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Asymptotic Ratio Set and Property L\
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Huzihiro ARAKI

Abstract

Powers' property Lx is strengthened by requiring the simultaneous vali-
dity over a finite number of states. It is then shown that a von Neumann
algebra R on a separable space has the modified property—called the property
L'r-if and only if A(l—x)-1 is in the asymptotic set r^CR). where O^A^l/2.
It is also noted that any finite continuous von Neumann algebra has the
property Li/z.

The closedness of r «,(./?) for any von Neumann algebra R on a separable
space follows as a corollary.

§1. Introduction

Powers has introduced the following property of a von Neumann

algebra to reformulate his earlier classification theory of factors [5, 6] .

Definition 1.1. A von Neumann algebra R has the property

Lx (0<^l<;i/2) if, for every e>0 and any normal state CD of R, there

exists an operator N in R satisfying the following conditions:

(a) N2 = Q, N*N+NN* = 1.

(b) For any 0eJ?,

(1. 1) j (l-AWQAO -to(JVQ) I ^

The present author and Woods have introduced the asymptotic

ratio set rTO(J?) as an invariant for R under *-isomorphisms [1]. It

consists of all %^ [0, oo) such that R^R&)RX (~ denotes a ^isomor-

phism), where Rx, x^ [0, oo), is a specific one parameter family of

factors and RX^R^X-^ for x=£Q.

It is immediately seen that R has the property L^ if #A=<*(1— 'O"1

The converse is not true for A = 1/2 (Lemma 6.1) but the
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situation for A^l/2 is not known. (The converse holds for A = 0.)

To find the properties similar to Definition 1. 1 and equivalent to

^(1— ̂ )~1er00(J
!?), we strengthen the property Z,A as follows:

Definition 1. 2. R has the property L( if for every e>0 and a

finite number of normal states oh, • • • , &„ of R, there exists an operator

N in R satisfying the following conditions :

(a) N2 = 0, N*N+NN* = 1.

(b) For any Q^R and j = l, -~,n,

(1. 2) | (l-JXCQtf ) -to/TO ! ^e||Q||.

Obviously the property L( implies the property Z,A. For this

strengthened property, we have

Theorem 1.3. A von Neumann algebra R on a separable space

has the property L( if and only if A(l—X)~1^reo(R').

The property Zi/2 for a finite von Neumann algebra R on a separ-

able space can be phrased as the existence of a weakly central sequence

of type 72 factors. Theorem 1. 3 for this case is slightly stronger than

Theorem 1 (also see Theorem 2) in [7] .

§2. Property L\ and Type

Lemma 2.1. If a von Neumann algebra R has the property

Lx, A =£1/2, then R does not have a finite part,

Proof. Assume that 0 is a normal normalized finite trace on R.

Since N*N+NN* = 1, we have <j>(N*N~)=<l>(NN^ = I/2. From the

property Z,A with Q=N*, we have

(2.1) | *(#*#) K| 1-2* | ̂ e

for arbitrary e>>0. This is in contradiction with (/>(N*N^)=l/2 if

Q.E.D.

Lemma 2. 2. // a von Neumann algebra R has the property

Z,A, 0<C*<Cl/2, then R does not have a semi finite part.

Proof. Assume that 0 is a normal semifinite trace in R and E
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be a projection in R such that 0<<0(£)<C°o. Let

(2. 2) fl)(Q) = $(ET^(EQE^ Q^R

is a state on R and has the following properties.

(2. 3) co(EQ) = fl>(QE) =fl>(Q),

(2.4) a>(Q1EQJ=a>(QtEQ3.

