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Existence Theorems of Permanent Gravity
Waves on Water of Uniform Depth

By

Masako KUMAZAWA*

1. Preface

As for gravity waves of permanent type on water surface, existence

theorems have been presented by many authors since Levi-Civita (1925).

But yet it seems to have no simple proof which covers all cases. On the

other hand, the calculation scheme for practical computation of these

waves has been unified in a simple formula (ClH)j an^ it has already

been shown that the result of the approximate calculation is in a good

agreement with experimental fact (H2]).

This unified calculation formula is based on a formulation to deter-

mine a holomorphic function in a unit circle with some nonlinear boundary

condition on the circumference, and in the case of infinite water depth it

just agrees with Levi-Civita's formulation itself. Hence we want to extend

the proof of the latter to our general case. But as for the case of

solitary wave, i.e., the case of infinite wave length, and of the highest

wave, i.e., the case having angular crests, the asking holomorphic function

has the corresponding singular point on the unit circle, so it is difficult

formally to extend, and our effort is yet unsuccessful. Therefore in the

following we deal with the case of the periodic wave having round crests

and our method is based on extending directly Herbert Beckert's proof

(C^H) concerning with the case of infinite depth to our case.

The author wishes to acknowledge her indebtedness to Hikoji Yamada

for suggesting this problem and also to Reiko Sakamoto, under whose
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direction this paper has been accomplished.

2. Problem

As for the transformation onto a unit circle, we refer to Ql] and

summarize it in the following:

We treat permanent gravity waves on water of uniform depth. And

we suppose that our waves are periodic and are symmetric about the

vertical line through the crest and observe the waves on the water from

the coordinates system 0-xy which follows after the waves as fast as

the waves, so that the wave form stands fixed relative to the axes, and

water flows steadily from left to right (say). The origin 0 is at one

wave crest, the A;-axis is horizontal and directed to right, the y-axis

vertical and upward. We consider a water region ABCOC'B' (Fig. a).

Let

y

^*9 l> »s^ ^ ^

2: — x~r i y

be the complex potential function

jj in which <p is the potential func-
A(-ia)

Fig. a Z—pl tion and 0 is the stream function

and arbitrary constant is fixed so

(UL/2)^ y that JF(0) = 0. Complex velocity

is given by

A " ™=u(x, y)-iv(x, y) 2)
Fig.b W-pl dz

where u and v are the velocity

components and
£^ / /y^C'^B;VKA <L ^^ , =u =-0x=v 3)

and u, v are periodic with respect

^. to x. Let the wave-length be
Fig.c g — pl

denoted by L and the mean depth
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by D. We define the wave velocity U by the formula:

which is independent of y because of our wave form.

When we denote

= |v|e-" 5)
LIZ

| v I and 6 are the speed and the direction of flowing water, 6 being the

angle measured upwards from the horizontal direction (to right). Denoting

\v\/U by q and log q by r, 5) becomes to

1fJ-i6— -iQ(z-) c/\
C/ — C , «J y

tf d* *"

the field quantity £(*) being defined by the relation:

or ^— — • /'I ^^\
\ U dz /

Evidently J2(,z) is holomorphic at every interior point of the water region,

and may have singular points at the boundary of the region.

Along the streamline which constitutes the free surface of water a

constant atmospheric pressure prevails, and by Bernoulli's equation we

have

r= const 7)

or differentiating this along the arc s of the stream line we have

q—^- + -^sm6 = Q 8)
as U

where 6 is the inclination of free surface. Moreover we have

along the streamline and put

4>(x,-a)=-UH
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UL ( L \ UL

And because of our wave form, it takes the horizontal velocity at points

under crest or trough, or at the bottom, i.e..

The complex potential function W(z} maps the physical z-pl. onto

the JF-pl. as shown in Fig. b.

Now we introduce the complete elliptic integral K(k) and K(kf\ of

the first kind with the modulus k and its complementary modulus kf

= \ll-k2, and define the numerical value of k by the relation

K' 4~- 9)K L '

With &, k', K and Kf thus determined we define a transformation

— r
CT-I i tr/ if i •» J «o/t

where 571 is the Jacobian elliptic function with modulus &, which maps

the JF-pl. onto C-pl- By this mapping the one wave length region of

the J'F-pL, which is shown in Fig. &, corresponds to the region interior

to the unit circle with cut about the origin of the £-pl. also shown in

Fig. c. From 5') and 10) we have

ID

where $(C) is the transform of &(z) on C-pl. It is verified that — z'

has a pair of complex conjugate values at every pair of conjugate points

in the unit circle C ^1 and it takes real value on the real axis and all

along the cut — 1<CC<0 values of the two sides coincide. Thus the

function — i@(Q and consequently J2(C) itself is not only holomorphic in

the cut unit circle, but also in the unit circle without cut.

