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Kripke Models and Intermediate Logics

By
Hiroakira Ono

In [10], Kripke gave a definition of the semantics of the intuition-
istic logic. Fitting [2] showed that Kripke’s models are eguivalent to
algebraic models (i.e., pseudo-Boolean models) in a certain sense. As
a corollary of this result, we can show that any partially ordered set
is regarded as a (characteristic) model of a intermediate logic.” We
shall study the relations between intermediate logics and partially ordered
sets as models of them, in this paper.

We call a partially ordered set, a Kripke model.> At present we
don’t know whether any intermediate logic ‘has a Kripke model. But
Kripke mcdels have some interesting properties and are useful when we
study the models of intermediate logics. In §2, we shall study general
properties of Kripke models. In §3, we shall define the height of a
Kripke model and show the close connection between the height and the
slice, which is introduced in [7]. In §4, we shall give a model of LP,
which is the least element in #-th slice S, (see [7]).

§1. Preliminaries

We use the terminologies of [2] on algebraic models, except the
use of 1 and O instead of \/ and /\, respectively. But on Kripke
models, we give another definition, following Schiitte [13].¥

Definition 1.1. If M is a non-empty partially ordered set, then

Received September 8, 1970.

1) These models are studied in e.g., Segerberg [14] and Gabbay - de Jongh [3]. We deal
with only propositional logics in this paper.

2) This terminology is different from that in [2].

3) In this paper, the word algebraic models is used to denote pseudo-Boolean algebras.
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we say M is a Kripke model® Let M be a Kripke model which is
partially ordered by a relation <. Suppose that W is a mapping
Srom all the pairs of formulas and elements in M to ¢, f}. W is
called an M-valuation, if W satisfies the following conditions. For
any u, v in M,
1) if W(p,u)=t and u<v then W(p,v)=t, where p is any
propositional variable,
2) WAAB,u)=t iff WA, u)=t and W(B,u)=t,
3) WAV B,u)=t iff W(A,u)=t or W(B,un)=t,
4) W(ADB,u)=t iff for any r in M such that u<<r W(A,r)
=f or W(B,r)=t,
5 WA, u)=t iff for any v in M such that u<<r W(A,r)=Ff.

Let W be any M-valuation. We say a formula A is valid in
(M, W), if W(A,u)=t for any » in M. If for any M-valuation W,
A is valid in (M, W), we say A is valid in M.

Following theorem is due to Fitting [2].

Theorem 1.2. 1) For any Kripke model M and any M-valu-
ation W, there is a pseudo-Boolean algebva P and an assignment f
of P such that for any formula A, A is valid in (M, W) iff f(A)
=15

2) Conversely, suppose that a pseudo-Boolean algebra P and its
assignment f are given. Then there is a Kripke model M and an
M-valuation W such that for any formula A, A is valid in (M, W)

if f(A)=1.
Proof. We sketch Fitting’s proof.
1) Suppose that M and W are given. If a subset N of M

satisfies the following condition

if u€ N and #u<<v then vE N,

4) Kripke’s original definition says that M is a non-empty set with a fransitive, re-
flexive relation, but for our purposes we have only to deal with partially ordered
sets, since for any set M with a transitive, reflexive relation there is a partially
ordered set N such that for any formula A4, A is valid in M iff A4 is valid in NV

5) In [2], the word homomorphism is used, instead of assignment.
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we say IV is closed. Let P be the class of all closed subsets of M.
Then we can prove that P is pseudo-Boolean algebra with respect to
set intersection and set union. As for zero element we take the empty
set. Define an assignment f of P by f(p)={u; W(p,u)=1¢} for any
propositional variable p. Then it is clear that our theorem holds for
this f and P.

2) Suppose P and f are given. Let M be the class of all prime
filters of P. Clearly, M can be partially ordered by set inclusion <.
Define an M-valuation W by

Wip,u)=t iff f(p)Eu.
Now, it is easy to verify that our theorem holds for this M and W.
As a corollary of Theorem 1.2, we can obtain that

Corollary 1.3. 1) For any Kripke model M, theve is a pseudo-
Boolean algebra P such that for any formula A, A is valid in M
if A is valid in P.