From the property ZA, we have

(2. 5) i (l-^)o)(7V*7V) -toCMV*) I <e,

(2. 6) ! (1 -;i)fl>CfrZV*AO -to(NEN*) \ <e,

(2. 7)

By using (2.3) in (2.6) and (2.7), adding (1-/1) times (2.6)
and ^ times (2. 7) together, using the triangle inequality and (2. 4) ,

we obtain

(2. 8) | (1 -/OXN*AO -,l

We also have

(2. 9) co(Ar*^) +fl>(MV*) =1,

from the property (a) for JV.
From (2.5) and (2. 9), rwe have U-a^A^AO |<e and |(1-^)

-~a)(NN^\<e. Substituting these into (2.8), we have

(2.10) U(l-^)(l-2^) !<[!+/+ (l-^)2]e.

Since e>0 is arbitrary, ^ = 0 or 1 or 1/2, which contradicts with

0<a<l/2. Q.E.D.

Lemma 2. 3. // a von Neumann algebra R has the property

1,1/2, then R does not have a discrete part.

Proof. Let E be an abelian projection in R and 0 be a normal
state of #,0CE)=£0. Let ^Q^=^EQE^(E^. Since #£ = center
of RE= (center of J?)£, there exists a central element F(7V) for each
N^R such that \\F(N)\\^\\N\\ and EF(N^ = ENE. Let N be such
that JV2 = 0, NN* + N*N=1 and
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(2.11)

for all Q^R. Since NN*N=Nand N(.NN*~)=0, we have from (2. 11)
with Q =

(2.12)

From (2.11) with Q=N*E, we also have

(2. 13) | fr(N*EN) -fcCMV*) \ <s.

From (2.11) with Q=N*, we have

(2.14) |fcCtf*AO-fcCMV*)l^e.

Since NN* + N*N=l and ^F(.N^*N)=^N*EN), we have from

(2.12), (2.13) and (2.14)

Since e is arbitrary positive number, this is a contradiction. Q.E.D.

Corollary 2. 4. // « wow Neumann algebra R has the property

L(, then the following conclusions hold.

(1) // 0<CJ<l/2, then R is purely infinite.

(2) // ^=0, then R is properly infinite.

(3) // -1 = 1/2, then R is continuous.

This follows trivially from Lemmas 2.1, 2. 2, and 2. 3 because the

property L[ implies the property ZA.

§3. Sufficiency

Lemma 3. 1. // R~R®Ra x=l(l-X)-\ 0<^l/2, then R has

the property L(.

Proof. Let H=Ha®Ht> R = R,®Rb. Let a normal state a>, of R

and eX) be given. Since a> is normal, there exist Qjt e /^" such that for

(3.1)
y

Since ^||^,||2 = a)/(l)=l, there exists TV/ for any given e'X) such that
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(3.2) S !|fi,-,ll2<E'.

Let Ha = ®(Hk,(&^, Rx = ®(Mk,0k\ dim ft=4,

-^,/l). By Lemma 3.1 of [4], there exists K for any e/A>0 such

that

(3. 3) 11%-^IKe", 4,=,0;;<8){<8)0,},
k>K

for 7 = 1, •", -A^/ where tfjje {<j§Hk}®Hb. We set
^=1

(3.4)
for

Let *>^ Hk=Hk&Hn, Mk=$(Hk^®l and

(3. 5) ^=^1%11(g)^21+ (l-^)1/2^2(8)^22, H0.-/II =

Let N and TV7 be operators in Mk and M'k such that

(3. 6)

(3. 7)

Then we have

(3. 8) (l-^

(3. 9)

Hence we have

Therefore we have

(3. io) (i-^)
From (3.1) -(3. 4), we have ||o)/— o>J||<e for sufficiently small e and e".

Hence JV has the properties (a) and (b) of Definition 1.2.
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§4. Necessity - Properly Infinite Case

Lemma 4.1. If R has the property ZA, then for any e>0 and

a normal state CD of R, there exist a type I2 factor Ni in R and a
normal state ah of R satisfying the following conditions:

(1) R=N&R where R=Nf
lplR.

(2) ah(QiQ2)=flho(Qi)a>(Q2) for Qi^Ni,Q2^R, where oho is a

state on N^ such that Sp(aho, JVi) = (l— A, X).

(3) ||ft) — ahli^e.

