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Introduction

When we have a complex analytic manifold X and a complex

analytic submanifold M of codimension r^2 of Xy we can form the

monoidal transform X of X with centre M. (By a manifold, we shall

understand a paracompact connected one through this paper.) X is a

complex analytic manifold with the same dimension n as X, there exists

a holomorphic mapping n from X onto X, and n is an analytic homeo-

morphisrn between X—S and X—M, where S=n~1(M^). (More properly,

we should say (X, n) is the monoidal transform of X) S is an ana-

lytic submanifold of X of codimension 1, and is in a peculiar position

in X: The restriction of n to 5 makes x:S-*M an analytic fibre bundle

with projective (r — 1)-space as the standard fibre. (More specifically, 5

is the normal bundle of M in X, with the zero cross section deleted

and "divided" by the group C* operating as multiplication by constants

on each fibre.) If we denote the fibre 71^(0) by La(a^M), then we

have [S]za= M"1, where [5] and [e] denote the complex line bundles

defined by the divisor 5 of X and the hyperplane e of Pr~1 = La respec-

tively, and [S]La denotes tne restriction of [5] to La.

Now the inverse problem of the monoidal transformation is the

following: Suppose we have a complex analytic manifold X" and a

submanifold 5 of X of codimension 1. Let S have a structure of a

holomorphic fibre bundle over an analytic manifold Mm with projective

(r— l)-space as a standard fibre (m + r = ri). Then under what condi-
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tion can we find a complex analytic manifold X" and a holomorphic map

TT.° X-^X so that X contains M as a submamfold and X is the mono-

idal transform of X with centre Ml It is clear that the above condi-

tion [ S ] L a = [ e ] ~ l is necessary. It was first shown by K. Kodaira

that this condition is sufficient in case M is a single point and X is a

projective algebraic manifold (Kodaira [4])= In case M= a point, we

also have results by H. Grauert [2] and K. Kodaira [5] etc. For M

of higher dimension, P. A, Griffiths [3] gave a sufficient condition that

the inverse problem can be solved affirmatively. B. G. Moisezon [7]

gave a necessary and sufficient condition in case X is compact and M

has as many independent meromorphic functions as complex dimension

of M. A. Lascu [6] treats this problem in abstract algebraic geometry.

In this paper, we shall give a necessary and sufficient condition for the

existence of X, namely, we shall prove the

Theorem- Let X be a complex analytic manifold of com-

plex dimension ri^3 and S an analytic submanifold of X of codi-

mension 1. Suppose that S has a structure of an analytic fibre

bundle over an analytic manifold M with a projective (r—1^-space

as the standard fibre and that r>L Denote by La the fibre over

a^M in the bundle S-*M, and by [e] the complex line bundle over

La—P1""1 determined by the hyperplane. Then, in order that there

exists an n-dimensional analytic manifold X containing M and a

holomorphic map n: X-^X in such a way that (X,n) is the mono-

idal transform of X with centre M and S=n~:L(M^, it is necessary

and sufficient that the following conditions are satisfied:

(a) for any a^M, [S]La=[e]-\

(0) each La has a neighbourhood V (in X} such that [JC]V

= (S)£, where J£ is the canonical bundle of V and k is a non-

negative integer,

To prove the theorem, we make use of a certain type of cohomo-

logy vanishing theorem and this theorem will be proved making use

of a variant of a method due to A. Andreotti and E. Vesentini [11.
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§1. A Cohomology Vanishing Theorem

1.1. We shall consider the following situation : V is an ^-dimen-
sional complex analytic manifold and there exist a real valued C°°

function W and a complex line bundle ^B on F, with the following

properties:
(a) W is plurisubharmonic, i. e. for any point x of V, we have

( ^JL-r.k )S^Q (positive semi-definite),

where (#0 is a system of analytic local coordinates around x.

(b) For any real value A, the set {x\¥(x)<^A} is empty or

compact.
(c) <B is negative, this means the following: J2 is defined by a

system of transition functions {e^} with respect to an open covering

{Ua} of F, and we have a system of positive valued C°° functions
aa being defined in Ua and having the properties

aja& = \ea& 1 2 in Z7a fl UB,

P°int °f C/a-

(d) The canonical bundle of F is equal to J3* (&S^O).
The theorem we want to establish in this section is the following

Theorem 1. In the above situation, we have H*(V, 0(^~£)) =0
for e-1,2, • • • , ? = !, --,»-l.

