
Publ. RIMS Kyoto Univ.
Vol. 6 (1970/71), 515-543

On Besov Spaces of Functions Defined
In General Regions*

By

Tosinobu MURAMATU

§1. Introduction

In this paper we discuss certain spaces of distributions on an open

set Q in the ^-space R": Besov spaces. These spaces are first Intro-

duced and investigated by (X V» Eesov [1] for @ = R" (see also [15]),

for a general region they are studied by V. P. IJ/in [6] . We here in-

vestigate in particular their relation to the theory of mean interpolation

spaces due to Lions-Peetre [10] . M. EL Talbleson [17] discussed also

for the case Q = Rn in a different point of view. For the case Q = R"

an operator theoretical approach is available, [5] , [7] , [10] , [13] , [19] .

To describe our results we need some notations. For a measure

space (M, ^) by LP(M; X) we denote the space of all strongly measur-

able functions u with value In a Banach space X such that

SS. SUp||tt(f)IU (£=+00),

is finite, where ||/|U means the norm of / in X. In particular, Z/(7kf)

= Z,*(Af;C)» By LP*(R*;X) aid Lp*(Rn;X) we denote the Z/-space

for (It+, TWO and (!£", \x ~Vtf), respectively; while for $c!T by

Z/($) we denote the Z/-space with respect to the usual Lebesgue

measure dx = dxi-~dx». Let a= (ai, • • • , «;„) be a multi-Index of non-

negative integers. Then we write
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/V-OC _ /y-CXi /Va»
Jt — ̂ 1- "A n 9

= 0 otherwise,

here a^/3 means o^ft for J = l, 2, --,n. For tidR" C'"(J2) means the
space of w-tinies continuously differentiable functions 011 J2;«3W~(,0) the

space of functions eC1""1^) whose all derivatives of order up to (m — 1)

are bounded and whose all (m — l)-th derivatives are uniformly

Lipschitz continuous. PP^($), called the Sobolev space, is the space of

distributions / on Q whose (distributional) derivatives of order up to
m belong to Z/(J2), with norm

(1.1) II/II^W)=SI|1>X/I|W);
* |a|^»

5j,ffT'y(-0), where ; is a positive integer, 0<r<y, called the Besov space,
is the space of /e }FJZ(^) for which the norm

(1- 2)

is finite, where

(1.3) !

|a|=f» i =

j

z=0

We denote also

(1. 4) I /I wm = Y]
Wp^ \a\~m

For convenience we shall make use of the following terminology:

Definition. An open set tiiDR" satisfy the condition C(T0, m) if
there is a vector-valued function F(^)e^"'~(J2w) and a positive number
To, including T0=+°o, such that
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for any #eJ2, Ul^l and 0<2<T0 (cone condition).

It will be seen below that the Besov space B^'^Sf) is dependent

on the sum A = m + T, p and q, and not dependent on the choice of j,

m and r, if Q satisfies the cone condition. Hence we define as follows:

When X is a positive fractional number

B^sr>=Bm
P?'\s[),

where /l = m + r, 0<r<l, m is an integer. When /I is a positive integer,

Then morm II IL* and the semi-norm ] L* are defined analogously.
p,q P,Q

Now, we state our main results.

Theorem 1.1. (Interpolation inequalities) Let & be an open sets

satisfying the condition C(T0? £). Then the following inequalities

hold for 0<CT<:To with constant C independent of T and f: (i) if

(1.5) T*|/Uj,

(1.6) T*+1/|£_
(0<& + a<m; 0<<r<0

(1.7) T-l /Uc,

(ii) if ff=B;?-'(£i), 0<T<j, 0<(2;-1) T<T0>

(1. 8) T*|/U

(1. 9)

(0<^ + (r^W + r; 0<tf<i)

(iii) »

(i. 10)
Consequently, if 0<r<£ and ^ =

(i.n)
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with equivalent norms, and for

(1.12) 5£',C0)c:T

(1.13) ^G^cJ

with continuous injections.
Furthermore, the norms (1.1) and (1.2) are equivalent to the

norms

(i.iO l /h
and

(1.20 l/h

respectively.
The factors (Ta + l), (T*+l) in (1.6)-(1.9) are removable if

we may take $"(#) to be a constant vector,
By means of another method H'in proved analogous inequalities,

but his condition on Q, though very close to that of us, is somewhat
complicated, in the author's opinion

Theorem 1.2. {Approximation theorem) For any open set Q,
C-G^HWW) and C^n^r^Ca) are dense in W^(Jf) and
£"?''(&), respectively.