Proof. Let N be the operator in R satisfying (a) and (b) with
e replaced by ei in definition 1.2. Let Ni be the type J2 factor gen-

erated by N. Since Qij=^ukiQUjk^R for any Q^R, where Uu=N*N9

uzz = NN*, u2i=N, Uiz = N*, and since Q=^QijUij) we have (1).
~ '•*

Let & be the restriction of CD to R. Let a^ be the state on N^

defined by a>A(JV)=a>A(^*)=0, a>A(JV*^)=^, aA(JVJV*) = l-^ Let
0)1 = a>A(8)<E. Then a>i satisfies (2) by construction.

By setting Q=N*NQ and JVTV*^ Qe^, in (1.1) and adding the
resulting equation, we obtain

(4.1)

By setting Q=N*Q in (1.1) and using NN* + N*N=1, we obtain

(4. 2) ] a>(QN*N) -MQ)

(4. 3) | a)(QNN*) - (1 -^

Hence for Q = ̂ QijUij, we have
ij

(4.4) IfflCO-ohCQ) ^

Since [|Q||^||G,,|| (Lemma 2.3 of [2]), we have

(4.5) l«>((?)-^(Q)|^6£l||Q!|.

By taking ei=e/6, we have (4). Q. E. D.

Lemma 4. 2. // R has the property L(, then for any e>0, a
normal state a> of R and a finite number of a-weakly continuous
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linear functionals fa on R, there exist a type Iz factor Ni in R, a
normal state coi of R and ^-weakly continuous linear functionals fai
on R satisfying the following conditions :

(1) R = N^R where R = N[ftR.

(2) a?i(01Q2)=fl)1o(Q1)fl>(Q2) for Qi^Nly Q2<=R, where co10 is a
state on Ni such that Sp (o>i0, JVi) = (1— ̂  /I).

(3) ||o) — oJil^e.

(4) 0n(QiQ2)=fl>io(Qi)0y(Q2) for Q^Ni, Q2^R.
(5) ||0; -felloe.

Proof. Any a- weakly continuous linear functional fa can be de-

composed into a linear combination of 4 states: fa = Aafaa — Abfab + i(.Ac*/>jc

—Ad fad'), ̂ , i, ^, ^e [0, oo). Hence, if faa, fah fae and fad are approximated

by 0y«, 0k 0yc, and 0yrf having the property (4) above (0y replaced by <£/a

etc.), then fa approximated by fai = Aa(/)
fja — ̂ 'jb + ̂ b + i^c^jc — ̂ 0^)> which

have the property (4).

Due to Property Zl, we can find Nly (Oi and 0yfl, 0k 0yc, 0jv as in

the proof of Lemma 4. 1. Q.E.D.

Lemma 4. 3. Let R be a properly infinite von Neumann algebra
having the property L(. For any e/>0, j^N, a countable number of

normal states fa^N, of R and another normal state a) of R, there
exist mutually commuting type 72 factors Nj9j^N, in R, normal
states faky j, k^N, j<.k, of R and normal states coh j<^N, of R satis-
fying the following conditions :

(1) R=N1®-®Nn®Sn,R1l=(UNJynR.
n J = l

(2) fl?,(Qi-»QBhi) = {na)yo(Oy)}fl)(0.+i) for Qj^Nh j<^n, and Qn+1~ j=I

M? where o)jQ is a state on Nj with Sp(X-0, Ni) = (1 — ̂ , ^).
(3) | o)/_i— (*)j\\<,Bj, j^N, where a}Q = a).

(4) 0/.(QiQ»)=^(Qi)0j(QB) for Q^Nn and Q^

(5) \\fa- fan\<en for ;^«.

