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Asymptotic Ratio Set and Property L,

By
Huzihiro Araxi

Abstract

Powers’ property L. is strengthened by requiring the simultaneous vali-
dity over a finite number of states. It is then shown that a von Neumann
algebra R on a separable space has the moedified property—called the property
Li—if and only if A(1—A)-'is in the asymptotic set r,(R), where 0<<a<<1/2.
It is also noted that any finite continuous von Neumann algebra has the
property L.

The closedness of r.(R) for any von Neumann algebra R on a separable
space follows as a corollary.

§1. Imtroduction

Powers has intrcduced the following property of a von Neumann
algebra to reformulate his earlier classification theory of factors [5, 6].

Befinition 1.1. A wvon Neumann algebra R has the property
L,(0=0L1/2) if, for every 0 and any normal state o of R, there
exists an operator N in R satisfying the following conditions:

(a) N=0, N*N+NN*=1.

(b) For any Q=R,

1.1 | 1=Do@N) —10(NQ) | =e||Q||.

The present author and Woods have introduced the asymptotic
ratio set r.(R) as an invariant for R under =-isomorphisms [1]. It
consists of all x€ [0, oo) such that R~RQR, (~ denotes a *-isomor-
phism), where R,, x<[0,0), is a specific one parameter family of
factors and R,~ R, for x+0.

It is immediately seen that R has the property L, if x,=1(1—2)™
er.(R). The converse is not true for 1=1/2 (Lemma 6.1) but the
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situation for 1#1/2 is not known. (The converse holds for 1=0.)
To find the properties similar to Definition 1.1 and equivalent to
12— "'er.(R), we strengthen the property L, as follows:

Definition 1.2. R has the property L if for every ¢e=0 and a
finite number of novmal states wi, -+, w, 0f R, there exists an operator
N in R satisfying the following conditions:

(a) N*=0, N*N+ NN*=1.

(b) For any QER and j=1, ---, n,

(1.2) | (1= w;(@N) —10,(NQ) | <[ Q.

Obviously the property L; implies the property L,. For this
strengthened property, we have

Theorem 1.3. A von Neumann algebra R on a separable space
has the property L, if and only if 11— er.(R).

The property Li. for a finite von Neumann algebra R on a separ-
able space can be phrased as the existence of a weakly central sequence
of type I, factors. Theorem 1.3 for this case is slightly stronger than
Theorem 1 (also see Theorem 2) in [7].

§2. Property L, and Type

Lemma 2.1. If a von Neumann algebra R has the property
L,, 2#1/2, then R does not have a finite part.

Proof. Assume that ¢ is a pormal normalized finite trace on R.
Since N*N+ NN*=1, we have ¢(N*N)=¢(NN*)=1/2. From the
property L, with @= N*, we have
2.1 l[o(N*N) | <<|1—22]| "%
for arbitrary ¢>0. This is in contradiction with ¢(N*N)=1/2 if
2#1/2. Q.E.D.

Lemma 2.2. If a von Neumann algebra R has the property
L,, 0<<1<<1/2, then R does not have a semifinite part.

Proof. Assume that ¢ is a normal semifinite trace in R and E
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be a projection in R such that 0<<¢(E)<Teo. Let

(2.2 0(@)=¢(E)$(EQE), Q<R
is a state on R and has the following properties.
(2.3) w(EQ) =0(QFE) =0(@),
(2.4) o(QEQ,) =0(Q.EQ,).

From the property L,, we have
(2.5) |A=Do(N*N) —20(NN*) | <,
(2.6) [(1—=De(EN*N) —2o(NEN*) | <,
2.7 |1—=Do(N*EN) —io(NN*E) | <e.

By using (2.3) in (2.6) and (2.7), adding (1—21) times (2.6)
and 2 times (2.7) together, using the triangle inequality and (2.4),
we obtain

(2.8) (A= (N*N) —20(NN*) | <e.
We alse have
2.9 o(N*N)+o(NN*) =1,

from the property (a) for N.
From (2.5) and (2.9), 'we have [A—w(N*N)|<c and |[(1—2)
—w(INN*)| <. Substituting these into (2.8), we have

(2.10) A—-0A -2 <<[1+2+A—-2)?%e.

