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On Quasifree States of CAR and
Bogoliubov Automorphisms
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Abstract

A necessary and sufficient condition for two quasifree states of CAR to
be quasiequivalent is obtained. Quasifree states is characterized as the unique
KMS state of a Bogoliubov automorphism of CAR. The structure of the
group of all inner Bogoliubov automorphisms of CAR is clarified.

§1. Intreduction

A classification of gauge invariant quasifree states of the canonical
anticommutation relations (CAR) up to quasi and unitary equivalence
is recently obtained by Powers and St¢rmer |12]. We shall generalize
their result to arbitrary quasifree states.

We use the formalism developped earlier [2] and study quasifree
state ¢ of a selfdual CAR algebra. it is then showa that ¢s, and ¢s,
are quasiequivalent if and only if Si*—S3”? is in the Hilbert Schmidt
class. For a gauge invariant quasifree state ¢, in the paper of Powers
and St¢rmer, S=AP (1 —A) and hence our result is a direct generali-
zation of Powers and Ste¢rmer.

The quasifree primary state s for which S does not have eigen-
value 1 is shown to ke the unique KMS state for the one parameter
group (U(A)) of Bogoliubov * automorphisms of CAR, where «(U())
correspords to a unitary transformation U(X) =expiiH of the direct
sum of testing function spaces of creation and annihilation operators
and H is related to S by S=(1+e ™)' This is used to simplify some
of arguments. A quasifree state ¢s is primary unless 1/2 is an isolated
point spectrum of S, has an odd multiplicity and S(1—S) is in the
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Hilbert Schmidt class.

It is shown that a Bogoliubov automorphism (V) is inner if and
only if V—1 is in the trace class and det V>0 or V+1 is in the trace
class and det V<<0. It is a * automorphism if and only if V is unitary.
A double valued representation of the identity component (i.e. det V>>0)
of the group of inner Bogoliubov automorphisms of a CAR algebra by
elements of CAR algebra (such that it implements the automorphism)
is obtained with a help of bilinear hamiltonians. It is a generalization
of the observable algebra introduced by Araki and Wyss [4].

A necessary and sufficient condition for the unitary implementa-
bility of a Bogoliubov transformation in a Fock representation is obtained.

In an appendix, a general structure of two projections is presented
and an angle operator is inrcduced. Some of the discussions in the
main text can be carried out by introducing a specific basis, although
we have avoided this in the present paper. For such a purpose, this
general analysis of two projections is useful.

The CAR algebra has been extensively studied by many authors
([4~7, 10, 12~17]) and some of our results such as Theorem 6 and

7 are in these earlier references.

§2. Basic Notations

We quote a few notions concerning a self dual CAR algebra from
an earlier paper [2].

Let K be a complex Hilbert space and I' be an antiunitary invo-
lution (a complex conjugation, I?=1, (I'f,I'g)=(g,f)) on K. A self
dual CAR algebra Uspc(K, ) over (K,I') is a = algebra generated by
B(f), f€ K, its conjugate B(f)*, f€ K and an identity which satisfy
the following relations: (1) B(f) is (complex) linear in f, (2)
B(/)B(g)*+B(g)*B(f)=(g,f) 1, and (3) B(f)*=B(T/).

If K has a finite dimension, spc(K,I") has a finite dimension.
Irrespective of the dimension of K, Usco(K, I") has a unique C* norm
and Aspe(K, I) denotes its C* completion.

Any unitary operator U on K commuting with I preserves the
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above relations (1) ~(3) and hence defines a * automorphism 7(U) of
Uspo (K, T) by «(U)B(f)=B(Uf). U and «(U) shall be called a
Bogoliubov transformation and a Bogoliubov * automorphism.

~The antilinear transformation

SIS eBUAM) B = B BUFL)

also leaves relations (1) ~(3) invariant and hence can be extended to
a conjugate = automorphism (i.e. antilinear * isomorphism onto itself)
which will be dencted by «(I").

Any projection operator P on K satisfying I'Pr=1—P is called
a basis projection. There exists a basis projection P if and only if
the dimension of K is even or infinite. Any two basis projections F;
and P, can be transformed to each other by a Bogoliubov transformation
U:P=UPU*.

Any projection P on K such that P | I'Pr is called a partial basis
projection. dim(1— P—TPr) is called the I codimension of P.

By identifying B(f) and B({If), f€ PK with creation and annihi-
lation operators on a CAR algebra Acsr(K;) over K,=PK, we have
a = isomorphism of Uspc(K, ") with Vesr(&K.), where P is any basis
projection.

Here oar(K:) is the = algebra generated by creation operators
@', f), fe K., their conjugates (a', f)*=(f, a) (annihilation operators)
and an identity, satisfying the following relations: (1) (@, f) is
(complex) linear in f, (2) @, /)@@, g)+ (", g)@", fH=(f,a)(g a)
+(g a)(f,a)=0, @, f)(ga)+(ga)@, H=(g N1 Uuw(K) is
the completion of ear(K;) with respect to its unique C* norm.

(A more precise notation will be something like Bx.(f), @k, f)
and (f, ax,), which is useful whernever elements of more than one
algebras with different K, I, and K, appear at the same time. We
shall meet in later sections a case where elements of Ysnc(K, ") and
E)_[gm(f(\, ?), I? =KOPK, 1/”\: I'p(—TI), appear at the same time. In this
case, Bx(f), f€K is identified with Bz 7(fEP0) and will be denoted
simply as B(f).)
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§3. Quasiequivalence of Quasifree States

Definition 3.1. A state ¢ on Uspe(K, I") satisfying the following
relation is called a quasifree state:

B.1) B B(fa)) =0,
(3.2) B -B(fe)) = (—1)”("'”’2Ze(5)],1:11@(B(fsm)B(fso-m)),
where n=1, 2, ---, the sum is over all permutations s satisfying
s(1)<<s(2)<<---<<s(m),
s(ND<s(j+m),  j=1,-nm,
and ¢(s) is the signature of s.

Lemma 3.2. For any state ¢ over Uspc(K,T), there exists a
bounded operator S on K satisfying

3.3) e(B()*B(g))=(f,Sg),
(3. 4) 1=S8*=85=0,
(3.5) S+r8r=1.

Proof. We have

(3.6) B(HO*BUH=B()*B) +BHOBUH* =S
B.7 IBCAOI=IBUO*BOIMEZ S
Hence (3.3) defins a bounded linear operator S on K.

From the positivity of ¢, it follows that S*=S==0. From the

anticommutation relations, we have

e(B(H*B(g)=(f, 8 —B(B(H
=(f,8)—eBUE*BUY))
=(f, 8 —Tg, STf).

Since
3.8 (b, rf)=@[Th), rf)=(f,Th),

we have (I'g, STf)=(STg, r'f)=(f,1Srg). Hence (3.5) follows.
From S=0 and 1—-S=r1ST, it follows that 1—S=0. Q.E.D.
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Lemma 3.3. For any bounded linear opevalor S satisfying
(3.4) and (3.5), there exists a unique quasifree staie ¢ salisfying
(3.3).

The uniqueness is immediate from (3.1) and (3. 2). The existence

follows from Lemma 4.6.

Definition 3.4. The unique quasifree state of Lemma 3.3 is

denoted ¢s.

From Lemmas 3.2 and 3.3, ¢s exhausts all quasifree states of
spo (K, ).

Theorem 1. 7Two quasifree states os and s give vise to mutu-
ally quasiequivalent representations of Vswo(K,T) if and only if
S12 (82 s in the Hilbert Schmidt class.

The proof will be presented in section 5.

§4. Fock Representation Induced by Quasifree States

Definition 4.1. 9, n-, and 25 denote the Hilbert space, the re-
presentation and the cyclic unit vector canonically associated with the
quasifree state ¢s through the relation

0s(A) = (s, s (A)2s), ASUspc(K, T).

Lemma 4.2, Lel ¢s be a quasifree state. If a Bogoliubov tvans-
formation U commutes with S, then there exists a unitary operator
T(U) on s such that

4.1) Ts(U)2s= s
and
4.2 Ts(U)ns(A) Ts(U)*=ns(x(U) A)
for all Acs¥spo(K, T).
Proof. If [U, S]1=0, then ¢:(x(U)A)=¢s(A). Hence
Ts(U) S cims(A) Q5= cims(c (U) A) 25,

and

Ts(U*)ZCiﬂs(Ai>~Qs:Zciﬂs(T(U*>Ai>'Qs
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define isometric linear mappings from a dense subset of s into Ds

satisfying
Ts(U)Ts(U*) =T«(U")T:(U) 1,
Ts(U) cTs(UM)™

Therefore, the closure of this Ts(U) is unitary and satisfies (4.1)
and (4.2).
Note that T<(—1) is defined for all S.

Lemma 4.3. Let P be a basis projection. If a state ¢ of
Voo (K, ') satisfies

4.3 e(B(IB(f)*) =0, [fePK,

then o=¢p. The representation np is irreducible.

Proof. By splitting every B(f) as B(Pf)++B(Prf)* and
using commutation relations to bring B(Pf) to the left and B(Pg)*
to the right, any element A in spo(K, I") can be written as

A=3%,B(f)*+ DB(g) P+

where f;, g;€ PK, P; and &; are polynomials. The condition (4.3)
implies ¢(A) =2 and hence state ¢ satisfying (4.3) is unique.

From (3.3), ¢p satisfies (4.3).

The condition (4.3) may be stated as ¢(A*A)=0 whenever A
belongs to the closed left ideal & generated by B(f)*, f=PK. The
uniqueness of such state implies that ¥ is maximal and the unique
state ¢ is pure [9]. QE.D.

The state ¢ is called a Fock state and =, is called a Fock 7e-
presentation. Under the identification of Uspe(K,I") with our(PK),
this coincides with an ordirary definition of the Fock vaccuum of CAR
and the existence of such state ¢, is known. A different choice of the
basis projection P produces a different identification apr of the selfdual
CAR algebra with a CAR algebra and correspondingly different Fock
state ¢p. All of them are mutually related by Bogoliubov automor-

phisms.
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Definition 4.4. Let S be an orerator on K. Then P. donotes the
operator on KGK given by a matrix

(4.4 Ps:< S 51’2(1—8)1’2>
Si2(1—8§)? 1-S
Lemma 4.5. If S satisfies (3.4) and (3.5), then Ps is a basis
projection on (f{\, f*\) where I?=K€BK, 1/’\=I’€B(—F).

Proof. A direct computation shows Pi= P.= P&, 'P;I'=1—Ps.

Lemma 4.6. Let S, P, I/{\, I/: be as in Lemma 4.5. Then the
restriction of the Fock state e, of spc(K, T) to Uswo(K,T) is the

quasifree state ¢s.

Since ¢,  is quasifree, its restriction is also quasifree. ¢, (B(f)*

B(£)=(f, Psg)=(}, S2) i [=F@0, g=Ze0. QED.
Lemma 4.7. Let P be a basis projection and
(4.5) m(B(f)) = [B([2P—-1]/)1T»(—~1), fEK.

Then there exists a representation > of Usvc(K,T") on O» which is
uniquely determined by (4.5). 9»is cyclic for =% and the correspond-
ing vector state is p.

Proof. It follows from (4.5) that #»(B(f)) satisfies relations
(1), (2) and (3) for Uspe(K, I") in section 2. Hence the existence of
a representation zp of soc(K, ") satisfying (4.5) follows. Since B(f)
generates Asvo(K, ), =& is unigue. By apolying #:(B(f))), i=1, .-, n
successively on 2, one can reprcduce z(B(fy))--m(B(f,))2 up to
+ sign and hence £, is cyclic. From the same computation, it is seen
that the vector state given by 2r is ¢».

Lemma 4.8. Let K, be a I' invariant subset of K, E(K,) be
the projection operator for the smallest closed subspace of K con-
taining K, and
(4.6) Re(Ko) = {me(B(f)); fEK}".

The following conditions are equivalent.
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(1) 2e is cyclic for R:(K,),

2 QA—-E&E))NA—-P)=0,

3) QA—-E(K))N\P=0.
Here P)\ P’ denotes the projection for PKNP' K. The following
conditions arve also equivaleni.

) Qs is separating for R-(K,),

(2" EE)NQA-P)=0,

(3 EK,) N\P=0.

Proof. (3)—(1): As is known, O, is a direct sum of subspaces
9%, n=0,1, ---, such that the set of vectors fI(B(f,.))qu, f,€PK, is
total in ©F. (3) implies that Pf, fE K, is total in PK. [If (g, Pf)
=0 for all fe K, and g PK, then (g,f)=(g, Pf)=0 and hence
ge K{NPK={0}.] Assume that ©% CR,(K,)2 for k<<n. (This is
true for n=1.) Then

np [B(Pf)]19P Crp [B(f)]OF — 7 [B({1— P} )] D,
mp [B({1— P} )] D5 CHF 2.
Therefore, B(Pf)9¥ and hence H¢*Y are in Rp(K,)2,.

(1)—(2): Assume that (2) does not hold and (1—E(K,))g
=(1—P)g=g+#0. Then n,[B(g)] anticommutes with all z[B(f)],
fe K, and hence 7:[B(g)]Rs(K,)2-=0. Therefore z,[B(g)]1* 2,#0 is
orthogonal to R(K,)2, and (1) is false.

(2)—>(3): Immediate from I'E(K,)I'=E(K,) and '(1—P)r=_~P.

To prove the rest, let
4.7 R:(Ko) = {me(B(f)); fEKo}”.
Then
(4.8) R:((2P—1)K}) CRe(Ky)'.

