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Uniform Estimates of Elementary Solutions
of First Order Systems of Partial
Differential Equations
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1. Introduction

The asymptotic behavior for |x|—>oco of solutions of partial differen-
tial equations with constant coefficients has been studied by V.V. Grusin
[1], W. Littman [37], B.R. Vainberg [87], etc (see also C. H. Wilcox [9]
and J.R. Schulenberger [ 7]). This paper is concerned with the asymptotic
behavior of elementary solutions for a certain class of first order systems
with constant coefficients. We shall give some estimates which are uni-
form with respect to a complex parameter taking on values in a certain

region of the complex plane.’

Assumptions and results. The systems which we shall consider

are of the form

D (_1_ 3 A,.L—11>v(x)=g(x), xER".
i j=1 0x;

Here the A; are NX N constant matrices, I is the unit matrix of order

N, 2 is a complex parameter, and v(x) and g(x) are column vectors with

N components. The characteristic polynomial associated with (1) is

2) 4(¢; H=det AL 3 £,4)
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1) The author already remarked in [§] that the results of this paper can be proved
by the same method as for the isotropic case in [4].
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where £=(&i, ---, &,) denotes a generic point of the real dual space 8" of
the n-dimensional euclidean space R”.
Now we state precisely the assumptions that we impose on the

operator A—lI=—1_—Zn]A 9 — AL

i
T j=1 axj
i) The N roots (&) of 4(é; 2)=0 are real and have constant multi-
plicity for all real £€5=0: i.e.,

(3) A(¢; z>=k1'j1 (A= 24(8)%, an++am=N

where we label 1,(€) in decreasing order:
(4) A1(8)>22(8) >+ > ()

for all real £€=~0.

ii) A root 2;(£) vanishes for some real £=~0 only if it is identically

zero.

iii) The matrix A(S)ZiIEjAJ- is diagonalizable for any &=-0.%

iv) The [m/2] normal Jsurfaces Sy=1{&; 2(&)=1}, k=1, ..., [m/2]% are

non-singular and their Gaussian or total curvatures K;(¢) do not vanish

anywhere. Further, for any unit vector @ there exists only a finite

number of points on S; at which the normal to S; is parallel to 6.
From i), the matrix A(£)—A471 is non-singular for each non-real A.

Hence (A(&)—AI)~! has the inverse Fourier transform
) Ex; l):(Zﬂ:)’”Sﬂnexp{i(x, £} (A(§)— A1) dé

in the distribution sense. E(x; 4) is an elementary solution of the differ-
ential operator A—A7 with non real 1: (A—AI)E(x; A))=0(x)1 where
0(x) is the Dirac O-distribution. Note that this elementary solution
E(x;2) is the resolvent kernel of the operator A—AI in L*(R") with

domain

2) If the matrices 4;, j=1, ---, m are hermitian, a simple criterion which ensures the
conditions i) and ii) ( iii) is automatically satisfied) is found by Wilcox [9]. He
calls such systems “uniformly propagative”.

3) If [/ is a real number, [/] denotes the greatest integer not exceeding [. See also
the relation (28).
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D(A—2I)={v;v and (4—2A1)v are in L*(R")}.
Our aim is to establish the following theorem:

Theorem. Under the assumptions (i)-(iv) the elementary solution
E(x; 2) has the following properties:

1° E(x; ) is an analytic function of (x, X)) in (R*—{0}) x (C—R).

2° For every multi-index v and for every (x,0)e (R"—{0})x (R
—{0}), the limits

6) E®(x; 6i—i0)=lim<—a—> E(x; 0+ i)
e—0+\ 0x
exist, where the convergeice is uniform in every compact set of (R"— {0}).

Furthermore E®)(x ;0 +i0) are continuous functions of (x, d) in (R"— {0})
% (R—{0}).

3° Let 0° be an arbitrary fixed real number and 0. If we choose
0>0 and €° >0 sufficiently small, then E)(x; 0+ ie) behave for d¢& (6°—0,
0°+06) and e€[0, &%) like

@) EW(x;0+ie)=ef(x,0,8)| x| " VE2L0(|x]| "2

as|x|—oo, where et(x,0,e)" are bounded continuous functions of (%,0,€)
in {(x,0,8); x| >1,]0—0°]| <0, 0<e<e%.

