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A Remark on Bures Distance Function
for Normal States

By

Huzihiro ARAKI

Abstract

An inequality between the norm of the difference of two vector states
of a W* -algebra and the innmum distance between vectors representing
the states in a fixed representation is derived.

For a rormal state co of a PF*-algebra R and a normal represen-

tation n of R on a Hilbert space H^, 8(71,0)) denotes the set of all

vectors x in H^ suck Liat (x, n(Q}x} =o)(Q^) for all Q^R. (We do

not assume o)(l)=l in accordance with Bures.) Let

d,r(o>, a/) =inf {\\x— y\\ ; x^Sfato), jyeSU, a/)

whenever S(7T?6>) and S(TT, a)7) are non-empty and d^Co?, a/) = 1/2 other-

wise. Let

d(o;3 a?7) =inf d,r(fl), a/).
7T

A trivial calculation shows

d(o>, o)0^ [«(!) +

Bures has shown [1] that

We shall derive a similar inequality for a fixed representation TT,

which implies the equivalence of topologies induced by the norm and

d^G^o/) on the set of all vector states in the representation n.

If R is a von Neumann algebra on a Hilbert space H and x^H,

we write o),(Q) -= (x,Qx) for Q^R, If ?r is a representation of R on

/fff and x^Hn, we also write o?4(Q) = (#, 7r(Q)#) for
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Our aim is the proof of the following:

Theorem 1. For all x,y^Hir,

(1) d^Ctt)*, COy)2<^2||fik — (0,\\.

We start with technical lemmas.

Lemma 2. o)x = o)y if and only if there exists a partial isometry

such that Wx=y, W*y=x, WH=Ry, W*H=R3c.

This is essentially Lemma 3, Chap. I, §4.1 in [2] where §t = Rx,

&i = Ry, <B=R\Sl, <Bt = R $!, 0 and ^ are restriction maps of R to

St and $!.

Lemma 88 Let {Fa} be a partition of 1 by central projections of

n(R). For x.

(2) \\cox~coy\\

(3) dT(o)I,a)^)
a

Proof. For the norm, the following computation proves (2)

For d^, we denote the representation jPa7r(G) of Q^R on Faflir by
FCCTT. Then,

= n

Q.E.D,

Corollary 4. Z^f ̂ eS(7r,^), /eSfoa?,), e>0
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(4) \\*-yrv<**(.*» *,?+*•

Let F be a central projection of n(K). Then

(5) i|F^-F/||2<d^(^,«)0)
2 + e.

Proof. From (4) and Lemma 3, we have

On the other hand, we have Fx'&SfacoF,'), F/eSCrc, <*>*>)» and similar

equations for 1 — F, Therefore,

Hence we have (5). Q.E.D.

Lemma 5. For x,y,z^H^,

(6) d^Gi)*, ft^) +d7r(^, OjJ^dTrCft)^, 0)z).

Proof. Let e>0. Let o^eflir, ^, /3 = jc, y, 2 be such that <^3

G S (TT, <wa) and

(7) ||a^-j9a||8<dw(«a,fl)0)2 + e.

By Lemma 2, there exists a partial isometry W in J?' such that

Wyx=yz, W*yz=yx. There exists then a central projection F of R'

and partial isometries WL and M^2 in 7?' such that

Let

Then W[ and W^ are isometric on FH and (1 — F)H and satisfies

(8)

Let

Then we obtain a/eSGi.^), yeS(7t,<o,), s'eSC^co,) and
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(9) \\x'-yT= \\F(x,-y3 f + \\ (1-F) (*,-jO ||2= \\x,-y,\\\

(10) !l/-2'||2 = \\Fdy.-z,-) ||2+ 1| (1-F) (>.-«,) l!2= \\y.-z,\\*,

where (8) and isometry of Wi and Wi on FH and (1 — F~)H are used.

From (9), (10) and (7), we obtain

ifl*, ft**) + cUrGty, oO +e7(e)

where e/(e)-*0 as e->0. Hence we have (6). Q.E.D.

Lemma 60 For x^Hv and Q^n(R)+,

(11) dTrCo)^, a)Qry<,\\a)x — a)Qx\\.

If a)x<^no)y for some nX), then (11) holds.

Proof. Due to the proof of Proposition 1.12 of [1],

Lemma 76 For x^H^ and Q^n(Bf^, (11) holds.

Proof. For Qi<Em(R\ we have

Hence Lemma 6 implies (11). Q.E.D.

Proof of Theorem 1. Let #1 and ^2 be an orthonormal basis of
M. Let n be the representation 7r/(Q)=7t(Q)(8)l on H' = HV®M. Let

0<s<l and

Since e"1^^)^^^^, there exists A^n{R)+ such that ^4 = -

satisfies o)^7(€) = a),, by Sakai's Radon Nikodym theorem [3]. By Lemma 2,
x\

there exists a partial isometry W in T/CJ?)' such that ^(^(8)^1
By the proof of Proposition 1.12 in [1], we have

(12) ||2z(e)-z(e)||2^||^-0)z(£)|i.

Let UlS be defined by (0, C/iyy) - (^(g)^-, IF(r(g)^)) for all

Then UijtEntRY due to PTeTc'C^^CTcCJ?)®!)7. Further, (17*

•(j><8>*i)=.y<8>*i implies (U£Uu+U£U*)y=y. Let yf=Uuy9 y"=U2,y.
We then have
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(13) a)y = 0

The equation (12) now reads as

(14) Ik-o^

where e'(e)— >0 as e— >0. We also have

(15) \\fOy — «/(£)||^||fl), — eu4 | |H-||a),~ a)z(e)||^||a),

where e"(e)-*0 as e->0.

By Lemma 6, we have from (13),

(16) dw(fl>,, fl>,02^lk-fivll = lk"ll = ll/ 'll2-

By definition,

(17) dw(av,flO8^ll/-*!8.

By Lemma 5, we have

(18) dvr (fl), , fl>,) 2<^ {dvr (ft), , fl),,) + dvr (fl),,, fl),) } 2

Collecting (14) — (18) together, and taking the limit of s-»0, we

have (1). Q.E.D.

Remark. If ^CR)7 is properly infinite, then a)z((E) in the above

proof can be realized as a vector state in H^. Hence we immediately

obtain an improved version of the inequality:

(19) dirG^aO'^lk-fliJ.

If n (J?) is finite and has a trace vector (p in H^, then (19) can

be proved as follows:

By the proof of Theorem 1 and Lemma 5, d7r(o)jr, coy) is continuous

in (ox and oiy relative to the norm topology on states. Hence it is

enough to prove (19) for a dense set of states cox and coy. We shall

consider vector states (0A9> and (DB<P, A,B^n(R)+, which are dense in

the set of all normal states of n(R^) and hence in the set of n- vector

states of R.

Let E+ and £L be spectral projection of A — B for (0, °o) and
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(-00,0). For Q=E+-E_, we have ||Q|!=1, Q(A-B) = (A-B}Q

= \A — B\. Since ($<? is a trace, we have

Since £+U + 5)£+^£+U-5)£+ = £+|-4-5| and

\A-B\E-9 we obtain

Q.E.D.

Combining above conclusions, we see that if the finite part

of 7c(J?) is not smaller than its commutant Fn(RY, then (19) holds.

On the other hand, (19) is not true in general as can be seen

from an example of 7r(J?)=^(-Hir), d\mHv=2.
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