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A Remark on the Elliptic Boundary Value

Problem in an Angular Domain

By

Kazunari HAYASHIDA*

1. The general boundary value problems of elliptic equations have

been studied quite extensively by several authors (cf., e.g., Ql, 2, 5, 21]).

The method is based on the a priori estimates. Most authors have re-

stricted themselves to domains with sufficiently smooth boundary. Their

main tool is to map the neighborhood of a point on the boundary onto a

semisphere by means of a sufficiently smooth transformation.

On the other hand Ladyzhenskaya C13], [114] and others (cf.? e.g.,

[]9, 12]) showed the a priori estimates for domains with piece wise smooth

surfaces. Their method is integration by parts. Hence the operators need

to be at most of second orders and to be real valued. In this note,

assuming a relation between the domain and the elliptic operator, we study

L2-a priori estimates with a parameter for the second order operators with

mixed boundary conditions in an angular domain (see Theorems 1, 2 and

3 in the following section).

The a priori estimate with a parameter has been treated in £2], [^4],

Q5] and [10]. In addition the mixed boundary value problem has been

studied by several authors (cf. [17, 18, 22, 23, 24]). Our proof relies upon

mainly their results.

2. Let & be a bounded domain in the plane and denote its closure

and boundary by §> and d@. We assume that d@ is of class C°° except a
n SN

finite number of points {Pi, • • - , Pn}. Thus d& = \J FJ, where Fj = PjPj+i
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(j^n) and Fn = PnPi. Let A( x, -~— ) be a second order elliptic operator
\ 0 x /

with C°° coefficients in @. And for each j let Ej( x, ~^~) be a boundary

operator of at most first order defined on Fj with C°° coefficients. We

denote the principal parts of A and Bj by ^4(0) and Bf\ respectively.

Further let % be an angular domain bounded by the two half lines tangent

to FJ-I and Fj at Py.

First we impose the following condition on @ and A.

Condition (^i). For each j there exists a non singular linear trans-

formation TJ such that ^(0)(P/3 -~— j is transformed into A( = ~ 2 +^""

by TJ and ^/ is mapped onto an angular domain whose angle is — 9"

( |<2 |<^®/ ) 3 where &j is a positive constant depending on ^4(0)fPy,

Secondly we assume the following condition for the boundary oper-

ators Bj.

Condition (A2). For each j the pair of J5y_i and J5/ corresponds to

one of the following cases:

(i) £,_! = !, By=l

(ii) By_i = l, Bj = -j^ + bj(x-)

(iii) 5y_1 = -^ + 6/-i(*), Bj^-j^ + bfa)

(iv) 5,_! = 1, Bj=-jfc+ aj(^-~ + bj(x)

(V) 5y_ 1 =- -+6 y _ 1 (* ) ) 5y=- + aX*)-

where -~— (or -^— J is the normal (or tangent) derivative.

For a fixed real number 0, we set /L2 = pV6?(0<Jp<c>o)a Finally we

impose the following assumption for 6 and a/(#) (the coefficients in Condi-

tion (^2))-



Elliptic Boundary Value Problem 239

Condition (As).

(i) The boundary operator Bj satisfies the Complementing Condition

on r j with respect to A in the sense of [1].

(ii) e
ie^-l and aj(Pj)^±i.

(ni) The value et0(a;-(P/)2 + l)""1 does not lie on the real negative

axis.

(iv) The value (i + a/Py))2(i — a,-(P/))~2 also does not lie on the real

negative axis.

Next we give the definitions of some norm. For an integer k^>0 we

put

G \1 /2

\D"u\*dx)
. . __ & /

and

G \ l / 2
\D?u\2dx) ,

rj '

where D? is some tangential operator on F}- of order | a \ . We put

, ,
3 = 1 3

We can define naturally the norms || ||^ and < yk also for a real k^>Q

(cf., e.g., [18, 20, 21]). Then we have

Theorem 1. Under the conditions (Ai), (^42) and (^3), there are

nonnegative constants &0, c and C such that for any u G

if k is an integer l>kQ and U|^>c, where kQ and c depend on A^ BJy

2 and d. Further C depends on A^ Bh ^, k and c.

