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On Besov Spaces of Functions Defined
in General Regions®

By
Tosinobu MuraMATU

§1. Introduction

In this peper we discuss certain spaces of distributions on an open
set 2 in the m-space R”": Besov spaces. These spaces are first intro-
duced and investigated by O. V. Besov [1] for £=R" (see also [15]),
for a genera! region they are studied by V. P. II'in [6]. We here in-
vestigate in particular their relation to the theory of mean interpoclation
spaces due to Lions-Peetre [10]. M. H. Taibleson [17] discussed also
for the case 2=R" in a different point of view. For the case 2=R"
an operator theoretical approach is available, [5], [7], [10], [13], [19].

To describe our results we need some notations. For a measure
space (M, ) by L*(M; X) we denote the space of all strongly measur-
able functions # with value in a Banach space X such that

M:X) — M
Z"<£)HX (p OO>’

€ss. sup

is finite, where | f|x means the norm of f in X. In particular, L*(M)
=L*(M;C). By LL(R";X) and LL(R*; X) we denote the L*-space
for (R", t7d{) and (R", |x|"dx), respectively; while for QCR" by
L?(2) we denote the L’-space with respect to the usual Lebesgue
measure dx=dx,-dx,. Let a= (a1, -,a,) be a multi-index of non-

negative integers. Then we write

D*=D#..-D%,  D,;=9/8x;,
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x*= _xg".. . .x:'uy

lal:al_i‘"'_'_am a{!:al!”.a"!’

@& a! ]

<ﬁ> lGapr oS
=0 otherwise,

here a=f means a;==p; for j=1,2, -, n. For 2CR* C"(2) means the
space of m-—times continuously differentiable functiors on 2;.%" (2) the
space of functions €C"*(2) whose all derivatives of order up to (m—1)
are bounded and whose all (m—1)-th derivatives are uniformly
Lipschitz continuous. W7 (2), called the Sobolev space, is the space of
distributions f on £ whose (distributional) derivatives of order up to

m belong to L?(2), with norm
(1.1) ”f”w’;‘m)=|0L[Z§”‘”D“f“u<m;

By:mi(0), where j is a positive integer, 0<Cr<(j, called the Besov space,
is the space of f& W35(2) for which the norm

1.2) 1 llszmicor= 1S lwicor + | f Lo
is finite, where
(1.3) | f ] amtwico
— 3 RO DT i) oo 17 g
9., =[] (2.

We denote also
(1.4) | f g = 1D e

For convenience we shall make use of the following terminology:

Definition. An open set 2D R" satisfy the condition C(T,, m) if
there is a vector-valued function 7 (x) < %" (R"*) and a positive number
T, including Ty= - oo, such that

x+iz+tv(x)ep
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for any €8, |z| <1 and 0<<t<<T, (cone condition).

m4+T,j

It will be seen below that the Besov space Bj;"'(2) is dependent
on the sum A=m-+r, p and ¢, and not dependent on the choice of j,
m and r, if 2 satisfies the cone condition. Hence we defive as follows:

‘When 2 is a positive fractional number
B}..(2) =By (@),

where A=m-+7, 0<r<l, m is an integer. When 1 is a positive integer,
B}..(2) =By (9).

Then morm || | #), and the semi-norm | lggq are defined analogously.

Now, we state our main results.

Theorem 1.1. (Interpolation inequalities) Lef 2 be an open sets
satisfying the condition C(T,,i). Then the following inequalities
hold for 0<T<<T, with constant C independent of T and f: () if
rewi;o),

1.5) Tk]f‘wi(mgc{Tm]flw’;(m“i‘”f”L"(.o)}, (0<<k<m)

1.6) Tkhlflsf,j}""'(mgc(T”'*‘ 1 {T"']flwg(m"l" I f llzocar} s
(0O<<k+o<m; 0<<o<<i)

1.7 T f 1 agrzieticp<C(T*+1){T"| f lwmcor+ | f | oo},
(0<k<<i; k<m)

Gi) if feB(R), 0<r<<j, 0<<(2j—1) T<T,,
1.8 TUflwto=C{T™ | F Lyt flos
(O<k<m-+7)
L9 T flatseicn=CCT + AT flggsmicort | Flloos)
O<k+o=m+r1; 0<<o<@)
(i) if feBPTM(R), 0<<k<y, k<m, 0<<(2j—1)T<T,,
110)  T"|flwn=C LT | flagrovticort | flunosd
Consequently, if 0<t<¢ and i=m+r,
.11 B} (2 =B;7"(2)
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with equivalent norms, and for />m>1">0
(1.12) By, (Wi () CBj(92),
1.13) m@c Wi(e) cB;.(2),

with continuous injections.
Furthermore, the norms (1.1) and (1.2) are equivalent to the

norms

1.19) Lf Twmcay+ 1S ooy
and

(1.2) Lf 1 sremicay+ L f llzecan,
respectively.

The factors (7°+1), (T*+1) in (1.6)~(1.9) are removable if
we may take ¥(x) to be a constant vector.

By means of another method Il'in proved analcgous inegualities,
but his condition on £, though very close to that of us, is somewhat

complicated, in the author’s opinion.

Theorem 1.2. (Approximation theorem) For any open set 2,
Co(DNW2(2) and C(2)NB3 () are dense in Wi(R2) and
Bimi(Q), respectively.