Combining two theorems, we have

Corollary. // Q satisfies the condition C(T0, .;), then WZ(&)

and -B*tT>y(^), O<T<J, are identical with the completions of the sets
of C°°(&)-functions f whose norm given by (1.17) and (1. 27) is finite
with respect to those norms, respectively,

Our proof for this theorem is the same as that given by Meyers-
Serrin [11] for Sobolev spaces, however for Besov spaces we need some
preparations.

Next, we shall explain mean interpolation spaces. Let X, Y be
Banach space contained in a Hausdorff linear topological space 3£. By

W(p,S,X;q,v,Y) we denote the space L%*(R+', X)nLy(R+; Y)

with norm \\u\\w = max {\\u\\LPAR^.^, \ u\ LWRW} , where Z£*(jR+; Jf)
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; fiu(f)^Lp*(R+\X} with norm ||^(OIU*cR+
5*> The mean

interpolation space S(p,g, X; q,y, F) is the space of elements / in

X+ Y such that

(1. 14) /= « ( 0 - , «e ^(A £ X; q, v, F)
Jo t

with norm

(1.15) !l/IU = inf{lMliK^^^^

Here we assume that ?-v<0, and X-f F is the space {f+g',f^X9

g^Y} with norm m\x+Y = inf{\\f\\x+\\g\\Y',f^X,g£EY,f+g = h}. It

is easily seen that (cf. [10])

S(p,M,X; <M(0-D, JD=S(p,6,X', q,0-l, F)

with equivalent norms.

Let M (X, F) be the space of functions u(O of the complex

variable, holomorphic in the strip Q<Re£-<I with values in X+ F,

continuous and bounded in the closed strip 0<^Re£<^l with values in

X+ F, such that u(if)9 t^R, is continuous and bounded with values

in X, and u(l + it*), t^R, is continuous and bounded with values in

F. Under the norm

, F) becomes a Banach space. The space [X, Y]09 Q<0<19 is

the range of the mapping u-+u(f)9 u^M(X, F), with the norm

(c. f . [4] , [8] ) . With these notations we state

Theorem 1.3. {Interpolation theorem) Let 0<:0<:l Then

B%9(£?)=S(q,0,Lf(Q}\q90 — \, W™W) with equivalent norms. Here

we assume that Q satisfies the condition C(T0, m), and that m is a

positive integer.

Lions-Peetre [10] proved this theorem for the case @=R", and
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Lions-Magenes [9] proved the case where Q is bounded and has a

sufficiently smooth boundary and p = q (Sobolev spaces of fractional

order) with the aid of the result of Uspenskii [18] ; while we shall

prove this theorem without any smoothness assumption on the boundary

of Q.

Theorem 1. 4. Let /Ji and & be positive numbers and let 0<0<1.
Set J=(l-

1 _ 1-0 6 1 _ 1-6 + 0
P Pi p2* q

Then, (i) if pi^qi and p^q*

continuous injection, (ii) // pi<.qi and p2^

B}M ^S(q? 6, 5£ifl(£) ; ?, 0-1, 5g.

with continuous injection, (iii)

equivalent norms. Here we assume that Q satisfies the condition
C(T0?m) where m is a positive integer with m>pi9 pz.

Grisvard [4] proved this theorem for the case Q=R* by means of

an operator theoretical method. An important consequence of the

theorem is the following

Corollary. Under the assumption of Theorem 1. 4,

(a generalization of the Gagliardo-Nirenberg inequality}, where C is
a constant independent of f.

The last assertion follows from Theorem 1.4 and a theorem on

complex interpolation spaces (cf. [4], [8]).