Theorem 2. Assume that for each j one of the cases (i), (ii) and

(iii) in Condition (^2) holds. Then under the conditions (Ai) and (^3),
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we can take kQ = 0 in the statement of Theorem 1.

Remark 1. When for each y, CBy_i, Bj) corresponds to one of the cases

(i), (ii) and (iii) in Condition (A2\ it will be seen that we can calculate

&j in Condition (Ai) exactly.

Remark 2. Let Bj be smooth on Fj except at most finite points,

that is,

where ay, &/, cy are piecewise smooth and some conditions are assumed.

Then Theorem 1 holds also according to Shamir's Q.8], Agmon's [_2~] and

our arguments.

Theorem 3. Under the above conditions assume that kQ can

be taken to be 0. Then for any /(^)€C°°(^), there are solutions

satisfying

(A*-\2}u=f in 9 (U |>c)

B';U = Q on ry-(Py_iWPy) for each ;,

where A* is the formal adjoint of A and Bj is the adjoint operator with

respect to A in the sense of Schechter

The proof of Theorem 3 follows immediately from Theorem 2. We

make the form

[u, v-] = ((A-l?)u, (A-l2)v}+£«Bju, Bjv>3_ r
2 mJ'* J

Then by Theorem 2 it is seen that £u, u^112 defines a norm equivalent

to the usual one of H2(@)^ Thus we can apply the theorem of Riesz

to the functional (/, v) on the space with the norm [_u, &]1/2. The process

is quite analogous to the works of Schechter (see [121], E22H).

1) The space H2(&) is the Sobolev space with the norm
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3. We take a real number 0 and a complex number a satisfying the

following

Condition (A£).

(i) e'
e^-l and a^ ± i.

(ii) eie(a2 + l')~l is not a real negative number.

(iii) (i + a)2(j — a)~2 is not a real negative number.

Now we consider the characteristic equation with respect to C

(3.1) C2 + f2 + e'V = 0

where f and ??(^rO) are real numbers. The root of (3.1) with positive

imaginary part is denoted by C+(f, y).

Set

Then it is seen from the property (ii) of Condition (A'3) that M(£, ff) is

homogeneous of degree 0 and does not vanish. We define the Fourier

transform

And consider the operator

(3.2) (Mi*) (*!, 0 - (&-\M-&u» (xl9 0-

We define the norm || ||^ for a(^i, ^) in the same way as in section 2.

And denote by || lU.^^o} the quotient norm of || \\k on ^iSjO, respec-

tively.

The following proposition is due to Shamir £19].

Proposition 3.1 O9]). Under the condition (^40, there are an

integer k$ and a constant C such that
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for any u£H i_(R2), if k is an integer >k0.

In particular Shamir [JL9D proved the proposition in Lp space. His

method is due to Gohberg-Krein factorization (d7j, C^H) such as

where QlKf 1 77 1 ~1) and Q+($ \ -q \ -1) are holomorphic in Im f > 0 and

I m f < 0 respectively. And Gohberg-Krein factorization ([7], C^j) is pro-

duced from Wiener-Levy's theorem (C25j) in Riemann Hilbert problem.

4» Let R3 be the 3-dimensional Euclidean space with coordinate

(#i> ^23 0- We set

CQ(RS
+ ) = {u e C°°(^i) | carrier of u C R3

+} ,

where ^^.= {(^1, ^25 01 ^2^50}. For an integer k^>Q and for any func-

tion u defined in R\, we define the semi-norm and the norm

Let ^(f, ^2, ^) be the Fourier transform of u in (#1, £)• Then for the

trace of &, we define the boundary norm

I2 J J R

Now let us consider the elliptic operator in 72+ and the boundary

operator on ^2 = 0:

dx^* dt2

(4.1)

where ^ and a satisfy the properties (i) and (ii) in Condition (^3). We

denote the characteristic polynomials of (4.1) by

2) a = (al9ato(Xs) and |a] =
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Since e''*=^= — 1, it is easily seen that if (f, C, ??, ̂ )^^4, then

(4.2) | L(f , C, ?) ~ A V 1 ̂  c(f 2 + C2 + / + A2),

where c is a positive constant. For every (£5 ^, A) (=¥(0, 0, 0))G^?3 the

polynomial in C £(?, C, y) — jU2ei6 has a root C+(?5 ^, /O with positive

imaginary part. Then we easily see that there is a positive constant c

such that

(4.3) \i;2

where the integration is taken along a closed curve in the complex

enclosing C+(£, f], A).

