e2, 62) = !, while

\\(p-y>6\\ = 2e.

Corollary 3.4. Let 214 be a finite factor on §t of at least two

dimension for c G /, each of which has the coupling constant Ct with

2max{l — Ct, 0}< + oo. Let # tG§ t be a characteristic vector of a normal

trace (pt on 3lt with (pL(l} = 1. Then (g)(c)Slt is a finite factor if and only

if P(f) «8>*,) = <8>*,.

Proof. By Theorem 4.2 and Corollary 4.2 in Q6] §§(pt is a normal

trace on (g)Sl4 whose carrier is P(c). Hence (g)(c)2it is a finite factor, if

On the contrary, if 0(c/)2lt is a finite factor, then there is a normal

trace <p on <g)2l, with ^(P(cO) = ^(l) = l. Let (e,)6c7 and 0 be the

restriction of ^ to 0c'3tt- Then the family {0(/):/<^/} of projections

of 0 to ®/21t is a projective system and for any s>0 there exists

such that
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for any J(^.I with /0C/« Since 0(/) is a normal trace on C§)/2lt, we

have <I)(J) = (£)j(pL and hence

Krwo - 0((®^)(S>((S)c'i)) - n P.U.)
K K Kc K

for any ^(g!/ and ^4 te3l t. Thus (p = §§(pt by Theorem 4.2 in [6]. We

conclude that P(c') = P(c). Q.E.D.

As we know the circumstances of the finite part of a complete infinite

tensor product of finite factors in the last corollary, we can develop our

study in more detail in the following section.

§4. Decomposition of a Finite Normal Trace on Some

If 31 and 31.' are finite, then the coupling operator C of 3X satisfies

that 0 < C(C) < + °° v -locally almost everywhere on Z. In case where 31

is finite and 2T is not finite, decompose 21' into a finite WG and a properly

infinite 21{_G with G<E(3ln3l'X and define C=CG on £§ and + oo on

(1— G)§ where CG is the coupling operator of Sic, which we also call the

coupling operator of 31.

Let Z be a locally compact space and let v and # be positive Radon

measures on Z such that ju is absolutely continuous with respect to y,

that is, d{j.=fdv by a locally v-integrable f with 0<J/(C)< + °° for

C<EZ. Let F={CeZ:/(C)>0>. Then F is v-measurable and the restric-

tions IJL | Y and v | Y of /* and v to Y are equivalent. Thus

and
./ .Z

are isomorphic,

are isomorphic and the last one is a subspace of
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Therefore an isomorphism of

onto

maps a square /^-integrable field £->#(O to a square v-integrable field

C->V/(C) #(O- Let C—^CO denote a /^-measurable field of operators.

Define B(Q = A(£) for C £ Y and 5(0 = 0 for CeZ-T. Then C-»5(O

on F is ju \ F-measurable and hence it is v | F-measurable. Since Y is

y-measurable, C->1?(O is a v-measurable field on Z. Thus for any ju-

measurable field C~ *^(O we can obtain a v-measurable field C-».B(O such

that

Consequently we may consider the set of ^-measurable fields of operators

is contained in the set of v -measurable fields of operators by the modifica-

tion of a ju-null set.

Lemma 4.1. Let Z be a locally compact space 3 v and fj. positive

Radon measures on Z such that ju. is absolutely continuous with respect to

and £>—*(p$ a field of normal traces* If the field C~^^r ^s ^ -measurable,

then it is ^.-measurable.

Proof. If C~>^4(C) is a /^-measurable field of operators, then there is

a v -measurable field C— >.B(O such that

By the hypothesis that C-><^(j5(O) is v-measurable, we have that it is

/^-measurable. Since Y is /^-measurable, the field C~^r(^(O) is &-

measurable, which implies the desired result. Q.E.D.

In the following, the notations Zt, vt, C, ^.(C,)5 2UO, §o 3, and Et

are used as in the introduction and a series of lemmas is stated, assuming



von Neumann Algebras II 275

some of the following seven conditions:

(Al) I is countable;

(A2) ZL is compact;

(A3) ZL satisfies the second axiom of countability;

(A4) ||v,!| = l;

(A5) 21. is finite;

(A6) 3* is tne center of 21,; and

(A7) Lli(l-C t)
+ | |< + °o5 where CL is the coupling operator of 21..