Combining two theorems, we have

Corollary. If 9 satisfies the condition C(T,, j), then W73 (Q)
and B3ii(9), 0<«c<<j, are identical with the completions of the seis
of C(2)~functions f whose norm given by (1.1") and (1.2) is finite
with respect to those norms, respectively.

Our proof for this theorem is the same as that given by Meyers-
Serrin [11] for Sobolev spaces, however for Besov spaces we need some
preparations.

Next, we shall explain mean interpolation spaces. Let X, Y be
Banach space contained in a Hausdorff linear topological space X. By
W(p, & X; 4,9 Y) we denote the space LL*(R'; X)NLy"(R'; Y)
with norm [lullw=max {{|ul ¢, |#iligmmr v}, where LEF(RT; X)
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=u@®); tu@®) e L4 (R ; X) with norm [[Fu(d)] ez x.  The mean
interpolation space S(p,& X; ¢, Y) is the space of elements f in
X+ Y such that

a1 ={uo%, ueWps Xign V)
with norm
@15)  Uf ls=in ([l £ 4 ).

Here we assume that £-»<<0, and X+ Y is the space {f+g;feX,
g€ Y} with norm Al xe=inf{|fllx+ lIglly; fEX, gE Y, f+g=h}. Tt
is easily seen that (cf. [10])

(0<<p<1, 2#0)

with equivalent norms.

Let 4 (X,Y) be the space of functions #(¢) of the complex
variable, holomorphic in the strip 0<<Ref<<1 with values in X+ Y,
continuous and bounded in the clesed strip 0<Ref<1 with values in
X+Y, such that u#(4t), tE R, is continuous and bounded with values
in X, and u(1+1it), {€ R, is continuous and bounded with values in
Y. Under the norm

[l ]l 9 cx,vy=max {sgpllu(it) [ x, sqpllu(l +12t) llvy

H(X,Y) becomes a Banach space. The space [X, Y], 0<0<l, is
the range of the mapping u—u(0), us JH(X, Y), with the norm

”f”[x,Y],,:inf{“%“ﬂ(x.n; f=u(0)},

(c.f. [4], [8]). With these notations we state

Theorem 1.3. (Interpolation theorem) Let 0<<0<<1 Then
By2(2)=S(q, 0, L*(2); q,0—1, Wi(2)) with equivalent norms. Here
we assume that 2 satisfies the condition C(To, m), and that m is a
positive integer.

Lions-Peetre [10] proved this theorem for the case £=R", and
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Lions-Magenes [9] proved the case where £ is bounded and has a
sufficiently smooth boundary and p=¢q (Sobolev spaces of fractional
order) with the aid of the result of Usvenskii [18]; while we shall
prove this theorem without any smoothuess assumption on the boundary

of 2.

Theorem 1.4. Let o and u be positive numbers and let 0<<9<<1.
Set 1= (1 —6) us+ 0z,

1 _1-—9 +_19_ 1 _1-—9¢ i]
p b b’ q 41 g

Then, (1) if p1=q. and p,==q.,
B..(2)D5(q,0, By, (25 q,6—1, B;,,(2)
with continuous injection. (i) If p<q, and p.<gq.,
B;..(2)cS(q,0, B}, (2); q,0—1, Bi;,,(2)

with continuous injection. (iii)
1);,4(52) = ['B’;ll;ql(g)l ;L:,q:»(g)]e

with equivalent norms. Herve we assume that 2 satisfies the condition
C(To, m) where m is a positive integer with m=>pu, ps.

Grisvard [4] proved this theorem for the case 2=R" by means of
an operator theoretical methed. An important consequence of the

theorem is the following
Corollary. Under the assumption of Theovem 1.4,
5.0 (@) N B (2 CB;,(2),

and
1F 13 @=ClF it ol F Nt o

(a generalization of the Gagliardo-Nirenberg inequality), where C is
a constant independent of f.

The last assertion follows from Theorem 1.4 and a theorem on
complex interpolation spaces (cf. [4], [8]).

Our main tool is the integral representation of the form
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(1.16) S:t’“‘dtSK(x, 2)f(x+itz+w(x))dz,

which was employed by the author in his study of the imbedding
theorem for Sobolev spaces, [12], instead of that of a potential type.
The integral (1.16) is very similar to usual potential one, in fact, if
¥(x)=0 it can be transformed into potential type one, however any
potential type integral can not be transformed into the form (1.16),
therefore our representation is more precise than that of the potential
type. Moreover integrals of this form are considerably convenient to
deal with, as seen later on. One of the reason is that they can be
divided into two steps, the integration with respect to z and that with
respect to £. The singularity occurs only in the later step.

We end this section by illustrating some examples of open sets
satisfying the cone condition.

Example 1. R" satisfies the condition C(+ oo, + o) with #(x) =0.

Example 2. Let @ be a star-shaped bounded region with respect
to a ball of radius 7, with center at a. Then £ satisfies the condition
C(ry, +o0) with T(x)=7;"(a—x).

Example 3. A cone 2= {x;|x|'x= A}, where A is an open set
in the unit spher S= {x;|x]| =1} such that for any «, £~0 and any
X1, X in A ax;+B%:/|ax,+ x| EA, satisfies the condition C(oo, =)
with #(x)=constant vector.