(3)’—=(1)’: We have E(K,)=1—E(K}). Hence (3)’ implies that
2p is cyclic for R,(K}) by (3)—(1) and so for R:((2P—1)K¢). Due
to (4.8), this implies (1)’.

1)'— (2}’: Assume that (2)’ does not hold and E(K)g=1—P)g
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=g+#0. Then Q=7(B(g)) is in Ry(K,) and Q2,=0. Hence (1)’ is
false.
(2)’—(3)’: Same as (2)—(3). Q.E.D.

Remark 4.9. 1t is known that an equality holds in (4. 8).
Corollary 4.10. Let

(4.9) Ry=np, Usoo(K, )",

Then the following conditions are equivalent.
1) 9, is cyclic for R..

(2 2,
(3) S does not have an eigenvalue 1.

is separating for R;.

(4) S does not have an eigenvalue O.

Proof. Let @ be the projection 1H0 acting on K- K@PK. Then,
by Lemma 4. 8, (1) is equivalent to 0= (1—@) A\ Ps=the eigenprojection
of 1-QP.(1-Q)=0P(1—S) for an eigenvalue 1 and hence is
equivalent to (4). Similarly (2) is eguivalent to 0= )\ Ps=the eigen-
projection of @P:Q@=S0 for an eigenvalue 1 and hence is eguivalent
to (3). Since I'Sr=1-S, 3)<=(4). Q.E.D.

If any of the cornditions (1)~ (4) is satisfied, we can identify 9s
and Q¢ with ©p; and 2. In general, O is identified with a subspace
of Dr,.

Lemma 4.11. If 1/2 is an eigenvalue of S with an even or 0
or infinite multiplicity, then Rs is a factor.

Proof. First we consider the case where S does not have an
eigenvalue 1/2 (i.e. its multiplicity is 0). We show that R= {R:URg"”
is irreducible. For this purpose, it is enough to show that @, is cyclic
for R and that there exists a subset QC R such that Q¥=0 for all
Q<R is equivalent to ¥=cQs, for some complex number c.

Vectors e, (TIB(f.Dg)) 2, are total in ©y,. Since e, (TB(£6D0))
€ R, and nps(fllg(OEBgi))Tps(—l)ER's, 2, is cyclic for I_E

We now ‘;;ke the set of all
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A(f)=mp,BI(1—-S5)"fDO]) —re, (BIODS"f1) T (—1)

to be €. The first term is in K and the second term is in Rs by
(4.8). A(f)2,=0. We shall show that A(f)¥=0 for all feK
implies ¥ =cQ»,.
Let
7, = [1+T, (—1D]7.

Since Tp,(—1) anticommutes with A(f), we have A(f)¥.=0.

On 7,, Tp(—1)=1 and hence A(f)Z,=m,B(SfN¥,, [’
=1-9)"fPH(—S"f). Obviously P;f’=0. Since [(A—S)':f]’
TIPS f) =f B0 and — [SFV+TII(1—S)"f1'=0@f, the set
{f’; fe K} coincides with (l—Ps)I?. Therefore ¥,=cf2:, by Lemma
4. 3.

On ¥_, A(NHZ_=n, BT, f'=A-S)"fDS*"f. AP
=0 for all f€ K implies that the vector state of ﬁgne(ff\, Z/“\) induced
by ||#_||'%_ is a Fock state for the basis projection Ps=2(SH(1A—S))
— P; provided that #_+0. Here (¥_, 2»,) =0 while, from the eguation
(9.27) and Theorem 6, (¥_, 2»,) can vanish only when Ps(1— P:)Ps
has an eigenvalue 1. From Pif=f and Psf=0 for f=f,Pf:, we have
(Sfo)=Q/2)f1, Sf:=1/2)f.. Hence, if S does not have an eigenvalue
1/2, then ¥_=0.

We now consider the general case where the eigenvalue 1/2 of S
has a nonvanishing multiplicity. We shall reduce it to the previous
case by Lemma 5.3. Let E,, be the eigenprojection of S for an eigen-
value 1/2. By Lemma 3.3 of [2], there exists a subprojection E of
Ei; such that E4+TEr=E,,. Let T be a Hilbert Schmidt class
operator such that 0<7<2™ and (1—FE) is the eigenprojection of 7T

for an eigenvalue 0. Let
S=S—T+r1r.
Then §= é\*, F§P=1—/§, /S\ does not have an eigenvalue 1/2 and
Sie_gie— [(@/2—TH)"—QA/2)" ] +r[@/2+ TH)"—Q/2)]r.
Since (1/2+T)"*—(1/2)"*=+[(1/2+T)"*+ (1/2)"*]7'T is in the
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Hilbert Schmidt class, Rs and Rs are quasiequi valent by Lemma 5. 3.
We already know that Rs is a factor. Therefore R is a factor.
Q.E.D.
A full characterization of the case where Rs becomes a factor is

given in Theorem 9.

Remark 4.12. From the beginning part of the preceding proof, it
follows that 2, is cyclic for (R.UR$)” for any S and hence is sepa-

rating for the center of K.

§5. Proof of Theorem 1

The following is Lemma 4.5 of [12], for which we give a different

proof.

Lemma 5.1. SY*—(SNY® §s in the Hilbert Schmidt class if
and only if Ps— Pe is in the Hilbert Schmidt class.

Proof. Let p=S"2, oJ/=(S")"% If p—o is HS (a Hilbert Schmidt
class operator), then all of
(5.1 S—=8"={(o—0") (o+0)+(o+0) (0—0)}/2,
(5.2) A=-8)"*—QA-8)=r(—-or,
(5.3) p(1—=8)"—g' (18"

=(—0)A=8)"+o(A-8)""— (1 -8)"),

are HS. Hence Pi— P. is HS.

Conversely, assume P;— P; is HS. Then, by Lemma 5.2,

(5.4) 1 Pe— &' | — | Por— Q| 5. || Pe— Py l|us,
where @' =0P1 on KPK. Since | Ps—Q'|*=SPS, | Py —Q'|*=S"DS’,
we have S¥2— (S")'2 in the HS class. Q.E.D.

Lemma 5.2. Let A and B be bounded selfadjoint operators,
then

(5.5) |A—Bllus.=[1 Al —| B lln.s. .
Proof. (5.5) is equivalent to
(5.6) tr{A*+B*—~ AB—BA} =tr{A*+ B*— | A||B| — ,B| | A4|}.
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First consider the case, where A has purely discrete spectrum. Let ¥,
be a complete orthonormal set of eigenvectors of A with eigenvalues

A.. Then
(5.7 tr{A*+B*~AB—BA} = {:+ (¥, B*¥,) — 22 (Ts, B¥:)},

(5.8) tr{A*+B*—|A||B!—{B||Al}
:g{zi"‘ (Wa, Bzwa)_zl/lal (Woc: IB"‘I"LXD}

Since |B|=B=—|B|, (@, |B|¥«)=| @, B¥.)|. Therefore we have
(5.6), where + oo is allowed.

Fcr any selfadjoint operator A and >0, there exists a selfadjoint
operater Ae with purely discrete spectrum such that ||A— Aella.s <Ze.
Herce [5]. From (5.5), we have ||| 4] — | Ae| [|n.s. Z||A— Aelln. <e.

(5.9) |A—Bllws.2/|Ae— Blins. —e
=1 Ael — [ Bl|lws.—¢
=[1Al =Bl ms.—2e.

Since ¢ is arbitrary, we have (5.5) for general A and B. Q.E.D.

Lemma 5.3. If SY*—(S8)Y is in the Hilbert Schmidi class,
then o« and oo arve quasiequivalent. If S and S’ satisfy any of
conditions (1)~ (4) of Corollary 4.10, in addition, then n. and s

are unitarily equivalent.

Proof. If S'*—(S8)"* is HS, then P;— Py is HS. Hence by
the first half of Theorem 6 (essentially Lemma 9.4), there exists a
vector & in $p, such that the vector state of £ on 93([?, I/:) is ¢pss
where j{\ =KPK, I/:=I’€B(—F). Hence ¢s and ¢ are given as vector
states of z» (UA(K, ")) by @, and £ which are separating for the
center of np,(A(K, T))” due to Remark 4.12. Therefore ¢s and ¢g
are quasiequivalent. If both S and S’ satisfy conditions in Corollary
4.10, then s and s can be both identified with $p, and hence =; and

e are unitarily eguivalent.

Lemma 5.4. Let A, be a sequence of bounded linear operators
on a Hilbert space with a strong limit A. Then



Quasifree States of CAR and Bogoliubov Automorphisms 397

(5.10) [ Alj.s. <lim|[ A, [ x.s. -

(Here ||Cllu.s.= {01|Cyni]|% 2 for a complete orthonormal basis {y~} and

we allow +oo. It is independent of the basis.)
Proof. We have
lim)| A, [t ZHm 3| A= 3] Ay
Since N is arbitrary, we obtain (5. 10). Q.E.D.
Lemma 5.5. If S and S’ salisfy any of conditions (1) ~(4) of

Corollary 4.10, and if Ps— P« is not in the Hilbert Schmidt class,
then ns and ns ave not quasiequivalent.

Proof. Let @, be an increasing sejuence of finite even dimensional

projections commuting with I" and tending to 1 on K. From Lemma

5.4, we have
limH (Qn SQ;;) vz (Qn S,Qu) 1/‘ZUH,S. =00,
From (5.4), we have

lim|| Po,s0, — Po,sq,llm.s.= 0.

7->c0

From Lemma 6.6, we obtain

lim|| (ps—¢s7) | Asoo(Q K, 1) =2.
Therefore, we have
(G.11) los— sl =2.

Since S and S’ both satisfy the condition of Corollary 4.10, the
representations ns and =z, have cyclic and separating vectors 2s and 2.
If zs and =y are quasiequivalent, then they are unitarily eguivalent.
Therefore there exists a separating vector £ in s such that (2, z:(A)2")
=¢pa(A). Since £ is cyclic for the commutant, there exists a unitary
operator W in ns(QUspc (K, "))’ such that (W&, 25) 0. Then the vector

state for @'=W& is again ¢y and we have

(5- 12) Hﬁﬂs *(Ps'“
<tr| P(25) —P(2") | =2{1—| (25, 2") |}
<2,



398 Huzihiro Araki

where P(¥) denote the projection operator on the one dimensional space
spanned by #. The contradiction of (5.11) and (5.12) proves the
Lemma. Q.E.D.

Proof of Theorem 1. If SY*— (S")Y? is in the Hilbert Schmidt
class, then ¢s and ¢s are quasiequivalent by Lemma 5. 3.

Now assume that S¥2— (8)¥? is not in the Hilbert Schmidt class.
Let E, and E/ be eigenprojections of S and S’ for an eigenvalue 1.
Let T and 7" be Hilbert Schmidt class operators such that 0<<7'<1,
0<T’<1 and the eigenprojection of T and 7” for an eigenvalue O are
1—FE; and 1—E/. Let

AN
S=S-T*+r7Tr
§'=5"— (T +1r(T)r.
Then S and S have the properties (3.4) and (3.5) and satisfy
the condition (3) of Corollary 4.10. Further,

/5\1/2__81/22117‘1—1_ [(1_ T2)1/2+ 1] -1 Tz
@y (8 =TT — [~ (T +1]*(T)?
are both in the Hilbert Schmidt class. This implies by Lemma 5.3
that ¢s is quasiequivalent to ¢s and ¢s is quasiequivalent to ¢s. It
N\ N\
also implies that (S")¥2— (5)¥? is not in the Hilbert Schmidt class.

We can now apply Lemma 5.5 and conclude that ¢35 is not quasi-

equivalent to ¢s and hence that ¢s is not quasiequivalent to ¢s.
Q.E.D.

In the present section, we have assumed Lemma 9.4 and Lemma
6.6. We shall prove Lemma 9.4 in the course of our discussion on
the unitary implementability of Bogoliubov transformations, although
a more direct and hence shorter proof of this Lemma is also possible.
We shall prove Lemma 6.6 by using a known structure of KMS states.

§6. Uniqueness Theorems

Let z(1) be a continuous one parameter group of automorphisms
of a C*-algebra 2. A state ¢ of U is said to be a state of finite v(2)-
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energy if there exists a such that
61 leBwarwa-o, 4 Beu
whenever f€S and

©2  Fp=\rwmera-o

for p>>a. When a can be chosen to be 0, ¢ is called =()-vacuum.
A state ¢ is called a KMS state of «(2) with inverse temperature
B, if

©3  (oB0Or@u={o(cWHBIG+iDG

for A, BE¥U and féﬂ) such that
6.0 =g\

(6.3) is referred to as the KMS condition.

Theorem 2. Let UQQ) be a continuous one pavameter group of
Bogoliubov transformations. Let E(p) be the specirval projections:

6.5  UQW-— ge'“E(dp) — g

H:S PE(dD).
Let E.=E((0,)), E.=E({0}). Then ¢ is a «(A)-vacuum if and
only if
(6.6) ¢(AB) =¢:, (A)¢' (B),
A€Upe((1—EN K, T), BEUswo(EK, I,
where 5, is a Fock state and ¢ is an arbitrary state on Uspo(E, K, T7).