Proof. We find JVA, «* and 0;A by induction on k. For k = l, such

JVi, cox and 0n exists by Lemma 4. 2. Assume now that NkJ o)k and fak

are chosen for j<^k<^n.
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For any state $ of R, let 07« be a ^-weakly continuous linear func-

tional on Rn defined by $7*(0) =0(0w7») where ML is a matrix unit of

N^"-®Nn. We then have 0(0) =S #7- (07.) where Qn
lm = ^un

klQun
mk.

lm k
/\ ^^

If 07« is a <r-weakly continuous linear functional on R» satisfying

ll07«-0L||<e' and tf«(Oi02)=a>.o(Qi)07.,(G2) for

then 7(0) =S0r«(Q?«) satisfies |]0-7ii<e" and/i» ^
for Qi^Nn+i, Qz^N'n+1nR, where e"->0 as e'->0. 0 is automatically a

state of J?.

Since J? is properly infinite, J?« is properly infinite. Hence Rn

f^(Ni®-~®Nn)(g)Rm = R. (1 in Rn has a partition into a finite number

(2") of projections which are mutually equivalent.)

We can now use Lemma 4.2 for RH9 c5n = (0n\RH = co\R» and (0/)?«,
x*s

j<n + l and obtain JVK+1, (^-)L and 0I+1 from which ^,+D is constructed

as above 0 and a)n+i is constructed by (off+i = fi5i+i(8)^i where &'„ is the

restriction of COH to -ZVi®"'®^ which is the same as ®a>yo. We have

lk.+1-w.ll^llfiJi+i-fflll^e.. Q.E.D.

Lemma 4. 4. Let R be a properly infinite von Neumann algebra

on a separable space having the property L(. Let ej = 2~ie, e>Q and

fa be a countable dense subset of the set of all normal states. Then

Nj and a)j in Lemma 4. 3 have the following properties:

(oO There exists a normal state o^^lim ODJ such that \\o}00 — a)\\<£.

(/3) J?=(^Lu^c.)// where JV«=

(r) coco(Qi02)=fl)oo(00«(02) for

Proof. By (3) of Lemma 4. 3, ^ is a Cauchy sequence. Hence

/ exists and is a normal state of R. We also have H^ — o>||

^S II a)/— fl)y_i ||<e. Thus we have (^).

(5) is already satisfied for MJ, j^n. Hence it holds for

If Qi^Ni®-~®NH9 then (r) is satisfied by toj9 j^n and hence by
00

Since -/V0o=(U-A^) / / , we have (r).y=i
To prove (|3), we first define
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(4. 6)

for OxedJJV.+O" and Q.eCMU-UJV.-iU^M..)" where n^j. Then
/ = 0

we have

(4. ?) u>-t?\\<Ui-

k

/=0

Here we used
Let v*j be a matrix unit in Nn such that

WHO(07,0=0 for i^j. For Q^R define

(4.8)

(4. 9) r.Q =

(4.10) r..,= nr,,;.
/=0

By lemma 2. 3 of [2], v^e have \\rkl(Nn)Q\\^\\Q\\ and hence ||rsO||<||Q||,

From our choice of F-/, it follows that

(4.11) 0f(r,,,Q)=0

if n<,my m + l^n + k. (Use Q = ̂ v"jrij(NH^)Q^ We also have
i;

From (4.7), we have

(4.13) i0,

for y^m.

Since r« /Q is uniformly bounded, n (Ur w / / Q)~ is non-empty where
A_0 />&

the closure is relative to the weak topology which is the same as the
<y-weak topology for uniformly bounded set. Let Qm be an element in

this set. HQJI
From (4.12), we have

(4.14) G,
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m-l

Since (LI-Af*)" is a finite type I factor, the right hand side of (4.14)
«=i ^

is the same as ( M U — U A^-i U ̂ oo) ". Hence

From (4. 13) and the #-weak continuity of 0/, we have

(4.16) l*,(Q.)-*/(C)l^2--e

for j^m. Since {$/} is dense in the normal states of R and since Qm

is uniformly bounded, (4. 16) implies

(4.17) Q = w-limQ.e(JV_u£o.)//.
»2->oo

This proves (0). Q.E.D.