The proof by the method of Carleman estimate will be given in
the following.

1.2. Let us first establish

Proposition 1. The system of functions {aa} can be so chosen
that the Kdhler metric on V given by
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is complete.

Proof. Take a real valued C°° function v of a real variable r such

that KO^O, /*'(r)^0, X'(r)^0 and i/V'(r) Jr=+°o, and replace
Jo

given aa by fl£ = ^""^"fla. The new system {aa} satisfies the condition

(c) too. Define a Kahler metric on V by (1. 1) with ai instead of

da. on the right hand side.
If V itself is compact, there is nothing to prove. Assume V is

not compact, and take a differentiate arc 7-: x = x(f) (0<^<1) in V

which is not contained in any compact subset of V. Set /GO = 3P1(

then /(£/)-> °o for some sequence {£„} of values of if. We have:

dt I fir w v"yy dx'Ox' ' " w v" /y dx* Qxk.

-, 0r dxj

9xj dt

= 4'

Then

Therefore the proposition holds if we take a'a instead of the original aa.

From now, we shall assume that {#«} is chosen so that (1. 1) is

a complete Kahler metric, and we shall fix this metric through this

section.

1.3. We consider a Hermitian metric {ba} on the fibres of J2, that is

to say, ba is a positive valued C°° function on Ua and we have

The system {tfa} in 1.1, 1.2 is an example of such metric.

We denote by 3)p-q(3fy the C- vector space of all .S- valued differen-

tial forms of type (£, q) with compact supports, (a ^-valued differential

form <p is a system {<pa} of differential forms, <pa being defined on Ua

and satisfying cpa^e^cpB in UaHUB.') The metric {£«} on the fibres
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defines a Hermitian inner product in 3)p'q(jS)

(1. 2) (SP, *fi

and makes it a pre-Hilbert space.
With respect to this inner product, the adjoint of the operator d:

), is given by the operator tf:

(1.3)

where

(1 . 4) DVa = %a + Pet A^ct ,

(1.5) Pa=-9l0g£a.

D'\ ®p'q(S}->3)p^'q(j$} is the (1,0) -part of the exterior differentiation

defined in terms of the connection {pa} on J3. As usual we define the
Laplace-Beltrami operator Q by

(1.6) D = 9# + 08.

We define another norm n(<p) in

(1. 8) n(^)2= (^, ̂ ) + (%>, ^) +

The completions of 3)p'q(Sf} with respect to the norms (<?, <p)1/2 and
n(^) are denoted by X^C$) and T^'?(^) respectively.

We shall recall the following propositions:

Proposition 2. Wp'q(3£) can be considered as the set of elements

9 of £p>q(S) for which ^e^-?+1(^) and $v^£p'q-\&). Here d

and & are taken in the sense of distributions.

For the proof we refer the reader to Andreotti-Vesentini [1] . (Pro-
position 5 of p. 93 in the paper. One can also find detailed exposition
in Vesentini [8].) We shall recall that we make use of the com-
pleteness of the metric in the proof. We shall further recall that

(1. 9) (d<p, dcp) -

for any <r>0 and for any ^-valued C°° form <p such that each term in
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the formula is defined. This holds because the metric is complete.
(Formula (19) of Andreotti-Vesentini [1] , p. 93.) The following pro-

position is an easy consequence of (1.9).

Proposition 3. // (p^Xp'9(^ is of class C°° and

then <p belongs to WP*9(JB}. In particular, if 0?e_Z>f(.3) and L> = 0,

then d<p = Q and &<p = Q.

This is the content of Cor. 6 and Prop. 7 of Andreotti-Vesentini
[1] (p. 93), the contents of Theorem 1 (p. 89) and Theorem 21 (p. 94)

of the paper are given in the following Propositions:

Proposition 4. // there exists a positive constant C such that

(l. 10) (d<p, 000

for all q>^3)^q(S}, then for any OL^. Xptq '(-®) , there exists one and

only one element x of Wp'9(^~) satisfying

Here \^]x = a is to be understood in the sense of weak solution,

i. e., for any <p^ &'*(&) we have (dx, 000 + (##> #00 = G*> 00- But since
n is elliptic, if a is C°° then x is also C°° and the equality [^}x = a

holds in strong sense.