Proof. Since U(X) is a Bogoliubov transformation, I'E,I"=E, and
rE.;r=1—E,—E.. Namely E, is a basis projection for (1—E,) K.
Let ¢, be the restriction of ¢ to Usoc((1—Ey) K, 1) =2

Next we have

\sv@ B @U-BF DS
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If  runs over all 7S such that 7( p)=0 for p=>0, then the set of

f(H)g, g= K is a dense subset of E_K. Hence (6.1) requires
e:(B(f)*B(f))=0

for all fe E_K. By Lemma 4.3, this implies ¢,=¢z,.

Let 7z, be the representation of Uspc(K,I") and 2, be a cyclic
vector associated with ¢. If ;€ E\K, |h)|*=2 and Th;=h;, j=1, -,
then the vector states of 2 by Wznga(ﬁlB(hj))Q? are the same Fock
states ¢z,. Since the union of 7, (%I)ilf]ﬁfor all such # is total in 9g,
e | is quasiequivalent to the Fock representation nz,. Hence, by
Lemma 4.2 for U=—1 and S=FE, and by the irreducibility of zz,,
there exists T€ 7, (A)” (corresponding to Tr, (—1)) such that TQ,=92,,
T*=T, T*=1 and Tus(A) T*=n,(x(—1)A) for A=U. Let z,(B(h))
=n,(B(1)) T for he E, K. We have n;(B(h)) €7, (A)’. Hence =, (B(L))
=n,(B(h)) T commutes with 7. Therefore =,(B(%)) generates a re-
presentation of Uspc(E, K, I"), which we denote by #,. More explicitly,
p(C) =n(C)A+T) /247, (c(—=1)C)(A—T)/2. Let ¢, be the restric-
tion of ¢ to Uspe(Es K, I"). Since TQ»=24, ¢, is the vector state given
by ¢:(C) = (29, np(C)2s). Since 2, gives rise to a pure state of 2,
we have (AC)= (2, 7po(A)7p(C)2s) =¢r,(A)p:(C) for A=A and
CeUsno(E, K, T).

Conversely, if ¢. is a state on Uspc(Eo K, ") and ., 2, . is
canonically associated with it, then

n(AB) =z, (A)Q(m(B) +m(<(—1)B))/2
+75. (A) T, (1R (m(B) —m(c (1) B)) /2
on 9:XH, uniquely extends to a representation of Uspc(K,I") and
02=20:.%2; satisfies (2, n(AB)2) =¢z,(A)p(B). Further, -(UQ)) leaves
the vector state by 2 invariant, and is unitarily implementable by an
operator 7% (U(1))X1, whose generator is known to be positive semi-
definite for HE,>>0. Hence (6.1) is satisfied. Q.E.D.

Lemma 6.1. If the dimension of K is finite and even or in-
finite, ¢u1, is the unique state of Uspo(K, ") satisfying

(6- 7) 401/2(14-3) :€01/2(BA)-
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Proof. ¢, satisfies (6.7) due to (3.1), (3.2) and
(6.8) e12(B(f)*B(£) =¢:12(B(8), BINH*) =(f,8/2.

Let {f.} be a I invariant orthonormal basis of K. (Such basis exists).
Any element in Uspo(K,I") is a polynomial of B(f.). Since B(f«)*
=1/2 ard B(f.) anticommutes with other B(fp), it is enough to
deduce the value ¢(B(fa,) *B(fx,)) uniquely from (6.7) when ay---a,
are distinct. If #>0 is even, then B(fa,) B(f«) = —B(fa,)B(fa) "+
implies that go(l;I B(fa))=0. If # is odd and if there is B distinct
from all «,, then
B(fo) " B(fa) =2B(fo,) " B(f,)B(f)*
=—2B(fa)B(fa) ' B(fu.)B(fo)

implies again that ¢(IIB(f,))=0. If dimK is even or infinite, this
shows the uniqueness.le Q.E.D.

@12 is called the central state. Existence of such ¢y, follows from
Lemma 3.3. If dim K=2n, ¢, is the trace of a full matrix algebra
divided by 2-.

Corollary 6.2. For any = automorphism v of Uspc(K, ), @12 1S
invariant and there exists a unitary operator Ti;.(x) on Hye such that
Tip(@) =212, Tip(@)ny2(A) Tip()* =m1(cA),

T1/2(v1) T1j2(2) = Tpe(rare).

Theorem 3. Let U(X) be as in the previous theorem. Then a
KMS state of «(UQQ)) with inverse temperature B is unique and is
given by a quasifree state o5 with

(6.9) S=({+e?),
provided that Rs is a factor.

Proof. It is known that any KMS state has a central decom-
position as an integral over primary KMS states. Hence it is enough
to prove the uniqueness of primary KMS state.

Let ¢ be a primary KMS state and ¢(A)= (o (A)+ ¢:(z(—1)A)) /2.
Then ¢ is again a KMS state and has the property that ¢(Q)=0 for
any cdd polynomial @ of B(f).
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Let 9y, s, 25 be canonically associated with ¢, R=nryAspe(K, ).
Since ¢(z(—1)A) =¢(A) by construction, there exists a unitary operator
Te(—1) such that Te(—1)re(A)Re=n,(x(—1)A)R2s.

A (1) KMS state is known to be = (1) invariant. Let T,(U(1)) be
the unitary operator determined by Te(U(X))7e(A)2p =7, (UR))A)L2s.
Let To(UQ)) =e"%, d=e "2,

Since 7(—1) commutes with «(U(1)), Te(—1) commutes with
T,(U(A)) and 4. 2, is cyclic for R by construction.

The KMS condition implies that 2, is separating. Further, there
exists an antiunitary involution J (a complex conjugation) on s such
that

(6.10) J2s=2, JR]=FR', [], "] =0,
(6. 11) ]A-Qp:AA*AQy, AE%I,

where U is a dense * subalgebra of R consisting of all Sn:q,(r(U(l)))
LAFDAL with Ay Wno(K, 1)) and (D) = @) {Fpexo—ipaasp,
fe 9. From the commutativity of 4 and T,(—1) we have

T,(~1D*/T,(~ 1 Ag,

=To(—1)*A(Te(—1)ATe(—1))*2e=A4A*Qp= JAQ,.

Hence / commutes with 7o(—1).

Let
(6.12) nip(A) = Jrp (N A J.
It is another representation of Uspo(K,I") such that the closure of
iy Qlspo(K, 1) is R

Let K=K PK, ?zr@(—r) and consider the representation # of
ﬁsm(l/{\, I/"} ) generated by
(6.13)  2(B(fDg) =rs(B(f)) +np(B(g))Ty(—1).
It is easily verified that #(B(%)) satisfies the relations (1), (2), (3)
for selfdual CAR algebra and hence determines a representation of
spo (K, 1.

Let E(-) be the spectral projection of U(2) in (6.5) and g€ K be
such that ||[E(dp)g||* has a compact support. Then z,(B(g))ecl
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By an analytic continuation of T (U(1))7e(B(2))2e=n,(B[UQ)g]) L2,
we obtain

(6.14) drp(B(£)) 2p=m,(B(e™"8)) 25 .
Hence,
(6.15) #(B(fDg))2r=ns(B(f+eP"g)) 2.
Let P be the projection on the subspace of I/f\ spanned by elements
of the form
(6.16) h(f)=e?2fDe?f,  fEK,
where H,=HE, and H =H,— H. Then rPK is spanned by
6.17) hu(f) =€ o2 fD(—e o1 )
which is orthogonal to (6.16). Further,
(6.18) hy (-2 f) +hy(e 2 f)

= (e7®1-+ B fFPO.

Since e®”+ are mutually commuting positive selfadjoint operators,
their sum has a dense range and hence (6.18) is dense in KEO.
Similarly, h,(e™®#/2f) —h,(e®7-*) is dense in 0PK. Hence the sum
h:(f1) +h.(f2) is dense in K and we have TPT'=1—P. Therefore, P
is a basis projection.

(6.15) shows that

(6.15) 2(B(h))2,=0

for 2=h,(f) in a dense subset of (l—P)I/{\ and hence for all % in
a-P) f{'\ Hence the vector state of ﬂsnc(k\, I/”\ ) given by 2, is unique
(a Fock state ¢,) by Lemma 4.3. Then its restriction to Aspe(K, I")
is also unique.

Since
(L+e®8)t (1 eBH)"tgsHl
6. 20 P— ( )
( ) (1+e By tgm B2 (] g BH)y g bt
We have

(6.21) =05, S=0+eB)!



404 Huzihiro Araki

Since R=R; is a factor by assumption and since a primary KMS
state is an extremal KMS state, we have ¢1=¢=¢s. Therefore the
uniqueness is proved.

It remains to show that ¢s given by (6.21) is actually a KMS
state. The AKMS cordition amounts to ((4A*4™)Q,, (4B*4™)%2,)
= (B&y, A2y), for A, B in 9. Hence we only have to prove the anti-
unitarity of J defined by (6.11).

Let ¢ be the Bogoliubov transformation on (I? =KPK, ?zl"@—l”)
given by the matrix ( —Oz 5) Then ePe=1— P and hence the continuous
extension of [,7(C)2,=7(c (/f)r(e)C )20, Ceﬁsnc(i{\,?) defines obviously
an antiunitary operator J,. If we restrict C to Asoo(K, I (K@ocl/{\ ),
we have

(6.22)  Jome(B(f1))me(B(f.)) 2o
= (=) (=0) 2 (B 1))+ np (B f.)) 25
= (—=0)"(drp(B(f))*4™) -+ (dne(B(f1))*47) 25,

where f; is any element in K such that [|[E(dA)f:| has a compact
support. Hence

(6.23) J=al,,
where « is a function of Ty(—1), being =1 if To(—1)=1 and =i if
Te(—1)=—1. Since « is unitary, J is antiunitary. Q.E.D.

Corollary 6.3. Assume that dim K is not odd. If S—1/2 is of
finite rank and S does not have an eigenvalue 1, we have for
AcUspo(K, T

(6- 24) Ps <A> = ¢1/z<e_(B‘HB)/ZA> /¢1/z (e‘<B'”B>’2)
— (det 25‘ ) 1lz§01/2(6_(B'HB)/2A>

where (B, HB) is defined in Lemma 7.3 and H=logS(1—S)™*

Proof. The left hand side is a unique KMS state for U(Q) =¢*#*
with g=1. Since S—1/2 is of finite rank and I'S'=1-S, an eigen-
value 1/2 of S has an infinite or even multiplicity (according as K has
an infinite or finite even dimension). Hence we have only to show that
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the right hand side is a KMS state. Since S(1—S)7*—1 is of finite rank
due to the assumption on S, H is of finite rank. It is hermitian and
satisfies THI'= — H. Hence, there exists @=(B, H|B|)/2€Uspc(K, ).
We then have from (6.7)

¢12(€ *AB) = ¢:2(e °B’A), B’'=¢°Be™.

Since ¢*B(f)e?=B(e”f), B’ is an analytic continuation of (U(1))B
to 2= —i. Hence the right hand side of (6.24) is a KMS state for
U with g=1.

The normalization factor is computed by (8.25). Q.E.D.

Lemma 6.4. Let 9=9.X9, and R=F(H.)R1. Let 2 be a unit
vector, cyclic and separating for R, and J be an antiunitary invo-
lution satisfying JRJ=R' and Jo=9. Assume that (2, Aj(A)2)=0
for all A€ R where j(A)=JA]. Then there exists a standard dia-
gonal expansion ([3], Definition 2.2)

(6. 25) 2=1%0,,Q0y

such that 2>0 and

(6.26) J(0,:R0,;) = (0,Q0,:).
Proof. Let

(6.27) Q=24 Qs,  4>0

be a standard diagonal expansion of 2 and let J, be an antiunitary
involution defined by

(6.28) Jo 2R =2 ¥ QT .
Let W=],/.

Then W is unitary and satisfies W2=8, WRW*=PR. Hence there
exists a unitary U; in B(D:) such that WAW*= (U,R1)A(U*R1)

for all AeR. Since (UF*Q1)W is in R/, it can be written as 1QU..
Then W=UQU..

Let p, and p» be the unique trace class operators on 9, and O,
satisfying

(6. 293) tro, A= (.Q, (A1®1>59>7
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(6 29b> trpzAzz (~Q> (1®A2).Q)

From W@=8 and W=U,QU., we have [p, U] =0, v=1, 2.

Let p,=> %P, (x) be the spectral resolution of p,. Then P,(x)
=>"P(%,;)) where P(¥,;) denotes the minimal projection of B(9,) cor-
responding to %,; and the sum extends over thcse 7 such that (1)*=x.

Let

(6.30) Dy,= 2 U V4

be a complete orthonormal set of eigenvectors of U; belonging to eigen-
values e, Since [P;(x), U;] =0 and each P,(x) has a finite dimension,
U, has a purely discrete spectrum and we can chose #, such that
ity 70 only if 2;=21;.

Let
(6.31) a)zkzzi(uki)*wz,. .

Since (#y) is unitary, we have (6.25) where 4,=21; if u, 0.
From W@=2 and (6.25), we have

(6. 32) Uz @2k= e_igk 072/; .
Since /=], W, we have
(6. 33) ](@m@@zz) :€lk<mll®Q2k>7

where e,=¢ %%, Since J?==1, we have (ex)?=1. Therefore e,=es
=+1.

Let A.e=B(9H:) be defined by A.>c¢j0;=c,0+c.0y,. From
(@, Ai(A)2)=0 with A=A4,Q1, we have AQ=20,&0:;~+1,0,X0.,,
JAJ2=JA2=e,(40,Q0:,;+ 2,0,,Q0,), and hence 21,4,e,==0. From this
we have ¢,=0 and hence (6.26) holds.