Since ¢>>0 is arbitrary, =0 or 1 or 1/2, which contradicts with
o<u<1/2. Q.E.D.

Lemma 2.3. If a von Neumann algebra R has the property
Ly, then R does not have a discrete part.

Proof. Let E be an abelian projection in R and ¢ be a normal
state of R, ¢(E)#0. Let ¢,(Q)=¢(EQE)p(E™). Since Rz=center
of Ry= (center of R): there exists a central element F(N) for each
NER such that |[F(N)|<|N| and EF(N)=ENE. Let N be such
that N*=0, NN*+ N*N=1 and
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(2.11) |6:(QN) —¢:.(NQ) | <¢li Q)

for all Q€ R. Since NN*N=N and N(NN*)=0, we kave from (2.11)
with @=NN*F(N)*

(2.12) l:(F(N)*N) | <e.

From (2.11) with @=N*E, we also have

(2.13) [6:(N*EN) —¢.(NN*) | <e.

From (2.11) with @= N*, we have

(2.14) [6:(N*N) =g (NN*) | Ze.

Since NN*+ N*N=1 and ¢,(F(N)*N)=¢,(N*EN), we have from
(2.12), (2.13) and (2.14)

[6:(1) | =5e.

Since ¢ is arbitrary positive number, this is a contradiction. Q.E.D.

Corollary 2.4. If a von Neumann algebra R has the property
L;, then the following conclusions hold.

(1) If 0<<u<<1/2, then R is purely infinite.

(2) If 2=0, then R is properly infinite.

(3) If 1=1/2, then R is continuous.

This follows trivially from Lemmas 2.1, 2.2, and 2.3 because the

property L, implies the property L.

§3. Sufficiency
Lemma 3.1. If R~RQR,, x=1(1—27" 0<1<1/2, then R has
the property L;.

Proof. Let H=H,QH, R=R,QR, Let a normal state w, of R
and 0 be given. Since w is normal, there exist 2, H such that for
QER

(3- 1) 0] (Q) :g(gﬂ; Q'Qil)-

Since J||2;/|*=w,(1)=1, there exists I, for any given ¢>>0 such that
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(3.2 > elP<e.
>Ny

Let IL:®<HM wk); Rx:®(Mk7(pk)y dlm Hk:4) Sp (Q/n Mk>:(1
—2,2). By Lemma 3.1 of {4], there exists K for any &0 such
that

(3.3) 12, —Qull<<e”, 2u=2:Q {k@wk},

K
for j=1, ---, N, where 2/, {®H,,}®1Hb. We set
k=

B W @-50.Q%),  6i@=al() /@
for Q= R.

Let k=K, H=H.XH: M,=%PB(H,)X1 and
(3.5) 0,= 120, Q0+ (1 — D) V?0:,Q0,,,  ||0,;] =1.
Let N and N’ be operators in M, and M, such that
(3.6) NOLRO,; = 0,101 05,
3.7 N0, Q0:;=0;101,KQDs,.

Then we have

(3.8) A—=D"*No,=1*(N")*a,

(3.9 P2N*0,= (11— N0,

Hence we have

A—2) (@, QNL;) = (A=D1 (25, Q(N")*23)

= (1 _DWFIZ(N,AQ;‘I’ QQ;I)
=(N*2,, Q25,)
=202, NQ2j).

Therefore we have

(8.10) A—=2Dw:(@N) =Ilo;(NQ).

From (3.1)-(3.4), we have |w,—w;||<le for sufficiently small ¢ and &”.
Hence N has the properties (a) and (b) of Definition 1. 2.
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§4. Necessity - Properly Infinite Case

Lemma 4.1. If R has the property L,, then for any <0 and
a normal state w of R, there exist a type I, factor N, in R and a
normal state o; of R satisfying the following conditions:

(1) R=N.QR where R=N|NR.

(2 0:(QiQ) =00(QDw(Q,) for Q< N, Q.R, where vy is a
state on Ny such that Sp(ww, Ny)=1—212).

3 Jo—oifl=e.

Proof. Let N be the operator in R satisfying (a) and (b) with
¢ replaced by e, in definition 1.2. Let N, be the type I factor gen-
erated by N. Since Q,-,-E}k]uk,-Quj,,eﬁ for any Q@< R, where uy,=N*N,
Us2=NN*, tts;=N, u=N*, and since @=>] @;;u;;, we have (1).

