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Spectral Representation for Branching Processes
with Immigration on the Real Half Line

By

Yukio OGURA*

§ Oo Introduction

In the previous paper JJT], we have obtained the spectral represen-

tation for the semigroups of continuous state branching processes (CB-

processes). In this paper, we shall obtain the analogous results for

continuous state branching processes with immigration (CBI-processes).

CBI-processes were introduced by Kawazu and Watanabe Q3] as a con-

tinuous version of Galton-Watson processes with immigration and our

results are similar to those of Karlin and McGregor []2] for Galton-

Watson processes with immigration. When CBI-processes are diffusions,

our representations are some concrete examples of the general represen-

tation theory for one-dimensional diffusions (cf. [J5] e.g.).

Generally speaking, the spectrum appearing in the representation for

a CBI-process is a constant multiple of that for the corresponding CB-

process. The eigenmeasures of a CBI-process are given by convolutions

of those of the CB-process and so called an a-stationary measure (cf. (2.1)

below and Q6j (2.1)). The right eigenfunctions are given by a similar

way (cf. (2.4) below and [6] (2.6)).

In §1, we shall define an ^-stationary measure, and represent the

semigroup by it ((1.15) below). In §2, we prepare some general lemmas.

§3 is devoted to obtain the spectral representation for sub- and supercri-

tical cases. In these cases, only the discrete spectrum appears. In §4,

we deal with the critical case, in which the spectrum is continuous.
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Some examples are given in §3 and §4. They contain all diffusion CBI-

processes.

The author wishes to express his thanks to Professor N. Ikeda and

Professor S. Watanabe for their valuable discussions.

§1. a-stationary Measure

A CBI-process is a Markov process (xt, Px) on the real half line

[J), oo ] with oo as a trap, satisfying for each £]>0, Al>0, and #;>0,

(1.1) £*[VX*S *<eJ = ̂ W)e-^(x).1)

Here, (pt(X) and 0*U) are nonnegative functions of t and A, and they

satisfy

(1.2) 0* + .U)

(1.3) 9tM

Now we shall assume that the process is stochastically continuous. Then

o and g(X)=—d<ptW/dt\t=o exist and are given by

(1.4)

(1.5)

with real constants a>0, 6, c^O, dl>0, e^O and nonnegative measures

HI and n2 on (0, oo) such that \(j2Al) »i(dj)+ \(jAl)

(cf. [3]). From (1.2) and (1.3), we have

(1.6)

(1.7)

Conversely, for given A(A) and g-(A) with above properties, 0*U)

and <^/(A) are uniquely determined by (1.6) and (1.7). Furthermore,

; xt = oo}f (inf 0=
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=:o,oo) is a ?r-semigroup2) and y>t(X) is completely monotone, and

hence there corresponds a unique CBI-process.

Definition 1.1. The function h(X) is called supercritical (subcritical,

critical) if A /(0)>0 or c>0 (resp. h'(Q)<Q and c = 0, resp. h'(Q) = Q and

c-0).

In the sequel, we shall assume

r oo 7

(1.8) \ -T7-y converges for a large A.3)

J x n/\jC )

Since A(7) is concave and /&(0)>0, we can find its largest zero point

By (1.8), r>0 if it is supercritical, and r = 0 otherwise.

Definition 1.2. Let a= g(r). A nonnegative measure 7tQ(dx) on

, oo ) is called an a- stationary measure of the CBI-process, if it satisfies

Jo

(1.10) 0<7T0(^) —\ e~x*7ro(d:*0< °°, for a large A.

Lemma 1.1. A nonnegative measure 7rQ(dx) on CO, oo) is an a-

stationary measure, if and only if 7ro(^)<°° for all A>7 and

(i.ii) fto(0*W))^W)=c-fll»oU), ^>r, oo.

Proof. Since all the measures in (1.9) are nonnegative, (1.11) fol-

lows from (1.9) by taking the Laplace transforms, (it is allowed that both

sides are +°° at this step). If 7iQ(dx) is an a-stationary measure, ft0(L)

<oo for some L>0. Since <pt(L)->T as t-+oo by [JT] Lemma 1.1,

for each A>f by (1.11). The converse is obvious.

2) {^(/Ohe Co.oo) is called F-semigroup, if it satisfies (1.2) and each <pt(X) is nonnega-
tive, having the completely monotone derivative in X.