Proposition 5. With the above notations, if a is C°° with da>=0,

then $ = $x is the unique C°° form in £p-q~^(J$} which satisfies Q@ = a
and $0 = 0.

We define Green's operator G: J?p'9-> Wp'q by x = Ga. It is also
seen that

1. 4. We have introduced the connection {pa} combined with the metric
{bo}. This enables one to define the covariant differentiation D:
^.,(^)_>^+i,?(^)0^,,+i(^) by D = D' + d, Dr being given in (1.4).

It is straightforward to verify the relation

(1.11)
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where

(1.12) e = dpa

is a scalar form on V of type (1. 1). We set

(1. 13) *= i/~^T® = i/^Tdd log ia

and call this the curvature form of the connection {pa} .

Since the metric of the base manifold V is Kahler, we have the

relations

(1. 14) Ld'-d'L= i/~^lQ, Ad-dA = - i/~=T<5'.

(See, for example, A. Weil [9] , p. 44. These formulas are proven for

scalar forms there, but they can be applied to ^-valued forms too,

because the operations are defined for those forms and formulas are of

local character.) If we take the adjcint of the first formula of (1. 14),

we have

(1.15) D'A ~AD'=- i/^l#.

As (1.11) and (1.12) show, we have D2 = D/d + dDf. Hence, de-

noting by e(%) the exterior multiplication by %, we have

+ D'A~d+~d(D'A - AD'*) +8AD'

'Ad

- (Wit + 5'DO ,

that is to say,

(1.16) e(%)J-^e(%)=D-*~ln*,

a formula first due to Calabi and Vesentini.

1.5. Now we turn to the proof of Theorem 1. It is enough to show

flTtf(V,^*(5s))=0 (1<^<^-1)? because of Serre duality theorem.

Here HK means the cohomology group with compact supports. By con-

dition (d), this is equivalent to saying Hn
K~q( V, 0(^4£)) =0.

Set / = & + e(:>0) and apply the considerations in 1.3 and 1.4 to
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$? instead of original .3. We take #a to be equal to #«, where {aa} is

the system introduced in 1.2. (The meaning of {ba} in (1. 2) has now

changed according to the change <$->$?, but {aa} keeps the original

meaning for j3.)

Pa = d log ba = I (8 log aa) = lp(^

If we write %(1) as %(1) = •/ - 1 Ifcirf*'' /\ dx*9 we see %,-» = " = ~gfk
uX uX

according to the choice of the Kahler metric on V. Hence e(%(1)) = —L,

e GO = (-/)!, and (1.16) takes the form

(1. 18) D-*"1D*=/(^-^).

If «?6E.2)0'«-<C$9, then (AL-LA)<p = q<p, and

because (*-ln*^,^) = (D*0>, *p)^0. This shows that formula (1.10)

holds if we choose C = lq.

Intermediate Proposition. For ^e.3)0'""'^) with %? = 0, tc;̂  can

find i/rSE.T0'*-'-1^') wA/tA w C~ fl«rf satisfies 3^ = 0, #^ = 0 and

^-frfav), where C = lq. We have the same result for any

choice of Hermitian metric on the fibre, provided (1. 10) holds with
the same value of C.

Proof. By Propositions 4 and 5, we see that ty = &G<p satisfies the

requirement except (-^, ^)<^(<P» 00 • ^ow siflce ^^G^ is in

(1. 10) holds for x too. Hence

4-

CApply (1.9) to x with <r = -~-9 then we have
LJ

— — 2 C
' = C ' 2 '

2 N 1 X- -

^-^.-(^i ^) +~o~ \(8^, to) •

whence
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It remains to show that we can take ty to lie in J3)Q'9~l(J$1^, because

this result means that the ^-valued Dolbeault cohomology groups with

compact support vanish for type (0, #), # = 1, 2, • • • , n — 1.

1.6. In order to achieve the last point, we proceed as follows: We

take a real valued C°° function A of a real variable t, satisfying the

conditions

/ (0=^(0=0 for

/G0>0 for

/'(OX) for

/7(0=0 for l^f,

and introduce new metrics on the fibres of Sf\

ba,v = e~^w-A^al
a (^ = 1,2,3,-).