Our main tool is the integral representation of the form
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(1. 16)

which was employed by the author in his study of the imbedding
theorem for Sobolev spaces, [12], instead of that of a potential type.
The integral (1.16) is very similar to usual potential one, in fact, if
¥(x")=Q it can be transformed into potential type one, however any
potential type integral can not be transformed into the form (1.16),
therefore our representation is more precise than that of the potential
type. Moreover integrals of this form are considerably convenient to
deal with, as seen later on. One of the reason is that they can be
divided into two steps, the integration with respect to z and that with
respect to t. The singularity occurs only in the later step.

We end this section by illustrating some examples of open sets
satisfying the cone condition.

Example 1. R* satisfies the condition C( + °o, + oo) with W(x} =0.

Example 2. Let Q be a star-shaped bounded region with respect
to a ball of radius r0 with center at a. Then Q satisfies the condition
C(r0, + 00) with

Example 3. A cone fl= {x; \x\~^x^A}, where A is an open set
in the unit spher S= {xm,\x\ =1} such that for any a, /3>0 and any

#1, X2 in A atfi + /3#2/|atfi + /9#2|^-A, satisfies the condition C(oo, oo)
with W(x} = constant vector.

§2. Inequalities for Some Integral Transformations

We state first the integral representation formula which is proved
in [12].

Lemma 2. 1. Let ® be an open set in R" satisfying the condition

C(T0, 1). Let a>00 be a C°°-f unction such that \co(x')dx = l, and its

support is contained in the unit ball B. Then for any positive
integer m, any multi-index ]9 with \@\<m, 0<T<T0 and any func-
tion
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(2. 1) /<»(*)

|a|=i»-|/3|Jo

+ Tz+

where fw = D«f,

Corollary. Z^f Q be as above. Then for \$\<m + jj 0<T<T0

and for any function

(2. 10 /

-t- -

where

^,a.0(#, *) = (-!)'' S CYia.0Z?Ifl>a+y_0(^,2),
ly |=y

a+y^/3

fl«rf {CY.OC.IB}, | r l = y , \a\=m9 are constants such that

^S Cyi(x.,&=l for a fixed a^fr.
a+y=oc

Proof. By (2.1), where m is replaced by w + y, we have (2.2)
with the aid of the integration by parts, since

= (-1)

Remark 2. 1. The integrals contained in the right hand side of
(2.17) are not improper even if \Q\^m in spite of their appearance.

To prove the boundedness of integral transformations we frequently
make use of the following well known fact;
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Lemma 2. 2. Let (Mi, ^0 and (M2> /J2) &£ 6-finite measure spaces,
and let K(x, y} be a measurable function such that

\ \K(x,y}\d(jii(x}<X for a. e. y in M2
jMi

\ \K(x,y^)\djut2(y^<,C for a. e. x in Ml8
JM2

Then the integral operator with kernel K(x,y} is a bounded

operator from Z/(M2) into I/ (Mi) whose operator norm is not greater
than C8

We start by stating and proving some basic inequalities concerning

integrals similar to that employed in the formula (2. 1) .

Lemma 2.3= Let Q be as in Lemma 2.1.

(i) // we define

(2.2) Z70(f,*)

for f^Lp(GT), 0<£<T0; then

(2.3) IIKa^)IU>c^fl

^fer£ & = supi?F(^)i +1, ^nJ a is the volume of the unit ball B.

(ii) // we define

(2.4) V,(J,x)

for

(2. 5) I! U,(jt, x) \\L\^<,ab°j"\ Fs(tz)dz,

where

(2.6)
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f9 7^ J\ \ \ T T f - f - v^f ' l l**
>* • • x I \ II ^ J \^> Jv) I/ ||L^(J2)"

(Jo

/or 0<(2;-l)T<T0)/ + r^O,

where C is a constant dependent only on n, q, T and b.

Proof, (i) From Jessen's inequality^ it follows that

:)iu«±sK
| j6.