4° EY(x;0-+ic) are Holder comtinuwous in 0, and we have the
following estimates uniformly in 0,0 € (6°—0,0°+0) and e [0, €°).
(8) |EC)(x; 0+ie) —EM(x; 0 +ie)| <const|x| " 2% g—g'|”
where v is any constant such that 0<y<1, and the ‘const’ is independent
of x(|x|>1), &, 0 and o’.

The property 1° is well-known. 2° and 3° are proved in [4] and 4°
in Mochizuki [ 6 for the isotropic case: A,(&)=rt:|€l, k=1, ..., m. Our

proof for this general case can be given along same lines as for the

isotropic case.”

4) As to the explicit formulas, see the formulas (38)-(40).

5) Wilcox [9] also proved 2° and partially 3° (non uniform estimate). His method
is to reduce the problem to higher order single operator’s one (Grusin-Littman-
Vainberg case). The author’s idea in [4] is to reduce the problem to one dimen-
sional problem by making use of spectral representation of matrices.
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2. Some Lemmas

The following lemma is concerned with the behavior at infinity of
Fourier transform of a smooth mass density concentrated on a surface,
which has been investigated by Gru$in [17], Littman [27], Vainberg [ 8],

etc.

Lemma 1. Let S be a C closed® non-singular surface of dimension
n—1in BE" u a C° function on S. Assume that at each point s of S
the Gaussian curvature K (s) is different from zero, and that for each unit
vector 0, there exists only a finite set of points (denoted by s'=s'(0)) on
S at which the normal to S is parallel to 0. Taking 0 as the positive
divection at s'(0), denote by pi=p;(0) and p;=p;(0) the number of
positive and negative principal curvatures at s'(0) respectively. Then the
Sfollowing asymptotic formula holds as |x|—>oo, and x/|x|=0, uniformly

with respect to all directions 0.
@ | aewii<s, s>1as
— S GO expli| x| <0, $O)>}+ ||+ g ()

where dS is the surface element on S, and

. l 0
(10) c,<a)=(27r><"‘”’zexp{l%<P7<”>‘P7@}7TIII<%—S<g_§)T

#('(6))

(]_O)' =7r(n—1)/2(l+i)ﬁ§(‘9) (l—i)b;(g)mﬁ ’

and q(x) is estimated for large |x| as
= | 0q —(n+1)/2
(11) lg() | + 20 | - (%) | < const| x| .
i=1l 0x;

For a proof of this lemma, see [2]. When S is a sphere, an
asymptotic formula with estimate (11) is given in Appendix of [4]. We

can show (9)-(11) for the general case in a similar way.

6) S need not be a closed surface. If S has a boundary, we assume that S does
not contain its boundary and that g has compact support in S.
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Let (&) be a C~ real-valued function defined in H”— {0} with the
properties

(i) (&) is positively homogeneous of degree 1.

(i) A(&)>0 for all £-0.
Then the set S={s; 4(s)=1, s€ 8"} forms a C~ closed non-singular” sur-
face of dimension n—1 which encloses the origin. Let us suppose that the
Gaussian curvature K(s) does not vanish on S and that, given a unit
vector 0, there is only a finite number of points (denoted by s'=s'(6) on
S such that normal to S at this point is parallel to 6. Let ¢° be an
arbitrary fixed positive number. Let U and V be two relatively compact
open neighborhoods of ¢°S= {0 ;sc S} such that the closure of U is
contained in ¥V and 0& V. Let ¢€C5(¥) be equal to 1 in U and P a
C~ function defined in 8”— {0} which is positively homogeneous of degree

d. We shall study the asymptotic behavior as |x|—>co of the function
given by

a2 0Goxig=| SUSBEIZIE. 4,

where 0€ (6°—0, ¢°+0) and e€[0, &).
Using the above function A(€), we can introduce new coordinates

(0, 5) in the space &”"— {0} such that £=ps, 0<p<oo and s€ S. Then
we have

13) déy .. d&,=(0"""/|grad A(s)|)dpdS.
In fact, from the assumption i) we may assume g A (s)=~<0 in a small
Sn

neighborhood of a point s° on S without loss of generality.) Then
there exists a C” function s,=h(sy, ---, 5,_1) such that A(sy, -+, Sx_1,
h(si, -+, $,-1))=0 (in a small neighborhood of (s{...s%_,)) and Oh

03,-
=~% T?asi’ j=1,...,n—1. Consequently we have
7 n

7) See the footnote 8).