Here ^4 is a constant to be determined later. Then the meaning of

the inner product changes according as v changes. We shall use ( , )„,

£p
v'\ Wp

v'
q, &V9 n^"-, for symbols corresponding to the metric {ba.v},

while for original metric a^ba.o, we shall omit the suffix 0.

The change of the curvature form % is to be noted. We readily

see %, = % — w» where (»=•/ —lddt(¥~A). Hence (1.16), (1.18) take

the form

IH - ^''D,* = / (.AL - LA) -r ̂  Ue (o) - e (a?) A) .

If we show

(1.19) (Ue(fli)-e(a))yi)^,^)^0 for

we shall have

(1. 20) (Q^, *0^/?(*>, ̂ ) ^e

As for (1.19), we have, in a small neighbourhood F of a given point,
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The quantities in { } make up a positive semi-definite matrix. Hence

if we take an orthonormal basis { -̂} of linear differential forms on U,

we shall have the expressions

where («;/*) ̂ 0- We can find a matrix (£/J?-) such that wj-k = ̂ 1tijtlk,

The adjoint of e(0y) is denoted by i(0y) and is given by — *e(0,)*.

Because {#/} is an orthonormal basis, it can be verified that if A=(a^

• • • ,<z r ) , B= (fti, • • • , &s) are set of indices, and if 0^A0fl denotes #C1A

'" f\0arf\6blf\-" /\ObsJ we have

(1. 21)

and similarly for \(0k}. From this we conclude the relations

(1. 22)

Now A& (o>) - e (o») ^ = S wy» {i (<?„) i ((?„) e (^-) e (^) - e ((?,•) e
y, A,»I

can be calculated according to (1 . 22) and gives

Hence if ^ is a (0, ^ — ̂ )-form with support contained in U, we have

o>) -e (

This is enough to establish (1.19).

So we have shown (1. 20) with the constant Iq which is independent
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of (f> and v.

1.7. Now consider ^e^°'M~?(^0 with d<p = Q. Set K=suppg>, A

= max?r(jc). We take ba,v with this value of A, and apply the Inter-
x<=K

mediate Proposition to this case. Then there exists

such that #„ -i^,, = 0, d^rv = (p and OK, ^ / X ^ — (<?, <P)I/- Because ba,v^

and equality holds on the support of 0?,

( 1 • 23) -^- (0>, p) = — — (<cp, 00 ̂  (i/rv, T/rv

and {I/TV} „.= 1,2,- form a bounded set in -T^""*"1 (.$'). Hence, if we choose

a suitable subsequence if necessary, ^ converges to an element

i/re^0'"-*-1^') weakly. We have (^,^)^-^-(^, *>) and ^fn = ^ in the
/#

sense of distribution.

Set M={XEE V\W(x)>A+l}, then from (1.23) it follows that

(l. 24) [ a^'
JM

On the other hand, there exists a positive constant c such that

— A)^c on M Hence the left hand side of (1.24) is not less than

e v c ( a ~ l (^\A*l^Ya> This shows that

for
M

If we take an element u^3)Q'n~q~1^1^ with support contained in

M, then it follows from the above that (^, u) =lim(^, u) =Q. Hence
v->°°

the support of ^ as a distribution is contained in the compact set V— M.

Finally, we can apply to ^ the regularization process as given in

Andreotti-Vesentini [1], Lemma 12 p. 97, and obtain a form ^0

e^-^GSO with Q^r, = (p, This completes the proof of Theorem 1.

§2. Construction of a Plurisubharmonie Function

2. 1. We consider an ^-dimensional complex analytic manifold X and

a submanifold 5 of codimension 1, and assume that the condition (a)
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in the Main Theorem is satisfied. S is an analytic bundle of projective
spaces P'"1 over an analytic manifold Mm with m + r = n. Take a point
a of M and a small coordinate neighbourhood D of a. D can be con-

sidered as the domain {(C1, •••,C'")eC<" SIC"I2<1} in C"*, the point <2
corresponding to the origin and the part ^(D) of 5 which lies over
D has the form 7T1(D)=Z)xPr~1o We take a set of homogeneous
coordinates O?1, •••,/) on P'"1. Then P is covered by coordinate neigh-
bourhoods {Ua} ; C7a= {v^O}, and the set of inhomogeneous coordinates

{£L=rf '/V* r = l> •"> «J> •"> ̂ ) is a se^ of local coordinates in Ua. (When

we make use of the notation ££, it is the constant 1.) Because

[S]z*= M"1 for any b^D, [5]7r-
i(D)r=^*M~1

? where q is the canonical
projection D X Pr"1->Pr~1 and [e] is the complex line bundle on P1""1

determined by a hyperplane.