Lemma 6.5. Let R be a type I factor, 2 and 2 be cyclic and
separating unit vectors and J be an antiunitary involution such that
JRJ=F, Jo=8, JO =4, (9, Aj(A)2)=0 and (&, Aj(A)2)=0 for all
AsR where j(A)=JA]. Let ¢ and ¢ be the vector states of R given
by 2 and 2. Then

(6.34) le—¢' =2 —| (2, 2)]).
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Proof. Since R is a type I factor, we can identify the Hilbert

space and R as follows:

5:? = '@1@@2 ’

R=3($) 1.
Let

R=3140:Q0x ,

2 =>0:01,Q0.;,

be the standard diagonal expansions of £ and £ given by the previous
Lemma.
From (6.26) and antiunitarity of J, we have

(6. 35) (01, 01) * (@5, 02) * = (@1, 01,) (Oui, o).

Since the matrices #;,= (@4, 01;) and v;;= (@, 0,;) are unitary, there
exists u;,#0. Setting e=v.,/u¥%, we have v¥=eu,;, where ¢ is common
for all 7, . From the unitarity, we have |¢|=1. From (6.35), we
have e=¢*. Hence = *+1.

We now have

(6. 36) (2, 2) =4 2(0y;, 0;) (0x, 0;;)
=eZ/L- Zﬁl (@m 07{,-) I %

Let

(6.37) o= P(0),

(3.38) o =>3(0)*P(05).

Then ¢(A) =trpA and ¢'(A)=tr(¢’A). We now have
(6.39) lo—¢'l =”§11|111211¢(A>—<o'(/1) | =trlo—o'|
=tr(p*— (")) =2(1—trp"*(o")*"*)

where the inequality is due to Lemma 4.1 of [12]. From (6.36), we

have
(6. 40) trp* (o) "*= (2, 2) .
From (6.39) and (6.40), we have (6.34). Q.E.D.

Lemma 6.6. Assume that dim K is finite and even. Let ¢s and
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os be two quasifree states of spo(K,T). Thén
(6.41) los— ol =2[1—det (1 — (Ps— Ps)®)""].
Proof. Let K=K®K, =r®-T.

First consider the case where S and S’ do not have an eigenvalue
1. In this case we can show
(6.42) Ps \(1— Ps) =0,
as follows:

Let g=8:5g., Psg=g, Psg=0. Then S'*g,=(1-—S)"*g, and
(S§H¥2gy=—(1—S8")"2g,. Since S and S’ do not have an eigenvalue 1,
the same holds for 1—S=7r'ST" and for 1—S’=rS’r. Therefore S, S,
(1—S) and (1—S’) have their inverses. We have {S™'*(1—S)?
+ (1 —-8")"2(8)"% g,=0. From S72(1—-S8)"*>0 and (1—S")7"*(S")"*
>0, we have g;=0. Similarly we have {(1—S) V252 + (§")""2(1—s)"%}
2:=0 and hence g,=0. This proves (6.42).

Let e=<_0i 8) Then &*=¢"'=¢, [/I:, e] =0 and ePse=1—Ps for
any S. Consequently, I/”\e commutes with Ps and P, and hence anti-
commutes with H(Ps,/Ps) defined as in (9. 2).

Let J, be an antiunitary involution on s, defined by
(6. 43) Jo7ins(C) @y =75, (e (1M (e)C) 2,
for CE?ISDG(I?, I/”\). Let J=a/, where « is a function of Tp(—1)
=Ts(—1) being =1 if Ts(—1)=1 and ={ if Ts(—1)=—-1. For a
finite even dimensional K, =;(A(K,I")) is always a factor and hence

the proof of Theorem 3 is applicable where H=log{S(1—-S)*} and
f=1. From (6.11) we have

(6.44) (8es, ACJAT ) 2p5) = (A*2ps, 4A%2p) =0

for A€ np,(Usnc(KPO, I/*\)), where 4d=e7°'*>(.

Let @ be defined as in (9.4) where #=0. Then ,(®) commutes
with J, and Tp(—1). Hence £ =m,(Q)*2p, is invariant under J, and
Tr(—1). Furthermore, we have

(6. 45) e (C) = (2, nPS(C)!J’>,
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(6. 46) Jorins (C) 2 =1 (= (T2 () C) 2,

(6 47> Tp;(-l)ﬂ:PSCC).Q’—_—TEpS(T(—l)C).Q/,
for Ce i’lsDc(I/(\, l/"\). Therefore

(6. 48) (&, A(JAD ) = (A*2, £ A*2)=0

for A€ np,(Uspc( KDO, I/’\)), where 4’ =¢%/*>(0 denotes the 4 in the
proof of Theorem 3 corresponding to S’.

We can now apply the previous Lemma and obtain
(6.49) los,— @e,[l=2(1 — | (2ps, 2) ).

From (9.8), we obtain (6.41).
The general case, where one or both of S and S’ have an eigen-
value 1, can be obtained by taking a limit. Q.E.D.

§7. Bilinear Hamiltonian

Lemma 7.1. There exists a derivation 6(H) on Uspc(K,TM)
satisfying

(7.1) d(H)B(f)=B(Hf)
if and only if H is a bounded linear operator on K satisfying
(7.2) H*=—rHr.

If (7.2) holds, (7.1) uniquely defines 6(H). It is a * derivation of
Usnc (K, ) if and only if

(7.3) H*=—-H

Proof. For the first part, we have to check the condition that
0(H) is consistent with the relations (1) and (2) for the definition of
Nspc(K, ). For the condition (1), it is necessary and sufficient that
H is linear. For the condition (2), it is necessary and sufficient that
(7.2) holds. From (7.2) it follows that H* is defined on all K and
hence H must be bounded.

For the second part, the uniqueness of d(H) is immediate. The
relation (3) for Uspe(K,T") implies that (S(H)B(f))*=s(H)B(f)*
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if and only if 'H=Hr. Under (7.2), this is equivalent to (7.3).

Lemma 7.2. The = derivation 6(H) is the infinitesimal gene-
rator of the Bogoliubov automorphism <(e'?).

Proof. From (7.3) it follows that e is unitary. From (7.2)
and (7.3), it follows that [H, I' =0 and hence [¢*¥,I"] =0. Hence e
is a Bogoliubov transformation. The rest is immediate.

Lemma 7.3. Let H be a finite rank operaitor on K and

(7.4 Hh:;’;f,(g,., 1, hek.
Let
(7.5) (B, HB) = B(f)B(g)*"

(B, HB) does not depend on the choice of f; and g: for a given H,
is linear in H and satisfies

(7.6) (B, HB)*= (B, H*B).

In addition, it satisfies

(7.7 (B, HB) = (B, «(H)B) +% tr H,
(7.8) w(H) =—;—(H—FH*F).

H=a(H'") satisfies (7.2) for any H'.
If H satisfies (7.2), then «(H)=H, tr H=0 and

(7.9) [(B, HB), A] =2s(H)A, Ac¥Usro(K, T,
(7.10) ¢s((B, HB)) = —trSH,

(7.11) A/DIH|<I(B, HB)||<||H|.,

(7.12) «(U) (B, HB)= (B, UHUB),

(7.13) 3(H) (B, HB) = (B, [H,, H]B).

Here o5 is a quasifree state and |H\|.=tr[(H*H)"?].

(The formulae (7.12) and (7.13) hold for a general H not satisfying
(7.2).)
Proof. For (B, HB) defined by (7.5), we have (cf. [2])
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(7.14) [(B, HB), B(f)]=B2a(H)f),
(7.15) e-((B, HB)) =tr H—tr SH.

For the central state, S=1/2 and
(7.16) 012((B, HB)) =tr H/2.

If K has an infinite or even dimension, Uspc(K,T") is known to
have the trivial center. Hence (7.14) determines (B, HB) up to a
constant and (7.16) fixes that constant. Even if the dimension of K
is cdd, we can make this argument by imbedding Uspc(K,T) in
Asoo(K’, ') with a bigger K’ with an even dimersion.

This argument shows that (B, HB) is independent of the way in
which H is expressed in (7.4) and also that (7.7) holds because a(H)
has trace 0 and both sides of (7.7) satisfy (7.14) and (7.16). Note
that trr H* 1= Z(er,,I’H*l’e) Z(H*Fe.,l”e) Z/I’e,, Hre;,)=tr H.

The 11near1ty of (B, AB) in H (7.6), (7.12) and (7.13) follow
from the defirition (7.5). (7.9) and (7.10) follow from (7.14) and
(7.15).

If H satisfies (7.2) and is selfadjoint, it has the spectral decom-

position

(7.17) H==§AEA ,
where

(7.18) TE,r=E.,.

Hence we have a partial basis projection >\ E\=FE, and an orthonormal
A>0
basis f; in E, K such that

(7.19) (B, HB) =>2B(fOB(f)*—B(f)*B(f)).
Since [[B(fOB(S)*=B()*BNOI=BUOBUO*+BUH)*BUOI=IfIF

we have

(7.20) |(B, HB) |<S = H..

On the other hand, o:[(B, HB)] :—zx;=—%||m|w for S=E,
+ (1/2)E,. Hence, for a selfadjoint H satisfying (7.2), we have
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(7.2 1B, HB)|| = H|../2.

If HA=H,+iH,, Hf=H,, H;}=H,, then consider the polar decom-
position H;= | H,| U, where U*=U,, Ul=1. Then (tr H, U,)*=tr U, H,
=tr H, U, is real and we have

(7.22) | Hllw= ﬁﬁ%' tr HQ| =|tr HU, | =tr| H, | = || Hil|. .
Hence
(7.23) | Hillw+ | Byl o= H || e=max (|| Hy |, | Halle).

On the other hand, for any operator A=A,+1A4,, A¥=A,, A¥=A4,,
we have [|All= sup |(p, Ay»)|=sup| (¢, Ap)|=sup| (¢, Aip)|=]Ai].

el higli=1
Hence

(7.24) | Ad]| + || Ao =] Al =max (|| 4], [ 4:l).
By combining (7.21), (7.23) and (7.24), we have (7.11). Q.E.D.

Lemma 7.4. Let H be a trace class operator and H, be a
sequence of finite rank operators such that |H— H,|.—0 as n—>oo.
Then (B, H,B) has a limit (B, HB) in Uspo(K, ") independent of the
sequence for a given H. It is linear in H, and satisfies (7.6) and
(1.7). If H satisfies (7.2), (B, HB) satisfies (7.9), (7.10), (7.11),
(7.12) and (7.13).

Proof. From (7.11) and (7.7), the convergence and the unique-
ness follow. The rest follows from the corresponding properties for H,.

Theorem 4. The derivation §(H) can be extended to an inner
derivation of Uswe(K,T") if and only if H is in the trace class.

Proof. “If” part follows from Lemma 7.4 and (7.9). 0(H) can
be extended to an inner derivation if and only if 0(¢(H*+ H)) and
0(H*— H) can bz extendsd to ianer =derivations. For an inner
* derivation 0(H), r(e*?) for all real 1 must be an inner automorphism
by Lemma 7.2. From later result in Theorem 5 this implies that either
e —1 is in the trace class or e+1 is in the trace class. In either
case, the selfadjoint operator {H must have purely discrete spectrum.
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If ¢ +1 is in the trace class, then the eigenvalues x; of {H can have
an accumulation point only at %(2n+1), n=0, +1, =2, --- which can
happen ounly for a countable number of A For other values of 2, e —1
must be in the trace class and hence ¢S can have an accumulation
point only at 2mzmi~*. This, first of all, excludes the other possibility
and further implies that ¢ can have an accumulation point of eigenvalues
only at 0. From the condition [[e*—1|l.=>1{2(1—cosx;)}"*<eo, and
the inequality 1—cosx=x%/3 for | x| <1, we c,)btain |H|l<<eo. Q.E.D.

§8. Inner Bogeliubov Transformations

Befinition 8.1. Y. denotes the set of invertible bounded linear
operators V on K such that V—1 is in the trace class, detV = *1,
vespectively, and

8.1) rvxr=v-m

g, is equipped with an operator multiplication, an adjoint operation
* and a topology induced by spheres {(V':|V' —V|.<e}.

9. and 9.UY_ are topological groups and <, is connected.
Since V—1 is compact, it has a (Jordan) expansion:

where 4 is a bounded open set containing 1, (V,—21)™! is holomorphic
for Ad:=4,

(8.3 E\Ev=0wE),

(8.4) EyNy=N,E,,=0mN,,
(8.5) NEmFi=0, dim E,<loco,
(8.6) ViE\=E\V,=0 Q&4),
(8.7 lirE(VA/r)”zo, 7:,\35%’1”!'

V., E\, and N, are uniquely determined by these properties and are
given by

(8.8) E,— 1inol<2n)-1S:”pew (1 pe™— V)~1db,
>
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(8-9) Ny=E\(V-2)

and (8.2). The detV may be computed by
(8.10) det V=exptrlogV

(8.11) logV=_1 —EAE/O log(1+V,)

—;—)\ZAE’\ [logi+log(A+1*Ny],
&

where log(1+V,) and log(1+1*N,) are defined by power series, which
converge due to (8.7) and (8.5), and we take 4 such that »<<1. Since
V is invertible, 1+0.

For V satisfying (8.1), the uniqueness implies

(8.12) TE¥Xr=Eu-—,
(8.13) (A+TN¥r) (74 Novy) =1,
(8.14) A+rvirn QA+ VvV, =1,

where (8.14) holds if 4 is invariant under 2—A"". If we choose branches
of log2 in (8.11) such that logi+logi*=0 for i#—1 and log(—1)

=1ix, then we have

(8.15) logV+r(logV)*r=2mE._,.