Let @ be the restriction of o to K. I:éjt w, be the state on N,
defined by on(N)=an(N*)=0, on(N*N) =2 or(NN*)=1—1 Let
o1=0,Q@@. Then o, satisfies (2) by construction.

By setting @=N *N@ and NN *QV, aek, in (1.1) and adding the
resulting equation, we obtain

(4.1) l0(@N) | =2]Q].

By setting @=N*@Q in (1.1) and using NN*+ N*N=1, we obtain
(4.2) |0(@N*N) —10(@) | <./ @],

(4.3) |0 @NN*) — (1—Do(@) | Ze Q.

Hence for Q:,ZjQH”U» we have
(4.4) l0(@) —0:(@) | <e:[2[|Qua| + 2/|@esll + | @usl] + 1@zl 1.
Since |@[|=[@:;/l (Lemma 2.3 of [2]), we have
(4.5) l0(Q) —w:(Q) | =62:/|Q).
By taking e;=¢/6, we have (4). Q.E.D.

Lemma 4.2. If R has the property L,, then for any <0, a
normal state o of R and a finite number of o-weakly continuous
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linear functionals ¢; on R, there exist a type I, factor N; in R, a
normal state o, of R and s—weakly continuous linear functionals ¢;
on R salisfying the following conditions:

(1) R=N.®R where R=N;NR.

(2) 0:(QQ:) =00 (Q)w(Q:) for Q= N, Q.€R, where oy is a
state on N, such that Sp (w0, N1)=(1—2,2).

B Jo—o=e.

@) $1(QQ) =00(Q9;(Q) for Qe N, QR

(5) g5 — il =e.

Proof. Any s-weakly continuous linear functional ¢; can be de-
composed into a linear combination of 4 states: ¢;=~2Asjc— Ao+ 1i(Ase
—2ibia)y Aey Aoy Aey AE [0, o). Hence, if ¢, 1, ¢, and ¢;. are approximated
DY ¢e» ¢75, ¢, and ¢« having the property (4) above (¢; replaced by ¢;.
etc.), then ¢; approximated by ¢;1=Aj. — Apss + hdss + i (Abj. —Aubja), Which
have the property (4).

Due to Property L,, we can find Ny, w: and @, ¢, ¢ ¢ja as in
the proof of Lemma 4.1. Q.E.D.

Lemma 4.3. Let R be a properly infinite von Neumann algebra
having the property L. For any =0, jE N, a countable number of
normal states ¢;= N, of R and another normal state o of R, there
exist mutually commuting type I, factors N;, je N, in R, normal
states ¢, J, ke N, <k, of R and normal states w;, j= N, of R satis-
fying the following conditions:

1) R=N®- ®N,,®R,,, R,.—(UN) NR.

(2) 0.(@Qs Qm>—‘me(Qj);w(Qm) for Q;N,, j=n, and Q.
eR,, where wjp 1S a state on N; with Sp(w;, N)=0—2,2).

3)  wj1—w;]|<Ze;, JEN, where wy,=o.

(1) ¢:(QQ:) =0.,0(Q1)¢;(Q:) for QEN, and Q.€N.,NR, n=j.

(5)  lgi—¢inll <<ew for j=m.

Proof. We find N,, o, and ¢; by induction on k. For k=1, such
N, w, and ¢, exists by Lemma 4.2. Assume now that N, o, and ¢;
are chosen for j<<k=<n.
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For any state ¢ of R, let ¢, be a s—weakly continuous linear func-
tional on R, defined by ¢i,(Q) =¢(Qu},) where %}, is a matrix unit of
N®-QN, We then have ¢(Q)=12m ¢in(Qin) Where Q7m=2k Uir Q.
If ;7", is a o- Weakly continuous linear functional on E,, satisfying
l| ¢ — ¢7m”<5 and ¢1m(QlQ2) —-tﬂno(Ql\(blm(Qz) for QxeNn+1; QzEN,.uﬁEu
then $(Q) = qu,m(Qm.) satisfies l¢— ¢/ <e” and ¢<Q1Q2) 0,0 (Q1) 6 (Q2)
for @, N,,+1, QZENMHR where ¢/—0 as ¢—0. ¢ is automatically a
state of R.