Under the properties (4.2) and (4.3), Agranovich \_f\ and Higuchi

Cl(T] proved the following proposition.

Proposition 4.1 ([X], ClO]). L^ ^ «^J a satisfy the assumptions

(i), (ii) in Condition (^40. T/z^^z there is a constant C depending only on

0 and a such that for any u^C^(R^) and any

(4.4) +/i2k | (L-

The L2 a priori estimates for mixed problems in Rn were obtained

by Vishik-Eskin ([23], [24]). But their proof is difficult to follow. Thus

we shall give another brief proof for our case.

Proposition 4.2. Under the Condition (Af
3\ there exist an integer

kQ and a constant C such that if k is an integer >&Q,

ixl +ixi u 1 0)

for any u E C^(Ri\ where < >*+!.fo1^o} means the quotient boundary norm

in xi^Q respectively.
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Proof. Let us put

Since the property (ii) of Condition (A^) holds, it is easily seen that

C(S, ?, /0-a£ =VO if (?, ?, A)^r(0, 0, 0) and G#3. Thus M(f, ?, ft) is

uniformly bounded for nonzero real vectors (? , 97, ^). We define the Fourier

transform

(4.5) (^u) (£, 7)

Put

Then we shall prove the following inequality:

.,

(4.6)
J+i + | u g)

2

Now it is well known that there is an extension FOei, »2j

(for sufficiently large s) of (L — y.2eie)u 6 C0~(^) such that

where C is a constant depending only on m. We set

/(*i, 0 = (#_») (*i, 0,0,

fi(f,7) = (^«)(f,7) (see (4.5))

and

Then any u € C^(R3+) can be written in the form

(4.7) u(xi, x2, i) = w(xi, x2, t\

where
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(4.8) w($, T], x2; ju)--

and

(4.9) !»(£, 7], x2; A) = (/(f, 97) - B_( if, ^-

The decomposition (4.7) was used to prove Proposition 4.1 by Agranovich

[4] and Higuchi [10].

From (4.9) we see

(4.10)

= (/(?, ti-B_i€, fl>(f, ^, 0;

By Proposition 3.1,

if k^>kQ. This inequality implies

(4.11) ,

+ . , 1

Since M(£9 97, /^) is uniformly bounded, we see from (4.10)

In view of (4.7) and (4.8),

<M/I/>I+i{ll>0}
Z

(4.12)

Combining (4.11) and (4.12), we have proved (4.6).
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By Proposition 4.1 and (4.6)3 we obtain

(4.13)

Obviously,

(4.14)

Taking d as sufficiently small and K as sufficiently large, we note that

M($9 T], fi) tends to M(£, 97, 0) uniformly as /*->() in (J^^2 + ^2^K Then

we see from (4.14)

i-> as
2

Thus taking #— »0 in (4.13), we have completed the proof.

5. In this section we also consider the operators L and B± as in

(4.1). And let 6 and a satisfy the condition (^(3). The following proposi-

tion is due to [jT] and QlO] essentially as in Proposition 4.1.

Proposition 5.1. For flwjy gwew g/^i, 0 6 C0°°(^2)(l ̂ /^Z)3

# solution u, 6 c^(^+) 3)

n

3) The letter ^(R+} means the set of C°° functions decreasing rapidly in #|.
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where l + s^>

Remark. If s^>0, the estimate (5.1) holds for general boundary

operators. In particular under the Dirichlet boundary condition, the assump-

tion on s is weakened as in Proposition 5.1. For more general negative

5, the a priori estimate without parameters was shown by Lions and

Magenes (Q15], Hi6]). Their method is due to the closed graph theorem

and Garding's inequality ([3], [6]).