^06'

where g(^) is the characteristic function of J2.
(ii) Using Jesser/s inequality and replacing w by z + jw as vari-

ables of integration, we see that

<H dz( jn

JbB J2fi

<ab"\ j"F,-(tz~)dz.
J2B

dw,
'

By Holder's inequality we obtain that the right-hand side is not greater
than

Finally, from (2. 5) it follows that

-W} \y\-dy,

which gives (2. 7) with the help of Lemma 2. 2, since

f f \ y \ V+T dy _ 2'^an f- / \y\ \^ dt _ 2HT

J2/A t ) \y\n n + T ' J. ,i/2\ t ) t n + r'

1) Generalized Minkowski inequality.
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Corollary. Under the assumptions of Lemma 2. 3 the following

inequalities hold for /eC'O?) PI-£*(•£)•
(i) // 0<<r<&, then

(2.8)

« for ; = 0,

ft™l/U'c» /or

where /z(s) =min(l, 5).

(ii) // Z + r-^0, 0<(2y-l)T<T0 0«rf 0<<r<&, then

(2.9)

Proof, (i) A simple calculation shows that

which gives the desired inequality (2. 8).

(ii) The left-hand side of (2. 9) is equal to

where ^aO = (*/ l j ' l ) aA(lj ' l /0*, *(0 = II^(*,*)MI**). Therefore
(2. 9) follows from (2. 7) and Lemma 2. 2.

Lemma 2. 4. L££ £ be an open set satisfying the condition

C(T0,1). Assume that

| a j |=y — 1 and for any

(2.10)
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Then, choosing an appropriate function
with support contained in RnxBx(2j~I')B,

(2. 11)

holds for atf
Proof. It is sufficient to prove the case where K=D"H. Case

y = l. It is clear from the assumptions that

V(t, x) = \\ K(x, 2) to (w) {/ (* + fe + tf («) )

— / O + f«; + ̂  00 ) } (^26? «;,

where a is a C°° function such that \a>(x')dx = l and suppo>c.B.

Let K=D"H=-- — D®H, and assume that the formula is valid for

i = DzH. Then, integrating by parts, we have

V(t, *) = - t e , z)f>(x + tz+&(x»dz (/.=/?*/),

x

(interchange the variables of integration w->z ^. ^

, 2, io)

(note that . ~
J n 3 \ 3 /

and integrate by part with respect to 2A)> where K^x.z, w) is the
function whose existence is assured by the inductive assumption, and
K(x, z, w) is given by
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Since \K(x,z,w*)dz=Q, from the above identity we obtain (2.11).

Lemma 2. 5. Let K(x, z}, K(x, z, w}, W(x) belong to &-(R* x K"),
<Bi~(R*xR*xR*}, ^""(jR*), respectively. Then there is a constant C
independent of t, w, x, y, z such that

(2.12)

(2.13)

where h(f)=mm(t, 1).

Proof, It is not difficult to see that these inequalities follow
from the inequality

where

Combining Lemma 2. 3, Lemma 2. 3 Corollary, Lemma 2. 4 and
Lemma 2.5 we obtain

Lemma 2. 6. Let i be a positive integer, k a non-negative integer,
Q be an open set satisfying the condition C(T0, k + i\ and let K(x, z)

(A) For any function /eC1^) and 0<£<T0 we define V(f,x}
by (2.10).
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Then the following inequalities hold for any function f belong-

ing to C'

( i ) / j

(2.14) im*)kc,;<

(ii) /

(2.15) ] Vdt,

(iii) /

(2.16)

(B) Assume moreover that

D%Ha(x,z)^(^k+i-(RllxRn) for any a with \a\=j-~l and any

, \H*(x,z)dz=Q for any

Then, the function V(t, x) given by (2. 10) for /eC1^) n.Bj;J'C0)
(0<r<y) satisfies the following inequalities:

k
(917*} \ VCf r^ I k ^fW7"* I /" 1 T fx\^. JL / J I K {L, ji J \ pr*(fl)^^vx^_jfr |y I .eT'-'(0)>

&

T2 18 )̂ 1 V(t %} ' *+a,i <CC"5nr^CT + l^T~ff~*I f I •«•,/
P,q = A=0 A?

(ii) // 0<(2y-l)T<T0, / + r-*-tf^O, 0<tf<e, ?fe»

(2-19>
^A?