2) For any pseudo-Boolean algebra P, there is a Kripke model
M such that for any formula A, A is valid in P if A isvalid in M.

We don’t know whether the converse of Corollary 1. 3.2 holds and
whether any intermediate logic has a Kripke model. But we shall show
in Corollary 1.5 that if P is finite then the converse holds. This
implies that any finite intermediate logic has a Kripke model.

We write Py (or M,) for the pseudo-Boolean algebra (or Kripke
model) constructing from a Kripke model M (or a pseudo-Boolean algebra
P) by the method of Fitting. We know that A is valid in M, iff A
is valid in P,, by Corollary 1.3.1. Now, we define a mapping f from
P to Py, by the condition that

f(a)={F; acF and FEJ(P)},

where 9 (P) denote the set of all prime filters of P. It is clear that
f is an isomorphisin from P into Py,.

Lemma 1.4. If P is finite, then [ is a mapping onto Py,.

Proof. Let U be any element in Py,. We say that an element F
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in U is minimal, when if G is a subset of F then G=F for any G
in U. Since P is finite, U is also finite. Hence for any G in U there
is a minimal element F such that F is a subset of G. Let Fy, -, F,
be all the minimal elements in U. Define U; (1<i<<k) by

U={G; F; is a subset of G and GI(P)}.

It is clear that U=CJ1U,-, since U is in Py,. Let F.={a;; 1<j<m}.
Then we write (F;): for ﬁa;,. It is easy to see that GE U, iff (F))4
€G. So, f((F))=U. Hence F(JF)D=UfF)D=UU=T;
since f(aUb)=f(a) Uf () for any @, b= P. Thus we have Lemma 1. 4.

So, we obtain

Corollary 1.5. If P is finite, then the converse of Corollary
1.2.3 holds.®

In §3, we shall prove that if a pseudo-Boolean algebra P is in &,
(n<<w), Py, is also in S,.

§2. Properties of Kripke Models

We shall henceforth write a model for a Kripke model and a logic
for an intermediate logic. We write L(M) for the logic characterized
by a model M, i.e., the set of formulas which are valid in M. We
write <{y for the relation which orders a model M. Following the
notation in [7], we write L,CL, if a logic L, is included by a logic
L., as a set of formulas.

Definition 2.1. Let M be a model. A subset N of M is called
a submodel of M if N is closed with respect to <u, i.e., for any a,
bin M, if acN and a<<ub then b N. <y is a restriction of <u
to N.

We can prove easily that

Lemma 2.2. Let N be a submodel of M. If two M-valuation
W and W’ satisfy the following condition

6) See Dummett-Lemmon [1] Lemma 2.
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W(p,a)= W (p,a) for any a=N and any propositional
variable p,

then W(A,a)= W (A, a) for any a= N and any formula A.
Corollary 2.3. If N is a submodel of M, then L(M)cCL(N).
Proof. Let W be any N-valuation. Define a mapping W* by

W*(p,a):{W(p,a) if a= N,

f otherwise.

It is easy to verify that W* is really an M-valuation. Suppose that
A& L(N). Then there is e N such that W(A4, a)=f for some N-
valuaticn W. By Lemma 2.2, W*(4,a)=f. Hence AL(M).

Befinition 2.4. Suppose that M, is a submodel for any i1l
The set {M;; i€} is calied a covering of M, if M:UIM

Theorem 2.5. If {M;; i1} is a covering of M, then L(M)>DC
‘QIL(]I/[,-), where ,Q,L<M> denotes the intersection of L(M.)’s as
logics.”

