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Uniform Estimates of Elementary Solutions

of First Order Systems of Partial

Differential Equations

By

Mutsuhide MATSUMURA*

1. Introduction

The asymptotic behavior for jc|->oo of solutions of partial differen-

tial equations with constant coefficients has been studied by V. V. Grusin

[I], W. Littman [3], B. R. Vainberg [8], etc (see also C. H. Wilcox [9]

and J. R. Schulenberger [T]). This paper is concerned with the asymptotic

behavior of elementary solutions for a certain class of first order systems

with constant coefficients. We shall give some estimates which are uni-

form with respect to a complex parameter taking on values in a certain

region of the complex plane.1}

Assumptions and results. The systems which we shall consider

are of the form

( 1 n ft-^-.S^-^IT-

Here the Aj are NX N constant matrices, / is the unit matrix of order

TV, A is a complex parameter, and v(x} and g(oc) are column vectors with

N components. The characteristic polynomial associated with (1) is

(2)
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1) The author already remarked in [5] that the results of this paper can be proved
by the same method as for the isotropic case in [4].
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where f = (£i, - - - j £») denotes a generic point of the real dual space 3n of

the n -dimensional euclidean space Rn.

Now we state precisely the assumptions that we impose on the

operator A-U = -^-j^Aj — — - U.
I j = l QXj

i) The N roots /U(f) of J(£; ^) = 0 are real and have constant multi-

plicity for all real f ^0: i.e.,

(3) 4(£;*)=n (A-
*=i

where we label /U(£) in decreasing order:

(4)

for all real

ii) A root /U(f) vanishes for some real £ ̂ 0 only if it is identically

zero.

iii) The matrix A(g) = 2 f/X; is diagonalizable for any f ^0.2)

y=i
iv) The Cffi/2] normal surfaces S*= {£; A*(£) = l}, A = l, • • - , r7^/2]3) are

non-singular and their Gaussian or total curvatures Kk(?) do not vanish

anywhere. Further, for any unit vector 0 there exists only a finite

number of points on Sk at which the normal to Sk is parallel to 6.

From i), the matrix A(£) — AI is non-singular for each non-real A.

Hence (A(g) — AI)~l has the inverse Fourier transform

(5) E(x\ V = (2nyn exp{i<a,
J^71

in the distribution sense. E ( x m , A) is an elementary solution of the differ-

ential operator A — hi with non real A: (A — hI}E(x\X) = d(x)I where

8(x) is the Dirac (^-distribution. Note that this elementary solution

E(x;X) is the resolvent kernel of the operator A — hi in L2(Rn) with

domain

2) If the matrices Aj} j = l, - - - , 7 7 1 are hermitian, a simple criterion which ensures the
conditions i) and ii) ( iii) is automatically satisfied) is found by Wilcox [9]. He
calls such systems "uniformly propagative".

3) If I is a real number, [/] denotes the greatest integer not exceeding I. See also
the relation (28).
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D(A-lI)={v9v and (A-U)v are in L\R*)}.

Our aim is to establish the following theorem :

Theorem. Under the assumptions (i)-(iv) the elementary solution

E(x\ X) has the following properties :

1° E(x; X) is an analytic function of O, X) in (Rn— {0}) x (C— ft).

2° For every multi-index v and for every (x, 0") 6 (Rn— {0}) X (R

— {0}), Z/z

(6) E(v\x ; ff ± iO) = lim --E(x ; <T ± ie)

/, where the convergence is uniform in every compact set of (ft*— {0}).

Furthermore E^v\x\ (7±z'0) «rg continuous functions of (^, <T) zw (Rn— {0})

3° L^ 6T° Z?g <2^ arbitrary fixed real number and ^0. If we choose

awe? e°>0 sufficiently small, then E(v\x; ff±ie) behave for ffe^ — S,

e[03 6°) /

(7) E(

«5 A;|->cx>3 M;/&er0 e?(^,(T, £)4) «r^ bounded continuous functions of (x, o~, e)

m {(A;,(T,£); | ̂  | > 13|(J-(T0 |<J, 0<e<e°}.

4° E^v\x ; ff±is) are Holder continuous in o~, and we have the

following estimates uniformly in (7, ff' G ((7° — #, (J° -f- (J)

(8) l^^^

where ? is any constant such that 0<7"<1, and the 'const3 is independent

of x(\x\^l\ £, ff and o~f .