(iii) // 0<(2;-l)r<T0 and if l + r^k, then

ff r ^/ ) i/? A
(2 20) H i T^c^ ^i ' l** ——r ^Cy]Ti+r~hiyI T,J(

// 0<(2;-1)T<T0 and if l+r^k+a, then
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r

(2.200

Proof. According to Lemma 2. 7, which will be proved below,

DB V(t, x) , | /3 1 = &, is equal to the sum of functions of the form

so that it is sufficient to prove the case where k = Q.

First observe that

(2.21) J_
v=o \v

f
where Uj is the function given by (2. 2) and (2. 4), in virtue of Lemma

2. 4, Lemma 2. 5 and the identities

x
U=o

This gives that

(2. 22)

Combining this with (2.7), (2.8) and (2. 9), we obtain (2.15), (2.18),

(2.19), (2.20) and (2,200- (2.14) is an immediate consequence of

(2.3). According to Lemma 2.4, (2.17) follows from (2.6). Finally,

it follows from (2. 3) and (2. 22) that
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V(t,

which gives (2.16). In fact

\y\-
t

Remark 2. 2. Ey our argument, when K is independent of x and
is a constant vector, we get the inequalities (2.15), (2.16),

(2.18), (2.19) and (2.200 without the factor F + l or Ta + l.

Lemma 2.7. Let Q be an open set with property C(T0j m), and
K(x,z) be a Cm-f unction. For/eC1^) we define V(Jt,x) by (2.10).
Then for any multi-index a with \a\=m we have

where

for

Proof. Induction on \a\. Let Da = DkD
B

y and assume that the

formula valid for DB. Integrating by parts, we get

1/31 '

f S
Ji=l
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J-Q

where dik denotes the Kronecker's delta and

__ 8

for which we obtain by the inductive assumption

S

= (-!)'

since

_ d K o,Q
-O.a

r=

\ _ /0\ , //3 \
I — I J I i /Jjrj \rj \r/

Noting tiiat ^a(^52) and Kji0it&(x,z) employed in Lemma 2.1 and
in Lemma 2, 1 Corollary, respectively, has required properties, and

combining (2. 1) and (2. ]/) with Lemma 2. 6, we can now complete
the proof of Theorem 1=1. That is, we can conclude that (1.5),

(1.6) and (1.7) hold for any /eC"(0)n 0^00), while (1.8), (1.9),
and (1.10) hold for any /eCw+;(£) n^.r'Cfi). The additional as-
sumption, the smoothness of /, can be removed in view of Theorem

1.2, which will be proved in the next section.

§3o Approximation by Smooth Functions

To prove the approximation theorem we consider first the case

where £ = «":

Lemma 3.1. Let PI(X) be a C^ -function such that supple B,

PI 00^0 and \p1i(x')dx = l. Set pv(x}=vupi(yx).
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(i) 7//efF;(fi"), then

f*pv—>f in W}p(R") as v->oo.

(ii) If f^B'^'^R"), 0<r<y,

ll/*^l|^-JT-/(jz-)^||/ I B£+T>W)>

/*&-*•/ in Bnp*rJ(Rtt} as ^-»oo.

Proof. From the relation Da (/*<?) =fw*y> it follows that

s ii/3ac/*^)iu^-)^ s

Since the set of all continuous functions with compact support is dense

in Lp(Rn\ it follows that for any function / belonging to L*(JR")

and for any positive number e there is a positive number d = d(f, e)

such that

|J/(*-2) -/WIUc^)<s if Ul <S.

Hence, taking v>max(5(/(a), e)"1, where the maximum is taken over

all multi-index a, \a\<,m, we obtain

i. e., the first part of the lemma.

(ii) With the aid of the first part and the identity Da (/*<?)

= (Da/)*<p it is sufficient to consider the case where m = Q. Let

"*). Since

L^/2")

the inequality concerning norms follows. Consider next the function
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TYiA —' X"V 1 Vj \ y ) — £A —i;

From Jessen's inequality it follows that

where

also,

Now, for any positive number e the inequality

\ F£y) q\y\ ~rg

J\y\^r

holds with some positive number r, since /efij;j(lt*)> and Fi( —
for any positive number EI if U]<5(/, eO, since /eZ/(I?w), hence
<2£l if v>5(/,ei)~1. Thus we have

, (3;) • | y 1 —^ + 2*el 1 3^ I

q 2"7'?£?

