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On Weak Well-posedness of Mixed Problems
for Hyperbolic Systems

By
Koji KASAHARA*

I, INTRODUCTION. In this paper, we treat a mixed problem for

first order hyperbolic systems of partial differential equations with

constant coefficients in quarter space and show a necessary and sufficient

condition for the weak L2-wellposedness of mixed problems. For

equations hyperbolic in Garding's sense, the mixed problem has been

investigated by Hersh ([1] and [2]), stating that the condition that

the Lopatinski determinant of the problem is not equal to zero (in this

paper this is represented in the form (3)) is equivalent to the weak

Z,2-wellposedness. But his proof is incomplete by the following reasons.

First the generalized eigenvectors Wj are used in the construction of the
s^.

elementary solution C7(r) (in [2]; also in [1] we refer to z;), but these

Wj were only constructed in pointwise sense, hence, if the multiplicity

of eigenvalues changes, the construction must also be changed. Thus

the smoothness of the construction of w} with respect to the variables

r and ^ should have been shown. Secondly, to show that the elementary

solution increases at most by polynomial order as ] r | 2 + |^|2->-r°o,

the explicit formula of the generalized eigenvectors wjy could not be

used, since the formula itself depends on (r, ??).

We shall here show that these difficulties can be overcome by using

Seidenberg-Tarski elimination theorem and the Cauchy integral formula

for matrices and vectors.

28 We consider a system of first order linear partial differential

equations with constant coefficients
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where u = u(t,x,y*) is an ^-dimensional vector- valued function, and Aj

(/ = 0, 1, • • • , m) are ^x^ square matrices. We assume that this system
is hyperbolic in Garding's sense, that is, the real part of the roots r
of the equation

det (r/- A0iS - S Aj ivj - C ) = 0

are bounded as £ and ^ run over the real field. We denote this bound
by Mo . Moreover, we assume that the matrix A0 is non-singular, which
means that the hyperplane # = 0 is not characteristic. By virtue of

hyperbolicity, eigenvalues of A are real. Let the number of negative
eigenvalues of A0 be k. Besides, a boundary matrix B is also considered
in order to set a homogeneous boundary condition 5^(7,0, jO=0 on

x = Q. We denote by Rm
+

+I the half space {(£,#,;y); t = Q, #>0} and by

J?**2 the quarter space {(t9x9y*); £>0, ^>0}. We say that the mixed
problem is weakly L2- well- posed, if there exist a real number v such
that for any given real number jus. and any initial function u0(x, jy)
given in the space If^(J?++1) there exist a solution of (1) in the space

with the initial condition

(2) u (0, x, jO = UQ (%> 30 for

and the boundary condition

(2)x 5^(^,0,^)=0 for ^>0.

Our purpose in this paper is to formulate a necessary and sufficient
condition to be satisfied by the boundary matrix B in order that the

mixed problem (1) and (2) is weakly L2-well-posed. By changing the
representation in (1), we get

Qu _ _ , _ ! / d __^A 8 _c\
"to ~A VaT &ArdJ7 )

Now consider the matrix

M(r, ,) =A1(r/-/
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where r is a complex variable and •$,- (j = l, • • • , m) are real. We put

fl>={0,*); Rer>Af0,

Lemma 1. TAe number of eigenvalue of M(r, ??)
negative real part are invariant and coincide exactly with the number
of negative eigenvalues of AQ, when (r, ?) fs m o>.

Proof. The number of eigenvalues with negative real part changes

only when some of them become zero. Let r° and #? (j = l, • • • , #0 be

such that det(Af(r°, v°)-^°/)=0, (f° : real) where (r°, v°) is in to.

This equality is equivalent to:

But this is impossible because of hyperbolicity. Thus the number of

eigenvalues with negative real part is invariant when (r, •>?) is in a.

We put Vj = 0 (y = l, • • • , ;w), then the characteristic equation takes the

form

det(Af(r,0)-f/)=0

and this is equivalent to

det(r/-fA-C)=0

or

det(/-^40-— C]=Q.
\ T T /

Giving r only real value, we let r-> + oo? then £/r tends to the inverse

of an eigenvalue of AQ. Accordingly, signs of Ref/r and signs of

eigenvalues of AQ coincide for large r. But as we have seen, the

number of Re f /r which is negative is invariant when (r, ^) is in CD.

