Publ. RIMS Kyoto Univ. Vol. 6 (1970/71), 443-460

Asymptotic Ratio Set and Property L'_{λ}

By

Huzihiro Araki

Abstract

Powers' property L_{λ} is strengthened by requiring the simultaneous validity over a finite number of states. It is then shown that a von Neumann algebra R on a separable space has the modified property—called the property L'_{λ} —if and only if $\lambda(1-\lambda)^{-1}$ is in the asymptotic set $\mathbf{r}_{\infty}(R)$, where $0 \leq \lambda \leq 1/2$. It is also noted that any finite continuous von Neumann algebra has the property $L_{1/2}$.

The closedness of $r_{\infty}(R)$ for any von Neumann algebra R on a separable space follows as a corollary.

§1. Introduction

Powers has introduced the following property of a von Neumann algebra to reformulate his earlier classification theory of factors [5, 6].

Definition 1.1. A von Neumann algebra R has the property $L_{\lambda}(0 \leq \lambda \leq 1/2)$ if, for every $\varepsilon > 0$ and any normal state ω of R, there exists an operator N in R satisfying the following conditions:

- (a) $N^2=0$, $N^*N+NN^*=1$.
- (b) For any $Q \in R$,

(1.1)
$$|(1-\lambda)\omega(QN) - \lambda\omega(NQ)| \leq \varepsilon ||Q||.$$

The present author and Woods have introduced the asymptotic ratio set $r_{\infty}(R)$ as an invariant for R under *-isomorphisms [1]. It consists of all $x \in [0, \infty)$ such that $R \sim R \otimes R_x$ (~ denotes a *-isomorphism), where R_x , $x \in [0, \infty)$, is a specific one parameter family of factors and $R_x \sim R_{(x^{-1})}$ for $x \neq 0$.

It is immediately seen that R has the property L_{λ} if $x_{\lambda} \equiv \lambda (1-\lambda)^{-1} \in \mathbf{r}_{\infty}(R)$. The converse is not true for $\lambda = 1/2$ (Lemma 6.1) but the

Received August 28, 1970.

situation for $\lambda \neq 1/2$ is not known. (The converse holds for $\lambda = 0$.)

To find the properties similar to Definition 1.1 and equivalent to $\lambda(1-\lambda)^{-1} \in \mathbf{r}_{\infty}(R)$, we strengthen the property L_{λ} as follows:

Definition 1.2. R has the property L'_{λ} if for every $\varepsilon > 0$ and a finite number of normal states $\omega_1, \dots, \omega_n$ of R, there exists an operator N in R satisfying the following conditions:

- (a) $N^2=0$, $N^*N+NN^*=1$.
- (b) For any $Q \in R$ and $j=1, \dots, n$,

(1.2)
$$|(1-\lambda)\omega_j(QN)-\lambda\omega_j(NQ)| \leq \varepsilon ||Q||.$$

Obviously the property L'_{λ} implies the property L_{λ} . For this strengthened property, we have

Theorem 1.3. A von Neumann algebra R on a separable space has the property L'_{λ} if and only if $\lambda(1-\lambda)^{-1} \in r_{\infty}(R)$.

The property $L'_{1/2}$ for a finite von Neumann algebra R on a separable space can be phrased as the existence of a weakly central sequence of type I_2 factors. Theorem 1.3 for this case is slightly stronger than Theorem 1 (also see Theorem 2) in [7].

§2. Property L_{λ} and Type

Lemma 2.1. If a von Neumann algebra R has the property L_{λ} , $\lambda \neq 1/2$, then R does not have a finite part.

Proof. Assume that ϕ is a normal normalized finite trace on R. Since $N^*N+NN^*=1$, we have $\phi(N^*N)=\phi(NN^*)=1/2$. From the property L_{λ} with $Q=N^*$, we have

(2.1) $|\phi(N^*N)| < |1-2\lambda|^{-1} \varepsilon$

for arbitrary $\epsilon > 0$. This is in contradiction with $\phi(N^*N) = 1/2$ if $\lambda \neq 1/2$. Q. E. D.

Lemma 2.2. If a von Neumann algebra R has the property L_{λ} , $0 < \lambda < 1/2$, then R does not have a semifinite part.

Proof. Assume that ϕ is a normal semifinite trace in R and E

be a projection in R such that $0 < \phi(E) < \infty$. Let

(2.2)
$$\omega(Q) = \phi(E)^{-1}\phi(EQE), \qquad Q \in R$$

is a state on R and has the following properties.

(2.3)
$$\omega(EQ) = \omega(QE) = \omega(Q)$$

(2.4) $\omega(Q_1EQ_2) = \omega(Q_2EQ_1).$

From the property L_{λ} , we have

$$(2.5) \qquad |(1-\lambda)\omega(N^*N) - \lambda\omega(NN^*)| < \varepsilon,$$

$$(2.6) \qquad |(1-\lambda)\omega(EN^*N) - \lambda\omega(NEN^*)| < \varepsilon,$$

 $(2.7) \qquad |(1-\lambda)\omega(N^*EN) - \lambda\omega(NN^*E)| < \varepsilon.$

By using (2.3) in (2.6) and (2.7), adding $(1-\lambda)$ times (2.6) and λ times (2.7) together, using the triangle inequality and (2.4), we obtain

$$(2.8) \qquad |(1-\lambda)^2 \omega(N^*N) - \lambda^2 \omega(NN^*)| < \varepsilon.$$

We also have

(2.9)
$$\omega(N^*N) + \omega(NN^*) = 1$$
,

from the property (a) for N.

From (2.5) and (2.9), we have $|\lambda - \omega(N^*N)| < \varepsilon$ and $|(1-\lambda) - \omega(NN^*)| < \varepsilon$. Substituting these into (2.8), we have

$$(2.10) \qquad |\lambda(1-\lambda)(1-2\lambda)| < [1+\lambda^2+(1-\lambda)^2]\varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, $\lambda = 0$ or 1 or 1/2, which contradicts with $0 < \lambda < 1/2$. Q.E.D.

Lemma 2.3. If a von Neumann algebra R has the property $L_{1/2}$, then R does not have a discrete part.