Among these conditions, (Al) is needed to construct measurable fields

of an incomplete infinite tensor product of Hilbert spaces and of von

Neumann algebras, because the method we will employ in this paper is

developed under the hypothesis that each stalk is separable. (A2) is needed

to make Z=HZt locally compact, because the reduction theory on a com-

pletely regular space which is not locally compact is not yet prepared.

From (A3) and (A5), we know that stalks of a von Neumann algebra are

finite locally almost everywhere on Z. By (A4) we can avoid the com-

plexity of the product measure ®v t. The boundedness of measure, (A4),

implies the countable decomposability of the von Neumann algebra. The

countable decomposability also follows from (A3). (A6) is needed to ensure

the factor decompositions. (A7) is the condition that the infinite tensor

product of finite normal traces on some stalks of finite von Neumann

algebras can be defined on the infinite tensor product of respective stalks

of von Neumann algebras.

The following notations are sometimes used:

Let A be the set of all functions i defined on / and having the

values in #' such that j(0~ 0 on /—/ with J(^.L Denote Z—^IZ, and

Z(/) = II/Zt for JCI> Let ty be the set of all continuous functions of the

form g=((S)jgi}®l(Jc) defined on a compact space Z for every /(<£/,

where g-tEC(Z.) and l(/c) is a constant 1 function on Z(/c). Then the

^-algebra C0(Z) generated algebraically by ^3 is uniformly dense in C(Z)

by the Stone-Weierstrass theorem.

Let C*~>§*(C*) be a ^-measurable field of Hilbert spaces on Zt and let

©t be a vector subspace of IIz^CO defining the v.-measurable field and
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for every r £E /. The subset {#«-(t),t; i£A} of ©t is a fundamental sequence

of ^-measurable field C-^co.XO of vectors in €>£(C)5 ^or wnicn we

may assume that ||^j(0.*(OII = l f°r all Ct by multiplying a suitable v4-

measurable function. Denote by c or c(C) for C = (C.) in ^ an equivalence

class of Co-sequences for £>t's and §t(O's for c £ / respectively. Sup-

pose O0 j t)£c and Oo,t(O)Gc(C). Put #,-,. = #,-(o,o *i,*(C.) = #i(o,*(C.),

(®aO/ = (S>#*,* and ((S^XC) = ®^*,t(C) in the following of this paper.

Then C = (C.)-+®ca:)€>.(C.) is a field of Hilbert spaces on Z and C->(®*XO

is a field of vectors on Z such that

is 0y4-measurable and the set of (® ^)«(C) with i G yl forms a total

subset in <g)c(n£>t(Ct). Denote by (g)c©t the subset of ^(C) in IIz®c(r)&(C.)

such that (^(C), (®^)/(C)) is ®vt -measurable for all i€A. Then, utilizing

this ®c@t, we can obtain a 0v4-nieasurable field

of Hilbert spaces on Z.

Lemma 4.2. Assume (Al), (A2) «^J (A4). // O0,4)£<:
c§t ^5 isomorphic to

Proof. As (^ f , t )€c and

re
^i f*=\ ^if.(C«)^*(C«),

J Z i

C-^-.XC) is v .-measurable and (^/,t(C*)) £c(C). Since the set of all finite
linear combinations of gtxitt for every gt£C(Zt) and for every iG^i is

dense in §t for every * £ I, it follows that the set of all finite linear

combinations on g(®x)i = $$gtXiit for every g = (S)gt in ^5 and for every

is dense in (g)c£>t. On the other hand, if g = &)gl belongs to ^S,
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then g(0(®*)<(O = ®£.(C.)*/,.(C,) and C->#(C) (®*)<(O is ®v,-measur-

able. Since ^3 is total in C(Z), the set of all finite linear combinations

of these fields C—^CO (®#)i(O f°r g"^^ and J '^^ is a dense linear

subset of

.) (C).