Proof. By Corollary 2. 3, for any ¢=1 L(M)C L(M;). So, L(M)C
QIL(M',-). Suppose that A€ L(M). Then there is acM and an M-
valuation W such that W(A4, a)=f. By the definition of covering,
as M, for some i=I. Define an M;-valuation V by restricting the
domain of the second argument of W to M,. Then it is easy to see
that V(4,e)=W(A,a)=f. Thus A L(M,) for some i<l

Now, we define two operations on models, following the operations
defined in [6].

Definition 2.6. Let M and N be models such that M N is
empty. The model M1 N is a set MUN with a relation <,y de-
fined below. For any a, b= M N,

a<unb iff cither 1) a<<ub and a,bcM or 2) a<yb and
a, b= N or 3) ac M and b= N.

7) See Hosoi [8].
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If both M and N are isomorphic (as a partially ordered set) to
some model L, we write L1 L for M} N.

Definition 2.7. Let M; be a model for any i€, such that
M;N\M; is empty if ixj. The model (M.):c: is a set UM, with a
relation < defined below. =
For any a’be,.];J,M’

a<<b iff there is i1 such that a,b=M; and a<,b.”

We sometimes write (M) =g for (M)ie:, if & is the ordered
set {M;; ieI}. If each M, is isomorphic to some L and the cardinal
of I is ¢ then we write L° for (M,);c;. We remark that Puyy= Py ! Py
and the direct product of Py, GEI)=Pu,,_, -

Corollary 2.8. L((M);e)DC ["]IL (M).

Proof. Because {M;; i€ I} is a covering of (M,)c;. (See [14].)

Define a model S, for 1<<n<<w, which is totally linear ordered set
with # elements. It is easy to see that Pv=S, where S, is a pseudo-
Boolean model defined by Goédel [2]. So, henceforth we write S, also
for the Kripke model S,.

Lemma 2.9. Let M be a model. If 3acs Mvbe M a<,b holds,
then M is of the form S, N. (For the sake of brevity, we say M
is of the form Si1 N even if M=S,).

Proof. Let a be an element in M such that for any be M a<<ybd
holds. Let N be a submodel which is equal to M— {a}. Then it is
clear that M is isomorphic to S; 1 V.

Mckay [11] proved that for any pseudo-Boolean algebra P, there
are pseudo-Boolean algebras P, (/1) such that P DCQISI +P. We
give another proof of this result for Kripke models.®

Theorem 2.10. For any model M there exist models N; GeI)
such that L(M)D c:.ﬁ[I.(S1 1 N)).

8) This notion is defined also in [9]. Henceforth, we sometimes abbreviate < as <,
when a fixed model M is considered.

* Henceforth, a pseudo-Boolean model P denotes the set of formulas valid in P as
well as a pseudo-Boolean algebra, whenever no confusions seem to occur.
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Proof. For any a= M, we write M, for the submodel {b; a<<ub}.
Clearly, {M,; ac M} is a covering of M. Hence by Theorem 2.5,
L{M)DCDML(M). Moreover, each M, is of the form S;1 N, by
Lemma 2. E)E

It should be remarked that in contrast with the above theorem,
the following statement is false. For any model M, there exists a
model N such that LIM)DcCL(S;1 N).

The following theorem is useful, when we compare one logic with
another logic. Let f be a surjective mapping from M to N such that
1) for any a,b= M if a<<yb then f(a)<yf(b), and 2) for ac M and
any ceN if f(a)<yc then there is b=M such that f(b)=c and
a<yb. Then we say f is an embedding of M into N. If there is
an embedding of M into N, we say M is embeddable in N.

Theorem 2.11. If M is embeddable in N then L(M)CL(N).»

Proof. Suppose A€ L(N). Then there is an N-valuation W and
an element b N such that W(A4, b)=f. Define an M-valuation V by

V(p,a)=W(p, f(@)) for any propositional variable p and
any ae< M,

where f is an embedding of M into IN. We can show that V is really
an M-valuation, and that V(B,a)=W(B, f(a)) for any formula B.
Let ¢ be an element in M such that f(c)=0. Now, V(A4,¢c)=W(A4,b)
=f. So, A L(M).