Proof. Let E be an abelian projection in R and ϕ be a normal state of $R, \phi(E) \neq 0$. Let $\phi_1(Q) = \phi(EQE)\phi(E^{-1})$. Since R_E = center of R_E = (center of $R)_E$, there exists a central element F(N) for each $N \in R$ such that $||F(N)|| \leq ||N||$ and EF(N) = ENE. Let N be such that $N^2 = 0$, $NN^* + N^*N = 1$ and

 $(2.11) \qquad |\phi_1(QN) - \phi_1(NQ)| \leq \varepsilon ||Q||$

for all $Q \in R$. Since $NN^*N = N$ and $N(NN^*) = 0$, we have from (2.11) with $Q = NN^*F(N)^*$

 $(2.12) \qquad |\phi_1(F(N)^*N)| \leq \varepsilon.$

From (2.11) with $Q = N^*E$, we also have

 $(2.13) \qquad |\phi_1(N^*EN) - \phi_1(NN^*)| \leq \varepsilon.$

From (2.11) with $Q = N^*$, we have

 $(2.14) \qquad |\phi_1(N^*N) - \phi_1(NN^*)| \leq \varepsilon.$

Since $NN^* + N^*N = 1$ and $\phi_1(F(N)^*N) = \phi_1(N^*EN)$, we have from (2.12), (2.13) and (2.14)

$$|\phi_1(1)| \leq 5\varepsilon.$$

Since ε is arbitrary positive number, this is a contradiction. Q.E.D.

Corollary 2.4. If a von Neumann algebra R has the property L'_{λ} , then the following conclusions hold.

- (1) If $0 < \lambda < 1/2$, then R is purely infinite.
- (2) If $\lambda = 0$, then R is properly infinite.
- (3) If $\lambda = 1/2$, then R is continuous.

This follows trivially from Lemmas 2.1, 2.2, and 2.3 because the property L'_{λ} implies the property L_{λ} .

§3. Sufficiency

Lemma 3.1. If $R \sim R \otimes R_x$, $x = \lambda(1-\lambda)^{-1}$, $0 \leq \lambda \leq 1/2$, then R has the property L'_{λ} .

Proof. Let $H=H_a\otimes H_b$, $R=R_x\otimes R_b$. Let a normal state ω_i of R and $\varepsilon >0$ be given. Since ω is normal, there exist $\Omega_{ji} \in H$ such that for $Q \in R$

(3.1)
$$\omega_l(Q) = \sum_j (\mathcal{Q}_{jl}, Q\mathcal{Q}_{jl}).$$

Since $\Sigma \|\mathcal{Q}_{jl}\|^2 = \omega_l(1) = 1$, there exists N_l for any given $\varepsilon > 0$ such that

447

 $(3.2) \qquad \sum_{j>N_I} \|\mathcal{Q}_{jI}\|^2 < \varepsilon'.$

Let $H_a = \bigotimes(H_k, \emptyset_k)$, $R_s = \bigotimes(M_k, \emptyset_k)$, dim $H_k = 4$, Sp $(\emptyset_k, M_k) = (1 - \lambda, \lambda)$. By Lemma 3.1 of [4], there exists K for any $\varepsilon'' > 0$ such that

$$(3.3) \| \mathcal{Q}_{jl} - \mathcal{Q}'_{jl} \| < \varepsilon'', \mathcal{Q}'_{jl} = \mathcal{Q}''_{jl} \otimes \{ \bigotimes_{k > K} \boldsymbol{\mathcal{O}}_k \},$$

for $j=1, \dots, N_i$ where $\mathcal{Q}_{ji}^{\prime\prime} \in \{\bigotimes^{\kappa} H_k\} \bigotimes_{k=1}^{\kappa} H_k$. We set

(3.4)
$$\omega_{l}^{\prime\prime}(Q) = \sum_{j=1}^{N_{l}} (\mathcal{Q}_{jl}, Q\mathcal{Q}_{jl}), \quad \omega_{l}^{\prime}(Q) = \omega_{l}^{\prime\prime}(1)^{-1} \omega_{l}^{\prime\prime}(Q)$$

for $Q \in R$.

Let
$$k > K$$
, $H_k = H_{k1} \otimes H_{k2}$, $M_k = \mathscr{B}(H_{k1}) \otimes 1$ and
(3.5) $\mathscr{O}_k = \lambda^{1/2} \mathscr{O}_{11} \otimes \mathscr{O}_{21} + (1-\lambda)^{1/2} \mathscr{O}_{12} \otimes \mathscr{O}_{22}$, $\|\mathscr{O}_{ij}\| = 1$.

Let N and N' be operators in M_k and M'_k such that

$$(3.6) N \varPhi_{1i} \otimes \varPhi_{2j} = \delta_{i1} \varPhi_{12} \otimes \varPhi_{2j},$$

$$(3.7) N' \varphi_{1i} \otimes \varphi_{2j} = \delta_{j1} \varphi_{1i} \otimes \varphi_{22}.$$

Then we have

(3.8)
$$(1-\lambda)^{1/2} N \varPhi_k = \lambda^{1/2} (N')^* \varPhi_k,$$

(3.9)
$$\lambda^{1/2} N^* \mathcal{O}_k = (1-\lambda)^{1/2} N' \mathcal{O}_k.$$

Hence we have

$$egin{aligned} &(1\!-\!\lambda)\,(\mathscr{Q}'_{jl},QN\mathscr{Q}'_{jl})\,{=}\,(1\!-\!\lambda)^{1/2}\lambda^{1/2}(\mathscr{Q}'_{jl},Q(N')^*\mathscr{Q}'_{jl})\ &=\,(1\!-\!\lambda)^{1/2}\lambda^{1/2}(N'\mathscr{Q}'_{jl},Q\mathscr{Q}'_{jl})\ &=\,\lambda(N^*\mathscr{Q}'_{jl},Q\mathscr{Q}'_{jl})\ &=\,\lambda(Q'_{il},NQ\mathscr{Q}'_{jl}). \end{aligned}$$

Therefore we have

 $(3.10) \qquad (1-\lambda)\omega_l'(QN) = \lambda \omega_l'(NQ).$

From (3.1)-(3.4), we have $\|\omega_l - \omega'_l\| \leq \varepsilon$ for sufficiently small ε' and ε'' . Hence N has the properties (a) and (b) of Definition 1.2.

§4. Necessity - Properly Infinite Case

Lemma 4.1. If R has the property L_{λ} , then for any $\varepsilon > 0$ and a normal state ω of R, there exist a type I_2 factor N_1 in R and a normal state ω_1 of R satisfying the following conditions:

(1) $R = N_1 \otimes \widetilde{R}$ where $\widetilde{R} = N'_1 \cap R$.