Since for any gy = ® gy, , € 5p

v.) (C)

.) (O

®v.) (O,

the similar equality holds for any gi €E C0(Z),

.) (O-

It follows that the linear mapping which transforms SigvC&^X' to the field

C-^SigiCO (0^)i(C) is extended to an isometric linear mapping 6 of

<8)c§. onto

t) (C). Q.E.D.

Through this isomorphism ^ we shall identify ®c§, and

v.) (O
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in the following.

Remark 4.1. In the last lemma it should be noted that the assump-

tion (A2) is not necessary if / is finite. By the above identification, if

with ||#,(O|| = lj then (g)#, is considered to be equal to

>v.) (O-

If a field C->-t>XC) of Hilbert spaces is given, we shall denote the

identity on &(C.) by 1(Q. Let /C /• H C.->^.(C,) with ^.(O € 8(&(C,))

is a v .-measurable field of operators on ZL and ^XCO^lCCJ for c£J9 then

is a field of operators on Z for <8)&(O- If C = (C.)->-z(C) with

*(C) € <8>c(r)&(O is a (g)vt-measurable field, then

(ACMC), ((8)^),<O) = a(C), (8)^.(C.)*^/f4(C,))

is (g)v,-measurable for all C = (C.)~>((8)^)f(C) with ieA Hence C

= ®c(r)^t(C4) is a ®v .-measurable field of operators on Z.

Let

Then the field Cr-^XO is v.-measurable and ^.-essentially bounded on

Z0 and hence £—»^/(C) is also ®v.-measurable and ®vt-essentially

bounded for /( /. If

then

for any f^ t G C(Z4) and hence
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Here we denote Aj—^At with AL — \ for c£j. Then by Lemma 4.2

y<-,.*i,.

,(/,-..**.,)

,)(0

v.) (C)

x

for any /,• = 0/», * in ^P- Similar calculation holds for every element in

Co(Z) instead of in ^? by a slight modification of notations. Consequently
the following lemma is obtained.

Lemma 4.3. //

or * G 1,

(8)c^.= J®®c(0^,(Od((8)O (C)

for C = (C4)€Z, wAere ^t = l cwd ̂ t(O = l /or ^/ fl«d /eg:/.

From this lemma we have the following.

Lemma 4.4. Assume (Al), (A2)3 (A3) «;?J (A4). //

/or c E /,
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for C = (C.)6Z.

Proof. Since

there is a sequence Ct->^i(*),*(£*) of v .-measurable field of operators for

i€.A such that 3lt(C) is the von Neumann algebra generated by the count-

able set {Ai(t)tt(£d:i€A} v,-almost everywhere on Zt. Define A0>l = lt

and ^o,*(C,) = l(C,). Denote Ai}l = Ai(l^t and ^fi(C.) = ^«(0.«(C.) in the

following. According to Lemma 4.3, if

for * G / and i 6 ^i, then

for C = (C,), in which we denote by ^ = (g)c^jt and also ^(C) = <

Since ^i is countable set by (Al), (g)c(r)3it(O is generated by the countable

set {^-(C) : ̂  6 ^(} 0vt-almost everywhere on Z and hence

is a 0^t-measurable field of von Neumann algebras. Since ®cSIt contains

, we have that

for C = (C)^^ According to (A3), we have

Since in the previous Lemmas 4.2 and 4.3, we have not use the assump-

tion (A5), repeating the similar arguments as above, we can conclude that

Here we apply the results on the commutation theorem in an incomplete
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infinite tensor product Q3; p. 94], then we have (^c^il)
f = ̂ )c^ti. Again

from (Al) and (A3), we get

.) (C))'. Q.E.D.

Lemma 4.5. L££ Y be a compact Hausdorff space, ju a positive

Radon measure on Y with ||/*|] = 1, C->£>(C) a ^-measurable field of Hilbert

spaces on F, C~ ̂ (C) a M-measurable field of von Neumann algebras on

on F, C—^r <z yfe/d of normal traces on Sl(C) on F,

310 fl weakly dense sub-* -algebra of SI. Denote the decomposable

operator A in 21 fry

^5 ^-measurable for every

measurable. Further, if there is a normal trace tp on SI

/or every A £ §1.