8) Note that from i), i) and Euler’s relation ji;le,g% €)=2,(6), we have grad 2(6)
= J
+0 for £+0.
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D(El’ €2, s 5;1) —(_ 1\ pn-1 = . 0h
Dlornr ey =D (j};lsj

)

—( n+tl n-—1 z al_ nlnl al

because Z Sj—— (s) 2(s)=1 for s€ S. Thus we get (9) from (10) and

from a Well known relation

as=(/ 55/ |5

Let ¢ € Cy(R") and satisfy supp¢ C{po; |0—0°| <40}, ¢(0)=1 for
lo—0°| <30. Then ¢(0)=x(os)==x(¢€) defines a function in &”— {0} and
x€ Cy(E"— {0}), suppxCV if we choose 0>0 small, and %(£§)=1 in a
neighborhood of S. Using the function %(¢), we write @(x; 0 +ie) in the

dSn 1.

form

14) OGx;oxie=( SPUHEZIEE . () —n(e))ae

+.. eXpX;f’éig@ #(8)dE=0D(x; 0 % ie) + 0D (x5 6 = ).
First, we examine @Y (x; 1) where A=0+ie. Since P(&)(¢(&)—x(8))
/(A(&)—2A) is a €™ function of & with compact support for each 2 in
A=1{2; |Rel—0°| <20} and analytic with respect to 4 in 4, it follows
that @P(x; 1) is €° in x and analytic in A, and further that for any
multi-index vy and any integer p, there exists a constant C, , independent
of A€ {A=0=+ie; |0—0°| <, 0<{e<e’} such that

< aaz )( aa ) ARCE ’D’<C"”

Now we consider (—%—;) 0P (x;0+ie). If we use the new coordinates

(15) (14 =]

(0, s) in 8" which we have introduced above, we find for >0

(16) (—aa;)”@@(x; o+ i)
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(= pa'+(n—1)+|v\¢<0) . (iS)"P(s)
—So o—(0+ic) {SseXp{w<x’s>}m ds}d‘"

Replacing the interval [0°—20, ¢°+207] in the contour [0, o) of (16) by
a semi-circle in the lower or upper half-plane according as 0-ie or 0—ie,

we see that the 1imits< 86 ) 0P (x; 0+i0) exist and define continuous
X

functions of (x, 0).

If we now apply Lemma 1 to the integral in brackets of (16), we
obtain

an  (-2) 0% oxie)= % exn{i L (pi O)—pi O]

(is'(6))* P(s'(0))
VIK(s'(0)) |- |grad A(s'(6)) |

X

« TE L —m-n2z (7 ¢1(0) q.(ox)
< J¥(1x1,0,0,) x| + G082 o,

where we have set

a8 Ji(1x1,0,0, =0V exp{i<0, S >0 12} 5L dp

and  @1(p)=p"""""""V¢(p) € C5(6°—40, 6°+40), p(0) =0"""D"%¢,(0).

Then, from the relations

(19) Si:‘%“é% do= +27i Y (+1)exp{i(d+ie) ¢}

(Y (¢) is the Heaviside function), we find

@0 J(1x1,0,0,9= =0 V(s (<0, 50> 5] — D)

xexp{i(0c+ie) (<0, s$(0)> | x| —)ra(v)dr

+oo
where ¢(7)= S exp{iot} ¢(p)dp. Therefore we have

+

|75(1%1,0,0, )1 <[ Y (5 {<0,50)> | x| — ) (0) | de.

Thus we see that JT (|x|, 6, 0,¢) are bounded continuous functions of
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(Iz],0,0,¢) in {(Ix],6,0,8); |x]>0, [0] =1, [0—0°] <0, 0<Ce<e}.

Further, we have

21) J¥(«x|,0,0,8)=0(|x|') uniformly in ¢ and ¢, as |x|—>o0 for
<0, s'(0)> <0 or <6, s'(6)> >0 according as “+” or “—7. If <0, s'(0)>
=0, they have for e=0 the forms
(22)  J%( %[, 0,0,0)

= +i(2m)" P exp{i <0, s'(0)>0| x|} (@) +0(| x| )

as |x|—>o0 for <0, s'(6)>>0 or <0, s'(6)> <0 according as “+” or “—".
On the other hand, we deduce from the estimate (11) that

(23)  ¢1(0)q.(0x)=0(] x| ~"*DI%) uniformly in o€ (6°—0, 6°+0)
as |x|—>co and that

29 191(0)9.(02)—¢1(0") q.(0"%) | <const| x| "+ /%[ g—p7 | 1=2)12
for all p, 0’ €(6°—0,0°+0) as |x|—>o0. (—1<a<l).