The lemma is thus proved.

By this lemma, we can define a linear subspace £_(r, ?)

(resp.EVCr, 77)) of C* when (r, 77) is in o>, which is spanned by all

eigenvectors and generalized eigenvectors of M(r, #) associated with

those eigenvalues which have negative (resp. positive) real part.

Evidently £_(r, #) is of ^-dimensional. We call this a negative eigen-

space (and also call the space £+(7,17) a positive eigenspace).
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3» Now we are ready to formulate our result.

Theorem, The mixed problem (1), (2) is weakly D-well-posed

if and only if

(3) Cn = KerB + E_(r,ri

for any (r, ?) in co.

(Here + means a direct sum of linear subspaces).

Proof. As it is convenient to handle the problem, we put the
initial condition to be zero by substracting the solution of corresponding
Cauchy's problem. We get then an inhomogeneous boundary condition:

where g(t,y) as a vector in Cn belongs to Range B, and as a function

in t grows at most exponentially as £-> + °o. To solve the mixed

problem (1) and (2), we transform the system by Fourier- Laplace

transformation to a system of ordinary differential equation:

Q - -
ax

that is,

(4) - - = A - 1 (

where u = u(r, x, T?) satisfies an initial condition

(5) 5«(r,0,7)=£(r,*).

The general solution of (4) is

(6) ^(r,*,jO^MMM^)

where the initial data u(r, 0, #) =c(r, v) comes from (5):

(7) 5c(r,V)=Kr,v).

Now we shall show that we must choose c(r, 5?) from the space E_(r,

Suppose that c(r, 7) does not belong to J?_(r, ?) for some (r, ?) in
then the decomposition of the vector c(r, T?) into the sum

C (r , ?) = C+ (r, T?) + C_ (r, ?)
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shows that the solution (6) takes the form

&(r, X, JO =eM^*Cl (r, 77) +£v/M)^_(r, 77)

where the first term does not vanish for some (r, 77) in CD. It is clear

that this term increases exponentially as jc-» + oo and u(r,x,-q) fails

to belong to any space Hm(R\}.

Thus we have reached two necessary conditions on c(r, 77) :

Bc(r, 77) = g(?9 77) GE RangeB,

In order to determine £(r, 77) from J"(-r, 77) uniquely so that £(r, 77)

belongs to !?_(?•, 77), it is necessary and sufficient that two spaces KerB

and I?_(r, 77) satisfy the direct sum condition in the vector space C":

We are now going to prove that this condition is sufficient in order

that the mixed problem is weakly jL2-weil-pcsed. Since the condition

(3) guarantees the urique solvability of c(r,??) from g(r, 77), we can

define a linear operator Q(r, 77) from RangeB onto £_(r, 77):

Then our "formal" solution S(r?^, 77) is represented by

(8) a(r,^v)=^ (T '1I)*Q(r>v)Kr,v).

Since Q(r, ^)^(r, 77) belongs to E_(r,y), the solution (8) can be written

as

where P_(r, 77) is the projector onto £_(?,•%) associated with the de-

composition

We divide the proof into several propositions.

Proposition 1. ^(T>T7)*P_(r, 77) ^"s holomorphic in the domain a.

Proof. This is almost obvious. Take the Cauchy integral form

of the matrix, we have
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(9) <?M<-'»*P_(r) ,) =-J

where the contour F(r, 77) is a closed curve in the domain Re/l<<0,
surrounding all those eigenvalues of M(r, ??) which have negative real

part. Although the curve T depends on (r, ?), it is insensitive to a
small change of (r, if) . Therefore Proposition 1 is valid.

Proposition 2. There exist a positive number C and a rational

number a such that the matrix norm is estimated as

when (r,v) belongs to CD and H2+ ]

Proof. Since (M(r, *) - tf) -' = J?_ , we have only
det(M(r, ij)—U)

to examine in the formula (9) the behavior of det(Af(r, 77) — /I/). Let

^i(r, v), • • • , ^»(r, v) be the eigenvalues of Af(r, ??) (equal or not), and
suppose that Re/ly(r, ^)<0 (; = !, ••• ,*) and Re^-(r,v)>0 (y = A + l,
• • • ,w) . We can choose the contour F(r, 77) so that for any /ler(r, ??)