Proof. As SI is countably decomposable, if ^f € SI, then by the density

theorem of Kaplansky, there is a sequence {^:i = l,2, • • • } in S10 such

that ^(f converges strongly to A as i tends +00 and ||^,-[|<S||^||. Since

each A{ is decomposable, say

there exists a subsequence {Aijij—l, 2, • • • } satisfying that there is a

null set N such that M/XOIISSMII and ^/y(C) converges strongly to

as y tends to + °° for £^Z—N. Hence there is /*-null set N' with
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such that ^(^XO) converges to 0>f(AO) for £€Z-Nf. This

tells us that a sequence of /^-measurable functions £— >$?f(^XO) converges

/^-almost everywhere, boundedly to some function C~>^?r(^(C))5 which is

/^-measurable. Hence by the bounded convergence theorem of Lebesgue

as y tends to +00. On the other hand, (p(Aij) converges to (p(A\ hence

the desired equality is obtained. Q.E.D.

Lemma 4,6. Assume (A2), (A3), (A5), (A6) and /<§: /.

(i) £/z£r£ is a ®/v .-measurable field C = (C)— K®/0)r °/ normal

traces with ||((8)/0)rll = l §§jVL-almost everywhere on Z(/); <znd

(ii) £/z£ necessary and sufficient condition that <p is a normal trace

on (g)/2lt «;#/& 0>(1) = 13 zs ^/?(2f ^r^ is a §§jVL-integrable function f on

Z(/) iwYA i|/|!i = l 5^c/x that

By (A3), (A5) and (A6), there is a v.-null set TV, such that

§It(CO is a finite factor for £t£Zt — Nt and for £€/ . Hence a decomposi-

tion obtained in Lemma 4.4,

is a factor decomposition. Since SIt(CO is a finite factor for

there is a canonical trace 0^ on 2lt(Cj and hence there is a canonical trace

(®/<*)r = ®/^r, on a finite factor (g)72I.t(C4) for C = (CO € Z0 = Hj(ZL -Nt) and

«8)/vi)(Z0) = l. Define «8>/0)t = 0 for C^Z(/)-Z0. Then C->(®/0)f

is a field of normal traces on Z(J). On the other hand, <p is a normal

trace on 0/SIt with $?(!) = 1, then by (A3) there exists a ^/v.-measurable

field C"^^^ of normal traces on (§)/3l4(C) such that

and ^f is a finite normal trace for ££Z0 — N with (<8>/v,) (7V) = 0. Since



von Neumann Algebras II 283

is a finite factor for CGZ0 , we have ^ = ^(l)(®/0)r for

CeZ0-JV. Define /(C) = 0>r(l).
 Then /(O is ®/ ^-measurable. Since

®/2lt is countably decomposable, we may choose a finite faithful normal trace

as <p and hence C~ ̂ t *s a CS)/^ -measurable field of finite faithful normal

traces. Therefore C~ >^f(l) is non zero ®yt-almost everywhere. Define

f ^(l)-1 if p r(l)=£0 and

[ 0 otherwise.

Then g(C) is ®/vt -measurable. Thus C-^gCO^r is (§)/)Vmeasurable and

therefore C—K<S)/0)r i§ C8D /^-measurable. Q.E.D.

Remark 4.2. Denote by v the measure defined by

Then a normal trace ^ with | j 0> 1 1 = 1 and a probability measure v have

a one to one correspondence. Moreover, the field C^

measurable for every y which is associated with <p on

If {v(/) : /^ 1} is a projective system on Z = JJZt of probability

measures v(/) on Z(J) = YLfZt then it is well known that there exists a

unique probability measure v on Z whose projection onto Z(/) is v(/) for

Lemma 4.7. Assume (A2), (A3), (A5) and (A6). G£t>ew <2 normal

trace <p on (8)cSlt w;zY^ ^(1) = 1. // v(/) zs « probability measure on Z(/)

corresponding to the projection (p(J) of (p to ®/3lt «s Remark 4.2

/6>r C = (C)^^(/)5 ^^« {K/)« J^I} is a projective system of probability

measures and so there is a probability measure v on Z such that

v — lim v(/).