3) This condition is same as [6] (1.5). However, this is not always necessary for the
spectral representation in [6] or in this paper. Indeed, the parallel arguments

are available if we use -f" ^ - instead of ̂ )^-(°° /*r , (cf. [6] (1.8)). But
J H. fl(T) Ji "CO

there is no more stationary measure or a-stationary measure if this fails.
4) Jf(0, oo) (jf[0, oo)) is the class of all Borel measurable sets in (0, oo) (resp. [0, oo))

with compact closures.
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Proposition 1.1. There is a unique a-stationary measure up to a

constant multiple. It is given by

(1.12) ft0«

where A*O is a constant with A*0>r.

Proof. First, we shall show that 7To(/0 of (1.12) is completely
r\

monotone on ^>/l0 3 by showing that f(X)= — \ ((g(r) — a)/A(r))dr has
Jx0

the completely monotone derivative (cf. [1] p. 417). Since g(X) is non-

decreasing and &(/l)<0 on /l>r, /(/0>0 on A > A 0 . Similarly,

(1.13) _
A — 7" / A — 7*

— a)/(/l — 7*) is completely monotone, since

a;

Similarly, — A(A)/(/i — 7*) has the completely monotone derivative. Hence

in (1.13) is completely monotone on /l>7*.

(1.11) follows from (1.12), (1.6) and (1.7).

By differentiating the both sides of (1.11) at £ = 0, we have

This equation has the unique solution (1.12) up to a constant multiple.

q.e.d.

Let

(1.14) *«

and 0(«;) be its inverse function (cf. [6] p. 426). Since 0fU) = 0(#

([6] (1.10)), (1.11) implies

Proposition 1.2. 77z£ CBI-process has the representation
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(\ 1^ F rp-Xxt' t <? P 1 —(1.15) Ex\_e >*<C-J-

Corollary 1.1. From this, it is clear that the sample paths hit the

origin with positive probability, if and only if (1.8) holds and

(1.16) \ , dr converges for a large A.
Jx li(r)

(Cf. [6] Remark 1.1).

§2. General Lemmas of the Representations

In this section, we show that the representation (1.15) in §1 signifies

the spectral representation of the semigroup. We start with

Lemma 2.1. For each u € [J), oo)5 there exists a signed measure

C(^; dx) on Jf[J), oo ) such that

(2.1)

(2.2)

where |£ | (H; £") zs ^^ /^<2/ variation of C(&; • ) on E.

Moreover C(&; JA;) is an eigenmeasure of Pt(x, E) in the sense that

(2.3)

The proof is similar to those of Lemmas 2.1 and 2.2 [JT].

As in |J5], we shall put some assumptions:

Condition I. For each x E TO, oo)3 there exists a signed measure

(x\ du) on Jf[0, oo) such that for some

(2.4) -=— -,
7t0(0(w))

(2.5) frB(*)
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Condition II. Condition I is satisfied, and

(2.6)

for some

Lemma 2.2. // Condition II is satisfied, f]{oc\ du) is an eigenfunc-

tion of Pt(x, E) in the sense that

(2.7) P,(*. d y )? (y ; f f )=e-<» + a N(*;<*») , Ue^^O, oo).

Lemma 2.3. // Condition I is satisfied, then Pt(x, E) has the

spectral representation

(2.8) Pt(x9E)={~v(x; du)e-^**t(u\ E\ t>tQ, x e [0, oo),
Jo

The proofs are similar to those of Q6] Lemmas 2.3 and 2.4, and will

be omitted. (Use (1.11) and (1.15).)

§3. Discrete Spectrum Case

In this section, we deal with CBI-processes, whose A(/l) and

satisfy

(3.1) A'(r)<0, and h(l\ g(t) are analytic at r-

When a CBI-process is supercritical, (3.1) is always satisfied: when it is

subcritical, since A/(/) = /&'(()) <0, the only assumption is that h (A) and

g(X) are analytic at 0.