Hence we have

(8.16) det V= (—1)%m*5,

Thus the condition det V= *1 can be replaced by dim E_;=even or odd.

Lemma 8.2. If H is an operator in the trace class satisfying
(7.2), then e"'€9,. If V is a normal operator in I, or Ve,
does not have an eigenvalue —1, then there exists a trace class ope-
rator H satisfying (7.2) such that V=e". If V>0, H can be chosen
hermitian and if V is unitary, iH can be chosen hermitian.

Proof. The first part is immediate. Let Ve, be normal. We
then have N_;=0, dimE_,=even, EX=FE_,, TE_,"'=E_,. Hence there
exists a subprojection F of E_;, which satisfies 'FI'+F=E_;, F*=F
=F? H=logV—2niF satisfies ¢"=Ve* "=V and (7.2) due to (8.15).
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H is obviously in the trace class. If Ve, does not have an eigen-
value —1, then H—logV has the required property.

If V>0, then we can choose logi to be real and for this choice
of the branch of log, H is hermitian. If V is unitary, we may take
|Im log| <<z for A# —1, and for this choice of the branch of log, {H
is hermitian.

Lemma 8.3. There exists a covering group % of I, equipped
with adjoint operation and a * homomorphic homeomorphism = of T*
onto I, such that = is 2 to 1 and the loop {exp2riiE; 0<i<1) for
an odd dimensional partial basis projection E gives an element of
g% different from 1. There exists a homeomorphic * isomorvphism
Q from T*% into swe(K, T such that

(8.17) QBN =B,

(8.18) ox:(Q(8)) =exp trlog[(1+7())/2),
(8.19) 1Q(&) | —exp-tr] logl=(&) 1,

(8.20) min(|Q(g) -1/, Q(g)+11)

<RI -1+ tr] (x(@) | n()] ™" —1].

Here the branch in (8.18) is to be determined by the analytic conti-
nuation of (det[(1-+e?%)/21)Y* from z=0 to 1 if =(g)=¢e" and if
the continuous inverse image of the path {€; 0<a<<1} ends at g.
It is to be determined by the continuity for other g.

Proof. Let > be the set of trace class operators satisfying (7. 2),
equipped with a topology induced by sphers {H’; |H — H|.<e}. Let
T, be the set of Ve, such that —1 is not an eigenvalue of V.

For any Ved,, we see from the Jordan expansion (8.2) that the
following Hy(V) satisfies (7.2) and V=¢€"" for each path r from z=0
to z=1 avoiding zerces of det(1-+z(V—1)).

(8.21) (V) =5 (Hy (V) = PHy (V) *17,

(8. 22) HW<V>=Sy<1+z(V—1>>-1<V—1)dz.
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For V in the sphere |V—1|<C1, we can take r to be the interval
[0,1] on real axis. Then Hy(V)—V is a one-to-one homeomorphism
of an open neighbourhood of 0 in >) onto an open neighbourhood of 1
in I,.

Let Ved .. Let V*V=e", He>, H*=H,. Let |V|=exp(1/2)H,,
U=V|V|t=e", Hc>, Hf=—H, (Since V is invertible, U is
unitary.) Let V(2)=e™|V|. V(z)€4, for all complex number z.
Since V(z) is an entire function of z and V(0) does not have an eigen-
value —1, det(V(2)+1)=0 has isolated roots. Hence 4, and exp>,,
which contains ,, are dense in .

For HEY), define

(8.23) QUH) =exp—;—(B, HB).

From Lemma 4.3, we have
(8. 24) QUH)B(f)QUH)*=B(e"f).

Obviously Q(H)*=Q(H*).

Let HE>) be selfadjoint. Then, in the Jordan expansion H=H,
+)§4E,\/1, E+=§]EA is a partial basis projection and §(H ) belongs to
Uspo( K/, ") for K'=(E,+T'E.I"MK. By identifying Uspc(K’, ") with
Yoan(E, K), (B, HB)=2(a", H,a) —tr H, where H,=HE, and (B, H,B)
=(a", H,a) is @Qy(H,) in the notation of [4]. By using the formula
(12.3) of [4] with p=1/2, we have

(8.25) 012(Q(H)) =exp {tr log[(1+ef+)/2] — #12— tr H+}

=exp tr log cosh( H,/2)
=exp% tr(log[(1+e?) /2] +log[(1+e77)/2])

=exp% trlog[(1+e%)/2].

Note that the central state of €spc(K’,T") is the same as the restriction
of the central state of Uspo(K,T") to Aspc(K’, 7).
Let V(2) be holomorphic in z and V(2)€4,. Then
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(8.26) det[(1+ V) /2] =exp trlog[(1+V)/2]

for V=V (z) is holomorphic in z and have zeros of an evea order
unless it is identically 0. Hexace its square root is locally holomorphic
at every z. We define

(8.27) f(H) —exp é— trlog[(1+e®) /2] 1.y,

where the value is the analytic continuation from f(0)=1 and does
not depend on the path of the analytic continuation.

By setting H=H;+zH, in (8.25) and making an analytic conti-
nuation from real z to z=i, we have

(8. 28) o12(QUH)) =£(H)

for all HE 3.
If H=3>) is selfadjoint, we have from (7.21)

8.29) QU <exp-|(B, HB)| —exp-+-tr| H].

On the other hand, we can consider the Fock state ¢rz., of gsnc(K/, I
and use (12.3) of [4] with p=1, we have

(8.30) orsr(QUHD) :exp_é-- tr H,— exp%l— tr| H].
Therefore
(8.31) |QUHD | —exp-L- tr | HI. (H*=H)

Since (S(H)—l:a(_}n and a(H)>O, we have

1
4

(8.32) exp trlﬂlg@w)gexp—%f tr|H|. (H*=H)

Let {H=> be selfadjoint. Then a(H ) as well as e” are unitary.
If E is a ore dimensional partial basis projection and H=i1(E—TET),
then (B, HB) has the spectrum {{1, —i2} and hence |[Q(H)—1|
= Lule" 11, It H=SH,, H*——H,, H H~H H~0, then Q(H)

—TQ(H), each Q(H) is unitary and |Q(H)—1|<QCH)—1].
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(Here we have used 6(11)4:;&6(}4))(6(&)-1).) Hence
we have
(8.33) IQUED ~ 1| <5 trle”™—1]. (H*=—H)
Let V=e¢"—¢"ed ., H, H'ES. We show that Q(H) = +Q(H").

Let =0 be sufficiently small such that A-+2unzi+#x for any »n, 0<<|x]|
<7 and |A|>7 in the following Jordan expansion of H:

(8.34) H:mzyEA(H) A+Nu(H)) + H, .

Define

(8.35) E\(H) =3 Basoms (H) (A% d),

(8.36) Ni(Ho) =2 Nosoum (H)  (A#mt),

(8.37) Eom (Ho) = 23 Evcrianm (H),

6.3 NewCH) = Nwaon(HD,

(8.39) H,=3>Y EA(I}O) @+ Na(Ho)) -+ H,+ 33 Nour, ()

where the sum >V is over A such that |Imai|<z and i# * (zi—p),
0>0. Similar definitions are made for H'. H, Hie>.
If E is of a finite rank, E*rE=ETE*=0 and E*?=E, then we

have
(8. 40) f[2n2i(E—TE*I)] = (cosnz) ™%
Hence Q(2ni(E—TE*I))—(—1)%=E, If H, and H, commute with

each other, we have

8.4 QUDQH) =QUH:+ H).

(8.40) and (8.41) implies

.42  QUD==Q(H), QH)—+QHD.
From e¢”=e¢”, we have e”™=¢" and hence

(8.43) H,— Hy=H;— Hy,

(8.44) Hy=ni [Ex:(Hy) —E_»,(H)],

(8.45) Hy=ni Er(H) —E_n(H)],
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(8.46) En(Hy) +E_n (Hy) =Ew (Hy) +E_m (HY).

Since [H,, Hol = [H), Hy] =0, we would obtain a(H) = i(/Q\(H’) by
(8.41), (8.42) and (8.43) if we can prove Q(Ha)= +Q(H).

From (8.24), Q(Hw)Q(Hy)™ commutes with all B(f). The
algebra Uspe (K, I), which is isomorphic to CAR C* algebra, is known
to be simple [8] and in particular has a trivial center. Therefore
6(1100)/(3([{03)‘1:01 for some complex number c.

On the other hand

Q(Huw)*=Q 120 (B (Hy) — o (H))} = (— 1)
and Q(Hp) = (—1)"="= > From (8.46), dimEnr(H,)=dimEq(H;)
and hence /Q\Q(H(,O)zza(}foh)z. Hernce 021:@(1{00)26(1{0’0)—2:1, There-
fore ¢c=+1 and @(HM) = ia(H{o). This completes the proof of
QUED) = +Q(H".

From the above argument, a(HY(V)):ta(Hy'(V)) for any r
and 7 where Hy(V) is defired by (8.21).

Let e":e €9, and V(z)=e""e**2. Let z(¢), 0<¢{<1 be a path
between z(0)=0 and z(1)=1 avoiding zeroes of det(V(z)+1). For
each 0=Xt<(1, there exists an open interval I, containing # and a fixed
path y, such that det(1+2(V[z#)]—1))#0 for Z€y, and ¥<1,.
H»,(V(2)) defined by (8.21) is holomorphic in z at z(#), ¥<1,. The
equality between two anaiytic functions of z

(8.47) QHy,(V(2)) = + Q2 H,) Q2 Hy)

hold for all z=z(#), =1, if it holds for z=2z(#), ¢ in scme dense
subset of an open interval in [/, by the continuity and an aralytic
continuation.

The formula (8.47) holds with the plus sign if |z| is sufficiently
small by the Baker Haussdorf formula and Lemma 7.3. Since [0,1] is
covered by a finite number of I, (8.47) holds for all z=z(¢), 0<¢<1.
Hence, if efe"=e"=9,, we have

(8. 48) QUH)QUH) = +QUi).
Let V=¢"=9,. Then
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(8.49) QH) = +Q(H) Q)

where | V| =¢e", VIV | *=e", Since @(Hz) is unitary, we obtain
from (8.31)

(8.50) JQUED | = exp-2- tr] log| V|

where log| V| is hermitian.
We also have

min(|QCH) — 1|, |QH) +1I)
<|| +QUHQ(H,) — 1| <IQ(H) — 1]+ || +Q(Hy) 1.

Hence we obtain from (8.32) and (8.33)
(8.51) min([QCA) —11, [QCH) +1])
<IQUED |~ 1+ trlemv—1].

Let V,=eme9,, H,€>) and lim|V,—V|].=0, Ve4,. Then
trllog|V,]| is bounded. Since |V, V,'—1]s—0 as #n, m—oco, there
exists ¢,= *=1 such that

(8.52) [ QCH) ] [enQ(HL)] 1
as n, m—oo due to (8.51). Since H/C\)(H,‘)H is bounded due to (8.50),

we have
(8.53) lea QUH,) — enQ(H.) | —0,

as #n, m—oco, Hence there exists a limit of e,,@(H;,) as n—co, The
limit does not depend on the cheice of H, and e, except for a factor
+1. We shall write the limit as Q(V,¢) where e==+1 and Q(V, 1)
=—Q(V, —1). The properties @(S}*=6(S*), (8.24), (8.28), (8.48),
(8.50) and (8.51) extends to Q(V,e) by the continuity.

Let 9% be the abstract group with an involution *, which is
* isomorphic to the group of operators Q(V,¢), & be the * isomorphism
from gE=9% to the corresponding Q(V,e) and =(g@)=V if Q(g)
=Q(V,e). From (8.24), Q(Vi,e,)=Q(Vy es) only if Vi=V,. Hence =
is well defined. From Q(V,e)*==+Q(V*,¢) and (8.48) for Q(V,e),
7 is a * homomorphism. From (8.51), it is a homeomorphism. Since
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Q(V,e) =—1 exists by (8.40), the mapping = is two to ore. (8.17)~
(8.20) follows from the corresponding properties for Q(V,¢). Q.E.D.

Theorem 5. Let K be an infinite dimensional Hilbert space.
A Bogoliubov transformation t(U) of Uswo(K,T) is inner if and
only if Ued, or —Ues9_.

Proof of “if” part.

If Ue4d,, then @(=*U) is unitary and induces the desired auto-
morphism <(U) on Uspe(K, I).

It U,e9,, U,9,,, then U, U,.=Y... Hence it is enough to
show that ¢(U) is inner for at least one unitary U in 9 _.

Let {e.} be a I' invariant orthonormal basis of K. (A complete
orthogonal family of I" invariant vectors f« can be obtained inductively by
picking up f in {fp; B<<eo}! and defining fo,=f+Tf, fapu:=t(f—Tf).)
Let U be defined by the requirement of linearity, boundedness and
Uey,=e¢,, Ueo=—e, for all &«#0. Then —U&9_ and <(U) is imple-
mentable by V2 B(e,). Q.E.D.

To prove the “only if” part, we need some preparations.

Let K, be a I' invariant fizite even dimensional subspace of K,
A, = Nspo(K,, I') and 2 be the set of elements in Aspo(K, IN) commuting
with every element of A,. We kaow the following properties.

(a) Liji)l,, is dense in Uspo(K, 7).

(b) I:et ¢: and ¢, be states of 2, and 2.

Then there exists a state ¢ of spo(K, I") such that q:‘%l,,:(al, (0'912:(02.