[g] on P'"1 can be defined with respect to the open covering {Ua}

by transition functions

(2.1) ^ = ̂ 7^ = 55 in C/afWe.

As the metric on the fibre, we take

(2.2)
7 7

The curvature form of this metric is the Kahler form associated to the
standard Hodge metric of P1""1.

On DxP, the bundle q*[e], which we shall now denote by [e],

is defined by (2. 1) with respect to {D x UK} . We set

(2.3)

and take

(2.4) a* = e™(£>

as the metric on the fibres. The curvature form of this metric is again

positive definite.

2.2. Local coordinates on ^(Z)) can be considered as restrictions of

local coordinates on X. More precisely, we can choose a finite open

covering {U'^\^A of P which refines {Ua}, open sets V( on X such
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that V(nS = Dx C/l, and systems of local coordinates (z\, • • • , 2*, #i, "•>

£A(A)» "m,x\»y\) on FA in the following manner:

(2.5) r is a map .4->{l, • • - , r} such that U(dUra>

(2.6) *i|S = C', *AlS = &A)

(2.7) 3>A = 0 is the local equation for S in FA.

(We set #I(A)=1. Hence (2.6) holds for r = rOO too.)

Furthermore we may assume that the transition function e\u=y\/y* for
[S] satisfies

(2.8) e

where we write s^ instead of eTu), TU). Also we set #A =
For the moment, we fix the index j and write ZA instead of z{.

Then z\ — z^ is a holomorphic function on FAH F^ and is zero on S.

We set

(2.9) /AM = J'A1(2A-2M),

then we have

/A,=/A,+^I//. in FinnnF;.
In other words {/AM} is a 1-cocycle with values in ©([S]"1), with
respect to the open covering S3={FA} of F /=-LJFA. The restrictions

PAM=/AM 5 define an element of Z1(U,0(M)), where H={DxU[}.

Since Hl(Pr~l, 0([^])) =0, we can find holomorphic functions <pA on
D x C/l such that

<?A — SA^M = ^AW on D X ( U( fl TO •

We extend <?A to U( and denote it by /A, then 2l=>2A— jyA/A has the
property

(2.10) z'i-z'^0 (mod /A) in FlRF^.

We set /Ajti=jyA
2(2l— z») and proceed as before. This time we make

use of firi(Fy-1,0(M2))-0, and arrive at z" = z(-ylf( with g-£=Q
(mod. 3^D- Since H\Pr~\O([e]k^=0 for any £>0, we can thus

proceed as far as we want. Similar procedure can be applied to xl for
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any fixed a to obtain an approximate holomorphic section of [S]"1.

Hence,

Proposition 6. Given a positive integer /, we may take local

coordinates (ZA, x\, y\) in such a way that the following hold in ad-

dition to (2.6) and (2.7).

It may be that we have to replace FA by a smaller open set, in

order to secure that (z{, x", jyA) form a local coordinate system. But

any way V'=UV( is an open neighbourhood of La in X, and it is
A

enough for our purpose.

z. o. oince \jAfi}, \g\n} are l~cocycles In £ \^)C^\i^\ ))> ^ \~>

O([5]~/~1)) respectively, it is clear that we can choose C°° functions

/A, g" in FA which satisfy

We set

(2.12)

then we have

/ ' O I O ' N "Vex ^, — 1 Vex(.<£• lo; AA = ^A/XA^ in

Define functions ylA, F and -^ by

(2.14) '"A "' v ^ s « A , 0 in

(2. 15) .

Since A*= le^i^A^ by (2.13), F is a well-defined function on V.

It is clear that T±\Zj\2 and A reduce, on S, to 0 = SICy!2 and 0A

respectively.