Let ju=-h'(r). Then A(X) = e-**™ is analytic at r and J'(r)>0

(cf. \JSJ). Hence the inverse function B(v) of A(X) is analytic on a

neighbourhood F(0) of v = 0.5) Moreover 5(v) and d(w) have the

relation

(3.2) d(w) = B(e-»w\ e-"w

5) Note that
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Now, by (1.12) and (3.1), I/TTO(^) is analytic at 7. Since B (v) is ana-

lytic at 0 and B(0) = r, e~xB(v^/ftQ(B(v)') is analytic at 0. Therefore we

can define the functions {^(x; kju)}^=0 uniquely by

(3.3) E V(x ; kfJL) vk = e-xB^/
k = Q

Theorem 3.1. Let (3.1) be satisfied. Then f](x\ k/i) is an eigen-

f unction of Pt(x, E} corresponding to the eigenvalue e~^a+k^t, Furthermore

Pt(x, E) has the spectral representation

(3.4) Pt(x, E}=i,(x; ku)e-la+tritC(kft; E\

for some

The proof is similar to that of \J5~] Theorem 3.1.

Remark 3.1. If h(£) is supercritical with c = 0, tQ in (3.4) can be

taken to be 0. Indeed, in this case, (3.3) is satisfied on ( — 1,1), since

B(v) is analytic there and TTO(^) is analytic on A>0 (cf. JJT] Remark

3.1).

Remark 3.2. y(x\ kju) = e~~7Xx (a polynomial in x with degree k}.

This follows from (3.3) (cf. [6] Remark 3.2).

Note that in this case

(3.5) 0,(;i) = £(e-/rf^U)), for large t,

(cf. [6] (3.6)). An asymptotic property is also obtained:

Proposition 3.1. // (3.1) is satisfied,

(3.6) E£e-**< ; * < e J = d(A) e^xe-at[l - e'**

where ciU)=exp f ((«r(r)-a)/A(r))dr, c2W = A(X)/A'(r) and cz=g'(r)
J7

/h'(j). 0( ) is uniform on A^T* — e and x<^L for some e>0 and each
L>0.

Proof. Since ftoCBGO) is analytic at 0 and 7r0
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Hence, by (3.5) and (1.11)

(3.7)

On the other hand, by [6j (3.8)

(3.8) e

(3.7) and (3.8) imply (3.6).

Now we shall give a few examples (cf. Q6] Examples 1 and 2).

Example 3.1. Let

is supercritical, and the largest zero point 7* is (b/a)q, where q = l/p.

As F6j, ,«=/>6 and

Since (gW-g(ry)/h(X)=-c/al,

5

(Ao is a constant larger than /). a = bc/a+d and the a-stationary

measure is

, - .
L (/C)

The eigenmeasures £(kfi\ dx}, ^ — 0, 1, 2, ..., are given by
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, , - — rf / + .V 'f = o \ * / \ a / 1 (pl + lC)

and the eigenfunctions ^(#; Jfc/*)? & = 0, 1, 25 • •-, are

Q 1=0 «

When />=!, the CBI-process is a diffusion with the generator

^u = axur/ -{-bxu +cuf — du.

In this case, (3.4) can be written in the symmetric form;

where

and ??i(rf^)^%'c~1e7^c?% is the canonical measure of the diffusion. This is

an example of the general spectral representation theory of one-dimensional

diffusions (cf. Q5] e.g.).

Example 3.2. Let

fAU)=-a

where ?Q = (b/a)q, q = 1/p. In this case A(^) is subcritical. a = bc/a+d

and the a-stationary measure is

a

jU=pb and the eigen-measures and -functions are

When jD=l, the CBI-process is a diffusion with the generator
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(3.4) has the symmetric form

where

T2

and m(dx) = xK le 7°x dx is the canonical measure of the diffusion. This

is also an example of the general theory.

§4. Continuous Spectrum Case

In this section, we discuss the spectral representation of CBI-processes

with continuous spectra. First, we shall deal with the case

) and g(l} = kpgl(X) + d, where
(4.1)

[and AI(^), giU) are analytic at 0 with

This is satisfied of course only when h(K) is critical. Since h(K) is

concave and g(>0 nondecreasing, /ii(0)<0 and gi(0)>0. We set

Lemma 4.1. L^ (4.1) ^g satisfied. Then 0(w) is analytically con-

tinued to a domain containing a right half -plane Re w>£i, and

(4.2)
1 M Re w>ti.