(2) $\omega_1(Q_1Q_2) = \omega_{10}(Q_1)\omega(Q_2)$ for $Q_1 \in N_1, Q_2 \in \widetilde{R}$, where ω_{10} is a state on N_1 such that $\operatorname{Sp}(\omega_{10}, N_1) = (1 - \lambda, \lambda)$.

 $(3) \quad \|\omega - \omega_1\| \leq \varepsilon.$

Proof. Let N be the operator in R satisfying (a) and (b) with ε replaced by ε_1 in definition 1.2. Let N_1 be the type I_2 factor generated by N. Since $Q_{ij} \equiv \sum_k u_{ki} Q u_{jk} \in \widetilde{R}$ for any $Q \in R$, where $u_{11} = N^*N$, $u_{22} = NN^*$, $u_{21} = N$, $u_{12} = N^*$, and since $Q = \sum_{i,j} Q_{ij} u_{ij}$, we have (1).

Let $\widetilde{\omega}$ be the restriction of ω to \widetilde{R} . Let ω_{λ} be the state on N_1 defined by $\omega_{\lambda}(N) = \omega_{\lambda}(N^*) = 0$, $\omega_{\lambda}(N^*N) = \lambda$, $\omega_{\lambda}(NN^*) = 1 - \lambda$. Let $\omega_1 = \omega_{\lambda} \otimes \widetilde{\omega}$. Then ω_1 satisfies (2) by construction.

By setting $Q = N^* N \widetilde{Q}$ and $NN^* \widetilde{Q}$, $\widetilde{Q} \in \widetilde{R}$, in (1.1) and adding the resulting equation, we obtain

$$(4.1) \qquad |\omega(\widetilde{Q}N)| \leq 2\varepsilon_1 \|\widetilde{Q}\|.$$

By setting $Q = N^* \widetilde{Q}$ in (1.1) and using $NN^* + N^*N = 1$, we obtain

$$(4.2) \qquad |\omega(\widetilde{Q}N^*N) - \lambda\omega(\widetilde{Q})| \leq \varepsilon_1 \|\widetilde{Q}\|,$$

(4.3)
$$|\omega(\widetilde{Q}NN^*) - (1-\lambda)\omega(\widetilde{Q})| \leq \varepsilon_1 ||\widetilde{Q}||.$$

Hence for $Q = \sum_{i} Q_{ij} u_{ij}$, we have

$$(4.4) \qquad |\omega(Q) - \omega_1(Q)| \leq \varepsilon_1 [2 \|Q_{12}\| + 2 \|Q_{21}\| + \|Q_{11}\| + \|Q_{22}\|].$$

Since $||Q|| \ge ||Q_{ij}||$ (Lemma 2.3 of [2]), we have

$$(4.5) \qquad |\omega(Q) - \omega_1(Q)| \leq 6\varepsilon_1 ||Q||.$$

By taking $\varepsilon_1 = \varepsilon/6$, we have (4). Q. E. D.

Lemma 4.2. If R has the property L'_{λ} , then for any $\varepsilon > 0$, a normal state ω of R and a finite number of σ -weakly continuous

linear functionals ϕ_i on R, there exist a type I_2 factor N_1 in R, a normal state ω_1 of R and σ -weakly continuous linear functionals ϕ_{j_1} on R satisfying the following conditions:

(1) $R = N_1 \otimes \widetilde{R}$ where $\widetilde{R} = N'_1 \cap R$.

 $\omega_1(Q_1Q_2) = \omega_{10}(Q_1)\omega(Q_2)$ for $Q_1 \in N_1$, $Q_2 \in \widetilde{R}$, where ω_{10} is a (2)state on N_1 such that Sp $(\omega_{10}, N_1) = (1 - \lambda, \lambda)$.

- (3) $\|\omega \omega_1\| \leq \varepsilon$.
- (4) $\phi_{j1}(Q_1Q_2) = \omega_{10}(Q_1)\phi_j(Q_2)$ for $Q_1 \in N_1$, $Q_2 \in \widetilde{R}$.
- (5) $\|\phi_j \phi_{j_1}\| \leq \varepsilon$.

Proof. Any σ -weakly continuous linear functional ϕ_i can be decomposed into a linear combination of 4 states: $\phi_j = \lambda_a \phi_{ja} - \lambda_b \phi_{jb} + i(\lambda_c \phi_{jc})$ $-\lambda_d \phi_{jd}), \lambda_a, \lambda_b, \lambda_c, \lambda_d \in [0, \infty).$ Hence, if $\phi_{ja}, \phi_{jb}, \phi_{jc}$ and ϕ_{jd} are approximated by $\phi'_{ja}, \phi'_{jb}, \phi'_{jc}$, and ϕ'_{jd} having the property (4) above (ϕ_j replaced by ϕ_{ja} etc.), then ϕ_j approximated by $\phi_{j1} = \lambda_a \phi'_{ja} - \lambda_b \phi'_{jb} + \lambda_b \phi'_{jb} + i(\lambda_c \phi'_{jc} - \lambda_d \phi'_{jd})$, which have the property (4).

Due to Property L'_{λ} , we can find N_1 , ω_1 and ϕ'_{ja} , ϕ'_{jb} , ϕ'_{jc} , ϕ'_{jd} as in Q.E.D. the proof of Lemma 4.1.

Let R be a properly infinite von Neumann algebra Lemma 4.3. having the property L'_{λ} . For any $\varepsilon_j > 0$, $j \in N$, a countable number of normal states $\phi_i \in N$, of R and another normal state ω of R, there exist mutually commuting type I_2 factors N_j , $j \in N$, in R, normal states ϕ_{jk} , $j, k \in N$, $j \leq k$, of R and normal states ω_j , $j \in N$, of R satisfying the following conditions:

(1) $R = N_1 \otimes \cdots \otimes N_n \otimes \widetilde{R}_n, \ \widetilde{R}_n = (\bigcup_{j=1}^n N_j)' \cap R.$ (2) $\omega_n(Q_1 \cdots Q_{n+1}) = \{\prod_{j=1}^n \omega_{j0}(Q_j)\} \omega(Q_{n+1}) \ for \ Q_j \in N_j, \ j \leq n, \ and \ Q_{n+1}\}$ $\in \widetilde{R}_n$, where ω_{j0} is a state on N_j with $\operatorname{Sp}(\omega_{j0}, N_j) = (1 - \lambda, \lambda)$.

