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A Remark on Bures Distance Function
for Normal States

By
Huzihiro ARrAxI

Abstract

An inequality between the norm of the difference of two vector states
of a W*-algebra and the infimum distance between vectors representing
the states in a fixed representation is derived.

For a rormal state w of a W*-algebra R and a normal represen-
tation = of R on a Hilbert space H,, S(x,w) denotes the set of all
vectors x in H, such tpat (x,7(@)x)=0(@®) for all Qe R. (We do

not assume w(1l)=1 in accordarce with Bures.) Let
dr(w, o) =inf{{|x—y|; xES(r, 0), yES(x, ")}

whenever S(r, ») and S(z, ") are non-empty and d.(o, ) =V2 other-
wise. Let
d(w, o) =inf d, (0, ).

A trivial calculation shows
d(o, 0N =[0@) +o' (D] o—o.
Bures has shown [1] that
d(o, 0")*=[lo—ol.

We shall derive a similar inequality for a fixed representation r,
which implies the equivalence of topologies induced by the norm and
d,(w,®”) on the set of all vector states in the representation .

If R is a von Neumann algebra on a Hilbert space H and x& H,
we write 0. (@) = (x, @x) for @=R. 1f = is a representation of R on
H, and x= H,, we also write 0, (@)= (x,z(@)x) for Q= R.
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Our aim is the proof of the following:
Theorem 1. For all x,ye H,,
(1) d‘ll'(wz) (Dy) z—gznwx_w?”-

We start with technical lemmas.

Lemma 2. w,=o, if and only if theve exists a partial isometry
WeR such that Wx=y, W*y=x, WH=Ry, W*H=Rx.

This is essentially Lemma 3, Chap. I, §4.1 in [2] where & =Ryx,
fi=Ry, .@:Ri‘@, _@IleRI, ® and @, are restriction maps of R to
& and R;.

Lemma 3. Let {F.} be a partition of 1 by cenitval projections of
n(R). For x,yc H,,

@ sz—wa=§me—wmll,
(3) d'lr <wzy w}’) 2 = Edﬂ'<wﬁ‘a xy wFa J’) 2'

Proof. For the norm, the following computation proves (2)

. —o,|| =sup {Re [0.(@) —w,(@)]; [QI=1, @E=(R)}
=sup{Re >} [wr,.(FuQ) —0r,,(Fo@)]; |QI=1, QEn(R)}
=>] sup {Re [0, (@) —0r,s(Q)] ; Qul|=1, QuErn(R) Fo}
=>)sup{Rewr,.(@) —or,,(@]; |QI=1, QE(R)}
=D @rys—wr,s |-

For d., we denote the representation Fur(Q) of Q=R on F.H, by
Fan. Then,
dr (0., w,)*=inf {||#'—y'|]*; ¥’ €S(x, 0.), Y ES(n, w,)}
=inf S3||Fut’ —Foy'|*; ' €S, 0.), ' ES(m, w,)}
:Z lﬂf{“x;*yénz, x;ESCFa”: wFax)i y;ES(Fan, (Dp,,y)}
:Z iﬂf{”x;—y;Hz; x;ESGT) an:)r J’;ES(W-’; a)Fn-V)}

= 2 d7T (wle zy DF, y) 2-
QE.D.

Corollary 4. Let #'€S(n, 0.), Y €S, w,), 0 and
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@ %"=y |*<dw(ws, @) +e.
Let F be a central projection of =(R). Then
(5) | Fx' — Fy'||*<<dw(rs, 0r,)* +e.

Proof. From (4) and Lemma 3, we have

|Fx'—Fy'|*+ [ (A—F)x'—A—-F)y'|}?
<da(@rsy 0ry) 2+ A (@ct—ryzy O_ryy) 2 e

On the other hand, we have Fx'€S(r, wr.), FY €S(x, 0r,), and similar
equations for 1—F. Therefore,

| Fx'— Fy'|*=dr(wrs, 0ry)?
1A=F)x"— A= F) Y |I’=dn(0a-r2 oa-r»)*
Hence we have (5). Q.E.D.
Lemma 5. For x,y,z€ H,,
(6) dr(0:, ®,) +da(wy, 0,) Zdx (0, 0.).

Proof. Let ¢>0. Let ag=Hr, « 8=2x,%,2 be such that a
€S(n, w.) and
) ”wB_Bm”2<dvr(0)oc; we)®+e.

By Lemma 2, there exists a partial isometry W in R’ such that
Wy.=y., W*y.=y,.. There exists then a central projection F of R’
and partial isometries W; and W, in R’ such that

FA-WW*)=Wi*W., FQA-W*W)=W,W,

A-F)A-W*W)=W;W., (A—-F)QA-WW*)=W.W..
Let
Wi=(W,+WH*F, W,=W.+W)Q—-F).