Since R is properly infinite, E,, is properly infinite. Hence E,,
~(N®--QN,)®XR,=R. (1 in R, has a partition into a finite number
(2") of projections which are mutually equivalent.)

We can now use Lemma 4.2 for R,, &,=w.|R,=0|R, and ($;)h
j<n+1 and obtain N, (q/b\,-)?m and @,,, from which ¢, is constructed
as above gand w,,1 is constructed by w,.1=@.Xe, where @, is the
restriction of w, to N:&---QN, which is the same as (J%)lw,-o. We have
01— 0ul| S| @nsr— B[ Zee Q.E.D.

Lemma 4.4. Let R be a properly infinite von Neumann algebra
on a separable space having the property L,. Let ¢;=27%, >0 and
¢; be a countable dense subset of the set of all normal states. Then
N; and w; in Lemma 4.3 have the following properties:

() There exists a normal state wm~lim w; such that ||o.— ol <<e.

(8) R=(R.UN.)” where N. —(UN)” R.=N.NR.

(1) 0.(Q:Q:) = ww(Ql)"—’(QZ) for Q1€ N., @€R..

©), a’w(Ql"'Q»):JE[leO(Qi) for Q,€N;.

Proof. By (3) of Lemma 4.3, »; is a Cauchy sequence. Hence
w.=lim w; exists and is a normal state of K. We also have [w.—ol
<Zl|a),—w,_11|<e Thus we have ().
(8) is already satisfied for w;, j==n. Hence it holds for o...
If QN - QN,, then () is satisfied by w;, /=% and hence by
0n. Since No=(UN)", we have (o).
To prove (B)jzwe first define
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(4.6) ¢7* (Q:Q:) = 0,1,(Q1) ¢, (Q2)
for @€ (UN,.)” and @& (N;U-~UN,.UR.,.)" where #=j. Then

we have

4.7 Iy~ 81 <1y — el + 3107 — g3
=l ¢s— 5.l +éi!¢;—¢j.n+,ll
§%51x+1<21_”e.

Here we used |[[¢.&¢p:1—6.0¢(| = g1 — 2.
Let v; be a matrix unit in N, such that w, (v5) =24, 0..(vh) =1—2,
wnw(V}) =0 for i#j. For Q=R define

(4 8) r,-,-(N,,)Q‘—:ZkWZ;QV'}m
(4.9 7.0 =2t (N,)Q+ (1 — D122 (N,) @,
(4. 10) Tt — E[OT'wI .

By lemma 2. 3 of [2], we have |z, (V,)Q|<|@| and hence |.Q|<|®Q|,
.. QI=QI.

From our choice of V7, it follows that

(4.11) ;" (vn. Q) =05 (@)
if n=m, m+I=<n+k (Use @=>wir,;(N.)Q.) We also have

412 ©.Qe(UNNR
From (4.7), we have

(4.13) 165 () —¢,(Q) | <27

for j<m.

Since 7,6 is uniformly bounded, ﬂ) (IL>Jkr,,,,,Q)‘ is non-empty where
the closure is relative to the weak topology which is the same as the
o-weak topology for uniformly bounded set. Let @, be an element in
this set. @] =sup[z..QI=]QI.

From (4.12), we have

(4.14) Q.€(UN..)NR.
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m—1
Since (QIN”)” is a finite type I factor, the right hand side of (4.14)
is the same as (N:U---UN, 1 UR.)”. Hence

(4.15) Q. (N.UR.)".

From (4.13) and the s-weak continuity of ¢;, we have

(4.16) 16;(@n) —¢; (@) [ =27

for j<m. Since {¢;} is dense in the normal states of R and since @,
is uniformly bounded, (4.16) implies

(4.17) Q=w-lim Q. (N.UR.)".
This proves (B). Q.E.D.

Lemma 4.5. Let R be a properly infinite von Neumann algebra
on a separable space having the property L,. Then R~RQR, with
x=11-1D""

Proof. Let o be a normal state of K. By Lemma 4.4, we have
a state w. and von Neumann subalgebras R. and N. such that
R=(R.UN.)”, R.CN., w. is a product state for (R., N.) and
lo—w.||<e. Let F be the central carrier of w.. Then this shows that
FR=FR.®XFN. and further the property (9) shows that FN.~R,
with x=1(1—2)"*. Hence

(4.18) FR~FR.®XR.~FR.QR.QR,
~FRRR..