Lemma 5.1. Let u be in C^~l(R^} and be in C^(R^) except on

xi = Q. Then if Dmu 4) is bounded, there is a sequence {utt} such that un

belongs to C™(R%) and \\un—u\\m-^>Q as n—>°o.

Proof. Let J6 be the mollifier and let us set

u£(xi, x2, t} = \J£(xl — x()u(x(, x2, t)dx[.

By integration by parts, we see

r (xf}Dmu(x x' x t)dxr

j

Obviously,

Hence,

\\Dmu£-D
mu\\0->Q as £->0.

Thus we have proved the lemma.

Let us put 2±={(xi, x2, Ol^i^O, x2>0} and r={(0, x2,

We introduce the function space:

CrS(S+}={u€.Cm(S+}\u vanishes for sufficiently large xl

4) We denote by Dmu some derivative of u of order m.
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The following a priori estimate hold for C™(2+} :

Proposition 5.2. Under the above assumptions, if k^>kQ (kQ is the

same constant as in Proposition 4.2), it holds that for any u £ C7(J*+)

\u\k+2,z+^C(\Lu\kiz+ + <uXl>k+i>r

(5.2)
+ <uX2 + auXl>h+it{xl>oy+ | u | 0).

5)

Proof. We extend the functions D^^(03 #23 0 to the whole plane

#i = 0 for m<;k+l in such a way that

um(x2, 0 = ̂ ^(0, #2, 0 in #2^0,

and

(5 3)

Hereafter we shall denote Sw simply by D^u.

Now by Proposition 5.1 there is a solution wE<^(#i<jO) 6) such that

- v e w = n

and for Q<=m<:k+l

0 on #i = 0 if 77i is even

Put

— 2D™lu on #i = 0 if 77i is odd.

2, t) = u( — xi, x2, t) — w(xi, x2, t) for

And we define

I u(xi, x2, t) for #i>0

v(xi, x2, t) for #1 < 0.

Then by (5.4) the function u satisfies the assumption of Lemma 5.1 for

5) The notation < >s,{a;i>o> is the quotient s semi-norm in the half plane {(xi} 0, i)|
6) We denote by ^(x^O) the set of C°° functions decreasing rapidly in #i^0.
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m = k-}-2. Hence taking the approximating sequence, we have by Proposi-

tion 4.2

(5.5)

Obviously,

(5.6)

and

(5.7)

In view of Proposition 5.1 and (5.4), we get

PH 7)

(5.8) kli+,,{,1<0}^cL

j=o

where we have put s=—l in (5.1).

Since D*l = L-(D*l + e"'DV, we see

flS{=yiI

Therefore,

(5.9) <DU+1u>k_2j.+ i = _ _ _ , _ . , _ _ . ._„
Jl~l~J2~j

If /i = 0 on the term on the right side, we easily see

(5.10) <DxL
J'iu>il _ + + 2 , l + , ,

If y"i=VO, we have by the well known inequality (see e.g.,

(5.11) <DXlL^u>k_2l-+i,2j.2,

7) The notation [s] means the integral part of s.
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Hence we get from (5.10) and (5.11)

(5.12) <
2i

We see from (5.8), (5.9) and (5.12)

(5.13) \w\2
k+2,{Xl<0}^C( Lu

PQ
+ Z

y=o

On the other hand we get by (5.5), (5.6) and (5.7)

(5.14) \ + ,

wXl>k+±ti

Obviously,

(5.15) ,xl 2+ *,{*,

Combining (5.13), (5.14) and (5.15), let us take #->0. Then we obtain

the estimate (5.2).

Now let us define w in substitute of (5.4) in such a way that for

I —2D^u on #i = 0 for even m

0 on #i = 0 for odd m.

And we put

Then we have the following proposition quite similarly to the proof of

Proposition 5.2.

Proposition 5.3. Under the assumptions of Proposition 5.2, if k^>k^

there is a constant C such that

(5.16) \u\k+2,

\U\o).
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for any u <E

Further we can prove more easily without using the mixed boundary

estimate

Proposition 5.4. Under the same assumptions, if &^>0, it holds

that for any u € C^(J*+)

(5.17) | U \ k + 2,2 + <^C(\Lu\ k.S++<U>k+*r+<U>k+*ixi>0y + I U I o)-
2i £

And we can take k0 = Q in the assumptions of Proposition 5.2 and 5.3, if

a = Q in (5.2) and (5.16) respectively.