Making use of the estimates (23), (24) we can show

Hee ¢1(0)qu(0x) _ —(n+a)|2
S_N—p—_m‘dﬂ—O(lxl ) as |x|—>o0
where the order relation is uniform in ¢ € (6°—0, 6°+40) and in e€[0, £%).

Thus we have

Lemma 2. Let @(x;0+ic) be the functions defined by (12). Then
the following asymptotic formulas hold.

25) (X)) 0Cxs o2ie=3 exp i (pi®)—pr(o)}

y (is'(0))*P(s'(6))
VIK(s'(0)) |+ | grad 2(s'(6)) |

+0 (x|,

JE(|x]|, 0,0, |x| D2

where the summation is takem over 1 such that <0, s'(0)>>0 or that
<0, s'(0)> <0 according as 0-+ic or 0—ic.
In particular, if <0, s'(6)> =0,
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(26) <L>v0(x'6ii0)
0x ’

— =i(2m) V% exp {i<0, 800> | x| +i- - (pi(O)—pi (O]}

(is'(6))"P(s'(0))
VIK (s

o-d+\v|+(n—1)/2 l x | —(n—l)/2+0(l x | —n/Z).

Nl

In order to simplify the description of proof of our theorem, we now

state some elementary facts as a lemma.

Lemma 3. Let T, be a temperate distribution that depends on a

parameter taking on values in a certain region A of the complex plane C,

and assume that the Fourier transform T (&) of T\ with respect to x

satisfies the conditions:

i) For every wmulti-index v, (%)V i’x({-‘) is a continuous function of
(%, 2) in E"x A.

ii) For any fixed &, T (&) is an analytic function of A.

iii) For every v, there exists a constant C, such that
(21) (&) no|<cas+ien

where C, does not depend on & and on 1.

Then T, has the following properties.

1° If \vi=n+r+14|8], <”0%~)ﬂ(x"Tx) is a continuous function of
(%, 2) in R*X A and analytic in A with respect to A.

2° For every 8, (%)ﬂ T\ is a continuous function of (x,R) in
(R"—{0})x A and analytic in A with respect to A. Further, as |x|—> oo,
<_a_0;)’3 T converges to zero more rapidly than any power of 1/|x|, where

the convergence is uniform with respect to 2 in A.

3. Proof of the Theorem

First note that because of the assumption i), the roots 1,(¢), k=1, ...,

m of 4(€, A)=0 are analytic function of & in &”— {0} and positively
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homogeneous of degree 1. Further we have from convention (4)
(28) (—8)=—2p_p1(6) and ar=am_p.1, k=1, .-, m.
Hence, by the assumption ii) we have for £=+0
(&> > Ama()> 0> j22(8) = — Amya(— ) >
> (8= —2.(—8) if m is even
and
(E)> > Apm21(6) > Apmiz1+1(E) =0> Amya1+2(8) = — Apmyzy(— 6) >
> A(E)=—21(—8) if m is odd.

We denote by P.(£) the projection matrix in CV onto the eigenspace
of A(€) corresponding to the eigenvalue 4,(¢). As is well-known, P.(§)

can be represented in the form.

9 PO= A= A@) i

k

T la—DT\da det (11— A(8))

1 ( d >"‘k‘1{’cof(lf—z4(€))}
(A—2:(E))** ) _

Ag(£)

where I ',(§) is a contour enclosing a domain that contains the point A;(€)
and does not contain other points of the spectrum of A4(¢). Further they

enjoy the properties:
(30) Pi(§)+ - +Pu®)=1
(31) Pi(&)Pr(§)=0,2Pi(8), j, k=1, ..., m.
Using the Py, k=1, ..., m, we can represent (4(€)—2aI)~! for any
non-real 4 as follows:

(32) <A<s>—zf>-1=§1(zk<5)—x>-lpk<e>.