TFor any central projection F;0, there exists a normal state o
whose central carrier is contained in F; and hence w(Fi)=1. We then
have w.(Fy)>1—c. Hence FyF+#0. Namely, for any central projection
F,>0, there exists a central subprojection F,(=FF;)>=0 such that
F;R~F;RRQR,.

If (4.18) holds for F, then it obviously holds for any central sub-
projection of F. If (4.18) holds for F=F, and F, then it holds for
F,F, and hence it holds for F,\/F,=F,(1—-F,)@FFOF,(Q1-F,). If
(4.18) holds for any infinite (or finite) family of mutually disjoint
central projections F,, then it holds for their sum P.F,. If (4.18)
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holds for any increasing chain of central projections F,, then it holds
for its limit: lim F, @F H (1 Fp)]. Therefore, there exists a largest
central projection F such that FR~FRQ®R, and (1—F) has no central
subprojection E such that ER~FERQR,. By the above result, we then
have 1 —F=0. Hence R~RRR.. Q.E.D.

§5. Necessity - Finite Case

By Corollary 2.4, we have only to consider Li,. Let R be a finite
von Neumann algebra in a separable Hilbert space and ¢ be a faithful
normal normalized finite trace on K. We first recall some properties
which we shall be using.

1° We define ||A].=¢(A*A)*%. We have

6.1 I All.= [ A%l
(5.2) 16(@14Qx) | = 4(Q:0:4) |
=¢(Q:Q:QF Q) *¢ (A*A)*"
<[1Qu[ll| Q=1 [l Al2,
(5.3 1Q:AQ:]l:=¢([AQ:]*QFQ: [AQ:]) "
=@l AQ.= [ QulllQ3 A
=NQ:lNQF i A%l
<@l Q:[l[lAl.

2° Let w be a normal state of R. Then o (Q)=>(%2;, Q2;) where
2; is a vector in the representation space of R associated with
¢. Let # be such that ,->2,, l2;]><<e/2. Let A;=R be such that
l¢(AFQA;) — (2, Q2,) | =(2n)7%[|Q[. Then |0(@) —¢(AQ) [=¢|Q| with
A=j2:1AJ-A}" and |¢(A)—1|<e. Namely a state of the form ¢(A4AQ)
with A=0 and ¢(A) =1 is dense in the set of all normal state of R.

3° Let P, and P, be two projections. Then there exists an angle
operator ([3], Appendix)

(5.4) 0— S:IzadE(a)
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in the center of {P;, P.}” and partial isometries #;;(Z, =1, 2) such that

(5.5) Wi Uy = 06lhsy, Uny+ U= FE((0, 2/2)),
(5.6) =t~ P\ P+ P \(1—P),
5.7 P,=P, \P,+ (1 —P) )\ P+ 0w,
(5.8) v;=c08 0, V,=sin 6, "

where P, /\ P. denotes the projection on PLHNP.H, E({0})=P)\P,
+A-PONA—-P), E({in/2})=PNA—-P)+A—P)\FP. We shall
use the spectral projection E(4) for a Borel subset 4 of [0,z/2] and
the following operator

(5.9 U=cos 6+ (cos 0)7'[ P, P;]
which has the property

(5.10) UP,U*= P, UU¥,

(5.11) UU*=U*U=1—-E({z/2}).

By using the measure 2(4)=¢(E(4)) and &« (4)=¢(E(LHP,), we
have

(5.12) 112, P =" costosinto auco),

(5.13) | P(U* =D PEW) 3= (1—cos ) 0).
(5.14) | PPECA) 3= cos'o du (@),

(5.15) 11— P) PLE(4) HZ:SAsinzﬁ de, (0).

Lemma 5.1. Let R be a finite von Neumann algebra on a se-
parable space. Let N, be a finite type I factor in R and N be an
operator in R satisfying N*=0 and N*N-+NN*=1. Assume that
I[N, @] :=¢||@Q] for every Q= N,. Then there exists Ne in (N;\R)
such that Ni=0, NFNe+ NeNE=1 and ||N— Ne|:<c'(¢) where
¢ (e)—0 as «—0.