Lemma 4. 5. £#£ R be a properly infinite von Neumann algebra
on a separable space having the property L(. Then R—R(£)RX with

x = t(l-t)-1*

Proof. Let <o be a normal state of ^?. By Lemma 4. 4, we have

a state cooo and von Neumann subalgebras R^ and N^ such that

R=(R-\JN»)", R..C.NL, a)** is a product state for (&„, NJ and

\\co- (yoo||<Ceo Let F be the central carrier of o)TC. Then this shows that

FR = FRDO®FNCQ and further the property (5) shows that

with # = ^(1 — ̂ )~1. Hence

(4. 18)

For any central projection Fi^O, there exists a normal state o)

whose central carrier is contained in Fi and hence o?(Fi)=l. We then

have ajooCFi)>>l — e. Hence FiF=£Q. Namely, for any central projection

Fi^O, there exists a central subprojection F2( = FFi)^0 such that

If (4. 18) holds for F, then it obviously holds for any central sub-

projection of F. If (4.18) holds for F=Fa and F6, then it holds for

FaFb and hence it holds for FflV-F, = Ffl(l-K)0KF6©F6(l-Ffl). If

(4. 18) holds for any infinite (or finite) family of mutually disjoint

central projections Fa, then it holds for their sum ©aFa. If (4.18)
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holds for any increasing chain of central projections Fa, then it holds

for its limit : lim Fa •= ©Fa [ II (1 — F3) ] „ Therefore, there exists a largest
a. /3<o5

central projection F such that FR—FR®R, and (1 — F) has no central
subprojection E such that ER—ER®RX. By the above result, we then

havel-F=0. Hence R~~R®RX. Q.E.D.

§5. Necessity - Finite Case

By Corollary 2. 4, we have only to consider L[!2. Let R be a finite

von Neumann algebra in a separable Hilbert space and 0 be a faithful

normal normalized finite trace on R. We first recall some properties

which we shall be using.

1° We define ||4||2 = 0G4M)1/2. We have

(5.1)

(5.2)

^IIQill I IQ.I I Mil,,
(5. 3) \\QiAQ2\\2=</>aAQz]*Q?Qi[AQ2]y12

2° Let oj be a normal state of R. Then <o(Q}=2(Qj9QQJ) where

is a vector in the representation space of R associated with

Let n be such that S ||jfy||2<e/2. Let 4,e/? be such that

— (£/, Q^-) |^(2w)""1e||Q||. Then \co(ff) —(f>(_AQ^) |<^e||G|| with
: and |0(4)— 11 <^e. Namely a state of the form 0C4Q)

with 4^0 and 0(4)=1 is dense in the set of all normal state of R.

3° Let Pi and P2 be two projections. Then there exists an angle
operator ([3], Appendix)

(5.4) 0:
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in the center of (Pi, P2}" and partial isometries u{j(i, j = l,2) such that

(5. 5) UijUkl = djkMih Ull
JrU22 = E((Q, 7C/2)),

(5.6) Pi
(5.7) A

(5.8) Vi

where Pif\P2 denotes the projection on

+ (1-P1)A(1-^X £({7r/2})=P1A(l-JP«) + (l-P1)A^2. We shall
use the spectral projection E(A} for a Borel subset A of [0, rc/2] and
the following operator

(5.9) [7- cos ®+ (cos©)'1 [Pi, P2]

which has the property

(5.10) UP2U* = PIUU*,

(5.11) UU*=U*U=l-E({n/2}).

By using the measure /<J)=0CEXJ)) and /*i(J) =0(£(J)Pi), we
have

(5. 12) |1 [P1? P2] ||2
2-

(5.13) ||

(5. 14) H

(5.15) JK

Lemma 5. 1. Let R be a finite von Neumann algebra on a se-
parable space. Let NQ be a finite type I factor in R and N be an
operator in R satisfying N2 = 0 and N*N+NN* = 1. Assume that

II [N, Q] \\2<e\\Q\\ for every Q^NQ. Then there exists N£ in (JVoRP)
such that N2

£=Q, NgN£ + N£N£ = l and \\N-Na\\2<Lzr& where
e'(e)-X) as £->0.

