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§0. Introduction
In this paper we shall consider differential operators of the form

dZ

(0.1) 2=-2

+ A(r) 0=r<oo,

where for each r€&[0, o) A(r) is an operator in a Hilbert space H
and Z acts on H-valued functions on [0, o0). Restricting the domain of
% appropriately, we can regard % as an operator in H=1L, (0, oo; H).
Our purpose is to develop an eigenfunction expansion theory associated
with the differential operator .Z.

If dim H=1, i.e. H=C, then . is an ordinary second-order differen-
tial operator and A(r) is simply an operator of multiplication by a func-
tion g(r). For real-valued g(r) a rather complete eigenfunction expansion
theory has been worked out by Weyl [107], Stone [87], Titchmarsh [ 9],
Kodaira [47], [5] and others. But when H is an infinite-dimensional
Hilbert space, it seems that no complete theory, comparable with the one
for ordinarv differential operators, has been presented.

Rofe-Beketov [ 7] considers the case where A(r) is a bounded self-
adjoint operator-valued function on [0, oo) which is continuous in the
uniform operator topology. He shows that there exist a non-negative
definite, bounded operator-valued, interval function p(I), ICR, and a

bounded operator-valued function w(r, ) on [0, oo), satisfying
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(Z—Do(r, H)=0,
(0.2) {

' (0, 1)—Cw(0, )=0,

where C is a bounded, self-adjoint operator on H. w(r, 2) and p(I) are
incorporated to give an eigenfunction expansion of an arbitrary function
FeLy(0, oo; H)=Y in the following sense: Let §),=Ly(—oo, co; H;

o(dy)) and .%"F(F)=S”w*(r, WF()dr, where w*(r, #) denotes the adjoint
0

of w(r, 2). Then the mapping F—% ,(F) is isometric from Y into §,. He
also discusses the inverse problem in which one determines A(r) and C
from p(I), and the case of A(r) being not necessarily self-adjoint.

V. Gorbaluk and M. Gorbacuk [2] obtain similar results to Rofe-
Beketov [77] for the operator % in which 4(r) is replaced by —A4+Q(r),
where A is a lower semi-bounded, self-adjoint operator in H and Q(r) is
a bounded, self-adjoint operator on H for each r €[ 0, ). This situation,
one should note, makes .# hyperbolic rather than elliptic.

In contrast to Gorbaluk and Gorbafuk’s treatment Jiger [ 3] deals
with the elliptic case, i.e. he assumes A(r)=4,(r)+ A2(r), where A,(r)
is a non-negative, self-adjoint operator in H with domain 2(4,(t))=D
constant in r and A,(r) is a symmetric operator with domain 2(A4,(r))
=D. Under the above assumptions together with some asymptotic and
regularity conditions on A;(r) and A;(r) he determines a unique self-
adjoint operator which is a restriction of %, and obtains an eigenfunction
expansion similar to Rofe-Beketov [7]. The eigenfunctions are obtainable
from the Green functions for % by a limiting process.

Jdger’s results are applicable to the Schrodinger operator —d+q(x)
in R® with g(x) bounded by a constant multiple of (14 |x|)~3/27%(e>0).
In this case H=L(0, oo; H)=L,(0, oo; L(S?), where S? is the 2-

sphere, and A;(r) and A,(r) are taken to be :ITO and q(rw), w€ S? A4,

being the negative of the Laplace-Beltrami operator on SZ.

In the present paper we shall consider the eigenfunction expansion
for any self-adjoint restriction Ly in Y) of # with bounded A(r) by a me-

thod somewhat different from those explained above.
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In §1 we introduce the ‘“eigenoperator” ¢(r, 1) of % which satisfies

the boundary condition at r=0
(0.3) BF'(0)—CF(0)=0,

where B and C are bounded, self-adjoint operators on H. ¢(r, 1) is a

bounded operator on H for each pair (r, 1) €[0, o) xC and satisfies
(£ —Dg(r, H)=0,
B¢’ (0, 2)—Ce¢(0, 2)=0.

(0.4)

§2 prepares Green’s formula for H-valued functions which will be
used mainly in §3.

In §3 we define an operator L in § which is a restriction of £ and
investigate the properties of L. Roughly speaking, the domain of L is the
set of all H-valued functions F(r) on [0, oo) such that F(r) satisfies the
boundary condition (0.3) and F and ZF belong to .