Proof. Let e; be a matrix unit of N,(¢, j=1---n). Let
(5. 16) N,:Zelee:[j.



Asymptotic Ratio Set and Property L; 455

Then we have
(5.17) |N"— N!|2§§H [N, 1] || o=ne.

Let us consider two projections P,=e;; and N*N=PF, Then use
(5.9) to define

(5.18) W= NU%e,E(]0, z/4]).
From (5.12), ||[[N*N, en]:<2 and #(4)=#(4) for any 4, we have

/2
(5.19) S cos®0 sin®6 du, (6) <4e?.
0
From (5.13) and (5.14) we obtain, by using N*N= P} P,

(5.20) IN(U*—1)enE([0, n/4]) 3= S[Mm(l —cos 6)*du (6)

gg cos®d sin?6 du, (),
Loy /4]

cos?6 duy ()
2

(m/4ym[2]

(5.21) || Newtl—E([0, /4D} 2=
<2 S cos?@ sin®6 de, (6).
()4, /2]

Hence we have as a sum of orthogonal vectors
(5.22) | W— Ney|lz;=2v 2e.

From the definition, W is partially isometric and
(5.23) W*W=e,E([O, n/4]).

We now consider two projections Pi=FE([z/4,7/2])e;s and P,
= WW#*. From (5.22), we have

(5.24) | Ps— Neu N *|:4+/ 2.
We also have from NN*=(1—P,) and (5.15)
=S sin de () <8¢,
[o0,/4]
Therefore
(5.26) | [P1, Nesx N*] .|l [e11, Ne:n N*] ||s+ 41/ 2¢

=2+4v2)e,
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(5.27) [ [P1, Ps]].=<<(2+12y/2)e.
We now define
(5.28) W'=E’([0,=/4]) P, U W.

As before we obtain | W — P W|,<(24+21/ 2 )e from (5.27). Since
| (ers— Py W <2y 2¢ by (5.25), we have

(5.29) | W' —en W, <(24+41/2)e.

From (5.23) and the definition, we have

(5. 30) (WH*W'CE([0, n/4])eu,

(5.31) W' (W"*=E'([0,n/4]1) E((x/4, n/2])es..

Since the entire construction is done in{N, N*, e,}”, we have W/ ER.

We now estimate the size of the projection
(5.32) P=e,— W(WH*—(WH*W",

From (5.22) and (5.29), we have

(5.33) | W’ — e, New ;=< (24 +69/ 2 )e.
From N*N+NN*=1 and || [en, N]|:<Ce, we obtain
(5.34) | Pll.<(98+241/ 2 )e.

Let P, and P, be two equivalent projections in R with the sum P.
Let W"” be a partial isometry in R such that P,= W"”"(W")*,
P=(W"*W”. Let

(5. 35) Ny= W+ W'eR.
From (5.33) and (5.34), we have
(5. 36) | Ny — e New [:< (12243012 e.
By construction, N3 =0, Ny N+ NENy=e.
Let
(5.37) Ng=2je,-1Nue1,.

Then we have Ni=0, NeNf+NfN:=1, Ne N;(\R and
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(5. 38) | N— Ne|l.<n||Niy— e Newll:+ || N — N[ .= (&)
where & (¢)—0 as e—0 by (5.17) and (5. 36). Q.E.D.

Lemma 5.2. Let R be a finite von Neumann algebra on a
separable space having the property Ly, Let N, be a finite type I
Factor in R and R=N{NR. Let <0 and normal states oy, -+, w, 0f
R be given. Then there exists an operator N in R such that

(@ N2=0, NN*+N*N=1.

(b) For Q<R and j=1, -, n,

(5.39) |0, (QN) — o, (NQ) | e[| Q.

Proof. Let C, be a finite number of operators in N, such that
C.=0, ¢(C)=1 and N, is the linear span of {C,}. (a=1, -, m.)