Proo/. Suppose JCK(^L If -4€(g)/2l, and le(8)^_/Slt such that

/)(O and l-
Z(K-J)

then by Lemma 4.3
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/)<8>v(j£:-/)) (c,
)Z(K)

By the definition of v

Z(K) J

where C = (C.)6Z(/) and y = (7]l)€Z(K-J). Further

) (C).

Combining the last two equalities, we find that v(/) is the projection of

v(JO by the arbitrariness of Ae®^. Q.E.D.

Lemma 4.8. Assume (A2), (A3), (A4), (A5) a»rf (A6). Tto there

exists a ®v ,-integrable function f such that dv=fd(§§v?) on Z, therefore

v is absolutely continuous with respect to (S>v.»

Proof. According to Remark 4.2 there is a (g)/yt-integrable function

/(/) such that dv(/)=/(/X®/J>.) on Z(/) for /C/. We define

y/=K/)(8>(®/cy*)« Let S3(/) be the tf-algebra of ®/v4-measurable sets
and % the set of £(/) X Z(/c) for every £(/) e »(/). Then {SB7: /^ /}

is a monotone increasing net of (T-algebra which is contained in the ff-

algebra S3 of ®vt-measurable sets, when / tends to / by the order of set

inclusion. Denote by E{>\%$j} the conditional expectation with respect to

SB/ for /C/. Define fj=f(J)®l(Jc), where l(/c) is a constant 1 func-
tion on Z(/c). Then {//: /(^/} is a martingale with respect to (g)vt,

because E{fx: |S3/} — // except on 0vt-null set whenever J(^K(^.L It

follows from the convergence theorem of martingale [10] that there is a

&yt-integrable function / on Z such that // converges to / in the Z^-mean

and ||/||i = l due to ||//||i = l. Here we denote dju=fd(®vt). Then #

is a Radon measure on Z with ||/*|| = 1. Let ^3 be the union of all sets

of functions # = #(/)(g)l(/c) for #(/) E C(Z(/)) when / runs over /(eg/.

Then, by means of the Stone- Weierstrass theorem, ^5 is uniformly dense

in C(Z). From this we know that d#=fd(®v^ and v = lim v(/) coincide

on ^5 and hence fi. = v on C(Z). Q.E.D.

It is immediate from this lemma that ®vt-measurability implies
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y-measurability.

Let Y be a compact Hausdorff space, ju. a positive Radon measure on

Y whose carrier is F, C~^§(C) a /^-measurable field of non null Hilbert

spaces on F,

a finite decomposable von Neumann algebra on § with the coupling

operator C and 3 the algebra of diagonalizable operators identified with

£°°(F, ft). Suppose that the center of 21 is 3 anc* ^ satisfies the second

axiom of countability. Then it is known that for any x in § with

we have

and

Denote the canonical I) -mapping on 21 to 3 by $. Let C~^^r be a ^~

measurable field of canonical normal traces on 2l(O on F.

Since 21 is finite and 3 is tne center of 21, there is a /Miull set TV

such that 21 (C) is a finite factor for each C£ Y—N. Hence the canonical

ty -mapping $r on 2X(C) is a scalar valued function with <p%(E (&(£)',

y, ^(C)))) for CeF-TV and hence 0r(£(2I(C)', ^(

)A, a(C))) for Ce y-M Thus we have

Similarly if 2T is finite, then there is a /Miull set N' such that a(C)7 is

finite C £ Y—N'. Denoting the canonical t| -mappings on 2I/ and 2l(C)/ by

0' and $£ for Ce Y-N', we have
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^
Since 3 is identified with £°°(F, /*), C is an element 3+, that is, a non

negative /^-measurable function on F, which may be written formally in

the form;

Consequently the function C->#f(E(2l(C)'5 #(C))) coincides with the func-

tion C-*C(C)0rGE(Sl(O, *(O)) except a /Miull set NQ with NvN'CN0,

that is, C(C) is the coupling constant of §X(C) for each C £ F— JV"0 , which

is written in the form;

When SI7 is not finite, it is decomposed into a finite 31G
 and a properly

infinite SI(_G by the projection G in EAST. CG, the coupling operator of

SIG is similarly treated as above on G§. On the other hand CI-G—-^°°

on (1 — G)£> and

where

Since SIi_c is properly infinite, there is a /^-null set NI such that Sl

is a properly infinite factor for £€Y—Ni. Hence we can define the

coupling operator of SI(C) by C(C)= + °° for £€Y—Ni. Consequently,

C(C) is the coupling constant /^-almost everywhere on F.