Property (b) follows from the fact that 9, is a full matrix algebra.

Lemma 8.4. Let U be a unitary element of Vspo(K, ). Then
there exists a unitary V, in U, such that lim||V,— U] =0.

Proof. From (a), there exists 4,9, such that lim|A,— Ul =0.
Let|A,— Ul =¢,. Then |4, || Ul +=,=1+¢, and
[Ax A, — 1| = AF = U*|[| A+ U*|[| A — Ul Zen (2+e).

Hence H [ An } _1H§ {1 &y <2+611)] i and ” I Aﬂ l e 1”§ [1 & (2‘*‘51:)] e
—1 provided that e,(2-+¢,)<1. (|4,] =(4*A4,)"%)
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Let V,=A,|A,]™*. Then V, is isometric and

V.= U= A~ Ul A+ Al =1
<e,[1—e,(2+e)] 2+ [1—e,(2+6,)]7¥2—1—0.
Therefore lim|V,— Ul =0.
We now have lim|V,V}—1||=0 due to UU*=1. Since V,V;} is
a projection, HV,,V,,*llllzl unless V,V}¥=1. Hence V, is unitary for
sufficiently large #. Q.E.D.

Lemma 8.5. Let U be a unitary element of Vspo(K,T) and U,
be unitary element in N, such that UAU*=U,AU* for all ASY,.
Then there exists a complex number 1, such that |2,]=1 and
lima,U,=U.

Proof. Let Ui=U;*U. We have Ufe¥:. Let V, be as given
by Lemma 8.4. We then have
lim| Uy — UV, || =0.

Let ¢;, and ¢., be states of 2, and 2, and let ¢, be a state of
Usve (K, I') such that qo”!?I,,:gpl,,, gon‘i)lﬁ:@z,,. We have

S;lp I (02;; ( af) - qoln < U”- 1V"> [
<sup|o(U;—U;'V,) | =U;— UV, [|—0.
P

Let 4,=¢.,(U;'V,) for a fixed sequence ¢,,. Then
1 Us — 4l =Sgp!¢zu(Uf—/h) | —0.
Therefore lim||U—2,U,|| =0. Q.E.D.

Proof of “only if” part of Theorem 5. Let U be a Bogoliubov
transformation which can be implemented by a unitary W in spe(K, ') :
WAW*=+(U)A. Any inner =*automorphism is unitarily implemen-
table in any representation. From Theorem 8, we see that U—1 or
U+1 is in the Hilbert Schmidt class. In either case, U has a purely
discrete spectrum.

First consider the case where multiplicities of eigenvalues 1 and
—1 of U are not odd. Then there exists I" invariant finite even dimen-
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sional spectral projections E, of U such that limE,=1. Let U,=E,U.
Let W, be a unitary element of swo(E,K,I") such that W, AW}
=c(U)A for A= Usno(E, K, ). By Lemma 8.5, there exists complex
numbers A, such that lima, W,=W.

let U=¢"t, |H||<r, H*=H, TH'=—H, and E, be a basis pro-
jection such that [E,, H] =0, E, H<0. If multiplicities of eigenvalues
1 and —1 of U are not odd, such H and E, exists. Let E.=1—F,,
H, =E.H.

By Lemma 8. 3, W, is proportional to (/Q\(iE,, H) and by Lemma 9. 2,

e (W) =cexp(i/2) tr (E, H.),

where |c¢] =1 is common for two equations. Since [U, E.] =0, Wos,
must be a multiple of 2z, by Lemma 4.3. Therefore

lima, exp(i/2) tr (E, H)=c
where ¢’ is common for . This implies
limexp((/2) tr E,(H,— H.) =1.

From rd,r=-—H., [, E, =0, we have trE,H =—trE, H,.
Therefore

limexp? tr £, H,=1.

Since 0<H,<z and E, can be chosen to pick up (an increasing
sequence of) any finite number of eigenvectors of H., this implies that
H, must be in the trace class. Therefore U=, in this case.

In order to consider a general case, we again use Theorem 8. If
both dimE; and dimE_; are finite, then either 1 or —1 is an accumu-
lation point of the spectrum of U. Then there exists a Bogoliubov
transformation U’'ed, which commutes with U such that UU’ has an
infinite multiplicity for an eigenvalue 1 or —1. Since we know already
that U’ is inner, it is sufficient to consider the case where either
dimE, or dimE_, is infinite.

We now consider a case where the dimension of the eigenpro-
jection E; of U for an eigenvalue 1 is finite and odd. Let @z (—1)
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=1I (V2 B( f)} where {f;} is any complete orthonormal set of I’
inv;riant vectors in E;K. Then Q(—1) is unitary and implement
the Bogoliubov automorphism <(U;) for U,; which is 1 on E,K and
—1 on (1—E,)K. Since UU, has no eigenvalue —1 and an infinite
multiplicity for an eigenvalue 1, «(UU;) is inner only if UU,e9,.
Since —U,€9_, this implies —Uc9_.

Finally we consider a case where the dimension of the eigenpro-
jection E_; of U for an eigenvalue —1 is finite and odd. As before
v(U;) is inner for U; which is 1 on E,K and —1 on (01—E_)K.
Since UU, has no eigenvalue 1 and an infinite multiplicity for an

eigenvalue —1, it is not inner. Q.E.D.

§9. Unitary Implementable Bogoliubov Transformations

Lemma 9.1. Let P and P’ be basis projections. Let sing
=|P—P'|, 0Z6=<=n/2. Let E..=P\NA—-P)+1A—-P)\P, E,
=P\P'+(1—-P)N(A—P’). Let

9.1 Ff%—(l—E,r,z—Eoii(sinacosayl [P, P']),

9.2) H(P'/P)=0{F,—F.}.

Let e---e, be an orthonormal basis of {P\N(1—P)}K (n<oo) and
U be a unitary operator, determined by the requirement that Ue;=T¢;,
Ure;=e;, Uf=f for f€ (1—E..) K. Assume that |P—P’| is in the

trace class, Let

(9.3) R(P'/P) =g .

9.0 Q= {exp (B, H(P/PYB)} 11 (B(e) ~B(rey).
Then ﬁ(P’/P) €Y., o=(—1)", Q is unitary and

(9.5) R(P'/P)PR(P'/P)*=P’,

9.6) QB(/Q*=B((—1)"R(P'/P)f),

0.7 o (QAQ™) =g, (A)

(9.8) ¢p(Q) = (det cos) ",
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where the positive quartic root is taken and AcUspo(K,T).

Proof. Since (P—P’)* commutes with P and P’, § commutes
with P and P’. ¢ also commutes with I E, and E.. are spectral
projections of ¢ for the eigenvalues 0 ard /2. From [P, P’}*
= —sin®) cos®d, it follows that F,F_=F_F_=0. Because P and P’ are
basis projections, I'F,I'=F;. Namely F._ are partial basis projections.

If |P— P’| is in the trace class, then ¢ is also in the trace class
and hence H(P//P)e>), £ ed,.

(9.5) follows from a direct calculation. (Also see Appendix.)

@ is unitary. (9.6) is immediate for f&€(1—E..) K, f=e, and
f=Te; and hence for all f. From (9.5) and (9.6), we have

(9.9) p(Q*AQ) = 0p(((—1)"R(P'/P)*) A)
—0p(c(R(P"/P)*) A) = 0p (A).

By Definition 3.1, (3.3) and (g, Pe.)=(g, Pre)=(g, Pf)=0 for
g=e; and I'e;, k=j and fe (1—E,) K, we have for n=0,

(9. 10) 2:(€) =0.

Since Q€ Uspc((1—EN K, I"), we can compute (9.8) by using the
Fock state @pq_ry on UAspe((1— E) K, I). Herce we may assume FE,=0
without loss of generality. If #=0 and E,=0, there exists a basis
projection E of (K,I') commuting with P and P’ and a unitary
operator # such that [u, Pl=[u, P’] =0 and uFu*=1—F, due to
Lemma A. Then it follows that tr EH(P’'/P)=(1/2)trH(P’/P)=0.
We can identify (B, H(P'/P)B) in Usoc((1—E)K,T) with 2(a,
EH(P'/P)a) in Uear(EK) and use the formula for <e*) in the
Appendix C of [4] where K=:iH(P'/P)E ((a'Ka) is written as [K]
in [4]) and p=(1—P)E. We have

(9.11) ?(Q) =exp {trlog(1+ (e“—1)p)}
=exp trzlog(1+ (A —P) (-1 (11— P))

=exp trza_p log(cos )

= exp—i— tr log (cos ) =det(cosf) V.
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where the positive root is to be taken. Q.E.D.

Lemma 9.2. Let g€9% and P be a basis projeciion. Then

(9.12) 0r(Q(g)) =det,(Pr(g)'P)"?,
where detp is the determinant taken on the space PK, the branch of
the square root is to be determined by an analytic coniinuation from
the value 1 for g=1 and the continuity.

Proof. First we consider the case where z(g)=¢", H*=H,
I'H*r=—H, H is in the trace class and the continucus inverse image
a1 (e"), 0<t<1 connects 1 and g. Then =(g) is a Bogoliubov trans-

formation. Let
(9.13) P =r(g)Pr(g)*
which is again a basis projection. Since H is in the trace class

!IP’—PIInég(%!)"IH (H---[H, P]-] ]l

n

<3\ (n!)" 2’| Hlo| B Pl <o,
Let
(9. 14) R(P/P)*=(g)=V.

V' commutes with the basis projection P by (9.13) and (9.5). Since
Ved,U9_, this implies detV=+1 and hence VeI,. Let g'€T*
be such that z(g")=V. Let V=e* where H*=H', THr=—H’,
[P, H]=0. We then have Q(g’)—+expl (B, H'B). Under the
identification of Usoo(K, 1) with Uean(PK), (B, H'B)=2(a!, H'Pa)
—tr(H’P). Therefore

(9. 15) 0r(AQ(g")) = + os(A) exp—~;— tr(H'P).
By substituting Azﬁ(P/ P’), we obtain
(9.16) ¢»(Q(g)) = +det(cosh)V* exp——;— tr(logV) P

= +detp[(cosg) V1P] V2,

Substituting cosV'P=Pcos¢V'P and Pcosf= Pﬁ( P/PHY*P, we
obtain
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(9.17) 2x(Q( ) = +det,(Pr(g) ' P)'2

By absorbing = to the ambiguity in the branch of square root, we
obtain (9.12).

By sutstituting g.,(2) such that =(g,) =expi(H" +zH,"), H™M*
=H®, rHPr=— H*, making analytic continuation in z from z=0
to ¢ and taking limit of #—>oo in the trace class norm, one obtains
(9.12) for most general g. Q.E.D.

Remark. The formula (9.12) can be also cbtained by the follow-
ing methcd. Consider the case where =(g)—1 and S—(1/2) are of
finite rank and S does not have cigenvalues 0 and 1. Then from
(6.24), and (8.18), we have

(9.18) 0s(Q(2)=e:2[Q(2) eXp~%f(B, log {S(1—S)7"}B)]det(2S)**
= +det(25)"2 exp—;— trlog[(1+7(g) (1—S)S™)/2]

= iexp% trlog[S+z(g)(1—S)].

We can now allow S to take eigenvalues 0 and 1 and to be not of
finite rank. (9.18) holds by continuity. If S is the projection P,

we have
(9.19) ¢p(Q(g)) =det[P+(1—P)=x(g)(1—-P)]*".

Since detI'A*I'=det A and I'=(g)*I'==(g)™", we obtain (9.12).
Conversely (9.18) can be obtained from (9.12) by

¢s(Q(g)) =detr (Pen(g) ' Ps)"*=det(1— Ps+ Psn(g) ™' Ps)™?

where n(g) is understecd as #(g)P1 on [/(\ It can be checked easily
that this coircides with the above expression.

Note that the formula (12.3) of [4] is a special case of (9.18),
where S=1—p.

Lemma 9.3. Let P be a basis projection, g, be in %, V be a
Bogoliubov transformation P,=z(g,) Pz(g.)*, P'=VPV* Assume
that =(g.) is unitary,
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(9. 20) PN (11— P)=0,

(9.21) limz(g) =V,

(9.22) Um| £, — P’|lr.s. =0,

where |Allgs. = || A*A|.. Let %, be such that
(9.23) 2 (Q(g)) =1l (@201
Then

(9.24) Q:(V) =lim-(Q(g))%"

exists and does not depend on the sequence g, for a given V. It

satisfies

(9.25) Qr(V*) =Qp(V)*
(9.26) Qe(V)me(B(f)) =m(B(VS))Q(V)
(9 27) (Qp, QP(V).Q}Q :detp(PP'P) 1/4>0.

If HES and H*=—H, then Qu(e")=Q(H)det(Pe"P)
ldet(Pe”P) |2

Proof. Since =(g,)—1 is in the trace class, (P,—P) is in the
trace class and hence is in the H.S. class. From (9.22) (P’'—P) is
also in the H.S. class. Hence P(1— P’)P=P(P’'— P)*P is in the trace
class, and (1—P)P=(P—P)P is in the HS. class. Frem (9.22),

it follows
(9.28) A—=P)P—A—P)Plus.=(P.—P")Pllus—0.

Hence ||(1— P,) Pllu.s. is uniformly bounded.

We now have

(9.29) \PP,P—PP'P|,=|{PQ—-P)—PQA—-P)}(1—-P)P
+PA-PH{A-P)P—-QA—P) P}l
=[A=PI)P—A=P)Plas{|(1—=P) Plus.
+ |](1"P’)P”H.s.}‘>0.