Let
(5' 40) E’J(Q) = (wi®¢0> (Q); j:]-; e, R
where ¢, is the normalized trace on N, and Q€ R=FKRQN,. Let

(5.41) @10 (@) =¢(Ca@), a=1, ---, m,

where Q< R.
By the property Lis there exists for any given ¢”>>0, an operator
N in R such that N?*=0, NN*+ N*N=1 and

(5.42) |@;(@N) —a;(NQ) | =" Q)

for j=1, -, n+m and Q=R.
From (5.42) with j=#n+a, we have |¢([N,C.1Q)|<e"||Q| and
hence, by setting @= [N, C.]*, we obtain

(5.43) I[N, Cl 2= [N, Ca] *|Z<2¢"| Call.
Hence we have
(5.44) I[N, Q<"

for all Q= N, where ¢”/—0 as ¢’—0.

We can now use Lemma 5.1. There exists an operator Ve in R
such that N2=0, NeN¥+NZ¥N:=1 and
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(5. 45) | N— Nel|l,<¢'("").

For each @; and =0, there exists an operator A;E R such that
A;=0, ¢(4;) =1 and

(5. 46) #;(@) —¢(A:Q) = (/12) Q]

for all Q= R. We then have

(5.47) g (AQN) —¢(AQNe) | A4;11[1QlI' "),
(5.48) ¢ (A;NQ) — ¢ (A;NeQ) | <[ A1 1@ ™).

We choose ¢” such that || 4;]|e’(¢")<e/6 for j=1, -, n and ¢"<¢/3.
From (5.46), (5.47), (5.48) and (5.42), we obtain

(5.49) 1@;(QNe) — &, (Ne@) || <el Q)

for j=1,--,7 and QER.
By restricting (5.49) to Q=R, we obtain (5.39) for N=N..
Q.E.D.

Lemma 5.3. Let R be a finite von Neumann algebra on a separ-
able space having the property Lis. Then R~RQR,.

Proof. Now the proof is exactly the same as the entire section
4 except the use of E,N(N1®---®Nm)®ﬁ,=l? in the proof of Lemma
4.3 is replaced by the use of Lemma 5. 2. Q.E.D.

Proof of Theorem 1.3. Let R be a von Neumann algebra on a
separable Hilbert space and F be its central projection such that FR
is finite and (1—F)R is properly infinite. If R has the property L,,
0<1<<1/2, then F=0 from Corollary 2.4 and we obtain R~RQR,,
x=21—2)"" from Lemma 4.5. (The proof for =0 is immediate from
Corollary 2.4.) If R has the property Li., then FR and (1—F)R
separately have property Li.. (Replace N by FN and (1—F)N.)
Hence, by Lemma 4.5 and Lemma 5.3, we have FR~FRQR,, (1—
F)R~(1—~F)RYR,. Therefore R~RKQR;. Q.E.D.
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§6. Supplementary Remarks

Lemma 6.1.  Any finite continuous von Neumann algebra R
has the property Lip..

Proof. Let =0 and a normal state w of R be given. Let F be
the central carrier of w. Then FR has a faithful normal normalized
finite trace ¢. There exists A€ R such that A>0, ¢(A4A)=1 and
(6.1) lo(@) —¢(AQ) | = (/1) [Q

for all Q= R.
A in FR has a spectral decomposition (relative to ¢). Let E;,
j=1,2, --- be spectral projections of A for the intervals

(6.2) [(F—De/2, je/2).
E; vanishes for 7>(2||A4]|/c)+1. Let

(6.3) Ae= —e/4+§1<ja/2>E,--
We have
(6.4) |A— Ael| Ze/4.

If E;#0, let E;; and E;, be eguivalent projections in R with the
sum FE; arnd N, be a partial isometry such that N;Nf=E;;, N!N,=E,.
Let N=>IN,. Then we have N*=0, N*N+ NN*=1 and

(6.5) [N, Ae; =0.

From (6.1), (6.4) and (6.5), we have

(6.6) lo(@N) —o(NQ) | <[ Q|

for all QER. Q.E.D.

Lemma 6.2. r.(R) is closed for any von Neumann algebra R
on a separable space.

Proof. Let 2,2 and R has the property L). Then it has obviously
the property L,. From Theorem 1.3 if 1,(1—21)7'€r.(R), then R
has the property L, and hence R has the property L, which implies
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A(l—n'er.(R), 0=L1/2. Q.E.D.
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