By virtue of these considerations we have the following Lemma.

Lemma 4.9. Assume (Al), (A2), (A3), (A4), (A6) and (A7). If

(<$c SI, /2<zs a non trivial finite part for c E /", then there is a normal trace

01 on ®c(f)2IXO for §§vt-almost everywhere on Z such that for every

probability measure v associated with a normal trace <p on 0c§It with

11^11 = 1, 0J- is a canonical trace on ®c(^2lt(O for v-almost everywhere on

Z.
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Proof. By (A3), (A5) and (A6), there is a ivnull set N,, such that
§tt(CO is a finite factor for each £ L £ Z L — Nt. Hence there is a canonical

trace 0^ on 314(O for £t€.Zt — Nt. According to the above arguments,

there is a v t-null set N[ with NLCN( such that Ct(C) is the coupling

constant of $!,(C) for £teZt-N't. Since (l-C4)T(C,) = max{l-Ct(O, 0}
iValmost everywhere and (A7), there is a ivnull set N" with N't(^N?

such that max {1 - Ct(CJ, 0}^||(l--Ct)
+|| for ^eZ.-Nf. Therefore we

have

2>ax{l-C,(C,), 0}^

for any C^CC.) in Z0 = Yl(Z, — N"}, and hence a normal trace 0f =

on (8>3l,(C.) can be denned for C6Z0 and ((g)v() (Z0) = l.

Let (c.)€c,

l|e t(C)ll = l and (et(O)^c(C). Let A;t(CO be a characteristic vector of 0^-{

and c(C)' a characteristic class with (^t(CO) Gc(C)'. Then by Corollary

3.4, the carrier of 0r is majorated by P(c(C)')- According to Theorem

3.1, for any e>0 there exists J(^I such that

for every K<^Je. Denote SI(Je:) = (8)^Sl, and Sl(^) (C) = <8>jr3l,(C.) for
any Jf(^ /. Since by (A3), Remark 4.1 and Lemma 4.4

(C)',

we have |?(JQ (£(S((^)', e(£)))-l|<e and

(C)', e(^) (C)))dv(^) (C),
K

and hence there is a y(K) -measurable set MCZ(K) such that
and

A
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for £€Z(K) — M. For any £>0, put £,- = £2/4* for f = l, 2, • ••. Then for

these e/ there is Ji^Ll such that /zf/ and

where Ki = Ji+i — //. Thus for every i there is a v(jK,-) -measurable

such that !<£,) (Mf-)<V~eT and

ef-

for C€Z(£fOo-Mf-, where Z(Ki)Q = UKt(Z.-Nf). Denote /=/i and
c-^). Then M(/c) is (8)/cvt-measurable5

and

for C6Z(/c)o-M(/c)? where Z(/c)o = nXZt-JVf). Consequently by

Corollary 4.4 in [6] we have <8>e,(C.) = P(c(C)0 (®c*(O), that is,

P(c(C))-P(c(OO for CeZo-M, where M=V7f=i^X^(^D is v-measur-

able. On the other hand, since <g)c(r)2UC.) and (g)(c(f))Sl4(CO is isomorphic,

we may consider 0r for C^Z0 to be a normal trace on ®c(r)2lXO by the

restriction, which we denote by <[)\. Owing to the arbitrariness of e we

may select a monotone decreasing sequence of v -measurable sets MCZ0

when s tends to 0. Denote the limit set by M0. Then y(M0)=
:0 and

0c
r is a canonical trace on <g)c(r)3lt(C.) for C^Z0 — M0. Q.E.D.

Lemma 4.10. ^ss^mg (Al), (A2), (A3), (A4), (A5), (A6) and (A7).