Proof. Let e{j be a matrix unit of N0(i, j = l--n'). Let

(5.16) N'
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Then we have

(5. 17) \\N'- JV||2^SII [N, e,j] \\«<ne.
j

Let us consider two projections Pi = £11 and N*N=P2. Then use

(5. 9) to define

(5.18) W= NU*euE( [0,71/4]).

From (5.12), || [N*N, e^] ||2^2e and ^(J)^^i(J) for any 4 we have

(5. 19) r/2cos20 sin20 d^(^)^4e2.
Jo

From (5.13) and (5.14) we obtain, by using N*N=P?P2,

(5.20)
[0>7T/4]

os20sin20dAq(0),
[0)7T/4]

(5.21) ||7V^1{l-£([0,7r/4])}||l-f co
J(7T/4?7r/2]

\
J(7r/4,7T/7T/2]

Hence we have as a sum of orthogonal vectors

(5.22) \\W-Neu\\*=2-/~2e.

From the definition, W is partially isometric and

(5.23) IF* ^=^£([0,71/4]).

We now consider two projections P[ = E( [rc/4, 7i/2] )^n and Pg
= TFTT*. From (5.22), we have

(5. 24) ||P;- AtenA^I^T/Ye.

We also have from AW*-(1-P2) and (5.15)

(5.25) HJV^U

J[0,7T/4]

Therefore

(5. 26) || [PI, NeuN*] ||2^|l [ell9 Neu
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(5.27) li[n^]i|2^(2+12T/2>.

We now define

(5. 28) W'=E\[0, w/4] ) Pi IT7 W.

As before we obtain || TF'-PiW||f^(24 + 2i/2> from (5.27). Since

II On -Pi) WH^-SJg by (5.25), we have

(5. 29) l| W'-g,, PF||2;^(24+4T/T)£.

From (5. 23) and the definition, we have

(5. 30) ( W) * PFd£( [0, 7T/4] )«„,

(5. 31) TT'( PF)* = £'( [0, K

Since the entire construction is done in{N, N*,eu}", we have
We now estimate the size of the projection

(5. 32) P= eu - W ( W'} * - ( PF) * PP.

From (5.22) and (5.29), we have

(5.33) I! PF-eii7Ve11l|2^:(24 + 6y''~2>.

From N*N+NN* = l and \\[eu, N] \\^e, we obtain

(5.34) ||P||,^(98 + 241/2>.

Let Pa and Pb be two equivalent projections in R with the sum P.
Let PF" be a partial isometry in R such that P,= W"(W"}*,

Pb=(W")*W". Let

(5.35) Nu=W+W"e=R.

From (5.33) and (5.34), we have

(5. 36) ||M1-e11JVe11||2^(122 + 30T/2")e.

By construction, Nli=0, NuN&+ N&Nu = eu.

Let

(5.37) JVe = S««Mi«i/.
y

Then we have JVJ=0, N£N£ + N£Ne = l, N£^N^r\R and
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(5.38) llN-Nell^nllNii-e^Ne^+llN'-Nll^e'te*)

where e'(e)->0 as e->0 by (5.17) and (5.36). Q.E.D.

Lemma 5.2. Let R be a finite von Neumann algebra on a
separable space having the property L{/2. Let TV0 be a finite type I

factor in R and R = Nf
0nR- Let e>0 and normal states ooi, • • • , o ) » of

R be given. Then there exists an operator N in R such that

(a) N2 = 0, NN* + N*N=1.

(b) For Q<=R and j = l, ~-,n,

(5. 39) i <oy(QTV) -<o;(TVQ) | ̂ e||Q||.

Proof. Let Ca be a finite number of operators in TV0 such that

CxS^O, 0(Ca)=l and N0 is the linear span of {CJ. («J = 1, •-,m.')

Let

(5.40) «XG) = (^(8>#o)(Q), y=l, -, »

where 00 is the normalized trace 011 NQ and Q<^R = R§t)NG. Let

(5. 41) Oi.H.aCO) =#(CaQ), «=1, -, W,

where Qej?.