Proposition 7. Tflfe /3^3, ^fe^ ^ zs plurisubharmonic on the
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part of V where F is small enough. More specifically, the Levi

form of ^r is not less than a positive definite Hermitian form in

(d£-'~dzm,dy} on this part.

Proof. We consider the coordinate neighbourhood V( and verify

the assertion in this domain. So we shall omit the suffix A for a

moment. For defmiteness, let us assume r(^)=r, hence (z1, • • • , zm, x1,

• • • , xr~^,y) is the coordinate system, while in the expression

the summation extends for o;=l, 2, • • • , r.

Direct computation shows that

j.jLg =Q(I^|2) , and their conjugates.

-

By taking V smaller if necessary, we may assume that S l^a l 2 is
oc=l

bounded in V' ', say S I ^a ! 2^G. Choose 7?>-0 such that 7?G<<— , then
o

we have

\y ] 2S1-̂ -
1+5?
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where aa and b^ are quantities of O( | jy | ) . The last expression is 2^0

provided \y\ is small enough. We can deal with terms containing
~° !

^r- etc. similarly, and we see that the Levi form of ty is equal to
dyffz*
the sum of, say -^-(^l\dzj\2jr \dy\2} and a non-negative Hermitian

Z j
form, if \y\ is small enough.

Proposition 8. ( — ^f-g-M is positive definite for \y^ small

enough.

Proof. This is clear since ^4A reduces to aK for y\ = Q.

Theorem 2. // X, 5, M satisfy condition («) of the Main

Theorem, then, for any a^M, we can find a neighbourhood V of La

in X, such that the conditions (0), (6), (c) in Theorem 1 /&0/rf /or

F ^2^J ^= [5] F. // we have condition (0) m addition, then condi-

tion (rf)

Proof, We use the notations in the above. We choose a small

positive number 8 such that Propositions 7 and 8 hold for V= {x

^.X\^p{x^<d} and such that V is relatively compact in V. If we

set W= (1— ̂ /fl)"1, then conditions (a) and (b) are satisfied. If we

note {e~m*A~1} gives a Hermitian metric on the fibres of [5] for any

constant m, and if we take m big enough, we see that condition (c)

is satisfied in view of Propositions 7 and 8. The last assertion of the

theorem is trivial.

Remark. It is important to note that each fibre of S is either

contained in V or does not meet F.
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§3. The Proof of the Main Theorem

3.1. First we prove the

Proposition 9. Let V be an n-dimensional complex analytic ma-

nifold and S a submanifold of V of codimension 1. Suppose that S
is analytically homeomorphic to DxPr~l, where D is a domain

in €m and mjrr = n) and that [S]s=[e]~1, M being the complex
line bundle on S defined by D x (hyperplane) = // we have £P(F,
0([S]~~£))=0 for e = l, 2, then for any point a^D, there exist

a neighbourhood W of La( = the submanifold of S corresponding to

&xP) in V, and a holomorphic map n from W to A= {(z ,y~)^Cm

x Cr | z j | <e}, \y\a<.e} such that ( W, n} is the monoidal transform

of A with centre F=the linear variety defined by y~L = --=yr = Q. We

can identify r with a neighbourhood of a in D, and the restriction
of n to S corresponds to the canonical projection DxP-*D by these
identifications.

Proof. Let (C1 ,*••,£") be coordinates C"1 which contains D, and
let G?1, •••,# ') be a set of homogeneous coordinates on P. Hl(V,

0([SJ"1))=0 implies that the restriction F( V, 0)->F(S, 0S) is surjec-
tive. Hence there exist holomorphic functions 21, • • • , 2 M on F, whose
restrictions on S are C1, • • • , C M . H\ F, O( [S]~2)) -0 implies that
r( F, 0( [S] "1))-^r(-SJ O( [e] )) is surjective. The latter contains cross
sections corresponding to rf, 'mm,rf. (If we define [e] by transition func-
tions Sa&^y6/^ as in §2, the cross section corresponding to ^Y is repre-

sented by a system of holomorphic functions {^Y/7?a}a=i,->r satisfying
7?7/^a = £cc3(^7//)=) Hence we can find cross sections /*, •••,/' which
are mapped to 7?1, ••• , / by p.