Corollary 2.12. 1) If M, is embeddable in M, and M, is em-
beddable in M;, then M, is embeddable in M.

2) Let g be a surjeciive mapping from a set J to a set I
Suppose that M; is embeddable in N; for any jEJ and any il
such that g(j)=i. Then (M;);c: is embeddable in (N;);c:.

3) Suppose that M, and N, are embeddable in M, and N,, re-
spectively. Then M, } N, is embeddable in M, ! N,.

9) We can prove this theorem by using Theorem 4.6 in [9]. In [9], an embedding
is called a strongly isotone mapping.
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§3. Height of Models

In this section, we shall define the height h(JM) of a given model
M, and prove that L(M) is in the n-th slice S, iff Z(M)=mn, for
n<w. We say a model M is in S, if L(M)eS, (or equivalently,
PyeS,).

Lemma 3.1. Suppose that M.eS,, for icl. Then (M,);c;€S,,
where n=sup{n;; icl;. (n and n. may be ».)

Intuitively, the height of a model M is the maximal m such that
a,<<a,<<---<<an and each @; is in M, where a<b means a<b and a+b.
To make the definition precise, we need some preparations. Suppose
that a model M is given. For any a, b= M such that a<b, we say a
sequence a=<{ay, ***, @.y (m=>1) of elements in M is a chain from a to
bif 1) a,=a and a,=b and 2) @;<<a;., for 1<¢<m. In such a case
we define /() =m. For any @, b= M such that a<{b, define a mapping
d by

d(a,b)=sup{{(@); « is a chain from a to b}.
We note that if a<<b then d(e,b)>>2. For the sake of brevity, let
d(a,b)=0 if a<b.

Definition 3.2. The height h is a mapping from the class of
all models to {1,2,---, w}, which is defined by

h(M)=sup{d(a,b); a, b= M}.
We remark that 2(M)>1, since d(e, a) =1.

Lemma 3.3. Let M be a model. If h(M)=mn, then McS,,
where n<<w.

Proof. We prove our lemma by induction on 7.

1) Case n=1.

If there exist a,b=M such that a<<b, then h(M)>d(a, b)=>2.
So, for any @, b= M if a<<b then a=b. Therefore M= (S,)° where o
is the cardinal of M. So L(M)>DcCL(S;). This means M<S;.

2) Case n>1.

For each a= M, define a submodel M, of M by M,= {b; a<b}.
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By the proof of Theorem 2.10, {M,; a= M} is a covering of M and
each M, is of the form S, 1 N,. We first prove that

(8.1) h(M)<h(M) for any a= M and there is b= M such that
h(M,)=h(M)>1.

Since M, is a subszt of M, d(b,c)<<h(M) for any b,csM,. So,
h(M)<h(M). We can find 0/, c’eM such that &'<c and d@,c)
=h(M), since h(M) is finite. So A(M,)>d ¥, c)=h(M). Thus,
h(M,)=h(M). Next, we can show that

(3.2) for any e M, if h(M,)+1 then h(N,)=hr(M,) —1.

Now, by (3.1) and (3.2), if A(M,) #1 then A(N,) =n<n—1 and
there is & such that A(N,)=#n—1. By the hypothesis of induction,
N.€S8,,. Since Py,=PFP. ! Py=S5,1 Py, and Py<S,,, Py,sS,,. by
Theorem 6.2 in [7]. That is,

(3.3) if h(M,)>1 then M,=S,, ., where #n,+1<n and
if h(M,) =1 then M,=S;.

By (38.1), max{n.+1; acM}=n. Thus by (3.3), Lemma 3.1 and
Theorem 2.10, M S,.

Lemma 3.4. If there is a chain « in M such that 1(a)=n+1,
then P, is not valid in M (n>>1), where P, is defined inductively by
P=((p1Dp)DP1) Dps,
Pii=((pr1DP) DPur) DPuia

Proof. Let « be {a, -, @,,1y. We define an M-valuation W by
W(po, b)=f for any b€ M,
tif @, .1<<b 1<i<n
W, 5~ b =
f otherwise.
For the sake of brevity, let P,=p,. Now, we prove by induction on ¢
that W(P, a...1) =f for 0<i<n.