When we take dz along the free surface this is equal to ds et0 and
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has to correspond to d£ = iei(7do~ on the unit circle C = e*°"3 o~ being the

arc length of the unit circle. The correspondence is given by 11) and

by use of the expression 5') we have

The boundary condition 8) is transformed on the unit circle | C I — 1

the C-pl- as follows:

'

or

x

where p is defined by

£"i f">J"L \

P A ITTTZ onT'TTZ • '

13) (13')) is the boundary condition for the determination of $(C)3 and

p is the eigenvalue which has to be determined simultaneously with J2(C).

From p the wave velocity U follows at once.

Thus our mathematical formulation is completed and Stokes' waves

and the solitary wave are easily seen to be the two extreme cases (k = Q

and & = 1) of our present formulation.

Now our problem is reduced to the following:

Find a function

(0 (C) - Re fl(C), r(O = Im fl (O)

which is holomorphic in the unit circle C={|C|^1}? denoting
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J2(p, tf) is continuously differentiable in C={0<p<Cl, — 7r<^<T<>}, and

moreover satisfies the following properties:

a) Denoting the restriction of $(C) on S= { | C i = 1} by

0(0") and r(<7) satisfy the relation:

where A; is a given constant (0 <[&<!), and p is some positive constant

(arbitrary).

b)

c) 1) |®(O|<!/9<— ̂  - (/? is a given positive constant)
£i

2) ®(C)^0 for Im C>0

d) ^ ^ = 7- (7- is a given constant 0<r<l).

3. Proof of Existence

Let ^v(0<v<l) be the Banach space which consists of functions /

defined on 5, which is represented by f= /(^)(— TT <^"<7r), with the

norm defined by

where Hv(f} is the Holder constant of /, i.e.,

)= sup, iw
'

And ^*+1((0<v<l, A = 0, 1, 2, ...) is defined by

with the norm
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h+v= max |/(<T)| + • • • + max |/<*>((T)| +#„( /•<*>(*)).
— —

In the following, we fix some v(0<v<l) and consider subsets of

namely Q, which consists of functions satisfying following relations

2) 0(ff)>;0 for 0<0-<>

and Q, which is included in Q and functions in Q satisfy the inequality

3)

Now taking some 0 E Q and putting it into (1), we can consider (1)

as the differential equation of r = r(<7) and integrating it, we get the

equation

(2) e3T(.) = e3.(o) + 3
Jo / .

|/ 1 — Fsi

In the above equation, the integral constant e3r(0) should be connected

with the condition d), but now we suppose e3r(0) = l and modify it later.

Hence we get

(3) r((T) 3

where

=2S£^_d*.
2

Moreover we have

dr
(30

dff

Let T(p, (T) be harmonic function in C with the boundary value r((T)

defined by (3), and £*(p, (T) = ®*(p, (T)-f- tT(p, (T) be the holomorphic

function in C whose imaginary part is T(p, J) and @*(0, 0) = 0. Denote
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the boundary value of ®*(p, 0") by 0* = 6*(ff\ which is the conjugate

function of r((T). We consider a mapping Tp which maps 0(6) £ Q to

0*(<7). Now our problem is reduced to looking for a fixed point of Tp.

Then it comes into question whether we may find a subset of Q which

satisfies the condition of Schauder's fixed point theorem, namely whether

there may be a closed convex set in Q which Tp maps into itself con-

tinuously and completely continuously. Although 0(0") = 0 is one of fixed

points, we want to show that there are nontrivial fixed points in the fol-

lowing. Our proof is based on the following two theorems about conjugate

functions :

Theorem (Privaloff). If fe&k+v, then /6^+y5 where / is the

conjugate function of f. And there exists a positive constant Ck+v depend-

ing only on v and &, such that

\\~f\\k+v<ck+v\\f\\k^v

where /(0) = 0.

Theorem (Beckert) (cf. [3j pp. 382-383). If f£@v is continuously

differentiate and

/(*)=/( -<r)

-^00^0 for

then

for Q<,ff<,n

7 r

where / is the conjugate function of f. And if — ̂ — (<T0)>0 for 0<C(T0
CLQ

<7T5 then /(<r0)>0.

Now we fix some pQ such that

(4)
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and consider p satisfying Q<p<^p0. We also fix k0 as 0 < & 0 < - - and
Li

consider k satisfying 0<&<& 0 . We remark the uniformity with respect

to k throughout in the following.

Lemma 1. The image 0*(ff) of 0 ( < J ) € E Q with respect to mapping

Tp belongs to Q and there exists a positive constant K which depends

only on v, pQ and kQ, such that 0*(<7) is included in the sphere

(5) /*

and

where KI is also a positive constant depending on v, pQ and k0.