- (3) $\|\omega_{j-1}-\omega_j\|\leq \varepsilon_j, j\in N, where \omega_0=\omega.$
- (4) $\phi_{jn}(Q_1Q_2) = \omega_{n0}(Q_1)\phi_j(Q_2)$ for $Q_1 \in N_n$ and $Q_2 \in N'_n \cap R$, $n \ge j$.
- (5) $\|\phi_i \phi_{in}\| \leq \varepsilon_n$ for $j \leq n$.

Proof. We find N_k, ω_k and ϕ_{jk} by induction on k. For k=1, such N_1, ω_1 and ϕ_{11} exists by Lemma 4.2. Assume now that N_k, ω_k and ϕ_{jk} are chosen for $j \leq k \leq n$.

For any state ϕ of R, let ϕ_{lm}^n be a σ -weakly continuous linear functional on \widetilde{R}_n defined by $\phi_{lm}^n(Q) = \phi(Qu_{lm}^n)$ where u_{lm}^n is a matrix unit of $N_1 \otimes \cdots \otimes N_n$. We then have $\phi(Q) = \sum_{lm} \phi_{lm}^n(Q_{lm}^n)$ where $Q_{lm}^n = \sum_k u_{kl}^n Qu_{mk}^n$. If $\widehat{\phi}_{lm}^n$ is a σ -weakly continuous linear functional on \widetilde{R}_n satisfying $\|\phi_{lm}^n - \widehat{\phi}_{lm}^n\| < \varepsilon'$ and $\widehat{\phi}_{lm}^n(Q_1Q_2) = \omega_{n0}(Q_1)\phi_{lm}^n(Q_2)$ for $Q_1 \in N'_{n+1}, Q_2 \in N'_{n+1} \cap \widetilde{R}_n$, then $\widehat{\phi}(Q) = \sum_{lm} \widehat{\phi}_{lm}^n(Q_{lm}^n)$ satisfies $\|\phi - \widehat{\phi}\| < \varepsilon''$ and $\widehat{\phi}(Q_1Q_2) = \omega_{n0}(Q_1)\phi(Q_2)$ for $Q_1 \in N_{n+1}, Q_2 \in N'_{n+1} \cap R$, where $\varepsilon'' \to 0$ as $\varepsilon' \to 0$. $\widehat{\phi}$ is automatically a state of R.

Since R is properly infinite, \widetilde{R}_n is properly infinite. Hence $\widetilde{R}_n \sim (N_1 \otimes \cdots \otimes N_n) \otimes \widetilde{R}_n = R$. (1 in \widetilde{R}_n has a partition into a finite number (2ⁿ) of projections which are mutually equivalent.)

We can now use Lemma 4.2 for \widetilde{R}_n , $\widetilde{\omega}_n = \omega_n | \widetilde{R}_n = \omega | \widetilde{R}_n$ and $(\phi_j)_{im}^n$, $j \leq n+1$ and obtain N_{n+1} , $(\widehat{\phi_j})_{im}^n$ and $\widetilde{\omega}_{n+1}'$ from which $\phi_{j(n+1)}$ is constructed as above $\widehat{\phi}$ and ω_{n+1} is constructed by $\omega_{n+1} = \widetilde{\omega}_{n+1}' \otimes \omega_n'$ where ω_n' is the restriction of ω_n to $N_1 \otimes \cdots \otimes N_n$ which is the same as $\bigotimes_{j=1}^n \omega_{j0}$. We have $\|\omega_{n+1} - \omega_n\| \leq \|\widetilde{\omega}_{n+1}' - \widetilde{\omega}\| \leq \varepsilon_n$. Q.E.D.

Lemma 4.4. Let R be a property infinite von Neumann algebra on a separable space having the property L'_{λ} . Let $\varepsilon_j = 2^{-i}\varepsilon$, $\varepsilon > 0$ and ϕ_j be a countable dense subset of the set of all normal states. Then N_j and ω_j in Lemma 4.3 have the following properties:

(a) There exists a normal state $\omega_{\infty} = \lim_{i} \omega_{i}$ such that $\|\omega_{\infty} - \omega\| < \varepsilon$.

(
$$\beta$$
) $R = (\widetilde{R}_{\infty} \cup N_{\omega})''$ where $N_{\omega} = (\bigcup_{j=1}^{\omega} N_j)'', \ \widetilde{R}_{\omega} = N'_{\omega} \cap R$

(r)
$$\omega_{\infty}(Q_1Q_2) = \omega_{\infty}(Q_1)\omega(Q_2)$$
 for $Q_1 \in N_{\infty}, Q_2 \in \widetilde{R}_{\infty}$.

$$(\delta) \quad \omega_{\infty}(Q_1 \cdots Q_n) = \prod_{i=1}^n \omega_{j0}(Q_i) \text{ for } Q_j \in N_j.$$

Proof. By (3) of Lemma 4.3, ω_j is a Cauchy sequence. Hence $\omega_{\infty} = \lim \omega_j$ exists and is a normal state of R. We also have $\|\omega_{\infty} - \omega\| \leq \sum_{i=1}^{\infty} \|\omega_j - \omega_{j-1}\| < \varepsilon$. Thus we have (α) .

(δ) is already satisfied for ω_j , $j \ge n$. Hence it holds for ω_{∞} .

If $Q_1 \in N_1 \otimes \cdots \otimes N_n$, then (γ) is satisfied by ω_j , $j \ge n$ and hence by ω_{∞} . Since $N_{\infty} = (\bigcup_{j=1}^{\infty} N_j)''$, we have (γ) .

To prove (β) , we first define

(4.6)
$$\phi_j^{nk}(Q_1Q_2) = \omega_{n+k}(Q_1)\phi_j(Q_2)$$

for $Q_1 \in (\bigcup_{l=0}^k N_{n+l})''$ and $Q_2 \in (N_1 \cup \cdots \cup N_{n-1} \cup \widetilde{R}_{k+n})^n$ where $n \ge j$. Then we have

(4.7)
$$\|\phi_{j} - \phi_{j^{k}}^{nk}\| \leq \|\phi_{j} - \phi_{j,n}\| + \sum_{l=1}^{k} \|\phi_{j}^{nl} - \phi_{j^{(l-1)}}^{n(l-1)}\|$$
$$\leq \|\phi_{j} - \phi_{j,n}\| + \sum_{l=1}^{k} \|\phi_{j} - \phi_{j,n+l}\|$$
$$\leq \sum_{l=0}^{k} \varepsilon_{n+l} < 2^{1-n} \varepsilon.$$

Here we used $\|\phi_a \otimes \phi_1 - \phi_a \otimes \phi_2\| = \|\phi_1 - \phi_2\|$.