The property 1° is well-known. 2° and 3° are proved in Q4T] and 4°

in Mochizuki \J5T\ for the isotropic case: Jik($) = tk\g\, k = l, --^m. Our

proof for this general case can be given along same lines as for the

isotropic case.5)

4) As to the explicit formulas, see the formulas (38)-(40).
5) Wilcox [9] also proved 2° and partially 3° (non uniform estimate). His method

is to reduce the problem to higher order single operator's one (Grusin-Littman-
Vainberg case). The author's idea in [4] is to reduce the problem to one dimen-
sional problem by making use of spectral representation of matrices.
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2. Some Lemmas

The following lemma is concerned with the behavior at infinity of

Fourier transform of a smooth mass density concentrated on a surface,

which has been investigated by Grusin [J.], Littman pQ, Vainberg £8],

etc.

Lemma I. Let S be a C°° closed6^ non-singular surface of dimension

n — 1 in E'\ ju a C°° function on S. Assume that at each point s of S

the Gaussian curvature K(s) is different from zero, and that for each unit

vector 0, there exists only a finite set of points (denoted by sl = sl(6)) on

S at which the normal to S is parallel to 6. Taking 6 as the positive

direction at sl(6\ denote by p^~p^(6) and pl = pl(0} the number of

positive and negative principal curvatures at sl(6) respectively. Then the

following asymptotic formula holds as |^|->oo? and x/\x\=0, uniformly

with respect to all directions 0.

0)
J S

= ECl(d)exp{i x\ <0, sl(6)>}'\x
i

where dS is the surface element on 5, and

(10) Cl(d} = (2n}(n-^l2^p\i-^r(p
+

l(6}-p-l(d}\
( 4 l A }

and q(x) is estimated for large \x\ as

dq(ii) . ^ const | x |

For a proof of this lemma, see [2]. When S is a sphere, an

asymptotic formula with estimate (11) is given in Appendix of [/if]. We

can show (9)-(ll) for the general case in a similar way.

6) S need not be a closed surface. If S has a boundary, we assume that S does
not contain its boundary and that ^ has compact support in S.
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Let A(£) be a C°° real-valued function defined in Sn— {0} with the

properties

(i) 1(£) is positively homogeneous of degree 1.

(ii) A(?)>0 for all ^^0.

Then the set S = {s; /l(s) = l, sG J?w} forms a C°° closed non-singular7) sur-

face of dimension n — \ which encloses the origin. Let us suppose that the

Gaussian curvature K(s) does not vanish on S and that, given a unit

vector 0, there is only a finite number of points (denoted by sl = sl(0) on

S such that normal to S at this point is parallel to 0. Let ff° be an

arbitrary fixed positive number. Let U and V be two relatively compact

open neighborhoods of o~QS= {(T°s; sE S} such that the closure of U is

contained in V and 0$ V. Let 0eCo(F) be equal to 1 in U and P a

C°° function defined in Bn — {0} which is positively homogeneous of degree

d. We shall study the asymptotic behavior as |#|->oo of the function

given by

(12) <00jc ;<r±ie) =

where ff € (ff° - S, <T° + S) and ee[0, e°).

Using the above function A(£), we can introduce new coordinates

(p, 5) in the space 3n — {0} such that $ = ps, 0<p<oo and sE5. Then

we have

In fact, from the assumption i) we may assume —— (s)=^0 in a small

neighborhood of a point 5° on S without loss of generality.8) Then

there exists a C°° function sn = h(si, • • - , sn-i) such that J(si, • • - , sn-i,

h(si, •• -5 5w_i)) = 0 (in a small neighborhood of ($? •••sj_1)) and -^—

-^ — -^
USj I OS

• i i ^3 jr^l, . . .3 n — 1. Consequently we have

7) See the footnote 8).
n ^5

8) Note that from i), ii) and Euler's relation £^-^-(0 = ̂ (0. we have
y=i o?y

=^0 for
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w 9 A
because 2 sj~^—(5) —^(5) —1 f°r 5^5. Thus we get (9) from (10) and

j = i OSj

from a well known relation

Let 0 e QCK1) and satisfy supp 0 C {p ; I P - (T0 | < 45} , 0(p) = 1 for

|p-<r° |<3<y. Then </>(p) = x(ps) = x(& defines a function in ^w-{0} and

%eQO£^— {0}), supp%C^ if we choose £>0 small, and x(f) = l in a

neighborhood of 5. Using the function %(f), we write 0 ( x ; f f ± i s ) in the

form

(14)

First, we examine ®(l\x ; A) where ^ = <7ibi'e. Since P(f) (0(?) — %(?))