We also note that (9.22) implies || P,— P,|u.s.—0 as #n, m—oo. Hence
anETc(gm) *Pnn(gm) SatiSﬁeS ”Pmn_ P”H@ = “ RI—* PmHH.S.—%O as n) m

—oo, Therefore
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(9. 30) | PP,y P— P|luw=||P(Pun— P)*P|.—0
as n, m—>co,
Let
(9.31) Q.=1"n(Q(g), ¥=Q.2.
We obtain, from (9.29),
(9.32) (2r,¥,) = |dets(Pr(g.) " P) |

= {det,(Pr(g,) P)det,(Pr(g,)*P)} "
= [detp (PP, P)]"*— [det,(PP'P)]**

and, from (9. 30),
(9.33) | (@, 7,)| =det,(PP,, P)"*—1.

Due to (9.20), c=[det,(PP’'P)]¥*=0.

Let expib,,= (., 7./ @, 7). I |1-|@,, 7. ]]|<c*/2, then
1(exp 160, )¥,—¥.|<<e and herce |&%m(2p, ¥.)— (2p, Tn)|<e. If
| (@, ¥,) —c|<<¢ and |(&p, ¥.) —c|<e¢ in addition, then |e&®=—1|c<<3e
and hence |¥,—7.,.|<<(1+3/c)e.

Therefore #, is a Cauchy sequence and has a strong limit # (V).

Let W:TEP(A).QP, AE%ISD(;(K, F). Then
Qn 7"f'P(‘A-)AQP :TEP(T I:n(gu)] A) Qn QP

(9.34) 1Qu7r(A) 2 — e ([ VI AT (V)|
= Allllz,—# (V)| +lc(z(g.)) A== (V) Al =0,

where (9.21) is used for the second tem. Hence @, has a strong
limit Q,(V), which satisfies (9.27) due to (9.32). It also satisfies

(9.35) Qr(V)mp(A) 2 =7 (= (V) A)Qe(V) 25 .

(9. 27) implies Q»(V)2,#0. Since =, is irreducible, (9. 35) implies that
the range of Q(V) is the whole space. As a strong limit of unitary
Q., Q-(V) is isometric and hence is unitary. (9.35) implies (9. 26),
which uniquely determines the unitary operator Q»(V) up to a multi-
plicative constant for a given V. The constant is unique due to (9. 27).
Heunce Q-(V) does not depend on the sequence.

(9.26) and (9.27) are satisfied when Q-(V*)* is substituted into



430 Huzihiro Araki

Q-(V). Hence, by the uniqueness, we immediately have (9.25).

Lemma 9.4. Let P be a basis projection, V be a Bogoliubov
transformation and P£’'=V*PV. If (P'—P) is in the Hilbert
Schmidt class, V is unitarily implementable in the Fock represen-
tation mup.

Proof. E,.=P)\(1—P)+({1—P)A\P is the spectral projection
of (P—P’)* for an eigenvalue 1 and hence has a finite dimension.
Let e;---e, be an orthonormal basis of (PA({A—P))K. Let U be a
unitary operator determined by the requirements Ue;=rI¢;, Url'e;=e¢;,
Uf=f for fe(1—E.:) K. Then U is a Bogoliubov transformation
such that U—1 is of finite rank. We have detU=(—1)". Hence
v((—=1)"U) is inner and hence is unitarily implementable.

We now consider V;=VU, P”"=V*PV,. Then v=|P”—P| is in
the H.S. class and P\ (A—P")={1—-P)ANP”"=0. There exists a
monotonically increasing sequence of a finite dimensional spectral pro-
jection E, of » such that imE,=1—FE, where E, is the eigenprojection
of v for an eigenvalue 0. Consider R(P”/P)=1—v))"*— 1A —v*)
- [P, P”]. Then consider U,=(1—E,)+R(P"/P)E,. We have

[U.~RP"/P)|ns=[(A—E) (A=) =D lus.
+1A-E)A—v) [P, P"][as.—0
where E, commutes with P and P” and | [P, P"]|*=(1—v*)?* is in
the trace class. Hence there exists Q-(R(P”/P)) on H, which imple-
ments t(R(P”/P)).
We now consider V,=VUR(P”/P). It commutes with P and hence

¢p is invariant under ¢(V,). Hence it is unitarily implementable in 7.
Q.E.D.

Theorem 6. Two Fock states ¢, and ¢p are unitarily equivalent
if and only if (P—P’") is in the Hilbert Schmidt class.

Proof. First assume that P— P’ is in the Hilbert Schmidt class.
Then there exists a Bogoliubov transformation V bringing P’ to P,

which is unitarily implementable by Lemma 9. 4.
Now assume that P— P’ is not in the Hilbert Schmidt class. Then
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(P—P’")* is not in the trace class. Since P commutes with (P—P’)* and
rPp(P—PHY:r=Q1-P)Y(P-P), (1—P)(P—P)Y=Q1Q—-P)P'1-P)
is not in the trace class.

By Lemma A, there exists a partial basis projection E and a
partial isometry # such that [E, P]=[E, P'1=0, (P—P)*(E+TETI)
=(P—-P" [u, Pl={u, Pl =0, u*u=FE and u*u=rEI'. Then uFEu*
=TEr, uEQ—P)P' 1—P)u*=TEr(1—P)P’(1—P) and {E+TET}
-A—-PHYPPA-P)=1Q—-P)P’1—P). Hence, if (P—P"? is not in
the trace class, then E(1—P)P’(1—P) is not in the trace class.

As a consequence, there exists an infinite number of unit vectors
;e EQ—P)K, j=1,2,--- such that (e e, =(¢;, P'e,)=0 for j+k
and >(e;, P'e;) =co. This is proved as follows:

Ifj E(1—P)P’(1—P) has a continuous spectrum =, then take a
number >0 such that =5, (5, 1)+¢ and take an infinite number of
mutually disjoint interval 4; in [, 1] with 4, 5,#¢. Take any unit
vector ¢; from E(4;)K where E(4;) is the spectral projector of
(1—-P)P'(1—P) for 4;. (e;e)=1(e;, P'e,)=0 for j+k is automatic.
Since (e;, P'e;) =8, >1(e;, Ple;) =oo.

If E (1—P)P’(1]—P) has a purely discrete spectrum, then take e;
to be a complete orthonormal set of eigenvectors of E(1—P)P'(1—P)
in E(1—P)K. Then e, (1—P)K, (e;, P'e,)=(e;, EQ—P)P'(1—P)e.)
=0 for j#k and >\(e;, P'e;) =tr(1—P)P'(1—P)E=oo,

Since ¢, EK, EKITrEK and [E, P'1=0, we have (e;, I'e,)
= (e;, P'Te,) =0 for any j and k.

Let P; be the projection on the space spanned by Ie;, U,(1)
—expid(P,—T'P,1), UP(2) = i{p,,(a) and U()=TIU,(D). We have

(9. 36) det PU® (1) P=expi,
(9.37)  det P'U“() F'~T1det P’ expia(P,—I'P,I) P’y
— (expiam) I [1+ (¢ 1) (¢, P'ey)]".

From (9.36), it follows that @,(U“(1))e ™ has a strong limit
Q-(U(2)). It also follows from the proof of Lemma 9.3 that approach
to the limit is uniform locally in 1 and hence Qr(U(2)) is continuous
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in 2. Hence (0, Q(U(2))0)+#0 for sufficiently small 1 for a given 0.
Thus for 0= 9;, there exists A such that

(9. 38) lim(0, Q-(U™(2))e **®) +0
and cosi#1.

Let g.€9% be such that =(g,)=U"(1). Due to (9.37), it is
necessary for the existence of a nonzero limit

lim ¢r (Q(g.)e™) #0
that
(9. 39) S(e™*—1) (e;, P'e;) <<oo.
This implies that ¢, and ¢ can not be unitarily equivalent. Q.E.D.

Theorem 7. A Bogoliubov automorphism (V) is wunitarily
implementable in the Fock vepresentation nr if and only if (1—P)VP
is in the Hilbert Schmidt class.

Proof. We note that
(9.40) e(z(V) A) =gy (A).

Hence, if V is unitarily implementable, | V¥*PV— P| is in the Hilbert
Schmidt class. Hence P|V*PV—P|*=(PV*(1—-P))((1—-P)VP) is
in the trace class, which implies (1—P) VP is in the Hilbert Schmidt
class.

Conversely, if (1—P)VP is in the trace class, then P|V*PV— P|*
and I'{P|V¥*PV—-P|3r=_A—P)|V*PV—P|* are both in the trace
class. Hence V*PV—P is in the Hilbert Schmidt class and V is
unitarily implementable for z,. Q.E.D.

Theorem 8. A Bogoliubov automorphism (U) is wunitarily
implementable for all Fock representations if and only if U—1 or
U+1 is in the Hilbert Schmidt class, where dim K+ odd.

Proof. “If” part is immediate from Theorem 7. We may assume
that dim K is infinite. [The case where dim K=odd is not considered
because there is no Fock representation].
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For “only if” part, we have to show that if PU(1—P) is in the
Hilbert Schmidt class for all basis projection P, then U—1 or U+1 is
in the Hilbert Schmidt class where U satisfies U*=U", rur="=.

Let 4 be any measurable subset of {¢¥; 0<<0<<x} and E, be any
subprojecticn of the spectral projection of U for the set 4 such that
[U, E;1=0. Assume that E, has an infinite dimension and E,=1—FE,
—T'EyT" has an infinite or an even dimension. Let E=FE,+TE.T.

There exists an antiunitary involution 7 (a complex conjuga-
tion) on EK, commuting with the spectral projections of UE; and
with . Let P, be the subprojection of £ for the subspace spanned
by f+irTf, f€E,K. Then (E—P)K is spanned by f—iI'TY,
feE, K and TPiI'=E—P,. Hence there exists a basis projection
P>P.

Since U(f+irTf)=Uf+irTU*f, we have

a-pP) U(f+zTTf):%[(U— U f—irT(U-U*)f].
Therefore

I1A=PYUS+ir TOW/ | f+ir TP = [ (U=Uf/211F/ 1 I

Since (1—P)UPP,=(1—P)UP, must be in the Hilbert Schmidt class,
(U-U®E; must be in the Hilbert Schmidt -class. [Note that
272 ( f;+4r' Tf,) is an orthonormal basis of P, K if f; is an orthonormal
basis of E,K.]

In order that (U—U*)E, is in the H.S. class for any E,, it is
necessary that U has a purely discrete spectrum and its accumulation
points are at most 1 and —1.

Next assume that Uf,=e™f;, Ug;=é*ig;, j=1,2, -, 0<a;<nm,
0=B=r, |as—Ppl=a(=0), () fD)=(g;, g) =0 and (I'g, g
=(I'g;, f)=(_f;,I'fs) =0. Further assume that the orthogonal comple-
ment of the set of all f;, g;, I'f;, I'g;, j=1,2, -+ has an infinite or even
dimension.

Let P, be the subspace spanned by (f;+g;) and (I'f;—I'g),
j=1,2,---. Then there exists a basis projection P=P,. We have

A—=PYU(fi+g) = (" —e®)(f;—g1)/2.
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Therefore,
1A =P UP|as =31 A—P)UCS;+801%/2
=3 sin® [ (as—6,)/2]
gzj; sin?(a/2) = co.

Thus, the spectrum of U can not have more than one accumulation
points nor points with an infinite multiplicity.

From the above two conclusion, we see that U—1 or U+1 must
be compact.

If U+1 is compact, then (—U)—1 is compact and z(—1) is
unitarily implementable in all Fock representation.

If U—1 is compact and an eigenvalue 1 has a finite multiplicity,
there exists an infinite number of eigenvectors f; of U belonging to
an eigenvalue ¢ such that 0<<a;<<zx and >la;<<co. Let E be the
projection for the subspace spanned by all f; and I'f; and W=UE
+@—E). Then (W) is an inner Bogoliubov autoriorphism by
Lemma 8.3 and an eigenvalue 1 of UW™* has an infinite multiplicity.

Thus we may restrict our attention to the case where U—1 is
compact and an eigenvalue 1 of U has an infinite multiplicity. In this
case 4 can be taken the whole set {¢'?; 0<<¢<x} and hence U— U* is

in the H.S. class. This implies that U—1 is in the H.S. class.
Q.E.D.

§10. Pseudo Fock States

Lemma 10.1. Let P be a partial basis projection with the
I' codimension 1. Lel e, be a fixed ' invariant unit vector in
(1—P-rPrK. Let np on O» be the Fock representation of
oo (PK+TPK, ). Then there exists an irreducible representation
T o) O Wsoo(K, ) on O uniquely determined by the following
requivements:

(10.1)  #we.y(B)) =27 (eo, HTo(—1) + e [B(Pf+TPTSf)].

Proof. Since me,.,(B(f)) given by (10.1) satisfies the defining
properties (1), (2), (3) of a selfdual CAR algebra, it automatically has
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a unique extension to the whole Nspo(K, T). Q.E.D.

Definition 10.2. A pseudo Fock state ¢w.., 0f W (K, ) is
defined by

(10.2) 0,00 (A) = (2p, mer, ey (A) 2p),

where P, e, and ww,., are given in Lemma 10.1 and 2, is the cyclic
vector corresponding to the Fock state ¢» of Uspc(PK-+T'PK,T).