It is easily seen that the estimates (5.2), (5.16) and (5.17) hold also

for the operator

(5-18)

if $1, #2 and £3 are sufficiently small positive numbers.

Now the closed graph theorem was used only to prove Proposition 3.1

([19]). And Proposition 3.1 is needless to the proof for the case a = Q in

Propositions 5.2, 5.3 and 5.4. Therefore the admissible value of 81, #2

and 83 for the operator (5.18) can be calculated exactly. Thus perform-

ing a coordinate transformation, we see

Proposition 5.5. There is a positive constant &Q such that the

statement of Propositions 5.25 5.3 and 5.4 holds also for the angular

domain with the angle ——Jra(\a\<0o)intheplaceof2+. In particular,
z

we can compute the constant &Q explicitly for the case of a = 0 in Proposi-

tions 5.2, 5.3 and the case of Proposition 5.4.

6. Let us return to the section 1. We assume that A, By, & and

6 satisfy the assumption of Theorem 1. Introducing a new real variable

t, we set
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Let us denote by S X {t} the 3 -dimensional domain {(#1, x2, t) \ (x^ x2) € @,
— 00<£<00}.

The passage from Proposition 5.5 with constant coefficients and with

angular domains to the following proposition is performed in a familiar

method based on a partition of unity (cf., e.g., QlJ, [3j, E^O]). We denote

by C£°(Jx {$}) the class of ueC°°(@x {t}} vanishing for \t larger than

some fixed number. Then we have

Proposition 6.1. Under the assumptions of Theorem 1 there is a

constant kQ such that for any u £ C%(@x { t } ) 8)

if k^kQ.

Now we shall deduce Theorem 1 from Proposition 6.1. The method

is essentially analogous to that of Agmon pf]. He proved for the case

that the boundary values vanish. And his proof is effective for the Lp

norm. First we prepare the following lemma.

Lemma 6.1. Let C(0 be a fixed function in C%(Rl). We set

Vp(x, i) = £(t)ellttv(x) for any v in C^(Rl) and for any real A^l. Then

for given real s 2> 0, there is a constant C such that

Proof. We see

where ^ represents the Fourier transform.

Obviously,

And we have

8) Put
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Hence,

Thus we obtained the proof.

Lemma 6.2. Under the assumptions of Lemma 6.1, M;£ have

where \ \S,R\ and \ \S,R\ are the quotient semi-norms in {#>()}, respec-

tively.

Proof. We consider the function

v(x) in #X)

Lsl + l
2 Apv(-px) in x < 0.

If we choose kp adequately, then v(x) belongs to C^+1(Rl). Since the

quantity \u SsR\ can be written by the double integral, we see

And obviously,

(6.2) |S|

Put Vp(x, t) = ̂ (f)elfltv(x). Then we easily see

(6-3) \V\*.R^\VP\,.R*.

Combining (6.1), (6.2), (6.3) and Lemma 6.1 we have the desired ine-

quality.

Proof of Theorem 1.

We take a function C(0 £ C^(Rl) in such a way that
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f 0 if |*| >1
C(0 =

I 1 if |*|<l/2.

Let us set t^O&i, x2, 0 — CGO^^W for any u£C°°(@) and any real

#(2^1)- Then we see by Proposition 6.1

(6.4) \\'v/.\\k+2,Q1

where @r = # X {| t \ <>} and dQr,j = Fj x {| * | <>}.

Clearly,

Hence if we put Da = D^

Accordingly,

(65) \\£v IU a ^Cfy1

1 7 = (

k

7 = 0

It is easily seen that (see e.g

On the other hand, we see from Lemmas 6.1, 6.2 and the definition of the

boundary norm

(6.7)

In addition,
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k + 2

(6.8) I W I l + 2 . 0 l / , Z M ^

Combining (6.4), (6.5), (6.6), (6.7) and (6.8) we have completed the proof.

Finally since the constant kQ can be taken to be 0 lor Proposition

5.4, the statement of Theorem 2 has been shown.
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