—I—

" 2

taking Sl so small that £!<2"y9~V^rT?s9. This completes the proof of

the second part.

As an immediate consequence of Lemma 3.1 we have

Corollary 1. The approximation theorem is valid for the case

Q=R\

Therefore, the interpolation inequalities hold for any function
/e J7J(«") or f^BZ+v'J(R*), in particular,
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Corollary 2.

(3.D 5jir-'(««)=5jir
y(fi"), if k+<r=m+r9 o<x*, o<r<y,

(3.2) IP? (IT) :D££JT-' («")=> Wr*(R**), if

(3.3) B^i)+i'3\R}c:Wn^R^c:B^+iJ(Rn}, if

For convenience we shall denote by X(ff)e the set of all functions

belonging to X(Q) with compact support contained in Q, where

is a space of functions defined in an open set Q.

Lemma 3. 2. For any open set Q

(3.10 5{>7i/(fi)c = 5;ir-
y(5)e, if k + <r=m +

(3. 20 W?(tyei}B??J(ff)e=) WT'C0)« 0<r<y.

Noting that X(^cdX(Rn^ if we define /(^) as 0 outside

of Q, and that any function f^X(Rn} with compact support contained

in Q belongs to X(£?)ej where X= W™ or Bp,^T'J9 we find that the lemma

follows from Lemma 3. 1 Con 2.

For the proof of the approximation theorem for an arbitrary open

set we need the following lemma:

Lemma 3.3. Let X be one of W™ and Bpi
+

g
Tj and let

Then <?/e JTC0), for any f<=X(Jf).

Proof. For the case X= W™ the lemma follows from the Leibniz'

formula :

To prove the lemma for X=Bp>
+

g
r's we first consider the case where

= Q, 0<r<l. Note that
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where h(t')=mm(t,Y). This gives
Consider now the case m=-Q, l^r<j. Assuming that the lemma

for the case where [r]<^ —1 is already established, we shall prove the

case [r] =k. Choose a function ^eCr(^) so that t^OO is equal to 1

if the distance from x to supp <p is not greater than (2/-l)#, where d

is a positive number such that dist (supp <p, dGty^Zjd, d£ = the boundary

of Q. Then vf—yfyf for any/. Let /^5J;J'(-^)- When |.yi<^ we
divide the function

7(>) =

into (j-t-1) parts:

y is estimated by a constant times Fy(jy), hence

Next consider /z-(j), 0<f<;. Since aK# + iOO=l, v = 0, • • • , j — 1, on
the support of

for any fixed y with |.y|<JS, we have

where g = tyf and G,-(iy) =

'i^rT

5 so that

in view of g = tyf ^Bapi
3
q(Q}e = Ba

p
t
t
t
q(_&)c for some positive 6 such that

T — j + i<^0<^.i, Also we get
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1*155

<oo,

hence <£/"eJ3^(j2)c. Now, proceed to the case m>0. Let

and let a be a multi-index with \a\=m. From Leibniz' formula it

follows that

The first term ^0 belongs to J3j;j(,0)e in view of the lemma for the

case just proved. Since /(0)e5£7'^J2) e5^X&) for |/3|=w-i",

r-e'<;*<r, f = l,---,y-l, it follows that gi^B^^^Bl^Q), in

virtue of Lemma 3.2. /ce)e W&Qi) for \$\<,m-j, hence ^-e l^K^)c

c5j;i(^)c. Thus Da(<pf^<E:Br
P:J

q(<Q')c, which completes the proof of the

lemma.

Now we are in position to prove the approximation theorem. Our

proof is due to N. G. Meyers and J. Serrin [11]. They discuss the

case for Wm
p{ti). Let X= Wm

p or BZ+Tj. Let Qv be the open set de-

fined by

Qv = {x ; x e ,0, jc | <i>, dist (jc, M) >1 M ,

where i/ = l, 2, • • • ,^ 0 = ^-i = the null set. Choose a partition of unity
oo

0=1 on J2 such that
v=l

SUpp ^ C Qv+1 — Qv_i, v = l,2,-~.