First of all, we get the following estimation from (3')

(6)

In fact, since deQ, it holds F(tf)>0 in the interval — 7i<(T<^7i. Then

TP6 E IK is shown by Privaloff' s theorem. It follows from Beckert's

theorem that TP6 £ Q. Next we have

0 (l + (l + 3/?0) (270-') n^n
"

then

by Privaloff's theorem, where Cv is a constant depending on v.

It has been shown that the image of Q with respect to Tp is included

in Q, but generally it is not included in Q. So in Q, we consider a

family of convex sets Qs with a parameter s which is characterized by

1

Hence Q = \J Qs. Now let Ms be the intersection of Os and /^, then
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Qr\lK=\jMs.

Lemma 2. There exists a positive constant f\ which depends only

on v, p0 and A;0 such that, if 0(0") £MS(0jsCs.fC??), then

namely

Here we consider another mapping Tp. Namely, for 6&Q integrat-

ing the equation

(7)

we have r7((T) with r;(0) = 0 and let 0*' '(tf) be the conjugate function of

r'(<7) and define Z1/ by

For mapping T1 '̂, we have the following lemma (cf. []3] p. 385).

Lemma 3. // 6(o~) €<?S3 Mew Tp'd = d*'((T)eQps.

Comparing T^ and T/, we get

Lemma 4. L^ d£\J Ms> then Tpd^Ms*(p>e^ where s* has follow-
Q<s<.f

ing properties :

1) s*( p, 0) is a continuous function in QO, poll X \^/ Ms <2^<f a strictly
Q<s<,V

increasing function of p.

2) There exists a positive number A depending only on y, pQ and k^

such that for 6 6Ms(0<s<;mm(A, TJ)} it holds that

3) If p^l-k2, then it holds that

for
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It is verified by Privaloff's theorem that if 0y(<T) j=^> 0(ff) in Qv and

PJ y_> 0 0> JP, then Tpj6j(ff) y-»oo> Tpd(ff) in ^v, namely r/,0 is a continuous

with respect to (JD, 0). Then s*(/>, 0) is a continuous function of (p, 0).

And applying Beckert's theorem to the difference between two different

values of p, we have the monotonicity with respect to p. To show 2)

and 3), we use

(8)
7T

And when we put

\ s
Jo

for 0(<T)eMs(0<s<77)5 we get inequality

3pQt da — Vl —A2

3/?o£

fi^k*

Now putting

(10)

we denote

P

So it is shown that

6

and applying Beckert's theorem to 5* —0*', we get

Hence if po'^ls then s*>s. In order that it holds
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Po =
, ,
+

t must satisfy

Since pQ> , Z>0, therefore there exists a positive number A similarly
z

to Lemma 2, such that for 0<s</l, every 6^MS satisfies the condition

(11). Consequently TPo maps Ms (0<s<min(/l, 77)) into \J Ms*. Simi-

larly to show 3), it is sufficient to compare Tp with Tp" (p" = -j=" ).
\ Vl — k2/

Corollary of Lemma 4. For each O^MS (0<s<min(^, 77)), there

exists a positive number pe (Vl — k2 <^pe <Lpo) such as to satisfy

and pd is continuous with respect to 0. Then, for 0 G Ms, putting

Td=TPoO

T is a mapping from Ms into Ms for each s (0<s<min(/l5 77)).

Lemma 5. T is continuous and completely continuous,

If | l^| |y<l5 then we have p*||i^y <X"i by Lemma 1. So complete

continuity is led by Ascoli-Arzela's theorem. Next since pe is continuous

with respect to 6 and TP0 is continuous with respect to (p, 0), we have

Tp0 Oj j^^Tpgd in ^y. Consequently T is continuous.

As we have seen, the assumption of Schauder's fixed point theorem

has been assured, so the transformation T in Ms (0<s<Cmin(^, 77)) has

at least one fixed point which belongs to &iiv by Lemma 1. The fixed

point 00 is the restriction to S of the real part of holomorphic function

in C which satisfies the boundary condition (1) for

•k2). Moreover since 6Q( — o")=—d0(o"\ then ®0(^)

satisfies the condition b). And from
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for 0:<<r<7r,

®o(tf) satisfies the condition c) by the maximum principle. But the condi-

tion d), i.e.,

is not satisfied in general. So now putting

and deciding a constant C as to satisfy the above equality, we have

r— rroOO___.

4. Conclusion

Fixing p0>——- and 0<&0<-^— arbitrarily, there exist two positive
z z

numbers 97 and A which depend only on v, pQ and A0. And for each

5, 0<s<Cmin(/l, 97), there exists 6Q(ff^£zMs and a positive number jD00

— ̂ 2) as follows. Denote

where

and

sin flo
7
/ - ! 7 9 - 9 O1/1 — A2sm2-— -
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then 0(6} and r(<7) are continuously differentiable functions on S satisfying

the relation

Let J2(Q be a holomorphic function in C whose boundary value J2(ezcr) is

o>((T), i.e.,

then .fi(C) is one of which we ask for.
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