§2. Inequalities for Some Integral Transformations

We state first the integral representation formula which is proved
in [12].

Lemma 2.1. Let 2 be an open set in R* satisfying the condition

C(Ty1). Let o(x) be a C*~function such that Sm(x)dle, and its

support is contained in the unit ball B. Then for any positive
integer m, any multi-index B with || <<m, 0<<T<<T, and any func-
tion f=C"(Q),
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2.1) F®@)
- = Srt"’"’BHdtSwa(x, 2 fEB (gt tz 1w (x))dz

la] =m—[B]J0

+ T—'B‘gwm,g(x, 2 f (x4 Tz+ Tw(x))dz
where = Df,
a2 = T Gy )y,

and

s, 2D)=(—1)'" 31 L Der(zrw(a))ow)).

lal<m—18l .

Corollary. Let 2 be as above. Then for |Bl<<m+j, 0<<T<<T,
and for any function f=C"(Q),

2.1) @@
. STt"’“B"ldtSK,-,a,B(x, 2 f O+ tz+1w(x))dz

lal =mJ 0

+ T~IBISa)mH’B<x1 2)f(x+Tz+Tw(x))dz,

where
K oa(x,2)=(—1) | ?3 CrwsDloaiv-s(x, 2),
y=j

a+Y-B

and {Cyag}, |v| =7, |al=m, are constants such that

> Crep=1 for a fixed a=p.

a+yY=a

Proof. By (2.1), where m is replaced by m+ j, we have (2.2)
with the aid of the integration by parts, since

Al Swa+y_3(x, 2) fe D (x+tz+tw(x))dz
—(—1) 'V'SDZwa+v_B(x, 2) fO(x-+tz 41w (%)) dz.

Remark 2.1. The integrals contained in the right hand side of
(2.1") are not improrer even if |3/=m in spite of their appearance.

To prove the boundedness of integral transformations we frequently
make use of the following well known fact:
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Lemma 2.2. Let (My, 1s) and (M, 12) be o-finite measure spaces,
and let K(x,y) be a measurable function such that

S \K(x, ) |dm(x)<C  for a.e. y in M,

| 1K@ dun=C  for ae. xin M.

Then the integral operator with kernel K(x,y) is a bounded
operator from L'(M,) into L’(M,) whose operator norm is not greater
than C.

We start by stating and proving some basic inequalities concerning
integrals similar to that employed in the formula (2.1).

Lemma 2.3. Let 2 be as in Lemma 2.1,

@) If we define
2.2) Us(t, %) :SBif(x+tz+ty‘f(x)) |dz

for fe (@), 0<t<<T,, then

(2.3) [ Us(, ) lercn=ab"|| f || s,

where b=sup|¥(x) | +1, and e is the volume of the unit ball B.

(i) If we define

(2.4) U, (¢, x)zg dzg !Zj<—1>”<j)
B (2j—1)B v=0 14
><f<x+tgﬂ—y>j@£+t¥f(x)>|dw

for fEB3I(Q), 0<<c<j, 0<<(27j—1)t<<T,, then

(2.5) 10, 9 |vo=ab'i| Fitadz,

where F;(y)=

(N (—17F o)

v=0

L"U‘J'.y)’
@.6) 1T ) i CE L f Lo,

and
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T , dt 1/q .
en  {{1ue it <e T f e
for 0<<(2j—1)T<<T, l+-=0,
where C is a constant dependent only on n, q, ¢ and b.

Proof. (i) From Jessen’s inequality® it follows that
10 D= | 1f e rt2) e+t
[l Jom £%(0)

éSwa (x+t2)e(x+12) 0z,
<ab"|| f || txa»

where e(x) is the characteristic function of 2.
(ii) Using Jesser’s inequality and replacing w by z+ jw as vari-
ables of integration, we see that

1 U; @, 2) | 2oco
< Swdzg jTle(x+iz+ baw) {g(f)<—1)v(x+tz+tyw)}dw

2B y=0

<}

gab"SZBj"Fj(tz)dz.

’
L?(2)

dw,

L2y, tu—22)

g(—l)”<5>f(x+tz+tuw)

By Holder’s inequality we obtain that the right-hand side is not greater
than

1/q
cff Fiearizlad<crif o
Finally, from (2.5) it follows that
Ut Dt 0 =C T Fit2)tdz,

=G\ Asl/Dm 1917 F ) 517y,

which gives (2.7) with the help of Lemma 2.2, since

S ( !y] )ﬂ"‘T dy _ 2n+7an SN < ‘yl >n+1ﬂ: 21141'
28\ 1 [y]*  n+c’ s\ f t n+c’

1) Generalized Minkowski inequality.
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Corollary. Under the assumptions of Lemma 2.3 the following
inequalities hold for fC()NL*(2).
1) If 0<<o<<k, then

2.8) 1w, o l1on( 1) 151} o

< {Ct—a”f“u’(m for j=0,
- Ct7—allflE;:‘;(!]) f07’ ]21;

where h(s)=min(l,s).

) If l+7—6=0, 0<<(2j—1)T<T, and 0<<o<lk, then

. Y e
2.9) S1o Dlwon(13L) 151w,
§0T1+7~a]fl15;;£(9) for j=1.