1) i=0. W(PB, @) =W(pPo, Gus) =f by the assumption.
2) ¢>0. By the hypothesis of induction, W(P:_y, Guis2) =f.
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Since @_i11<<@uis2, W(hi, @ui2) =t So W(p;D P4, @.i1)=Ff. Since
W(p:, b) =t for @,..1<<b, W((p:DP._y) Dps, @in) =t But W(pi, Guiir)
=f. Hence W(P, a._;,,) =f. If we take #n for ¢, then we have W(p,, a,)
=f, This means that P, is not valid in M.

Corollary 3.5. If h(M)=w, then MS.,.

Proof. It can be easily proved that if 2(M)=w then for any
2<n<<w there is a chain « in M such that /(e)=#n. Then we have
Me&S,, for any m<<w by Lemma 3. 4.

Putting these results together, we obtain
Corollary 3.6. For any n<oe, h(M)=n iff McS,.

Next, we shall prove that if a pseudo-Boolean algebra P is in &,
(n<<w), then M, is also in ..

Lemma 3.7. Let P be a pseudo-Boolean algebra in S, (n<<w).
Then there is no set of prime filters {F;; 0<i<m} of P such that

(8.4) F.SF.&&F,.
(F.& F; means that F; is a proper subset of F;).

Proof. Suppose that a set of prime filters {F;; 0<i<<m} satisfies
(3.4). We prove that there is an assignment f of P such that

(3.5) 1) f(Py)eP—F, and
2) f(P)€F,,—F, for any k such that 1<k<l#m,

where P; is the formula defined in Lemma 3. 4. We define f by induc-
tion. Define f(p,) =a,, where @,=0. Then it is clear that f(P)=
f(po)=0= P—F,. Suppose that we define f(p;) for 0<i<<k<xn such
that f(P)=bEF,,—F,. Since F,,&F,, we can take an element @,
out of F,—F,,. We defire bu=ar:U (@:20) and f(Pe1) =bu.
We first show

(3.6) b €EF—Fia .

Since Fk iS a ﬁlter, ak+1£bk+1 and dk+1EFk, SO b/,.ge Fk. If bk+1e Fk+1,
then either @,,€F,,: or @1DbsF,., since F,, is prime, But @
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€ F,,, contradicts the hypothesis. So, @.,:Db&F,,;. Then @.EF,,
aa2beEF,, a1 (a1 Db)<<b, and hence b= F,. But this contradicts
the assumption. Thus b,,1¢ Fi.i. Next we show that

3.7 by1Db=0.

Since @1 (D1 20) <bpi1 N (Bry1 D) <<b, (511 D5)<<(@4,1D0)<bi1. So
b1 2b0=b411() (b Db)<<b. Hence b.,.Db=b, since b.,,1Db>b always
holds. By (3.6) and (3.7), f(Pur) =bu:1EF,— F,;x. If we take n for
k in (38.5), we have f(P,)eF,—F,. Since 1€F,, f(P)#1. So P,
is not valid in P. But this contradicts P=S,.

By Lemma 3.7, if PS8, then h(Mp)<<mn. But by Corollary 1.3,
L(M)cP. So h(My)=n. This means M,=S,.

§4. Applications of Kripke Models

In this section, we shall study about models of the logic LP,,
which is defined by adding axiom schema P, (see Lemma 3.4) to the
intuitionistic propositional logic. It is proved in [7] that S, is the
greatest and LP, is the least element in S,. We now know that a
medel M is in S, iff k(M)=mn and that the Kripke model S, is a
linearly ordered set with # elements. So, it is natural to ask what
models the least element LP, has.