Then we have

I det(M(r, T?) -

Therefore, if we show that there exist a positive constant C and a
rational number a such that the inequality

r
(10) min | ReA,(r, v) 1 >-?-.- |2, , | 2Nri^^* (kl + Ivl )

holds, then (9) is estimated as

'Cof (M(r, ,) -;„ _ , ^, . (length Qf r)

(min
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Our aim is now the inequality (10) which is a consequence of
Seidenberg-Tarski elimination theorem. Here we adopt Hormander's
formulation ( [3] Lemma 2. 1 of Appendix) in a slightly extended (but

essentially equivalent) form.

Lemma 20 Let Q(*,f), #/*,£) (; = 1, -,#
• • • , L) te polynomials in n + 1 real variables *, f=(£i, • • - ,£ , )>
suppose that Q and Sk have real coefficients. Assume that the set

= {f ; £,(«, 0 =0, S.O,

/s wo? empty for sufficiently large 6, then either

sup QGr, f ) = 4- oo /or
^eM(ff)

or else

where a is rational and C is real

Now, in the equation

(11) det(M(r? T?) -J/) =det(M(r, v) - (ReA + i Im^)/) -0

we put — — - = p, then the equation is written as
i\.ex

(12) det(pM(r,7?)-(l + nm^-p)/)=0

which is an algebraic equation in m + 4 variables Rer, Imr, yiy ••',-$„,
p and Im^. We consider moreover the inequality

(13) H 2+M 2<* and Rer>M0

and put

Af(tf) = {f = (Rer, Imr, Vl, • • - , VM, ̂  Im^) ; (12) and (13) are valid}.

This set is evidently non-void for sufficiently large a. So by Lemma 2
we have

sup — p = +oo or y"l + 0l as (?-> + cxDe
£e=Jl/(cr)

But it is not +cx>, because on the compact domain (13), the real part

Re /I of the solution of (11) is not equal to zero. Since



510 Koji Kasahara

sup ( - p) = sup max --. ( — r-r- ,
|T|2+|r? |2<a- l<y< f e I KG AV (? , T] ) \

Rer^Mo

we have

sup max - — vr< sup ( - p
"

which means that in the domain CD there holds (10). Proposition 2 is

thus proved.

Proposition 30 Tfe matrix Q(r,v) is holomorphic in &.

Proof, We calculate the explicit form of Q(r, ?). Since according
to the condition (3) the rank of the constant matrix B is k, we may
assume without loss of generality that B is a k X » matrix. We denote
the row vectors of B by &!, • • • , bk* Now taking an arbitrary basis for

£_(r? v)> say, Vi, • • • , v* (column vectors), the condition (3) can be
written as

det

for any (r, #) in a), and we have

(^•••Vft) being the nxk matrix whose column vectors are #! ,••• ,#*.
We denote this matrix by V. Since Q(r, ?) is independent of the choice
of the basis #1, • • - , vk, we have only to show that for any fixed (r°, ^°)

in a?, there exists a neighborhood of (r°, /) such that for all (r, ??) in
this neighborhood we can construct a basis for £_(r, •#) whose com-
ponents are holomorphic in (r, ?)• Now take a fixed basis 0i, -°-yvk for
£"_(r°, v°) and put again

where the contour F in the domain Re/l<CO is enclosing all eigenvalues

of M(r, ?) which have negative real part. Clearly #y(r, #) (^ = 1, "°,^)
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is holomorphic in (r, T?) and ^-(r°, i?0) =P_(r°, •^}vj = vj, so that for

sufficiently small change of values of (r, /?) near (r°, /) the vectors

Vj(r,ifi) are linearly independent. Proposition 3 is proved.

Proposition 4. There exist a positive constant C and a rational
number a such that for each element ^(r, ??) of the matrix Q(r, ?)
we have

(14) !^(^

when (r, T?) is in a) and j r | 2 + l?