Proof. (i) A simple calculation shows that

LEOIEMIC s

L2 (R") IRECEDYY.

which gives the desired inequality (2.8).
(i) The left-hand side of (2.9) is equal to

HSK( 9, Dot

b
q "
Ly (R

where K(y,8)=(/|y])°h(13]/8)% @) =|U;(¢, £)t"°||xe>. Therefore
(2.9) follows from (2.7) and Lemma 2. 2.

Lemma 2.4. Let 2 be an open set satisfying the condition
C(T,1). Assume that

K(x, Z) :[ 2 ngHa(x, Z))

«lSi-
where DEHy(x,2)C(R"X R") for any a with |a|=j—1 and for any
B with |B|<j—1, and supp H.C R*X B, SHa(x,z)dz:O for any «a
with la|l=7—1. Set

(2.10) V%) = SK(x, 2 f (x+tz+ 10 (x))dz.
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Then, choosing an appropriate function K(x,z w)EC(R*X R*X R")
with support contained in R*x Bx (2j—1)B,

@ Ve ={{&e w50
xf<x+tL"“>jfiﬂ+tw(x>>}dzdw

holds for all f=C'(Q).
Proof. Tt is sufficient to prove the case where K=D?H. Case
7j=1. It is clear from the assumptions that

Vit ©) =SSK(x, Do) {f (x-+tz+17(x))
—f(x+tw+ 1w (x))}dzdw,

where o is a C~ function such that Sw(x)dle and supp oC B.

Let K=D¢H= 66,2 DEH, and assume that the formula is valid for

k

K,=D?H. Then, integrating by parts, we have
VG, x)=—tSK1(x, Df(xrtztw(x))dz (fo=Duf),

- —tSSK (%, 2, w)

x {S(——l)”(j :1) f,,<x+t (7 "1].__“)1“ v +wf<x)>}dzdw,

— (j_j"l)"t SSK1<x, 2 2 (]']_—Dw)

% {:z:(—l)v(f ;1) f,,<x+t—(j——”>jziui+tw(x)>}dzdw,

(interchange the variables of integration w-»L(]._—D-ML),

~ i-1 ; i
~{{R 2w {20 (—1)v<uf) f(x+t<f—”>j.z+—”w+m<x))}dzdw
(note that i{f(xﬂ (7_“>.z+”w>} :tf_."f,,<x+t(ii”).z—+”ﬂ)
02 J J J
and integrate by part with respect to z,), where ffvl(x, z,w) is the
function whose existence is assured by the inductive assumption, and

K (x,2,w) is given by
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K(x,z w)=- G- 7 9k a%kf{](x, 2, i(i]——nﬂ>

Since SK (x,z, w)dz=0, from the above identity we obtain (2.11).

Lemma 2.5. Let K(x,2), K(x,2z,w), #(x) belong to B (R*XR"),
B (R XR"<R"), B (R"), respectively. Then there is a constant C
independent of t,w,x,y,z such that

2.12) Ei}(—l)”(i)K(eruy,z—%wf(x)—w(x—kuy))}

=c{u(L) +naisn,

(2.13) é(~1)”<Z>K<x+py,z—%—ﬂff(x)—w(xﬂwy),

) ~2 e+

.
=c{u(2LY +naisn,
where h(t) =min(¢, 1).

Proof. 1t is not difficult to see that these inequalities follow
from the inequality

51-17(D)e)

v=0

1 e1

ggo...gol¢(i~1)(sl+ b Siy) — (s 85+ 1) |dsy--ds;_s,
a7
st

Combining Lemma 2.3, Lemma 2.3 Corollary, Lemma 2.4 and
Lemma 2.5 we obtain

where ¢V ="2=_%_ o= B~ (R).

Lemma 2.6. Let i be a positive integer, k a non-negative integer,
2 be an open set satisfying the condition C(Ty, k+1), and let K(x, z)
eF" (R X R").

(A) For any funciion fEC(Q) and 0<t<<T, we define V(¢, x)
by (2.10).
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Then the following inequalities hold for any function f belong-
ing to C*(Q)NL*(Q).

(1) If 0<t<T,
210 VD |ww=CSE I |
(i) If 0<<o<<i, 0<t<<T,,
215 V(D laprio=CEE+ D 2

i) If 0<<o<<i, oI, 0<<T<<T\,

@1 [[vemea] OO TS v

by

(B) Assume moreover that
K(x, Z) :l IZ ID?Ha(x; Z)

where DPH,(x,z)< (B (R"XR") for any « with |a|=j—1 and any
B with |B|<j—1, and that
sup H,C R"X B, SHa(x, 2)dz=0 for any |a|=j—1.