/(A(?) — A) is a C°° function of f with compact support for each A in

yi={/l; | Re A — G° | <25} and analytic with respect to A in A^ it follows

that 0 ( 1 )(#;A) is C°° in ^ and analytic in A, and further that for any

multi-index v and any integer JD, there exists a constant C^>y independent

of A e { A = <7±j 'e; |(T-(T0 |<5, 0<£<£°} such that

Cv.(15) (1+ p>v.

( d \v

— — j 0^2\x ; ff±ie). If we use the new coordinates
\y x /

(p, 5) in 3n which we have introduced above, we find for £>0

(16)
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Replacing the interval [>0 — 20, tf° + 2<T| in the contour [0, °o) of (16) by

a semi-circle in the lower or upper half -plane according as ff-\-i£ or ff — ie,

— — J $(2)(# ; 0"±iO) exist and define continuous
c/ x /

functions of (x, ff).

If we now apply Lemma 1 to the integral in brackets of (16), we

obtain

(17)

where we have set

(18) / f ( | ^ | , g , f f

and ^1(p) = p d + i »

Then, from the relations

(19)
—oo p v^u — i£J

is the Heaviside function), we find

(20) /f(|*|,(?,ff,6)=

x exp {/((7 ± is) «0,sl(d)> x\— r)} $ (r) dr

S
+oo

exp{^'pr}^(p)Jp. Therefore we have
-00

I /HI* ,0,ff,e)|<r"r(±{<M'(0)>H-r})|0(r)|dr.
J —00

Thus we see that /f ( | # | , 0, tf, e) are bounded continuous functions of
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(H,0, <T, e) in { ( |* | , f l , (T ,e ) ; *|>0,
Further, we have

(21) Jj(\x\, 6, o~, e)=O(\x\~l) uniformly in <7 and £, as | # | — >oo for

<U, 57(0)><0 or <0, s'(0)»0 according as " + " or "-". If <0, s'(0)>

, they have for £ = 0 the forms

(22)

as |*|-»oo for <0, s'(0)»0 or <0, /(0)><0 according as " + " or "-".
On the other hand, we deduce from the estimate (11) that

(23) Vi(p)qv(px) = 0(\x ~ ( w + 1> / 2) uniformly in p £ (<J° — £, tf° + 5)

as | a; ->oo and that

for all p, p'eOr0-*?, (T° + ^) as |^|->oo. (-l<a<l).

Making use of the estimates (23), (24) we can show

|-(» + «) /2\ as I

where the order relation is uniform in 0"€i(cF0 — 5, (T° + $) and in £ G []0, e°).

Thus we have

Lemma 2. Let <0 (# ;<7±£e) ^ the functions defined by (12).

^/2^ following asymptotic formulas hold.

(25)

^ 0 ' P O ± ( , f l £ )

'U ' ' ' }

+ 0(1* I-'2),

where the summation is taken over I such that <03 5
/(0)>^0 or

<0, s7(0)XO according as ff+ie or ff—ie.

In particular, if <0,
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(26)

exp

In order to simplify the description of proof of our theorem, we now

state some elementary facts as a lemma.

Lemma 3. Let Tx be a temperate distribution that depends on a

parameter taking on values in a certain region A of the complex plane C,

and assume that the Fourier transform 2\(f) of T^ with respect to x

satisfies the conditions'.
/ 9 V ~i) For every multi-index v, (-^r) 7\(f) is a continuous function of

(x, A) in Bn x A.

ii) For any fixed g, 2\(?) is an analytic function of A.

iii) For every y, there exists a constant Cv such that

(27)

where Cv does not depend on $ and on L

Then Tx has the following properties.
( d \^1 // | y|;>7i + r + l+ | j S | 5 (-— (%VT^) is a continuous function of

A) m Rn X A and analytic in A with respect to A.
/ Q \/3

2° For every &(-^— ) ^x ^ « continuous function of (x9

w— {0})Xyi «^J analytic in A with respect to A. Further , as |^|->cx>5

9 \0

converges to zero more rapidly than any power of I/ 1 x | , where
xJ

the convergence is uniform with respect to A in A.

3. Proof of the Theorem

First note that because of the assumption i), the roots ^*(f)3 &=15 • • - ,

771 of A(g, A) = 0 are analytic function of f in Bn — {0} and positively
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homogeneous of degree 1. Further we have from convention (4)

(28) **(-£)= -*m-A+i(f) and ak = am_k+i, k = l, • • - , m.