First we introduce the monotonic descending sequence of models
{R,.; m<<w} and show that this sequence coverges to LP,. Moreover
we show {R,.; n<<w} converges to the logic D, which is discussed
in Gabby—de Jongh [3]. We give an axiomatization of R,.,. We also
give a model of L@,, which is introduced in Hosoi [8].

We need some preparations.

Definition 4.1. Define a mapping w by the condition that for
any model M such that d(a,b) is finite for a,be M,

w(M) =sup[the cardinal of {b; d(a,b)=2}; ac M].

10) Hereafter, we sometimes write LJ+ Ai+---+ Am for the logic which is obtained
by adding axiom schemata Ai,---, Am to the intuitionistic logic.
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Definition 4. 2. If a model M satisfies the following conditions,
we call M a m-tree model.

1) There is a least element in M with respect to <.

2) For any a, b, ¢c in M, if b<<a and c<a then either b<<c or

c<b.

3) wlM)<m<o.

We write U,., (m<<o, n<<o) for the class of all modeis M such
that A(M)=mn and M is an m-tree model. Remark that if a submcdel
M of an m-tree model satisfies the condition 1), then M is also an m-
tree model. Any m-tree model is also an #-tree model for m<n.

An element a€ M is said to be maximal if a<<b implies a=0b for
any be M.

Definition 4.3. Let M=U,,. We define a model M* as follows.

1) If n=1, then M*=DM.

2) Suppose n>1. Let {a;; i<s} be all maximal elements in M.
(Since MeU,,., s is at most o). Now M* is a set MU {a;; i<<s
and 1<j<n—d(a, a))}, where a, is the least clement and a;;EM,
with a relation <y~ such that a<.b iff either 1) a, b= M and a<<,b
or 2) acs M, a<ya; and b=a;; or 3) a=a;, b=a, and j<k.

Clearly if MeU,, then M*e,,.

Lemma 4.4. If M<U,, for some m, n, then L(M*)CL(M).

Proof. Define a mapping f from M* to M by
fla)= {a if aeM
a; if a=a; for some j.
Since f is an embedding of M* into M, L(M*)CL(M) by Theorem
2.11.
Let MeU,.. M is said to be complete if d(a, ¢)=n for any
maximal element @ of M. It is trivial that M* is complete. Now,

we define a special complete element in U,..

Definition 4.5. Define a model R, (n<<w, m<<o) recursively as
follows.
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le:SI 3 Rk+1m:Sl /‘\ (Rk'n) m'
Clearly, R,. is complete and is in U, for any m'>m.
Lemma 4.6. R,. is the least element in U.,,.

Proof. By Lemma 4.4 and the above remark, we have only to
prove that L(R,,) CL(M) for any complete elemert M in 9U,,. We
shall show that R,, is embeddable in M for any ccmplete element M
in U,., by induction on n. For n=1, the identity mappiag on M is
an embedding of Ry, into M, sivce MeU,, iff M=S,=R,,. Suppose
7n>1. By Definition 4.2, M is of the form S; 1 (M));=. for some A<<m
and each M, is in U,.. since M is complete. By the assumption,
R, ;. is embeddable in M,; for any ¢. So, (R, 1.)" is embeddable in
(M)),=, by Corollary 2.12, 2) and kerce R,, is cmbeddable in M by
Corollary 2.12, 3). Thus L(R,.,) CL(}M).

Corollary 4.7. If m>m' and n>n', then L(R,.) CL(R.w).
Moreover if m>m', L(R,,) S L(R,..) and if n>n', L(R,.)SL(R,.).

Proof. Since R, is a submodel of R,., by Corollary 2.3
L(R,.)CcL(R,.,). By Lemmaz 4.6 L(R,.) CL(R,.). Let A, be the
formula introduced by [3], ie.,

A= ;/;\0(<pi3jy:pj) > ',\,_/ﬁ’) D,\,/opi .
Suppose m>m’. Then by [3], Aw.EL(R,.) but Aw.EL(R..).

Suppcse n>n'. Then P,eL(R,,) but P,&L(R,,.), since h(R,)=Fk
for any £<w. So our proof is completed.