We may assume we have coordinate neighbourhoods V( in F7 such
that UV'jla, FIRS has the form D,xU(, and S is defined in V(

A

by a local equation jyA^O, where y^ is a member of a local coordinate
system in V(. We also assume that (2. 5) and (2. 8) hold for these
data. The cross section /a can be expressed as a system {/£}, where
/A is holomorphic in FA and
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Hence we can associate the holomorphic function on V' = (J V( which

is given by JVA/A in "^A- We denote this function by fa. fa is in the

defining ideal for SH V'. The fact that the map p associates /a to -f

is now expressed by

(3.D (/v/)!s=va/ycA).
Now take C" with linear coordinates (Z1, • • • , Z'", Y\ •••, F) and

blow it up with centre C"' defined by F1 = - - - = Y"r=0. We denote the

monoidal transform by C, and define an analytic map (9 from V into

C by

U(*) = (21(*),-,2"(*),/1(*)> -,/'(*)) xC/X*) :-:/'(*)).

In view of (3. 1), it is seen that 0 maps Lfl onto (0) xP'"1 biholomor-

phically and the Jacobian of 0 does not vanish at every point of La.

Hence 0 maps a neighbourhood W of La onto an open set of C iso-

morphically. We can assume that this open set is the transform of a

domain A in C* containing the origin, with centre P = A{~}Cm, The rest

of the Proposition is easy to see.

3. 2. The proof of the main theorem is now easy. If we have X, S and

M satisfying conditions (a) and (/3), then by Theorem 2, there exists
a neighbourhood V of La for each a^M, satisfying the conditions of

Theorem 1 for <B=[S]V. Hence we have the conditions of Proposition

9, and therefore, there exist, for each a, a neighbourhood Wa of La in

X, a holomorphic map ne from Wa onto a domain 4* in C" and a

linear variety Ta of dimension m in 4,, such that 7rfl: Wa-^Aa is the

monoidal transform 4* with centre Ffl.

If W^n Wb*?<t>, we consider the diagram

id- \ w >
7la

Since w2 and nb are analytic homeomorphism from Wa — S to Aa—r. and
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Wb — S to Ab — rb respectively, $ab = nb°id°n^ is defined on nc(We

— Pa and maps it isomorphically onto nb(Waf}Wb}—rb. Because Fa is of

codimension r^2 in Aa, </>ab can be extended to the whole nc( Wa^\ W^)

as a holomorphic mapping. Since we can interchange a and b, 0ftft is a

biholomorphic homeomorphism from 7ta(.Wa^}W^) onto nb(War(Wi).

Thus we can patch together Jls and obtain a possibly non-connected

analytic manifold XL In this procedure r«s are patched together and

0fl6 is nothing but the coordinate transformation on M, when we identify

ra and Fb with coordinate neighbourhoods around a and & respectively,,

By a standard connectedness argument, we see that Xi is connected and

r'as form a submanifold biholomorphically homeomorphic to M. We

identify this submanifold with M.

The open subsets \JWa-S of X and JG-M of JG are biholo-
aeM

morphically homeomorphic with each other, the mapping being given

by na on Wa — S. Hence we can patch together X— S and Xi on these

parts, and obtain a manifold X. The map n from Jf to X, defined by

n = na on Wa and by n = id. on X—S makes X the monoidal transform

of X with centre M, and we have S = n~:L(M). This completes the

proof of the sufficiency part of the Main Theorem,,

3.3. The necessity part is trivial. As for condition (/3), we remark

that, if (X, TT) is the monoidal transform of X with centre M of codi-

mension r, then we have cXj = 7r*JGC?)[S]r~1, where JCX, JCj denote

the canonical bundles of X and X respectively.

3o 4. In our Theorem, conditions (a) and (|9) are certainly necessary

and sufficient, but, at the moment, the author doesn't know if these

are independent. In fact in the works quoted in the introduction,

condition (/3) is not explicitly mentioned, and (/3) was used in a techni-

cal way in our proof. Hence it may be conjectured that the condition

(]3) will follow from (a) (and with the value k = r — l*).
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Note Added in Proof {March 15, 197 T): After this paper was

written, Mr. A. Fujiki and the author noticed that condition (a) alone

is sufficient to derive the Main Theorem. This supplement will appear

in the coming issue of these Publications.
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