Then, the function V(&, x) given by (2.10) for feC*(2)NB3i(2)
(0<<z<<j) satisfies the following inequalities:

(i) If 0<(@j—t<T,, 0<<o<

2.17) |V, x) ]Wz(ﬂ)écgﬁ_hlf | 57 3ca,
(2.18) | V&, %) ’Eﬁf‘q""'(g)écg(ta‘l‘ iSRSV B2 o)

(i) If 0<@j—1)T<Ty, l+r—k—06=0, 0<<6<t, then

(2.19) [S Vit, ©)dt

ro.i gC(TG‘*‘l)ETHT_U_hIfiu;:g(g)-
Bp,q D h=0
Gii) If 0<<@j—1)T<T, and if 1+r=k, then
T 1/q 4
@2 [1ve et =en e £ e
0 k=0 4

If 0<@j—-1)T<T, and if l+r=k+o0, then
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T dt 1lg
(2.20") {So | V¢, )t %p”'*;""'(a)—t—}
k
<C3 T4+ 1 T 1 Lo

Proof. According to Lemma 2.7, which will be proved below,
DEV(t, x), 1Bl =k, is equal to the sum of functions of the form

t"’SK,,,B(x, OF Gt+tz+1(x))dz,  0=<h=F,

so that it is sufficient to prove the case where 2=0.
First observe that

@2 (S Ve s
<Cr(2L) +rA5D U@ a9,

where U; is the function given by (2.2) and (2.4), in virtue of Lemma
2.4, Lemma 2.5 and the identities

V(i x+vy)
(53,2212 @) f 1z b (),
=Sgl?<x+uy, z——”tji+w(x) —T(x+vYy), w—%ﬂlf(x) ”?FOH'”}’))
% {’éo(—l)'(i)f<x+tw+w(@>}d£dw-

This gives that

(2.22)

S (-0(2) Vit a9

L2, )

<G+ +rAy DU D

Combining this with (2.7), (2.8) and (2.9), we obtain (2.15), (2.18),
(2.19), (2.20) and (2.20"). (2.14) is an immediate consequence of
(2.3). According to Lemma 2.4, (2.17) follows from (2.6). Finally,
it follows from (2.3) and (2.22) that
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]S Vi, x)dt

s

<7 Cosuplyl | {r( L)+ nCly et f oo

which gives (2.16). In fact

|y|“’S < - )taildté a(ii—a) ’

Remark 2.2. By our argument, when K is independent of x and

#(x) is a constant vector, we get the inequalities (2.15), (2.16),
(2.18), (2.19) and (2.20") without the factor #*+1 or 7T°+1.

Lemma 2.7. Let 2 be an open set with property C(T,, m), and
K(x,2) be a C*function. For fC'(2) we define V(¢,x) by (2.10).
Then for any multi-index a with |a|=m we have

DV, 2) =337 Vil ),
where
Vit x) = ng,a(x, Of (x+tz+ 1w (x))dz,

_ 8 07 0K, . 3
Ko.o—“K, Ko,on Koa ,Zl o, oz, f(W D D,,D

Ka—(—1) = (‘;‘)pzm,a_y (x,2).

Iv|=47Za

Proof. Induction on |a|. Let D*=D,D? and assume that the
formula valid for DPf. Integrating by parts, we get

DeV(t, %) =D, {% 1Vt 1)},

18]

—S [S ai (%, 2)f (B-+iz+10))dz

j=0

+ SEKB(.')C z)( ) fi (x+tz+t§lf(x))dz]

= az t S{G‘K’B (x,2)— Z. gi 66‘[2{6 (x, z)}f(x+tz+t¥f(x))dz

S 2o 5 o (2w (),
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= ﬁt"'SKj.a(x, 2) f (x+tz+iw(x))dz,

where §;, denotes the Kronecker’s delta and

9 " 0w, 0K, 0
K'OL:_—— g i ],B___
o, Kis .Zzlax,, 0z. 0z

j—1,Bs

for which we cbtain by the inductive assumption

Katn =2 53 (—0m(F)Dik,e

3%, 1[*/l=i,v;13
0¥, o
i1 0%, 0z; LiviZiv=s

” 0z, {|y|;12—1,7;5< D <T>DZ"(°'B:7 ,

~-1 5 (YD1,

1Yl=7i7Sa

(—1)!‘(‘;)011{0,6@

since

_ aKo,g _ " 897/', a.[{o,g IlZ)f(B) <B)
Ko 8, Eaxk 8z, (T \r )

=G, re— Ly ).

Noting that wa(x,2) and Kj;.s(x,2) employed in Lemma 2.1 and
in Lemma 2.1 Corollary, respectively, has reguired properties, and
combiring (2.1) and (2.1") with Lemma 2.6, we can now complete
the proof of Theovem 1.1. That is, we can conclude that (1.5),
(1.6) and (1.7) hold for any feC"(@) N W, (L), while (1.8), (1.9),
and (1.10) hkold for any feC"(@)NBy:~'(2). The additional as-
sumption, the smoothness of f, can be removed in view of Theorem

1.2, which will be proved in the wext section.

§3. Approximation by Smooth Functions

To prove the approximation theorem we consider first the case
where 2=R":

Lemma 3.1. Let s:(x) be ¢ Co—funclion such that supp p,C B,

0 (X)=0 and Spl(x)dle. Set (%) =0 (%),
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(i) If fe Wi(R"), then
T e -~
and fxo—f in Wi (R") as y—>oo.
(i) If fe B (RY), 0<c<j, then
£ *0llzzmicmn < f lsz+=ica",
and fro,~f in Byi"/(R") as y—>oo.

Proof. From the relation D*(f*¢)=f“x¢ it follows that

S0 = 35 01175 —2) iz
= lbvzees- (=D,

Since the set of all continuous functions with compact support is dense
in L*(R"), it follows that for any function f belonging to L*(R")
and for any positive number ¢ there is a positive number 3d=06(f,¢)
such that

I f(x—2) —f () | worn<le if |z|<<o.
Hence, taking y>max d(f, )™, where the maximum is taken over
all multi-index «, |la!<m, we obtain

| D*(f*o—1) uégm(Z) I £ (x—2) —f @) | remdz=e,

i.e., the first part of the lemma.