. By (1.12) and (4.1), for some p>0,

(4-3)

where /(^) is an analytic function with /(0)=VO. On the other hand, by

the same reason as in the proofs of [jf] Lemmas 4.1 and 4.2,
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(4.4) sup
Re a/>f i

sup
0<r</o

sup - ' ' C l A

where £ 0 5£i>0 , CQ> c\ are some constants, and &o(A), &iW analytic func-

tions. Now (4.2) follows from (4.3) and (4.4).

Moreover, it holds that

(4.5) \l-e-xd^\<*^, Re ™>;2, (Cf. [6] (4.3)).
\w

Let tn = ti\/t2. Then we have:

Theorem. 4.1. Suppose that (4.1) zs satisfied and ft>p/2. Then

the transition function Pt(x, E) admits the spectral representation

(4.6) Pt(x,E}

where y(x, u) is in .L2(0, oo) as a function in u. Furthermore, if p=l,

y(x, u) is an eigenf unction of Pt(x, E) for each continuity point u of

V(x, u).

Proof. By (4.2), (4.5) and the Paley-Wiener theorem ([4] p. 131),

(4-7) lr,e**°™ =\~e-wu$(x, u)e<°*du9 Re
7to(v(w)) J°

(4.8) ~

where /?(#, a) and /5(z^) are in L2(0, oo) as functions in u. Hence (2.4)

follows with ^(^; du)/etQUdu = y(x, u) = @(u) — @(x, u). (2.5) is obvious

since y(x, u) is in L2(0, oo). Thus Condition I is satisfied and hence

(4.6) follows by Lemma 2.3.

For the latter assertion, we shall only note that (4.7) and (4.8) imply
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'"1, w>ta,Jo

(cf. the proof of [6] Theorem 4.1).

Proposition 4,1. // (4.1) is satisfied, we have

(4.9) Ex[e-XXt; t<e^

0<JD<1,

et at

/(A) z'5 ^^ o/ (4.3) «^ a, c, 9, ci are those of ^6] §4. 0( )

uniform on A^>K and x<^L for each K,

Proof. Note that (1.1) and (1.11) imply

(4.10) ^Ce-.

Since 0f(^)->0 as ^^^oo? we have by (4.3)

(4.9) follows from (4.10)3 (4.11) and [6] (4.12).

Remark 4.1. The higher approximations may be obtained by the

same methods.

Now we shall give an example of (4.1).

Example 4.1. Let

5 a>0, 6^0, c>0.

By a simple calculation,
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with q = l/p. /C = b/a and

for /U>0. Hence the a-stationary measure (a = c) is

The eigenmeasures C(u; d#) are

C(M; ^) = ASS -TTV ~) ' rv / _ L ^ ^*/=o /! \ pa J 1 (pl + ic)

In this case, fC^>p/2 is not necessary for the spectral representation

(4.6).6) Indeed, in our case, Condition I is satisfied with

When _p=l, the corresponding CBI-process is a diffusion with the gener-

ator

(4.12) &u

and (2.8) has a symmetric form

where

and 77i(J^;) = ^'c~1rf^ is the canonical measure of the diffusion.

Finally, we will give an example of the spectral representation with

continuous spectra which does not satisfy (4.1).

6) But T](X, u] does not belong to L2(Q, oo), when /c<p/2.
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Example 4.2. Let

r, a>0, 6,

The functions 7r(/l) and 0(w) are as same as those of Example 4.1.

Suppose first that 0<_p<r<^l, and put p = r—p. Then

f b*o \=exp( — M,
\ ap /ap / \ ap

for ^0>0- Hence the a-stationary measure 7tQ(dx) is

where P(p\dx) is the one-sided stable distribution of exponent p.7)

Let ^u{dx) be that of Q6] Example 3. Then the eigenmeasure C(& ;

is the convolution of nQ(dx) and fw(d^). Further,

bluqpl~ldu

Hence Condition I is satisfied with f)(x\ du) = (/90*^.(^))(^^)5 where

$</«(#) is that of Q6] Example 3.

Next, let 0<r<jo<;i, and put ff=p—r. Then

for A0>0. The oi-stationary measure 7T0(d^) is

and the eigenmeasure C(^5 ̂ ) is the convolution of 7r0(dx) and gu(

7) That is P(p) is a probability measure given by
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so that Condition I is satisfied with i}(x; du) = (@Q*(f).(x))(du). Hence

(2.8) follows by Lemma 2.3.
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