Lemma 10.3. Let P be a partial basis projection with a I' co-
dimension 1 and

(10.3) S={1/2)Q+P-rPr).
Then
(10.4) 0s= (1/2) {per,er+ 0o, —o) -

Pure states ¢w,., and ¢e,-., are not unitarily equivalent. Rs is not
a factor and its center is gemerated by n;(B(ey))Tr(—1), where
T:(—1) s a unitary operator in =s(A(PK+TPK,I")” satisfying
Teo(—Das(B(f))Te(—1)=a:B(—f)) for f€ PK+TPK.

Proof. Any element A in Uspe(K,I") can be written as
A+ A,B(e,) =A where A, and A, are in Uspc(PK+T'PK,I"). Both
sides of (10.4) give ¢+(A;) and hence (10.4) holds.

If A€ Uspo(PK+TPK,T), then me,,,(A) =mne, .,(A). The set of
all such ne,.,(A) is irreducible by Lemma 4.3. Therefore any unitary
operator satisfying Wae,.,(A) W*=ne, _,,(A) must be a multiple of
the identity. However, mp, —oy(B(€))=—2""2Tp(—1) #naep,.,(Be)).
Therefore np,.) and m,—.» are not umitarily equivalent.

From this, it follows that

(10 5) @S:‘@?(P,eo)@'bg’(}’,—eu)
(10. 6) ‘9522_1/2<~Q9’(P.a0)@g¢m ~en))
(10.7) ws(B(f)) :Wwp,e;)(B(f))@”W(P.—m(B(f))

and 7s(B(€0)) (T,(—1)PTs(—1)), which is 27* on 9y, , and —27*
on H?(P,_gn) generates the center of Ks. The operator T-(—1)PT-(—1),
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which belongs to 7s(Uspc(PK +I'PK,T))”, can be characterized up to

a multiplicative constant by its anticommutation property with B(f),
fePK+T1rPK.

Theorem 9. Let E be a partial basis projection with a finite
odd T codimension and T be a Hilbert Schmidt operator such that
TE=ET=T. Let

(10.8) S=T+1-rTr+@@/2)Q—-E—-rEn).

Then R is not a factor. Conversely, if Rs is not a factor, then S
is of the form given by (10.8).

Proof. Let e;---e.,., be a complete orthonormal system of I
invariant vectors in (1—E—T'ET)K and E, be the projection on the
subspace spanned by e+ i€y, j=1,--,n. By setting E,=E+E,,
T.=T+ (1/2)E,, we obtain a case where the partial basis projection
E, has a I'-codimension 1.

Let

S'=re.r+Q/2)(1—E,—rE\I).

Then S¥2—(S”)** is in the Hilbert Schmidt class and hence Rs and
Ry, are =isomorphic. By Lemma 10.3, where we set P=IE:I', R«
is not a factor and hence R is not a factor.

If S is of the form given by (10.8) where the I' codimension of
E is finite and even and T is as before. Then the same argument as
above shows that R; is * isomorphic to Rs, where S'=I"E;I" is a basis
projection. Hence R is a factor.

If S is not of the form given by (10.8) where the I'-codimension
of E is finite, then S¥?(1—S)¥? is not in the Hilbert Schmidt class.
Let Pi=2(SGA—S))—Ps. Then Ps— Ps is not in the Hilbert Schmidt
class. In the proof of Lemma 4.11, #_, if nonvaunishing, is a vector
giving a vector states ¢y, in the representation space associated with
¢p;. By Theorem 6, we have ¥_=0 and hence from the proof of
Lemma 4.11, Rs must be a factor. Q.E.D.
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Appendix: ANGLE BETWEEN Two PRroJECTIONS

We state a result concerning an angle operator between two pro-
jections which is essentially taken from [1]. If one of two projections
has either dimension 1 or codimension 1, then the nonzero eigenvalue
of the angle operator coincides with the geometrical angle between
corresponding subspaces.

Theorem 10. Let P, and P, be projection operators on a complex
Hilbert space K. Let 0(P,, P.) be defined by

(A 1) 020(}71, Pz) gﬂ'/zy
(A.2) sinf( Py, P,) = | P,— P]|.

Let E(0) and E(x/2) denote eigenprojections of (P, P.) for eigen-
values 0 and =/2, E=E(0)+E(x/2), and

(A.3) vi=cos0( Py, P;), v.=sin6( Py, P).
Let

(A.9) R(P/P)=vi+0i* [Py, P,

(A.5) I(Py, P) =vi'(Pi+P—1).

Let

(A.6) un(P/P)=P(1—-E),

(A.7) un(P/P)=1—-P)(1—-E),
(A.8) u(P/P) = (010.)"Py P(1— Py),
(A.9) Un(Py/P) = (00)"(1—P) PP .

Let PN\ P’ denote the projection on PKNP'K if P and P’ are pro-
jections. Let & be the von Neumann algebra {P,, P;}" generated by
P, and P, and B be its center KN K.

Then B is generated by 0( Py, P.) =0(Ps, P,), EP, and EP.. R is
generated by its center 3 und u,;(P/Py), i,j=1,2 satisfying
(A.10) u;(Pi/P)*=u;,(Pi/ Py,

(A.11) ;(Po/ P)uu( P/ Po) =083, (Pi/ Py).
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KE is commutative and is generated by four minimal projections

P AP, PN(A—P), Q—POANP, and (1—P)\ (A —P.) where
EQ)=PA\P+A-P)NQA—P),
E@/2)=PN\NA—-P)+A—-P)\P:.

KA —E) is a tensor product of the center 3(1—E) and the type L,

factor generated by the matrvix unit u,;(P/P;). Relative to this
matrix unit, we have

(A.12) P(1-E)= (1 0)
0 0/,
(A.13) P,(1—E)= <vi, s v;)
V102,  V3/)s
(A.14) R(P./Py) (l—E):< s, Uz)
— Vs, Ui/s
(A.15) I(P, P,)(1—-E)= (vl, 1)2>
Ve, —0;/-
The operator R(Py/P,) satisfies
(A.16) R(P/P)*=R(P/Pp),
(A.17) R(P./P)R(P,/P)*=R(P:/P)*R(P:/P,) =1—E(n/2),
(A.18) R(P/P)PR(P/P)*=P,— P, \(1—P),
(A.19) R(P/P)*P,.R(P,/P,)=P,— P\ (1—P,).
The operator 1(Us, Us,) satisfies
(A.20) I(P,, P)*=1(P,, P,)=1(P,, Py),
(A.21) I(P,, P)*=1—E(=/2),
(A.22) I(Py, P)uy;(Pi/P)I(Py, Pr) =u;(P/ Py).

Proof. Since —1<P,— P,<1, we have 0<| P,— P;| <1 and hence
(P, P,) is uniquely well defined by (A.2) and (A.1). By a direct
calculation,

(A.23) [((Pi—P)% Pl =[(Pi—P)?, P,] =0

and hence 6( P, P,) 3.
If (P—P)f=f, then (f,Pf)=Ifll and (f, P.f)=0 imply
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|P.f]|=0 and hence P.f=0, Pif=f. If (Pi—P)f=—f, we obtain
P.f=f, P.f=0. Converses are obvicusly true. Hence we have

(A.24) E@/2)=PNA—P)+{A—-P)\P:.

Next assume P f=Pf. Let gi=P.f, g2=A—P)f. Then P, g
=g,=P,gs and (1—P)g,=g=1—PF)g,. Hence g€(PLN\P)K,
= {Q—P)NQA—P)} K and f=g1+g.. Conversely, such f satisfies
(Pi—P,)f=0. Hence

(A. 25) EQ)=P\NP+(1—-P)NA—P,).

Obviously AP, A—PONP,, LNQA—P,) aud (1—-P) N1 —Py)
belong to 3.
From (A.23), (A.24) and definitions, we have

(A.26) u;;(Py/P) E=Eu;(P/P,) =0.

By using identities

(A.27) P,(P,—P)'=P(1—P,)P,=P,—P PP,
(A.28) P,(P,— P)*=P,(1—P)P,=P,—P,P P,
(A.29) A—P)(P—P)'=Q1-P)HP(A—-P),
(A.30) A—-P)(P—P)>=1—-P)P(1-Py),

we obtain (A.10) and (A.11). This also shows that u;;(P,/P.) are
everywhere defined bounded operators. [The range of P, P,(1—P,) and
(1—P)PP, is in 1—E)K, where (v,2.)7! is uniquely defined].

By using (A.27) and (A.29), we have (A.13). (A.12), (A.14)
and (A.15) are immediate from the definition. (A.16)~(A.22) are
obtained from (A.12)~(A.15).

& is generated by P, and P, and hence by 6(P, P,), EP,, EP,
and u;(Py/P,). Since Eu;(Pi/P,)=0, E is generated by E6(P;, P,),
EP,, EP, and hence as is stated in the Lemma.

On (1—E)K, u;(P./P.) generates a type I factor and hence
KA —E) is as is stated in the Lemma and 3 is generated by 6( P, P.),
EP, and EP,. Q.E.D.

As an immediate application of Theorem 10, we have
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Theorem 11. Let P, and P. be basis projections on K relative
tor. Then

(A.31) ro(P,, PYr=0(P,, P,
(A.32) I'R(P./P)r=R(P./Py),

(A.33) ri(P, P)r=—1(P, Py,

(A.34) Tu,(P/P)r=—uu(P/P) G,
(A. 35) T, (Py/P)T =u,,(P./P) G5,
(A. 36) r(PAPIT=1—P))\Q—P),
(A.37) PPN\ QA—P))r=1—P)\P,.

There exists an antiunitary involution T which commutes with
0<P1: P2>7 uij(P1, Pz) and T
The linear operator ﬁ(PI, P,) defined by

(A. 382) R(P./P)E(x/2) = TTE(z/2),
(A. 38b) R(P./P,)(1—E(x/2)) =R(P./P,),
is unitary, commutes with 6(Py, P,) and I' and satisfies
(A.39) R(P,, P)P,R(P,, P)*=P,.
I on 1—E)K is given by
(A. 40) r(1—E) = Te(un(P:/Py) —ua(Pi/P)

where ¢ is a linear operator, commutes with 6(Pi, P.), u;;(P, P.), T
ana T and satisfies ¢*= —e¢, *=E—1. The multiplicity of 6(Pi, P)
at any point in (0,7/2) is a multiple of 4.

Proof. From I'P,’'=1—P, and definitions, we obtain (A.31)~
(A.37). We shall prove the existence of the operator 7" and its
property.

Let e, be any I' invariant vector. Let K(e;) be a closed real linear
space generated by (VP u;(Pi/P.)+PE}e, where P;; and P are
any bounded selfadjoint operator in 8. Then K(e) +7K (&) is a closed
subspace of K, containing e; and invariant under I" and &. Further-
more, for any ¥%; and %:. in K(e,), (¥, %,) is real. Note that
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(e, P;;u;;(Py/Ps)e) =0 if ixj due to (A.34).

If mutually orthogoral subspaces K(e,) +iK(e,) having such pro-
perties are given for v<<y,, then by choosing any I' invariant vector e,
in (U{K(e)+iK(e)})', we can obtain K(e,)+iK(e,), which is
ortho”gz;al to K(e,) +iK(e,), v<<vo and has such properties. By induction,
the total Hilbert space is a direct sum of such K(e,)+iK(e,). Let
T>(fo+ig)=>(f,—ig,) for f,, g.£K(e,). Then T is an antiunitary
involution commuting with 6(Py, P.), u;;(Ps, P.) and T

The statements concerning /R\<P1/P2) and ¢ are immediate where
e is defined by I'T(uy(Pi/P.) —us(Py/P,)). Since Te restricted to
(1—E)K is an antiunitary operator, commuting with 0(F;, P.) aud P;
and satisfying (Te)*=—((1—E), 6(P, P;) restricted to P,(1—E) has
an even multiplicity. Since §(Py, P.) restricted to 1— P, has the same
multiplicity as 0(P;, P.) restricted to P; due to P I'=1—P,, and
[6(Py, P.), 'l =0, the multiplicity of (P, P,) at any point in (0, z/2)
must be a multiple of 4. Q.E.D.

Lemma A. Let P and P’ be basis projections. Then there
exists a partial basis projection F and a partial isometry u, both
commuting with P and P’, such that F+TFr=1—E()—E(x=/2),
u*u=F and uu*=rFT.

Proof. Use the notation in the proof of Theorem 11. The ope-
rator ¢ has at most three eigenvalues 0, ¢ and —:. The eigenprojection
for 0 is 1—E(0) —E(=/2). Let F be an eigenprojection for 7. Since
[I",e] =0, 'FI' must be an eigenprojection for —i and hence F is a
partial basis projection commuting with &.

Next we modify the construction of K(e,) as follows. We restrict
our attention to (1—E(0)—E/2))K. Let K(e), v<<v, be given.
Then chocse a unit vector e,, in F (Q{K(ey)+iK(eV)})l. Let V26,

=e, +T¢, and V' 2 e,1=1 (e,—Te,). VS\iV;me ce,,=1e,,, el'e,, = —ile, and
[e, 8] =0, (Re,, Kre,)=0 and hence K(e,)_ |K(e,.1). Note that
(.,L<Ju {K(e,) +iK(e,)})* is invariant urder F and F+0 on this subspace
unléss F+rFr=1—F is 0 on this subspace, which occurs only if this

subspace is EK.



442 Huzihiro Araki

We define #’ to be 1 on K(e,), —1 on K(e,,:) and 0 on EK.
Then # = #'F commutes with & and u*u=F, uu*=rFr. Q.E.D.
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