Then W, and W, are isometric on FH and (1—F)H and satisfies
(8) I/Vl’yz:Fyx, WZ’yx:(l_F)yZ'

Let
x=Fx,+W;x,, ¥=Fy,+1—F)y,, Z2=Wz,+Q—F)z,.

Then we obtain x’'€S(xn, w,), ¥ ES(x, w,), 2€S(R, w,) and
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C) 2" =y [P = F =y P+ 1 A= F) (%, =y [P = [, —:]/%,
a0 Y =ZIP=F.—2) P+ 1A —F) (y:—2) "= 3.~ 2%

where (8) and isometry of Wy and W, on FH and (1—F)H are used.
From (9), (10) and (7), we obtain

dn(os, 0) =8 =2 =[2" =y [+ 11y 2
<dr (0., 0,) +dalay, 0.) +¢ ()

where ¢’(¢)—0 as e—=0. Hence we have (6). Q.E.D.
Lemma 6. For x= H, and Q==(R),
(11 dr (@, 000) "= ||0; —wo|.
If w,<nw, for some n>0, then (11) holds.
Proof. Due to the proof of Proposition 1.12 of [1].
Lemma 7. For x€H, and Q=~(R), (11) holds.
Proof. For @.=n(R), we have
0. (QF Q1) = | QQ: x*=|Q[*0. (QF Q).
Hence Lemma 6 implies (11). Q.E.D.

Proof of Theorem 1. Let e; and e, be an orthonormal basis of
M. Let 7/ be the representation »/ (@) =z(@)X1 on H'=H, QM. Let
0<e<<1 and

z(e) = (1—e)"2xRe; +e"2 yRes .
Since e 'w.e=0,-.,, there exists A€za(R)* such that 21\ =AR1
satisfies w2, =w,, by Sakai’s Radon Nikedym theorem [3]. By Lemma 2,

there exists a partial isometry W in o/ (R)’ such that W(y&e,) :121\2(5).
By the proof of Proposition 1.12 in [1], we have

(12) 1Az (&) —2() |P< 0y — duco -

Let U,; be defined by (0, U,;¥) = (0Qe;, W (@ Re;)) for all 0,7 H.
Then U;En(R) due to Wer/(R) =@(R)R1). Further, (W*W)
-(YQer) =yRe, implies (Ut U+ Ut Un)y=y. Let ¥'=Uny, y"=Uuy.
We then have
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(13) Wy = Wyt wyrr.
The equation (12) now reads as
(14) oy — oo | Z A W (yRQer) —2Resl| — [|2() — xQes 1} *
=y —xl*+y"IP = (&
whete ¢/(e)—0 as e—0. We also have
(15) oy~ wuel| =lloy,— o, + 0.~ o =llo,— o+ ()
where ¢/(¢)—0 as «—0.
By Lemma 6, we have from (13),
(16) du (@5, @) * <0y — @yl = [y [ = [ 9"1%
By definition,
an dw (@7, 0.)* <[y — x[f".
By Lemma 5, we have
(18) dr(o;, 0,)°= {dx (0., o) +da(@y, 0,)}*
<24 (., 0y) 2+ 2d = (wyr, y)2
Collecting (14) ~(18) together, and taking the limit of ¢—0, we
have (1). Q.E.D.

Remark. If =(R)’ is properly infinite, then w.,e in the above
proof can be realized as a vector state in H,. Hence we immediately
obtain an improved version of the inequality:

(19} dﬂ'(wx’ w.v)Zéwa_wJH'

If z(R) is finite and has a trace vector ¢ in H,, then (19) can
be proved as follows:

By the proof of Theorem 1 and Lemma 5, d.(w,, w,) is continuous
in o, and o, relative to the norm topology on states. Hence it is
enough to prove (19) for a dense set of states w, and w,. We shall
consider vector states wap and wzp, A, BEx(R)*, which are dense in
the set of all normal states of z(R) and hence in the set of zn-vector
states of R.

Let E, and E_ be spectral projection of A—B for (0, ) and
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(—o0,0). For Q=E,—E_, we have ||Q|=1, Q(A—B)=(A—B)Q

=|A—B|. Since w, is a trace, we have

019 (Q) — 059 (@) = 0,(Q(A*— B*))

~—5 0 (QUA—B) (4+ B)) +a,((A~ B)Q(A+B))}

=wy(|A—B|(A+B))
— o nitg(E,(A+B)E,+E_ (A+B)E).

Since E,(A+B)E.=E,(A—B)E.,=FE,|A—B|] and E_(A+B)E_
=FE (B—A)E_=|A—B|E_, we obtain

lwap — wspl| =wp (| A—B|*) = || Ap— Bo|*

=dx (CDA? - wB?) .
Q.E.D.

Combining above conclusions, we see that if the finite part Fza(R)
of n(R) is not smaller than its commutant Frz(R)’, then (19) holds.

On the other hand, (19) is not true in general as can be seen
from an example of z(R)=B(H,), dim H,=2.
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