Applying Lemma 3.3, we find that ^rvf^X(Si)e for any fGX(£) and

v = l, 2, • • • , so that we can choose Cr-f unction q>v satisfying this condi-

tions

and

||^*^/-^/IUc,)^e/2y, v = l, 2, -..,

where e is an arbitrary positive number, with the help of Lemma 3. 1
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and the fact that X(ff) c c X(R}^ (the norm of the injection^l).

Evidently, supp (pv*tyvf is contained in the set Qv+z — &v-z, so that the

series

is convergent and defines a function in C°°C0). Furthermore, for k = l,

2, • • • , we have

&+2

\\ f -g\\xw=\\^(<pv* fa f -fa

from which we obtain, letting &->oo,

\\f-g\\*v»^*,

according to the Lebesgue monotone convergence theorem.

This completes the proof of the approximation theorem.

§4. Proof of Theorem 1.3 and Theorem 1.4

The last two theorems can be proved as follows. First, note that

for an open set @ satisfying the condition C(T0, 1), for any function
£) and for 0<T<T0

(4.

where

(4. 2) M(x, 2) = S (-D-Z^ffl.Ca;, 2),
|a| = «

and o)a, o)A>0 are the functions given in Lemma 2. 1.

In the following part of this section we shall fix a positive integer
m, and denote by M the function given by (4.2).

Lemma 4.1. Let Q satisfy the condition C(T0, m). For 0<3T
<T0 and for f^U^+L00^ we define Ef=u by
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when 0<C£<^ T,
(4.3) u(Jk,x)=

. *)/(*+ T^+ Ty(*))<fc, when t> T.

Then E is a continuous linear operator from D (,&) -f L°° ($) into

Ll00(R+}LL(Q')+Leo(Q)), its restriction on £J*(,0), 0<0<1 is a bounded

linear operator from B*",(£) into W(q, —Om,L*(Q) ; q, —((? — !) m,
Wp(Q)\ and PE=the identity on

(4.4)

Proof. The first part of the conclusion is obvious. Let

p{Bpm
q(^ and let u = Ef. For (X^fST, integrating by parts ^-times,

we have

||3| = A

where

(4.5) Af6Gc,z)= S (-^
|cc|=«,a:i3

since M(x, z) is given by (4.2), while

Combining this with Lemma 2. 6, we find that

« T
o\\t-

e'°u(t,x^B

and that

It is easily seen that the integrals over fSz T are estimated by a constant

times \\f\\L\ai in view of Lemma 2.6 (A). Thus we obtain for
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Also we have PEf=f In view of (4. 1). Since C" (0) H #?* (£) is dense

in J%02), these inequality are valid for every /eSJ^OG), and the

lemma is proved.

Next, consider a lemma, which is at3 analogue of Lemma 2. 6.

Lemma 4, 2. (^4) Lrf £ and K be as in Lemma 2, 6 04). Define

the operator A£ by

(4. 6) (A&) W = ridtK(x, z)u(t,

where 0<T<T0? u(t, *) e Z4(K ';£*(£)). (i) // />0,
= limA

(4. 7)

(ii) // /— f?^0 and if 0 <<?</, ^^ Au = lim Aeu exists in

and

(4-8)
(B) The same facts hold where Li (H+;!/(£)) is replaced by

L#(R+;Bp',g(&*)), CKXj, I replaced by / + r, under the assumptions on

Q and K stated in Lemma 2,6 (B).

Proof, It is sufficient to prove the inequalities for any function

u (t, x) which is continuous Cj ( £) p| -X"(«#) -valued function with compact

support in H+, where X=LP or -BJ;J, since the set of such functions is

dense in L^CU^j-X"^)) in virtue of the approximation theorem (see also

e.g. [3] chap. 4).

Part (i) is evident in view of Lemma 2. 3.

Consider part (ii). Let u(t,x) be a continuous Cy(^) H£*(£)-

valued function with compact support in R*~. Then f=Au is equal to

(%, z)u(t,

Following the proof of Lemma 2. 6 (A), we have
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h(\y\y\\u(.t,x)\\Lfundt.