Let v_{ij}^n be a matrix unit in N_n such that $\omega_{n0}(v_{11}^n) = \lambda$, $\omega_{n0}(v_{22}^n) = 1 - \lambda$, $\omega_{n0}(v_{ij}^n) = 0$ for $i \neq j$. For $Q \in R$ define

(4.8) $\tau_{ij}(N_n)Q = \sum_k v_{ki}^n Q v_{jk}^n,$

(4.9)
$$\tau_n Q = \lambda \tau_{11}(N_n) Q + (1-\lambda) \tau_{22}(N_n) Q,$$

By lemma 2.3 of [2], we have $\|\tau_{kl}(N_n)Q\| \leq \|Q\|$ and hence $\|\tau_nQ\| \leq \|Q\|$, $\|\tau_{n,k}Q\| \leq \|Q\|$.

From our choice of V_{ij}^n , it follows that

$$(4.11) \qquad \phi_j^{nk}(\tau_{m,l}Q) = \phi_j^{nk}(Q)$$

if $n \leq m$, $m+l \leq n+k$. (Use $Q = \sum_{ij} v_{ij}^n \tau_{ij}(N_n)Q$.) We also have (4.12) $\tau_{n,k}Q \in (\bigcup_{l=0}^k N_{n+l})' \cap R$.

From (4.7), we have

(4.13)
$$|\phi_j(\tau_{m,l}Q) - \phi_j(Q)| < 2^{-m}\varepsilon$$

for $j \leq m$.

Since $\tau_{m,l}Q$ is uniformly bounded, $\bigcap_{k=0} (\bigcup_{l>k} \tau_{m,l}Q)^-$ is non-empty where the closure is relative to the weak topology which is the same as the σ -weak topology for uniformly bounded set. Let Q_m be an element in this set. $||Q_m|| \leq \sup ||\tau_{m,l}Q|| \leq ||Q||$.

From (4.12), we have

$$(4.14) \qquad Q_m \in (\bigcup_{l=0}^{\infty} N_{m+l})' \cap R.$$

Since $(\bigcup_{n=1}^{m-1} N_n)''$ is a finite type I factor, the right hand side of (4.14) is the same as $(N_1 \cup \cdots \cup N_{m-1} \cup \widetilde{R}_{\infty})''$. Hence

$$(4.15) \qquad Q_m \in (N_{\infty} \cup \widetilde{R}_{\infty})''.$$

From (4.13) and the σ -weak continuity of ϕ_j , we have

$$(4.16) \qquad |\phi_j(Q_m) - \phi_j(Q)| \leq 2^{-m} \varepsilon$$

for $j \leq m$. Since $\{\phi_i\}$ is dense in the normal states of R and since Q_m is uniformly bounded, (4.16) implies

(4.17)
$$Q = \operatorname{w-lim}_{m \to \infty} Q_m \in (N_{\infty} \cup \widetilde{R}_{\infty})''.$$

This proves (β). Q. E. D.

This proves (β) .

Let R be a properly infinite von Neumann algebra Lemma 4.5. on a separable space having the property L'_{λ} . Then $R \sim R \otimes R_{\pi}$ with $x = \lambda (1-\lambda)^{-1}$.

Proof. Let ω be a normal state of R. By Lemma 4.4, we have a state ω_{∞} and von Neumann subalgebras \widetilde{R}_{∞} and N_{∞} such that $R = (\widetilde{R}_{\infty} \cup N_{\infty})'', \ \widetilde{R}_{\infty} \subset N'_{\infty}, \ \omega_{\infty}$ is a product state for $(\widetilde{R}_{\infty}, N_{\infty})$ and $\|\omega-\omega_{\infty}\|<\varepsilon$. Let F be the central carrier of ω_{∞} . Then this shows that $FR = F\widetilde{R}_{\infty} \otimes FN_{\infty}$ and further the property (δ) shows that $FN_{\infty} \sim R_{\star}$ with $x = \lambda (1 - \lambda)^{-1}$. Hence

$$(4.18) \qquad FR \sim F\widetilde{R}_{\infty} \otimes R_{x} \sim F\widetilde{R}_{\infty} \otimes R_{x} \otimes R_{x}$$
$$\sim FR \otimes R_{x}.$$

For any central projection $F_1 \neq 0$, there exists a normal state ω whose central carrier is contained in F_1 and hence $\omega(F_1) = 1$. We then have $\omega_{\infty}(F_1) > 1-\varepsilon$. Hence $F_1F \neq 0$. Namely, for any central projection $F_1 \neq 0$, there exists a central subprojection $F_2(=FF_1) \neq 0$ such that $F_2R \sim F_2R \otimes R_x$

If (4.18) holds for F, then it obviously holds for any central subprojection of F. If (4.18) holds for $F = F_a$ and F_b , then it holds for F_aF_b and hence it holds for $F_a \bigvee F_b = F_a(1-F_b) \oplus F_aF_b \oplus F_b(1-F_a)$. If (4.18) holds for any infinite (or finite) family of mutually disjoint central projections F_{α} , then it holds for their sum $\bigoplus_{\alpha} F_{\alpha}$. If (4.18) holds for any increasing chain of central projections F_{α} , then it holds for its limit: $\lim_{\alpha} F_{\alpha} = \bigoplus_{\alpha} F_{\alpha} [\prod_{\beta < \alpha} (1 - F_{\beta})]$. Therefore, there exists a largest central projection F such that $FR \sim FR \otimes R_{\tau}$ and (1 - F) has no central subprojection E such that $ER \sim ER \otimes R_{\tau}$. By the above result, we then have 1 - F = 0. Hence $R \sim R \otimes R_{\tau}$. Q.E.D.

§5. Necessity - Finite Case

By Corollary 2.4, we have only to consider $L'_{1/2}$. Let R be a finite von Neumann algebra in a separable Hilbert space and ϕ be a faithful normal normalized finite trace on R. We first recall some properties which we shall be using.