By the property LI/2, there exists for any given e'^0, an operator
N in J? such that N2 = Q, NN* + N*N=1 and

(5.42) |^(Q7V)

for j = l,'--,n + in and
From (5.42) with j = n + a, we have l0([JV,Ca]G) l^e"||Q|| and

hence, by setting 0= [TV, CJ *, we obtain

(5. 43) || [TV, CJ ||J= || [TV, CJ ^I^^^IIC.H.

Hence we have

(5.44) !|[TV,Q]||2^£
W||Q||

for all QeTVo where e'"->0 as e"-^0.

We can now use Lemma 5.1. There exists an operator TV£ in R

such that TV!=0, TV£TV| + TV|TV£-1 and
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(5.45) Utf-AklU^e'Ce'").

For each <*>/ and C>0, there exists an operator A^R such that

=1 and

(5.46)

for all $<EJ?. We then have

(5. 47) UdAjQN) -MQN^ \\^A,\\ |iei|e'(O,

(5. 48)

We choose e" such that ||^||e'(e'")^e/6 for / = !, -, » and e"^e/3.
From (5.46), (5.47), (5.48) and (5.42), we obtain

(5. 49) H

for y = l, -~,n and

By restricting (5.49) to Q^R, we obtain (5.39) for N=Nt.
Q. E. D.

Lemma 5. 3. Let R be a finite von Neumann algebra on a separ-

able space having the property Lilz. Then

Proof. Now the proof is exactly the same as the entire section

4 except the use of Rn~~(Ni®---®Nm)®R,t = R in the proof of Lemma
4. 3 is replaced by the use of Lemma 5. 2. Q. E. D.

Proof of Theorem 1. 3. Let R be a von Neumann algebra on a
separable Hilbert space and jp be its central projection such that FR

is finite and (1 — F)R is properly infinite. If R has the property L(,
0<J<l/2, then F=-Q from Corollary 2.4 and we obtain R~~R®RX,

x = A(l — /O"1 from Lemma 4.5. (The proof for /l = 0 is immediate from
Corollary 2.4.) If R has the property Z^/2, then FR and (l-F)R

separately have property Z,i/2. (Replace N by FN and (1 — F)JV.)
Hence, by Lemma 4.5 and Lemma 5.3, we have FR—FR®R^, (1 —

Therefore R^R&R,. Q.ED.
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§6. Supplementary Remarks

Lemma 6. 1. Any finite continuous von Neumann algebra R

has the property L1/2.

Proof. Let e>0 and a normal state a) of R be given. Let F be

the central carrier of a). Then FR has a faithful normal normalized

finite trace 0. There exists A^R such that A>0, <f>(A)=l and

(6.1)

for all

^4 in .FJ? has a spectral decomposition (relative to $). Let £^,

y = l, 2, ••• be spectral projections of A for the intervals

(6.2) [O-l>/2, ;V2).

E, vanishes for ;>(2|!^l!|/e) + 1. Let

(6.3) ^=-6/4 + SOV2)£,.
y-=i

We have

(6.4) \\A-A£\\^e/4.

If Ej^Q, let £"^1 and ^2 be equivalent projections in R with the

sum EJ and TV,- be a partial isometry such that NjN* = Eji9 N*Nj = Ej2.

Let N=^Nj, Then we have 7V2 = 05 N*N+NN* = I and

(6.5) [JV, A]=0.

From (6.1), (6.4) and (6.5), we have

(6.6) !«(OJV)-»(JVQ)l^e||0||

for all Q^R. Q.E.D.

Lemma 6.2. !«(-/?) is closed for any von Neumann algebra R
on a separable space.

Proof. Let hn->X and R has the property L(H. Then it has obviously

the property Lx. From Theorem 1. 3 if ^(l-^-^r^R), then R

has the property L(n and hence J? has the property L(, which implies
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Q.E.D.
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