// ^ /s a normal trace on (g)cSlt with ||^|| = 1 and v its associated pro-

bability measure on Z, then the field £-*(/>l of normal traces in the last

lemma is v -measurable and

Proof. If A e <g)/Sl, for /(^ / such that
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A={

then, by Lemma 4.6, C~K(S>/0MXO) is v(/) -measurable. Let 1(C(/C))

be the identities in (g^PSUO, where C(*0 = (C.: *<=^) for any

Denote ^/(C) = ^(C(/))®1(C(/C))- Then the field

is y-measurable on Z. Thus, by Lemmas 4.5 and 4.8, we find that C

is v- measurable and there is a normal trace 0 on (§)C3I4 such that

Since 0 is a normal trace on 0c§lt with 0(1) = 1, and ^(/) = 0(/) for

all /C/, it follows Theorem 3.1 that p = 0. Q.E.D.

If Pc and Pc' for c, cf € JT have the same central carrier projection,

then ®C314 and ®C/314 are isomorphic. But if their carriers are different,

then (g)c3l4 and (S^* are not always isomorphic. This situation becomes

much clear from the following lemma.

Lemma 4.11. Assume (A2), (A3), (A4), (A5), (A6) and (A7).

Given normal traces <p on (g)c§It and 0 on ®C/SI4 with ^(1) = 0(1) = 1,

which are associated with probability measures v and JUL as in Lemma 4.7

respectively. If P(c)P(c') = 05 then v and ju, are singular.

Proof. Let E and F be the carriers of <p and 0 such that

and F=

It follows from EF=Q that E(QF(Q = Q 0vt-almost everywhere on Z.

Denote by A and 5 the sets of CeZ with £(0 = 1(0 and F(C) = 1(C)

respectively. Then ^ and B are (g)vt -measurable and OS>O (Ar\B}~ 0.

According to the last lemma

1
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hence the carrier of v is contained in A y-almost everywhere. Denote by

A the carrier of v and define

Then we have

and therefore E<^Ef
3 that is, ^4 is y-almost everywhere contained in A.

Hence by Lemma 4.8, AQA is a y-null set and similarly BQBr is a

/Miull set, where B' is the carrier of jU. Since (®vt) (Ar\B) = Q and

Lemma 4.8, we have v(^4) = l and #(A) = Q, moreover v(B — A) = Q and

#(B-A) = 1. Q.E.D.

Lemma 4.12. Assume (Al), (A2), (A3), (A4), (A5), (A6) and (A7).

77&0w there is a one and only one central projection P(c) in the set of all

P(c')'s for c'G/"* satisfying thai

(i) (g)(c)a,

(ii) i/

there exists a ^}P .-measurable field £— >0r o/ normal traces on

O ^^ ^ 5^c/2 /Afl/ I l 0 f l | = 1 ®^ \-almost everywhere; and

(iii) // ^ zs a normal trace on 0c2Ii with ^(1) = 1 «^J v « probability

measure on Z associated with cp, then &v ^measurable field C~~>0r ^ ^^

v -measurable.

Proof, (i) By (A4), 21, is countably decomposable for each c E /.

Hence there is a faithful normal trace cpL on 2lt such that

e

with ||^rj| = l vt-almost everywhere on ZL. Since

^S!!(l~O+il< + °°3 we have a normal trace (g)^t on (g)2lt by Theorem

4.2 in Q6]. Then there is a central P(c) such that the carrier of
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is P(c) by Corollary 4.2 in JJT]. If there is another P(c') which satisfies

that a non trivial part of (g)(c/)2I.t is finite, then a probability measure

associated with a non zero finite normal trace on ®c'2lt exists and is

absolutely continuous with respect to ®vt by Lemma 4.8, but it is singular

to 0vt by Lemma 4.11, which is a contradiction. Thus we obtain the

uniqueness of P(c).

(ii) Define a finite normal trace on SI, by

r
>=\

J

Then <pL is faithful and (pt(l) = l. Applying the same arguments as

Lemma 4.8, we can associate ®(pt with ®v t. Then by Lemma 4.9 we

have a (g)v.-measurable field C->0r of normal traces on (8)c(r)3I*(O on %

such that ||0g-|| = l 0*Valmost everywhere.

(iii) It is immediate from Lemma 4.1. Q.E.D.

The main result is summarized already as Theorem in Section 1.
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