1° We define
$$||A||_2 = \phi(A^*A)^{1/2}$$
. We have

$$(5.1) ||A||_2 = ||A^*||_2,$$

(5.2) $|\phi(Q_{1}AQ_{2})| = |\phi(Q_{2}Q_{1}A)|$ $\leq \phi(Q_{2}Q_{1}Q_{1}^{*}Q_{2}^{*})^{1/2}\phi(A^{*}A)^{1/2}$ $\leq ||Q_{1}|| ||Q_{2}|| ||A||_{2},$ (5.3) $||Q_{1}AQ_{2}||_{2} = \phi([AQ_{2}]^{*}Q_{1}^{*}Q_{1}[AQ_{2}])^{1/2}$ $\leq ||Q_{1}|| ||AQ_{2}||_{2} = ||Q_{1}|| ||Q_{2}^{*}A^{*}||_{2}$ $\leq ||Q_{1}|| ||Q_{2}^{*}|| ||A^{*}||_{2}$ $\leq ||Q_{1}|| ||Q_{2}|| ||A||_{2}.$

2° Let ω be a normal state of R. Then $\omega(Q) = \Sigma(\Omega_j, Q\Omega_j)$ where Ω_j is a vector in the representation space of R associated with ϕ . Let n be such that $\sum_{j>n} ||\Omega_j||^2 < \varepsilon/2$. Let $A_j \in R$ be such that $|\phi(A_j^*QA_j) - (\Omega_j, Q\Omega_j)| \le (2n)^{-1}\varepsilon ||Q||$. Then $|\omega(Q) - \phi(AQ)| \le \varepsilon ||Q||$ with $A = \sum_{j=1}^n A_j A_j^*$ and $|\phi(A) - 1| \le \varepsilon$. Namely a state of the form $\phi(AQ)$ with $A \ge 0$ and $\phi(A) = 1$ is dense in the set of all normal state of R.

3° Let P_1 and P_2 be two projections. Then there exists an angle operator ([3], Appendix)

(5.4)
$$\Theta = \int_{0}^{\pi/2} \theta dE(\theta)$$

in the center of $\{P_1, P_2\}''$ and partial isometries $u_{ij}(i, j=1, 2)$ such that

(5.5)
$$u_{ij}u_{kl} = \delta_{jk}u_{il}, u_{11} + u_{22} = E((0, \pi/2)),$$

(5.6)
$$P_1 = u_{11} + P_1 \wedge P_2 + P_1 \wedge (1 - P_2),$$

- (5.7) $P_2 = P_1 \wedge P_2 + (1 P_1) \wedge P_2 + \sum_{i,j} v_i v_j u_{ij},$
- $(5.8) v_1 = \cos \Theta, v_2 = \sin \Theta,$

where $P_1 \wedge P_2$ denotes the projection on $P_1H \cap P_2H$, $E(\{0\}) = P_1 \wedge P_2$ + $(1-P_1) \wedge (1-P_2)$, $E(\{\pi/2\}) = P_1 \wedge (1-P_2) + (1-P_1) \wedge P_2$. We shall use the spectral projection $E(\varDelta)$ for a Borel subset \varDelta of $[0, \pi/2]$ and the following operator

(5.9)
$$U = \cos \Theta + (\cos \Theta)^{-1} [P_1, P_2]$$

which has the property

$$(5.10) UP_2 U^* = P_1 U U^*,$$

(5.11)
$$UU^* = U^*U = 1 - E(\{\pi/2\}).$$

By using the measure $\mu(\varDelta)\!\equiv\!\phi(E(\varDelta))$ and $\mu_{\rm I}(\varDelta)\!=\!\phi(E(\varDelta)P_{\rm I}),$ we have

(5.12)
$$\|[P_1, P_2]\|_2^2 = \int_0^{\pi/2} \cos^2\theta \sin^2\theta \, \mathrm{d}\mu(\theta),$$

(5.13)
$$||P_2(U^*-1)P_1E(\varDelta)||_2^2 = \int_{\varDelta} (1-\cos\theta)^2 d\mu_1(\theta).$$

(5.14)
$$||P_2P_1E(\varDelta)||_2^2 = \int_{\varDelta} \cos^2\theta \, \mathrm{d}\mu_1(\theta),$$

(5.15)
$$\|(1-P_2)P_1E(\varDelta)\|_2^2 = \int_{\varDelta} \sin^2\theta \, \mathrm{d}\mu_1(\theta).$$

Lemma 5.1. Let R be a finite von Neumann algebra on a separable space. Let N_0 be a finite type I factor in R and N be an operator in R satisfying $N^2=0$ and $N^*N+NN^*=1$. Assume that $\|[N,Q]\|_2 \leq \varepsilon \|Q\|$ for every $Q \in N_0$. Then there exists N_{ε} in $(N'_0 \cap R)$ such that $N^2_{\varepsilon}=0$, $N^*_{\varepsilon}N_{\varepsilon}+N_{\varepsilon}N^*_{\varepsilon}=1$ and $\|N-N_{\varepsilon}\|_2 \leq \varepsilon'(\varepsilon)$ where $\varepsilon'(\varepsilon) \to 0$ as $\varepsilon \to 0$.

Proof. Let e_{ij} be a matrix unit of $N_0(i, j=1\cdots n)$. Let (5.16) $N' = \sum_j e_{j1} N e_{1j}$. Then we have

(5.17)
$$||N'-N||_2 \leq \sum_j ||[N, e_{1j}]||_2 \leq n\varepsilon.$$

Let us consider two projections $P_1 = e_{11}$ and $N^*N = P_2$. Then use (5.9) to define

(5.18)
$$W = NU^* e_{11}E([0, \pi/4]).$$

From (5.12), $\|[N^*N, e_{11}]\|_2 \leq 2\varepsilon$ and $\mu(\varDelta) \geq \mu_1(\varDelta)$ for any \varDelta , we have

(5.19)
$$\int_{0}^{\pi/2} \cos^2\theta \sin^2\theta \,\mathrm{d}\mu_1(\theta) \leq 4\varepsilon^2.$$

From (5.13) and (5.14) we obtain, by using $N^*N = P_2^*P_2$,

(5.20)
$$\|N(U^*-1)e_{11}E([0, \pi/4])\|_2^2 = \int_{[0, \pi/4]} (1-\cos\theta)^2 d\mu_1(\theta)$$
$$\leq \int_{[0, \pi/4]} \cos^2\theta \sin^2\theta \, d\mu_1(\theta),$$

(5. 21)
$$\| Ne_{11} \{ 1 - E([0, \pi/4]] \} \|_{2}^{2} = \int_{(\pi/4, \pi/2]} \cos^{2}\theta \, \mathrm{d}\mu_{1}(\theta)$$
$$\leq 2 \int_{(\pi/4, \pi/2]} \cos^{2}\theta \, \sin^{2}\theta \, \mathrm{d}\mu_{1}(\theta).$$