(ii) With the aid of the first part and the identity D*(f*¢)
=(D*f)xp it is sufficient to consider the case where m=0. Let
feBYi(R"). Since

S0 () retarin)

LAR")
|

=lo@ | £ (]) fGa—z+ip)

dz,
LY R™)

LICR")

S0 f e+ip)

the inequality concerning norms follows. Consider next the function
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T =5 0(]) o Coin) —F s}

LR

From Jessen’s inequality it follows that

<2F;(y),
where
Fn=3 (—1)f<f>f(x+iy) :
bor | LA(R")
also,

J»=2{p@F(-2dz.
Now, for any positive number ¢ the inequality
S 191 _<.er Myl rdy<<2 e

holds with some positive number 7, since f€ B3 (R"), and Fy(—2)<le;
for any positive number ¢, if |z|<<¢(f,e,), since f L*(R"), hence J(¥)
< 2e if v=>>0(f,e)”". Thus we have

|f*0.—f1 %;‘Z(R"): g](y)f'y | =ty

§2qgu _E)yl T rdy + 2"*’eigm _ylTdy,

g? 21‘ qsg
2 ' wqre’
<ef,

taking e; so small that e{<277%'cgr™e?. This completes the proof of
the second part.
As an immediate consequence of Lemma 3.1 we have

Corollary 1. The approximation theovem is valid for the case
2=R"

Therefore, the interpolation inequalities hold for any function
fe Wi;(R") or feB; ' (R"), in particular,
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Corollary 2.
(3.1) pel(B) =By i(RY), if kEto=m+rc, 0<<o<i, 0<<c<j,
(3.2) Wi(R) DBy (R D Wit (RY), if 0<<c<<jy,
(3.3) Byro+i(RYC Wi(RD) CBYZ2 (R,  if 0<G<<j, i<m.
For convenience we shall denote by X(2). the set of all functions

belonging to X(2) with compact support contained in @, where X(2)
is a space of functions defined in an open set 2.

Lemma 3.2. For any open set 2
(3.1) By (2),=Byi ()., if kto=m+tr, 0<<o<i, 0<lc<j,
3.2) WH).DByi(Q),D Wit (Q)., 0<<c<j.

Proof. Noting that X(2).c X(R*) if we define f(x) as 0 outside
of £, and that any function f& X(R") with compact support contained
in 2 belongs to X(2)., where X= W} or Bj:™’, we find that the lemma
follows from Lemma 3.1 Cor. 2.

For the proof of the approximation theorem for an arbitrary open

set we need the following lemma:

Lemma 3.3. Let X be one of Wy and B3 and let o= (5 (2).
Then of € X(2)., for any feX(2).

Proof. For the case X= W7} the lemma follows from the Leibniz’

formula:
D<(ef) = 5(%) D% D=,

To prove the lemma for X=B7*"/ we first consider the case where
m=0, 0<<r<<l. Note that

B0 en

| 7

4§( )<
+3y(] >Hf(x+zy) {o(@+i9) — () i

éCF,-(y)+CHfHu<mh(!yl),

L% Ci,y)

10 3)
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where 2(¢) =min(¢,1). This gives of € B%i(2).

Consider now the case m=0, 1=r<(j. Assuming that the lemma
for the case where [¢]<<k—1 is already established, we shall prove the
case [r] =K. Choose a function {»€Cy(2) so that Yr(x) is equal to 1
if the distance from x to supp ¢ is not greater than (2j-1)8, where &
is a positive number such that dist (supp ¢, 02)=278, 02=the boundary
of 2. Then ¢f =¢yrf for any f. Let f€Byi(2). When |y]<8, we
divide the function

7= 5-0(?)

LY 0;, )

into (j+1) parts:
Fm=s()EE0 () e+ G-}
X i(—1>”(i>f(x+vy)
=33(4) 7.

L72j,5)

J; is estimated by a constant times F;(y), hence

Slnqu _”fz(y)q C!f]B“w)

Iyl”_
Next consider [;(y), 0<i<<Tj. Since (x-+vy)=1, v=0, -, j—1, on

the support of
S0 el G-
for any fixed y with |y| =9, we have
J(M=Cilyl"G:(y),
where g=+-f and G,-(y)zug(—l)”(z)g(x%—yy) “mr » SO that

iy

|, Jorivray=c] _Giyiray,
=Clg| B;';;'(.r.))<°°,

in view of g=+f&B}i(2).=B%i(2), for some positive ¢ such that
t—J+i1<¢<, Also we get
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|, ool immay=Cy 31y liar<ee,
171 <8 7] <8