Hence, by the assumption ii) we have for

••• > / U | = — AI — f if m is even

and

•••>-l»(f)=-Ai(-f) if m is odd.

We denote by P*(?) the projection matrix in CN onto the eigenspace

of A($) corresponding to the eigenvalue ^(?). As is well-known, Pj(f)

can be represented in the form.

(29) Pk(^ = --±
2Ub j r k ( £ )

- ^° ,

where Fk(?) is a contour enclosing a domain that contains the point /U(£)

and does not contain other points of the spectrum of A(g). Further they

enjoy the properties:

(30)

(31)

Using the PA, A=l, • • - , m, we can represent (A($) — A/)"1 for any

non-real A as follows:

(32) (A (?) - A/)-1 = 2 U*Gr) - ^)-1P*(f).
& = 1

For brevity we will consider only the case: m is odd, /I varies in A+

= y = (T+fe ; |(7—(T° <5? 0<£<£°>, (T°>0 and v = 0, since the other case

can be proved with obvious modifications of the present one.
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Now let us consider the \_m/2} disjoint closed surfaces defined by

Sk={s:> A*(s) = l, s£Sn}, 4=1, . . - , \jn/2] = b. They enclose the origin,

and Si defines the innermost sheet, S2 defines the next, etc. and Sb

defines the outermost sheet. Choose relatively compact open subsets Uk

and Vk<) k = Q, 1, • • - , [jn/2^ = b of Bn which satisfy the conditions:

i) U0 and F0 are neighborhoods of the origin, and Uk, Vk are neighbor-

hoods of ff°Sk for each A(l<4<6). ii) Uk C Vk, k = Q, 1, • ••, b. iii)

FQ, • • - , F6 are disjoint each other. Let $k^C^(Vk) and satisfy $&(£) = 1

on £/£. With the aid of the functions <j>^ we can write E(x : /I) as fol-

lows:

(33) E(x, $ = &-lli^

!: /y(*J A), respectively,
k=b+2 j=l

where J5""1 denotes the inverse Fourier transformation.

Consider first Ii(x\ /i) : We take £>0 properly small. Then if l€.A

= {l; |ReA-J°i<25},^o(?)(^(f)-/i/)~1 is a C30 function of ? with

compact support, and analytic in L Hence I2(x ; A) is a C~ function of

x and analytic in L Further, for any v and any integer p>0, we have

(34) --l2(X;V=0(\X -*) and ~j^ U*; V = 0 (\x\->)

for | x | — > oo

where the order relation is uniform (with respect to >l) on compact subsets

of A.

Consider next I±(x ; /I) : The function in brackets satisfies the condi-

tion (27) of Lemma 3. Therefore I±(x ; ^) is a C°° function of x in

J?w— {0}, and analytic in A£A. Moreover, for any integer

(35) /4^;A) = 0(U|-0 and ( ( - I4(x ; A) =
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as \x\— >oo. I3(x;£) possesses also the same properties.

We now return to /iO;A). If \ff-ff" <28 and 0<e<s°,

is represented in the integral form:

(36)

Thus /i(#;<7+i£) is a sum of integrals of the type (12). By applying

Lemma 2 to each ®k(jx,\ ff+ie) and putting together the above discussion,

we see that E(x; ^) has the properties 2° and 3° of the theorem. The

property 4° for E(x ; /I) can be shown in the same way in \J6T\. From

(25), (26) and the formula:

(37) (j^E(x-G±iz} = (2nTn^

as x co for any integer /?>0, it is easy to find the explicit forms of

x, tf, e) in (7) of the theorem.

In fact, by applying Lemma 2 to each @k, we obtain for

and s€[0, e°)

(38)

Here the summation £ is taken over Ik such that <0, sM*(0)>^>0 or
'*

that <0, s*''*(0)XO according as (T+ie or ff— is, and

(39) /it .»»(l* I , » , f f , e )

,$*• '*(«)>!*!

(39)' /».,,(!* |, < ? , f f ,
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where

S
+o

-o

If <0, sk'lk(d)>=£0 they have for e = 0 the form

(40) /* / f c (H,0 , t f , 0)

as |*|->oo for <0, sM*(0)»0 or <0, sk'l«(d)><0 according as " + " or

" — ". We can also obtain for tf<0 the corresponding formulas of

ef(^5 (7, e) in the same way.
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