Hence we have as a sum of orthogonal vectors

$$(5.22) || W - Ne_{11} ||_2 = 2\sqrt{2}\varepsilon.$$

From the definition, W is partially isometric and

(5.23)
$$W^* W = e_{11}E([0, \pi/4]).$$

We now consider two projections $P'_1 = E([\pi/4, \pi/2])e_{11}$ and $P'_2 = WW^*$. From (5.22), we have

(5.24)
$$||P_2' - Ne_{11}N^*||_2 \leq 4\sqrt{2}\varepsilon.$$

We also have from $NN^* \!=\! (1\!-\!P_2)$ and (5.15)

(5.25)
$$||N^*e_{11}\{1-E((\pi/4,\pi/2])\}||_2^2$$

= $\int_{[0,\pi/4]} \sin^2\theta \, \mathrm{d}\mu_1(\theta) \leq 8\varepsilon^2.$

Therefore

(5.26)
$$\|[P'_1, Ne_{11}N^*]\|_2 \leq \|[e_{11}, Ne_{11}N^*]\|_2 + 4\sqrt{2}\varepsilon$$

 $\leq (2+4\sqrt{2})\varepsilon,$

Huzihiro Araki

(5. 27) $\|[P'_1, P'_2]\|_2 \leq (2+12\sqrt{2})\varepsilon.$

We now define

(5. 28)
$$W' = E'([0, \pi/4]) P'_1 U' W_2$$

As before we obtain $||W' - P'_1W||_2 \leq (24 + 2\sqrt{2})\varepsilon$ from (5.27). Since $||(e_{11} - P'_1)W||_2 \leq 2\sqrt{2}\varepsilon$ by (5.25), we have

(5.29)
$$||W'-e_{11}W||_2 \leq (24+4\sqrt{2})\varepsilon.$$

From (5.23) and the definition, we have

(5. 30)
$$(W')^* W' \subset E([0, \pi/4])e_{11},$$

(5.31)
$$W'(W')^* = E'([0, \pi/4])E((\pi/4, \pi/2])e_{11}$$

Since the entire construction is done in $\{N, N^*, e_{11}\}''$, we have $W' \in \mathbb{R}$.

We now estimate the size of the projection

$$(5.32) P=e_{11}-W'(W')^*-(W')^*W'.$$

From (5.22) and (5.29), we have

(5.33)
$$||W'-e_{11}Ne_{11}||_2 \leq (24+6\sqrt{2})\varepsilon.$$

From $N^*N+NN^*=1$ and $||[e_{11}, N]||_2 \leq \varepsilon$, we obtain

(5.34)
$$||P||_{2} \leq (98+24\sqrt{2})\varepsilon.$$

Let P_a and P_b be two equivalent projections in R with the sum P. Let W'' be a partial isometry in R such that $P_a = W''(W'')^*$, $P_b = (W'')^* W''$. Let

$$(5.35) N_{11} = W' + W'' \in R.$$

From (5.33) and (5.34), we have

(5.36)
$$||N_{11}-e_{11}Ne_{11}||_2 \leq (122+30\sqrt{2})\varepsilon.$$

By construction, $N_{11}^2 = 0$, $N_{11}N_{11}^* + N_{11}^*N_{11} = e_{11}$.

Let

(5.37)
$$N_{\varepsilon} = \sum_{i} e_{ii} N_{11} e_{1i}.$$

Then we have $N_{arepsilon}^2=0,\ N_{arepsilon}N_{arepsilon}^*+N_{arepsilon}^*N_{arepsilon}=1,\ N_{arepsilon}\in N_{0}'\cap R$ and

(5. 38)
$$\|N - N_{\varepsilon}\|_{2} \leq n \|N_{11} - e_{11}Ne_{11}\|_{2} + \|N' - N\|_{2} \leq \varepsilon'(\varepsilon)$$

where $\varepsilon'(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ by (5. 17) and (5. 36). Q. E. D.

Lemma 5.2. Let R be a finite von Neumann algebra on a separable space having the property $L'_{1/2}$. Let N_0 be a finite type I factor in R and $\widetilde{R} = N'_0 \cap R$. Let $\varepsilon > 0$ and normal states $\omega_1, \dots, \omega_n$ of \widetilde{R} be given. Then there exists an operator \widetilde{N} in \widetilde{R} such that

(a)
$$\widetilde{N}^2 = 0$$
, $\widetilde{N}\widetilde{N}^* + \widetilde{N}^*\widetilde{N} = 1$.
(b) For $Q \in \widetilde{R}$ and $j = 1, \dots, n$,

$$(5.39) \qquad |\omega_j(Q\widetilde{N}) - \omega_j(\widetilde{N}Q)| \leq \varepsilon \|Q\|.$$

Proof. Let C_{α} be a finite number of operators in N_0 such that $C_{\alpha} \ge 0$, $\phi(C_{\alpha}) = 1$ and N_0 is the linear span of $\{C_{\alpha}\}$. $(\alpha = 1, \dots, m)$

Let

(5.40)
$$\bar{\omega}_j(Q) = (\omega_j \otimes \phi_0)(Q), j=1, \cdots, n$$

where ϕ_0 is the normalized trace on N_0 and $Q \in R = \widetilde{R} \otimes N_0$. Let

(5.41)
$$\bar{\boldsymbol{\omega}}_{n+\alpha}(\boldsymbol{Q}) = \phi(\boldsymbol{C}_{\alpha}\boldsymbol{Q}), \, \alpha = 1, \, \cdots, \, \boldsymbol{m},$$

where $Q \in R$.

By the property $L'_{1/2}$, there exists for any given $\varepsilon'' > 0$, an operator N in R such that $N^2 = 0$, $NN^* + N^*N = 1$ and

(5.42)
$$|\bar{\omega}_j(QN) - \bar{\omega}_j(NQ)| \leq \varepsilon'' \|Q\|$$

for $j=1, \dots, n+m$ and $Q \in R$.

From (5.42) with $j=n+\alpha$, we have $|\phi([N,C_{\alpha}]Q)| \leq \varepsilon'' ||Q||$ and hence, by setting $Q=[N, C_{\alpha}]^*$, we obtain

(5.43)
$$\|[N, C_{\alpha}]\|_{2}^{2} = \|[N, C_{\alpha}]^{*}\|_{2}^{2} \leq 2\varepsilon'' \|C_{\alpha}\|.$$

Hence we have

$$(5.44) || [N,Q] ||_2 \leq \varepsilon''' ||Q||$$

for all $Q \in N_0$ where $\varepsilon'' \rightarrow 0$ as $\varepsilon'' \rightarrow 0$.