[ Joyisiray=c| 1y17dylf lm<es,

hence of €B%}(2).. Now, proceed to the case m>>0. Let f& B} (2),
and let @ be a multi-index with |a|=m. From Leibniz’ formula it

follows that

Da(¢f):J = < ) (B)f(oc B)+ Z( ) (B)f(a B)

i=0| ITES
:go+g1+"'+gf-
The first term g, belongs to BLi(2), in view of the lemma for the
case just proved. Since f®PeB[y/(@)CBirri(Q) for |Bl=m—i,
r—1<o<lr, t=1,--,7—1, it follows that g, €B. 7/ (2).CcB%i(®), in
virtue of Lemma 3.2. f®e Wi(Q) for || <m—j, hence g, Wi(Q).
B%i(2).. Thus D*(¢f) <= B%i(2)., which completes the proof of the

lemma.
Now we are in pcsition fo prove the approximation theovem. Our

proof is due to N. G. Meyers and J. Serrin [11]. They discuss the
case for W7(2). Let X= W% or B7*"/. Let £, be the open set de-

fined by

2,={x;x€8, | x| <, dist(x, 02)>1/1},
where v=1, 2, -+, 2,=2_;=the null set. Choose a partition of unity
g\lv,,(x) =1 on £ such that

supp Y C 21— 2 g, v=1,2, -+
Applying Lemma 3.3, we find that » f& X(2), for any f= X(2) and
v=1,2, -+, so that we can choose C{-function ¢, satisfying this condi-
tions

supp . C {53 12| <1/ G+ D 6+2), {n(dr=1, (00,

and

||¢V*’ll’|l'f —"ll‘VfHX(!J)éE/Z”; V:]-, 2; Tty

where ¢ is an arbitrary positive number, with the help of Lemma 3.1
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and the fact that X(@).c X(R") (the norm of the injection=<1).
Evidently, supp ¢.*yn,f is contained in the set £2,..—%2.. so that the

series
g= le*«lm f
=

is convergent and defines a function in C~(2). Furthermore, for £=1,

2, -+, we have
1 = &lacao = I Comf —4nf lcan
=SS~ lcar<s,

from which we obtain, letting k—oo,

I f—gllxn=e,

according to the Lebesgue monctone convergence theorem.
This completes the proof of the approximation theorem.

§4. Proof of Theorem 1.3 and Theorem 1.4

The last two theorems can be proved as follows. First, note that
for an open set 2 satisfying the condition C(7,, 1), for any function
feC"(2) and for 0<<T<<T,

T
0

4.1 00 :S SM(x, 2) f(x+tz+tw(x))dz%£

+ Sw,,,,o(x, 2 f(x+ Tz+ Tw(x))dz,

where
4.2) M(x, 2) = > (=D Diwa(x, 2),
a|=m
and e, wso are the functions given in Lemma 2. 1.

In the following part of this ssction we shall fix a positive integer
m, and denote by M the function given by (4.2).

Lemma 4.1. Let 2 satisfy the condition C(T,, m). For 0<<3T
<T, and for feL'(Q)+L"(2) we define Ef=u by
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SM(x, Of (x+iz+t0))dz when 0<t<T,
(4.3) ul,x)=

m

%Sw(x Of ot Tzt Tw(x))dz,  when t>T.

Then E is e continuous linear operator from L'(2)+L=(2) into

L (R L2 +L=(9), its restriction on By, (2), 0<<60<<1 is a bounded

linear operator from BI(Q) inte W(g, —6m, L*(2) ; q, —(6—1)m,
“(2)), and PE=the identity on B (), where

(4. 4) (Pu) (x) — S“’u @, x)%.

Proof. The first part of the conclusion is obvious. Let feC"(2)
NBi"(2) and let u=Ef. For 0<t<T, integrating by parts k-times,

we have
u(t, x) =t”SI§=kMB(x, 2) [P (x+iz+1w(x))dz,
where
. . n—, m - [24 a—fB -~
(4.5) Mix, )= 3 (~1) < k) <B>D2 w0a(%, 2),

since M(x,z) is given by (4.2), while

o [a{>_l<a> B Na—B
b |t§=k< k B DED,
Combining this with Lemma 2.6, we find that

T _ dt 1/q

{iomauce, 210 4 <C1 7 Ligncon

and that

T”tm(l—e) &, x)|[%m dt 1/"<C .

. ull, x 1WP(P)T = T!lep:’;(.o)-

It is easily seen that the integrals over /== T are estimated by a constant
times | fllme in view of Lemma 2.6 (A). Thus we obtain for

feC(@nNaBr(

“ u “ W(!I,—9m,L’(.Q);G,—(G—l)m,W:‘(Q))gc“f ”Bg:’;(g).
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Also we have PEf=jf in view of (4.1). Since C"(2)N B} (2) is dense
in B (9), these iaeguality are valid for every feBJ,(2), and the
lemma is proved.

Next, corsider a lemma, which is av analogue of Lemma 2. 6.

Lemma 4.2. (A) Lot & and K bz as in Lemma 2.6 (A). Define
the operator Ae by

(4.6) (Act) (x) = S:tl*ldtSK(x, Dult, x+tz-+17(x))dz,

where 0<<T<<T,, u(t,x)=LL(R";L*(2)). (1) If >0, then Au
=lim A exists in L*(Q) and

4.7 | Avt| reay=CT"* ”uHL';(R*;LP(:))-

(i) If 1—6=0 and if 0<lc<<i, them Au=lim Aau exists in
B3i(2) and

(4.8) | Au| B;;;méc( T+ TH|u HLZK(R*';L”(.O))-

(B) The same facts hold where LL(R*;L*(2)) is rveplaced by
Ly (R"; Byi(2)), 0<<c<<j, I replaced by |+, under the assumptions on
2 and K stated in Lemma 2.6 (B).