Using the idea of Kripke [10], we have the followizg lemma.'”

Lemma 4.8. Let M be @ model in S,, which is of the form
Sit N and w(M)<m<<ow. Then there is a model M’ in U,, such
that L(M"YcL(M).

Proof. A chain « from a to b is called proper, where a=<a,
o aw, if d(a, a;.1) =2 for any ¢ such that 1<i<<k. Tet @, be the
least element of M. We define a model M’ by the condition 1) M'= {a;

11) See also [1] and [5].
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« 1S a proper chain from a,) and 2) for any a=<a, '+, &) and
B=<by, -+, b, a<up iff E<h and b;=a; for any i< k. Since
w(M)<m, w(M’)<<m. It can be easily proved that M’ is a m-tree
model and A(M’)=n. Hence M'e<U,.,. We now prove that L(M’)
cL(M). Define a mapping f from M’ to M, by f(a)=a if a is a
chain from @ to @ Then f is an embedding of M’ into M. So
LM cL(M).

Corollary 4.9. Let M be a model in S,., such that w(M)<<m
<w. Then L(R,.) CL(M).

Proof. By Theorem 2. 10, there are models N;s such that L(M)
D CQIL(SI 1 N;). Furthermore we can take such S; { N/s as submodels
of M, so w(S:1? N,)<<m. By Lemma 4.6 and Corollary 4.8, L(R,.)
CL(S:1 N,) for any il Hence L(M)D C,Q1L<Sl t N)DL(R,.).

Theorem 4.10. 1) LP,D C”QmL(R,,,,,) (1<n<ow).

2) D,.D C,.Q,.,L<R’"”“> (0<m<<w), where D, is a logic defined by
adding axiom schema A, to intuitionistic logic. (See [3]).

Proof. 1) By Mckay [12] Theorem 2.2, LP, has the finite model

property. So there are finite Kripke models M;’s such that LP,DC
NL(M).*® Clearly h(M,)) =n,<n. Let w(M,) be m;. Since M, is

finite, m,<<w. By Corollary 4.9, L(R,..) CL(M;). So LP,D QL(R,.M).
Clearly, LP,C QL(R,,,,,). 2) can be proved similarly as 1) by using

the argument [3], since each D, has the finite model property.
Corollary 4.11. 1) LP,OCL(R,.). 2) Ljoc (N L(R,.).

2, m<w

Proof. 1) Clearly LP,DL(R,,). By Corollary 4.9 and Theorem
4.10, LP,oC QL(R,,,,) DL(R,.,). 2) Trivial.

In [3], an axiomatization of the logic D, is given, ie., D,DCLJ

+A,. Using this fact, we can obtain an axiomatization of R,,.
Theorem 4.12. L(R,,)DCLJ+ P,+A..1 for 1<m<ow.
Proof. Since A,..€D,_y, L(R,,)DL]J+ P,+ A,_, by Theorem 4,10,

12) See Corollary 1.5.
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Conversely, let P be the Lindenbaum algebra of LjJ+ P,+ A,:. Since
P=S,, M, is also in S, by Lemma 3.7. So if A< P then there is
an M,-valuation W such that A is not valid in (M, W). Using the
same method as in [3], we can prove that there is a model M such
that AEL(M) and L(M)DL(R,..) for some #'<m and m'<m.
Hence A€ L(R,,.) by Corollary 4.7. Thus we have L(R,.)CLJ+P,
+ A,

As a corollary of Theorem 4.10, cwe an give a model of L,
(2<n<w), which is obtained by adding axiom schema @ to LP,,
where @= 1p\V 1 1p.® It is proved in Theorem 4.16 in Hosoi [8]
that L@, does not have a finite mcdel if #>>3. First we have

Lemma 4.13. Let S} M be a finite model, in which Q is valid.
Then M is of the form N1 S,.