We can now use Lemma 5.1. There exists an operator N_{ε} in \tilde{R} such that $N_{\varepsilon}^2=0$, $N_{\varepsilon}N_{\varepsilon}^*+N_{\varepsilon}^*N_{\varepsilon}=1$ and

Huzihiro Araki

 $(5.45) ||N-N_{\varepsilon}||_{2} \leq \varepsilon'(\varepsilon''').$

For each $\bar{\omega}_j$ and $\varepsilon > 0$, there exists an operator $A_j \in \widetilde{R}$ such that $A_j \ge 0$, $\phi(A_j) = 1$ and

(5.46) $\|\bar{\omega}_j(Q) - \phi(A_jQ)\| \leq (\varepsilon/12) \|Q\|$

for all $Q \in R$. We then have

(5.47)
$$\|\phi(A_jQN) - \phi(A_jQN_{\varepsilon})\| \leq \|A_j\| \|Q\|\varepsilon'(\varepsilon''),$$

(5.48)
$$\|\phi(A_jNQ) - \phi(A_jN_{\varepsilon}Q)\| \leq \|A_j\| \|Q\| \varepsilon'(\varepsilon'').$$

We choose ε'' such that $||A_j||\varepsilon'(\varepsilon''') \leq \varepsilon/6$ for $j=1, \dots, n$ and $\varepsilon'' \leq \varepsilon/3$. From (5.46), (5.47), (5.48) and (5.42), we obtain

(5.49) $\|\bar{\omega}_j(QN_{\varepsilon}) - \bar{\omega}_j(N_{\varepsilon}Q)\| \leq \varepsilon \|Q\|$

for $j=1, \cdots, n$ and $Q \in R$.

By restricting (5.49) to $Q \in \widetilde{R}$, we obtain (5.39) for $\widetilde{N} = N_{\varepsilon}$. Q. E. D.

Lemma 5.3. Let R be a finite von Neumann algebra on a separable space having the property $L'_{1/2}$. Then $R \sim R \otimes R_1$.

Proof. Now the proof is exactly the same as the entire section 4 except the use of $\widetilde{R}_n \sim (N_1 \otimes \cdots \otimes N_m) \otimes \widetilde{R}_n = R$ in the proof of Lemma 4.3 is replaced by the use of Lemma 5.2. Q. E. D.

Proof of Theorem 1.3. Let R be a von Neumann algebra on a separable Hilbert space and F be its central projection such that FR is finite and (1-F)R is properly infinite. If R has the property L'_{λ} , $0 \leq \lambda < 1/2$, then F=0 from Corollary 2.4 and we obtain $R \sim R \otimes R_z$, $x = \lambda(1-\lambda)^{-1}$ from Lemma 4.5. (The proof for $\lambda=0$ is immediate from Corollary 2.4.) If R has the property $L'_{1/2}$, then FR and (1-F)R separately have property $L'_{1/2}$. (Replace N by FN and (1-F)N.) Hence, by Lemma 4.5 and Lemma 5.3, we have $FR \sim FR \otimes R_1$, $(1-F)R \sim (1-F)R \otimes R_1$. Therefore $R \sim R \otimes R_1$. Q.E.D.

§6. Supplementary Remarks

Lemma 6.1. Any finite continuous von Neumann algebra R has the property $L_{1/2}$.

Proof. Let $\varepsilon > 0$ and a normal state ω of R be given. Let F be the central carrier of ω . Then FR has a faithful normal normalized finite trace ϕ . There exists $A \in R$ such that $A \ge 0$, $\phi(A) = 1$ and

(6.1)
$$|\omega(Q) - \phi(AQ)| \leq (\varepsilon/4) \|Q\|$$

for all $Q \in R$.

A in FR has a spectral decomposition (relative to ϕ). Let E_j , $j=1, 2, \cdots$ be spectral projections of A for the intervals

(6.2)
$$[(j-1)\varepsilon/2, j\varepsilon/2].$$

 E_j vanishes for $j > (2\|A\|/\varepsilon) + 1$. Let

(6.3)
$$A_{\varepsilon} = -\varepsilon/4 + \sum_{j=1}^{\infty} (j\varepsilon/2)E_j.$$

We have

$$(6.4) ||A-A_{\varepsilon}|| \leq \varepsilon/4.$$

If $E_j \neq 0$, let E_{j1} and E_{j2} be equivalent projections in R with the sum E_j and N_j be a partial isometry such that $N_j N_j^* = E_{j1}$, $N_j^* N_j = E_{j2}$. Let $N = \sum_i N_j$. Then we have $N^2 = 0$, $N^*N + NN^* = 1$ and

$$[N, A_{\varepsilon}] = 0.$$

From (6.1), (6.4) and (6.5), we have

$$(6.6) \qquad |\omega(QN) - \omega(NQ)| \leq \varepsilon ||Q||$$

for all $Q \in R$.

Q. E. D.

Lemma 6.2. $r_{\infty}(R)$ is closed for any von Neumann algebra R on a separable space.

Proof. Let $\lambda_n \to \lambda$ and R has the property L'_{λ_n} . Then it has obviously the property L_{λ} . From Theorem 1.3 if $\lambda_n (1-\lambda_n)^{-1} \in \mathbf{r}_{\infty}(R)$, then Rhas the property L'_{λ_n} and hence R has the property L'_{λ} , which implies $\lambda(1-\lambda)^{-1} \in \mathbf{r}_{\infty}(\mathbf{R}), \ 0 \leq \lambda \leq 1/2.$

Q.E.D.

Acknowledgement

Part of this work has beer done during the author's stay at the Department of Mathematics, Queen's University. The author would like to thank the members of the Department for their warm hospitality.

References

- [1] Araki, H. and E. J. Woods, Publ. RIMS Kyoto Univ. Ser. A. 4 (1968), 51-130.
- [2] ____, Publ. RIMS Kyoto Univ. Ser. A, 4 (1968), 585-593.
- [3] _____, On Quasi free states of CAR and Bogoliubov automorphisms. RIMS-62 (preprint), Publ. RIMS Kyoto Univ. 6 (1970), 385-442.
- [4] _____, and E. J.. Woods, Publ. RIMS Kyoto Univ. Ser. A, 2 (1966). 157-242.
- [5] Powers, R. T., Ann. of Math. 86 (1967), 138-171.
- [6] —, Cargese^{*}Lecture, 1969.
- [7] McDuff, D., Central sequences and the hyperfinite factor.