For brevity we will consider only the case: m is odd, A varies in A"
={l=0+ie; |0—0°| <d, 0<e<e", 6°>0 and y=0, since the other case

can be proved with obvious modifications of the present one.
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Now let us consider the [m/2] disjoint closed surfaces defined by
Sp={s; Lu(s)=1,s€8"%, k=1, ...,[m/2]=b. They enclose the origin,
and S; defines the innermost sheet, S; defines the next, etc. and S,
defines the outermost sheet. Choose relatively compact open subsets U,
and V,, k=0,1, ..., [m/2]=5 of " which satisfy the conditions:

i) Uy and V, are neighborhoods of the origin, and U,, ¥, are neighbor-
hoods of 0°S, for each k(1<k<b). i) U,V k=0,1, ..., b. iii)
Vo, ---, ¥V are disjoint each other. Let ¢; € Cy(V3:) and satisfy ¢.(8)=1

on U,. With the aid of the functions ¢;, we can write E(x: 1) as fol-
lows:

(39 B D=F'[L 44O (=D Pu@)]

+F 1 [o(6) (A(E)—AI)~ 1]—7 F [ $5:1(6)Ps1(6) ]
7702 (1= $o(8) (1= 44(E) (O — D PuC®)

+ i (1—¢0(8) (Ap(&) =) 'P(&) 1= Z I(x; 2), respectively,

E=b+2
where & ! denotes the inverse Fourier transformation.
Consider first Ip(x; 2): We take 0 >0 properly small. Then if 1€ 4
={1; |RedA—0"| <20}, ¢o(&) (A(&)—2AI)"! is a C~ function of & with
compact support, and analytic in 4. Hence I;(x; ) is a C* function of

x and analytic in 4. Further, for any vy and any integer p>0, we have

G0 (L) Ll 0=0(x1" and (L)( L) Bx; D=0 (121

for |x|—o0
where the order relation is uniform (with respect to 1) on compact subsets
of A.
Consider next I4(x; 1): The function in brackets satisfies the condi-
tion (27) of Lemma 3. Therefore I,(x;A) is a C™ function of x in
— {0}, and analytic in A€ 4. Moreover, for any integer p>0

@9 (o) Tiw; H=01x1) and (Z)(Z) Lxs D=0(1x])
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as |x|—>oo. I3(x; A) possesses also the same properties.
We now return to Ij(x;2). If |0—0°| <20 and 0<e<e?, I,(x; A)

is represented in the integral form:

. fl) —n b eXp{i<x’ S>}P (5)
(36)  Li(x;0+ie)=(27) Elg i<n EXVIHD . guceas

5(271')'"21 0.(x; 0+ie).

Thus I;(x;0+ic) is a sum of integrals of the type (12). By applying
Lemma 2 to each @,(x;0-+ie) and putting together the above discussion,
we see that E(x; 1) has the properties 2° and 3° of the theorem. The
property 4° for E(x; ) can be shown in the same way in [6]. From
(25), (26) and the formula:

37) (-af";)"E(x : 0'-L—ie)=(27r)‘”kZ:]1<%>v@k(x; c+ie)+0(| x|

as |x|—>oco for any integer p>0, it is easy to find the explicit forms of
e¥(x,0,¢) in (7) of the theorem.

In fact, by applying Lemma 2 to each @,, we obtain for ¢ & (¢°—0,
0°+0) and e€[0, &%

(8 er,0,0=00" 5 S ewpi - (pin O —pis, OD)
o GsO) PG .
VIKGH )] - [grad (s 1+ @) 7

(I%],0,0,¢).

Here the summation ), is taken over I, such that <@, s®*'*(6)> >0 or

157
that <6, s*'#(6)>< 0 according as ¢+ie or d—i¢, and

(39) J;:.Ik(lxls 0: 0-: 8)

<0,s% 1k (0)>x]

=(mynor o(2) exp{i(o +i8)(<0, #:(0)> ||~ )},

—oo

(39)/ Jl:.lk(lx[’ 03 6: E)

+oo

= —(Zn)‘”*l”zg #(t) exp{i(0—1e)(<0, s*'=(6) > | x| — 1)} dr

<6,sE Lk (0)>1%|
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where

o= exptiort o(o)do.

If <6, s*'*(6)> 0 they have for e=0 the form

(40)

f::,!k(lx]’ 6: 0-9 0)
= +;Q2r)*DI2gr-DIZ bl exp <0, s#(0) >0 x|}

+0(%|™)

as |x|—>oo for <0, s*'*(0)>>0 or <6, s***(6)> <0 according as “+” or

[13

»

We can also obtain for 0<0 the corresponding formulas of

ef(x,0,¢€) in the same way.

1]

(2]
3]
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