Thus, applying Lemma 2. 2 to this integral transformation, we obtain

the desired inequality (4.8), with the aid of the facts that

The above proof also gives that the operator norm of A& is not

greater than Ci which is independent of e, so that the lemma follows

from the following well known fact: if {AH} is a sequence of bounded

linear operators from a Banach space X into a Banach space Y with

\\An\\ 2£C, # = 1,2, • • • , and if lim AHx exists in Y for every x belonging

to a dense subset S in X, then Ax = lim Anx exists for all x e X and

\\A\ r^C.

The proof of the lemma is complete.

Finally, according to the above lemma we have

Lemma 4. 3. Let Jv be the operator defined by

(4.9) (/,«)00

Tm r" r
+ _A__\

m JTJ

for u e LL (I?+; L1 (^) + i°° (£)). T/z^#, considering as an operator from

L^-m(R+;Lp(^+L^l~0>](R+iWn;(^ into ^(fl), ^fer^ 0<^<1,

/„ converges strongly to a bounded operator /, <md Ju=f if u(Jk,x)
=fW for a. e. t. Here we assume that & satisfies the condition

C(T0, m), and T is a number such that 0<T<T0.

Proof. Set
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From Lemma 4. 2 it is easy to find that J(*\ regard as an operator

from Z4T^(J?+ ;!/(£)) into Z/C&), converges strongly to a bounded

operator. With the aid of Lemma 2. 7 we can find that /J1) converges

strongly when considered as an operator into BB
p

m
q(&). In the same

way we see that J^ converges strongly when considered as an operator

from L%m-9m(R+\ W7(£)) into 5 ?*(£), observing that, in view of (4.2),

where u(-B'>(t,x)=D%u(t,x), M$(x,z) is the function given by (4.5).

Next consider the convergence of J(
V

2\ From Lemma 2. 3 it follows

that

and that J^u-J^u tends to 0 as *, /j-^oo if M belongs to Lq^9m(R+;

Z/($)). Thus /£2) converges strongly to a bounded operator as an

operator from LS"fl"(JR+;L*(J2)) into Z/(£). Also, from Lemma 2.6

and Lemma 2. 7 it follows that /£2) converges strongly as an operator

into I^™(J2). The strong convergence of /J2) as an operator from

L^m~em(R+i T7?C0)) is proved analogously.

The last assertion is obvious in view of (4.1).

This establishes the lemma.

Now, Theorem 1. 3 follows immediately from Lemma 4.1 and Lemma

4.3, and Theorem 1.4 follows also in virtue of the following theorems

due to P. Grisvard [5] :

Theorem 4.1. Let 3£ be a Banach space and let X^ X2, Yi and

Y2 be Banach spaces contained in 3£ with continuous injections.

(i) Assume that there exists a continuous linear operator E

from 3£ into L\Q^R+\X} such that its restriction on Sf- = S(A, ?,-, X-t\

pi,Vi — l, Y)) is a continuous linear operator from Sf into

-Xi; Pt, ̂ -fe-1), Y;-), ^^0,i = l,2, and that PEf=f for



542 Tosinobu Muramatu

where

Then

S(A 0, Si; A 0-1, 52) cS(A *, *,.,;/>, v-l, Yi.,) =

continuous injection, where

1 _ 1-0 ,

pt'

e,p=S(p,6, Yi;A0-l, Y2).

(ii) Assume that there exists a continuous linear operator J from

J?i + ~C2 into 3C such that its restriction on J?,- is a continuous linear
operator from £t into Siy i = l, 2, and that Ju=f if u(f) =f for a. e. t.,
where

r — jpl,\t-ni(Tn>+.-Li — L,* \£i ,

Then

with continuous injection,

Theorem 4.2. (i) Under the same assumptions as in Theorem

4.1 (i),

[S^SJ.cSCA^-Y^Av-l, Yi)

z^/fA continuous injection, ivhere

Xe= [Xi, X2] , Ye= [ Yi, Y2] 0.

(ii) Under the same assumptions as in Theorem 4.1 (ii),

[Si, S2]o^S(p, y9 X9;p, y~ 1, F0)

w;^YA continuous injection.
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