Proof. Suppose that both @ and b are distinct maximal elements
in S; 1 M. Define S; 1 M-valuation W by

W(p,c)z{t if c=a
f otherwise.
It is easy to verify that W(Q, @,) =f, where a, is the least element of

S: 1 M. This contradicts that Q= L(S: 1 M). So, S; 1 M has only one
maximal element. Thus, M is of the form N1 S;.

Theorem 4.14. LQ,..DC DL(R,,,,, +SODCL(R,.1S). Inother

words, there exists a pseudo-Boolean model P of LP, such that
LQ,.DCP1S,.

Proof. By Mckay [12], L@,,, has the finite model property. So
we can take finite models M;’s of the form S; { N, such that LQ,,DC
QIL(.M,-). By Lemma 4. 13, M; is of the form M/ 1 S,. Clearly M;<S,,
and w(M/)=m,; for some n,<m and m;<<w. So, by Lemma 4.4,
Corollary 4.6 and Lemma 4.8 R,,, is embeddable in ;. Hence R,., { S:
is embeddable in M; by Corollary 2.12, 3). So L(M;)DL(R,., 1 S.)
and hence L@, DQOL(R,,m 1 Sy). Since R,, 1 S; is embeddable in R,, } S;,

13) See Definition 4.11 and Lemma 4.12 in [8].
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NLRm?t S DL(R,.1S:). Clearly L(R,.. 1 S1)DL&,..,1. Eemark that

m<w

LQocL]j+@>c N L(R.TS0).

n,m<w

Note Added in Proof (March 5, 1971):

C. G. Mckay defined a sequence of models J, in “A note on the
Jaskowski sequence” Z. Math. Logik Grundlagen Math. 13 (1267) and
proved that (\J,DCLJ. But this is net the case. For, by the results

n< w

of Gabbay-de Jongh [3], D:C /., and LJED:. Mckay stated in his
1<w
letter to the author, dated 25™ September 1970, that his result is in-

correct.

References

[1] Dummett, M. and E. J. Lemmon. Modal logics between S4 and S5, Z. Math.
Logik Grundlagen Math. 5 (1959), 250-264.

27 Fitting, M., Intuitionistic logic model theory and forcing, Studies in logic and
the foundations of mathematics, 1969.

[3] Gabbay. D. M. and D. H. J. de Jongh, A sequence of decidable finitely axio-
matizable intermediate logics with the disjunction property, Mimeographed note,
1969.

[4] Godel, K., Zum intuitionistischen Aussagenkalkil, Akad. Wiss. Wien, Math.-
naturwiss. Klasse, Anzeiger, 69 (1932), 65-66.

[57 Grzegorczyk. A., Some relational systems and the associated topological spaces,
Fund. Math. 60 (1967), 223-231.

[6] Hosoi, T., On the axiomatic method and the algebraic method for dealing with
propositional logics, J. Fac. Sci.. Univ. Tokyo. Sec. I, 14 (1967). 131-169.

[7] ———, On intermediate logics I. Ibid. (1967), 293-312.

[8] ———, On intermediate logics II, Ibid. 16 (1969). 1-12.

[9] De Jongh, D.H.J. and A.S. Troelstra, On the connection of partially ordered
sets with some pseudo-Boolean algebras, Indag. Math. 28 (1966), 317-329.

[10] Kripke. S. A., Semantical analysis of intuitionistic logic I. Crossley-Dummett ed.,
Formal system and recursive functions., Amsterdam (1955). 92-129.

{11] Mckay, C. G.. On finite logics, Indag. Math. 29 (1967), 363-365.

[12] ————————, The decidability of certain intermediate propositional logics, J.
Symbolic Logic, 33 (1968), 258-264.

[13] Schiitte, K., Vollstindige Systeme modaler und intuitionistischer Logik, Ergeb-
nisse der Mathmatik und ihrer Grenzgebiete, Band 42, 1968.

{14] Segerberg, K., Propositional logics related to Heyting’s and Johansson’s, Theoria.
34 (1968), 26-61.