Proof. It is sufficient to prove the inequalities for any function
u(t, x) which is continuous C7(2) N X (L)-valued function with compact
support in R*, where X=1? or B%I since the set of such functions is
dense in L% (R™; X(2)) in virtue of the approximation theorem (see also
e.g. [3] chap. 4).

Part (i) is evident in view of Lemma 2. 3.

Consider part (ii). Let u(¢,x) be a continuous C’(2)NL?(2)-
valued function with compact support in R". Then f=Au is equal to

S:t’“‘SK(x, Dult, 5+tz-+1 (%)) dzdt.

Following the proof of Lemma 2.6 (A), we have
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)

<c{efn (L) 1D} et ) lnmdt.

L% Q41 5)

Thus, applying Lemma 2.2 to this integral transformation, we obtain
the desired inequality (4.8), with the aid of the facts that

S t"]y]""h( ” > t Sa(zi—a)

ol |~ Iy!>" dy _ ina
St 7] h(t yl* eG—a)

The above proof also gives that the operator norm of A: is not
greater than C, which is independent of ¢, so that the lemma follows
from the following well known fact: if {A4,} is a sequence of bounded
linear operators from a Banach space X into a Banach space Y with
4. <C, n=1,2, -+, and if lim A,x exists in Y for every x belonging
to a dense subset S in X, then Ax=1im A,x exists for all x€X and
1Al =C.

The proof of the lemma is complete.

Finally, according to the above lemma we have

Lemma 4.3. Let ], be the operator defined by

4.9 (Jaw)(®) = SZVSM@, Dult, x+tz+ 1w (x) )dz%

for us Li,.,(R*; L'(2)+ L~ (2)). Then, considering as an operator from
Ly (R L7(@) + Ly (RY; W3(Q)) into BY.(2), where 0<<6<,
J. converges strongly to a bounded operator J, and Ju=f if u(t, x)
=f(x) for a.e.t. Here we assume that 2 satlisfies the condition

C(Ty,m), and T is a number such that 0<<T<<T,.
Proof. Set

o[ §frmwenn
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From Lemma 4.2 it is easy to find that J{¥, regard as an operator
from Ly "(R";L*(2)) into L?(2), converges strongly to a bounded
operator. With the aid of Lemma 2.7 we can find that J{* converges
strongly when considered as an operator into BJ,(2). In the same
way we see that J{¥ converges strongly when considered as an operator
from Ly (R*"; W5 (2)) into BY%(2), observing that, in view of (4.2),
T dt
(JPu) (x) = ”g;‘-mgllygt"’MB(x, 2)u® (¢, x+tz+t§1f(x))dzT,
where u® (¢, x) =D (¢, x), Mas(x,z) is the function given by (4.5).
Next consider the convergence of J{¥. From Lemma 2.3 it follows
that

175l =C T 1t ) oo

<C. Tt u(t, x)| LY (R*:L0)

and that J®Pu—JPu tends to 0 as v, u—>oo if u# belongs to Li%"(R*;
L(@)). Thus J¥® converges strongly to a bounded operator as an
operator from L%7%"(R";L?*(2)) into L?(2). Also, from Lemma 2.6
and Lemma 2.7 it follows that J{® converges strongly as an operator
into B%4(2). The strong convergence of J{¥ as an operator from
Ly (R*; W3;(2)) is proved analogously.

The last assertion is obvious in view of (4.1).

This establishes the lemma.

Now, Theorem 1. 3 follows immediately from Lemma 4.1 and Lemma

4.3, and Theorem 1.4 follows also in virtue of the following theorems
due to P. Grisvard [5]:

Theorem 4.1. Let X be a Banach space and let X, X,, Y, and
Y, be Banach spaces contained in X with continuous injections.

(i) Assume that there exists a continuous linear operator E
from X into Li.(R";2X) such that its restriction on S;=S(p;, n:, X;;
D, wi—1, Y. is a continuous linear operator from S; into W(p;, &,
X500 (ni—1), Y, x#0,i=1,2, and that PEf=f for f&S:+S,,
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where
("undt
Pu= SO u(t) ;e
Then
S(p’ 0: Sl; ﬁ; 0"*1: Sz) Cs(py 7y -X9,p;p7 77_1: Yﬂ,p) :SG
with continuous injection, where

_ (A —6) A1 + Oere 1 _1-¢ 0

A—0n+62 ' D m +77?’
XG,Ii:S(p) 0) Xl;pyﬁ_la XZ); Y9,17:S<p, 07 Ifl;p,0~1y YZ)'

7

(ii) Assume that there exists a continuous linear operator J from
L+ L. into X such that its restviction on L, is a continuous linear
operator from L;into S,, i=1, 2, and that Ju=f if u(t)=f for a.e.t.,
where

L;=Ly"u(RY; X))+ LEAOD(RY, Y,  i=1,2.
Then
SBCS(Z'): 07 Sl;p; 0—17 SZ)
with continuous injection.
Theorem 4.2. (i) Under the same assumptions as in Theorem
4.1 (1),
[Sly SZ] Gcs(p, 7, Xe; p; 77_17 Yg)
with continuous injection, where
X9: [X1, Xz}, Ye= [Y1, Yz] 6.
(i) Under the same assumptions as in Theorem 4.1 (ii),

[Sb SZ] 938(?) 7y XE; p9 77—1) YB)

with continuous injection.
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