Proof. We have seen that

We calculate this matrix more precisely. We have

and (z,y)-th element of the matrix F'Cof(.BF) takes the form

Vu

bkvk

<:/-th row

where v{j is the ^-th component of the vector Vj and Ati is (j, f)-th

cof actor of BV. But the right side of this equality is equal to

det(j30-F) where J3,v is the matrix obtained from B by replacing the

row vector bj by et= (0 ••• !•• -0) (all terms are 0 except i"-th). Thus

we have reached a very simple expression:

From now on, we omit the suffix i, j and put Bij = B1. Again we try

to apply Lemma 2. Since q(r, ??) is holomorphic, it is sufficient to

prove the inequality (14) in an open dense subset of a). We show that

there exists an algebraic variety (whose complement is a connected,

open and dense in co) except on which the inequality (14) is valid.
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We decompose the polynomial det(M(r, y) — /*/) into the product of
irreducible factors:

det(Af(r, ??) - J/) = AU r, *)"-Aa r, *)'"

and put

, r, 7?) = A (^, r, 77) • • -A (/*, r, 17) .

Then the resultant R(r, 77) of P(/l, r, 77) and -^r-G, r, 77) is not identically
ox

zero. Now consider the inequality

(15) J?(r,v)*0.

The complement of the algebraic variety J?(r, v)=0 is dense, open and

connected, since r is a complex variable. On this set all roots of

jPG*, r, 7j)=Q in /I is distinct. Next, consider equations

(16) AU r, 77) =0, -, AU r, T?) -0

and inequalities

(17) Re^<0, ••-,Rei<0.

Using these parameters we construct a basis Vi, '-,vk for £*_(r, 77) whose

each component is a polynomial in AJ9 r and y. For this purpose we
recall the routine of obtaining generalized eigenvector. To do it, we put

If Xj is an eigenvalue of multiplicity //, the rank of the matrix

(M(r, T?) —Ajiyi is exactly n — ljy so we can solve the above simultaneous

linear equation by Cramer's method and get solution vectors w. In this

process, each component of w can be chosen as being some (»—//)-

minor of (M(r, 77) — ̂ /)/y, and we make all possible combinations of

this type. Among these combinations there may be many solutions

consisting of only 0 components, but the process of computing each

minor is entirely formal so that it is independent of whether the

variable A/ is equal to some eigenvalue of M(r, 77) or not. The set of

those polynomial vectors w constructed by the above manner we denote

by Wj (y = l, ~'9v). K the degree of ps in A is dj9 we can find djXlj

linearly independent vectors in Wj when ^ is equal to root of pj(Aj> r, y)
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= 0. Choose arbitrary djXlj vectors from W}- (.7 = 1, • • - , v) and construct

the matrix V, and consider for each choice of these vectors the equation

(18) det (B F) - q - det (ft V ) - 0

where q is a free variable. Clearly detCBV) =£0 if and only if chosen

vectors are all non-zero and linearly independent. But if det(-BF)=0,

then also det(ftF)=0 simultaneously and so the equation (18) is

trivially valid. If detCBV)=£0, then the equation (18) is independent

of the choice of the vectors in Wj (j = l, --,v). Thus, although there

are so many ways of choice of vectors from Wjy constructed algebraic

equation (18) in the variables (r, v, /d, • • - , /U #) is only one.

In order to apply Lemma 2, we put

M(<0 -= {f = (Rer, Imr, 77, Re^-, Im^, Reg, Img) ;

(13), (15), (16), (17) and (18) hold}.

Clearly M(<0 is non-void for sufficient large 0, so by Lemma 2, we have

sup |# | 2 =+oo or else Cyfl(l + 0(l)) as a-> + °°.

being compact for finite <y, we have

sup 1 # 1 2<^C0a as <r-> + ^o
SeM(o-)

from which it follows that

sup l9|2<sup|0|2<0
|T|2+|i7|2-or $eM(cr)

that is, on the complement of the variety J?(r, 77) =0 in o>, we have

This proves Proposition 4.

Thus the operator

is holomorphic in (r, T?) in the domain co and its norm is estimated as

for some C>>0 and «. Hence we can operate the inverse Fourier-Laplace

transformation to the function u(r, x, T?) in distribution sense (if
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g(r9y) is majorated by ( ] r ] 2 + M2)~& with sufficiently large b, this

transformation is performed in usual sense). Proof of our theorem is

completed.
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