Now let L, be a self-adjoint restriction of L, if any. The eigenfunc-
tion expansion problem associated with L, is discussed in §4. Denoting
by E(x) the resolution of the identity corresponding to L,, we can show
that for any half-open interval I=(u;, 4, ] there exists a bounded operator
&(I) taking Y into H such that

(0.5) EDFQ)= 46, me(amF

holds for any F&€Y. The relation (0.5) is a generalization of Kodaira’s
formula ([47], p. 188, (4.12) or [5], p. 930, (2.6)). A non-negative
definite, bounded operator-valued, interval function p(I) is introduced by

(0.6) o(I)=¢(I)e*(I),

where £*(I) is the adjoint of &(I) taking H into §). We denote L;(— oo,
co; H; o(du)) by b,. The eigenfunction expansion for L, takes the
following form (Theorem 4.18): Define the ‘“generalized Fourier trans-

form” % associated with L, by

©.7) (FPW=| ¢*C, WFO)dr  in b,
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Then & is a unitary operator from Y) onfo f), and we have

E(I):gf*xl-ga',
(0.8)
LO':gz-*:u'ya

where x; is the characteristic function of the interval 1.

In the Appendix we study Riemann-Stieltjes integrals involving vector-
valued functions and operator-valued measuses, and we give the proofs of
some lemmas which are stated in §4.

The author wishes to express his sincere thanks to Professor H.
Yoshizawa for his unceasing encouragement and to Professor T. Ikebe for

his kind advices and discussions.

dz
§1. The Equation ( ——t A@r)— l)F(r) =0

Let H be a separable Hilbert space with the norm || ||z and the
inner product ( , ). For H-valued functions F(+) and G() on (0, oo)

introduce the norm and inner product by

1
2

av  EL=] CIEo1ar [ E 0={ Fo, 6udr.

|
J
h) will denote the Hilbert space of all (equivalence classes of) H-valued
functions F(r) on (0, o0) with ||F||s <oo, i.e. h=Ly(0, oo; H). The
subscripts H and ) will be omitted where no fear of confusion occurs.
Let B be the set of all everywhere defined, bounded, linear operators
on H, and let A(r) be a B-valued function on [0, o). For A(r) we

make the following

Assumption 1.1. (1) For each r€ [0, o) A(r) is a bounded, self-
adjoint operator on H.

(2) For arbitrary r&l 0, o0) we haveg:||/1(t)|(dt<00, that is, ||A@)|]
is locally integrable on [0, oo), where ||A(r)|| denotes the operator norm
of A(r).

(8) For any r€[0, oo) there exists a positive number C, such that
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(1.2) [l Fe), FoDnds=—f IFds

for all FEY) such that ||F(r)||g is a bounded function on [0, oo).”

Now let us consider the initial value problem for the equation

(1.3) —%Z—-I—A(r)—/l)F(r):O.
Definition 1.2. Denote by D the set of all H-valued functions F(r)
on [0, oo) satisfying the following (1) and (2):
(1) F(G) is strongly continuously differentiable on [0, o) with its
strong derivative F'(r).
(2) F'(r) is weakly absolutely continuous on every finite interval in
[0, o), and F'(r) is weakly differentiable almost everywhere on [0, o)
with ils weak derivative F"'(r)® such that ||F"'(r)|lg is locally integrable on
[0, o). Then let us define a differential operator £ by
2(%)=D%
(1.4)
LFr)=—F'(r)+ A@)F(r).
Let ug, vo€H and let 2 be a complex number. Then an H-valued
Sfunction F(r) on [0, o) is called a solution of (1.3) with (initial) data
{uo, vo} if FED, F(0)=u, and F'(0)=v,, and the equation

(1.5) (2 —DFr)=0

holds for almost all r€[0, oo).

Concerning Definition 1.2, we have the following

1) In §1 and §2 we shall not use (3) of Assumption 1.1.

2) Here and henceforth we say that an H-valued function G(r) on an interval I is
weakly absolutely continuous almost everywhere on I with its weak derivative G’(r)
if and only if there exists a null set e in I such that

G0, Wa=E" )

holds for any rel—e and any v H.
3) We denote by Z(T) the domain of T.
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Lemma 1.3. Let F(r)eD and let F'(r) be as in Definition 1. 2.

Then F'(r) is strongly absolutely continuous on every finite interval in

[0, o).

Lemma 1.4. Suppose that an H-valued function G(Gr) is weakly
absolutely continuous on every finite interval in [0, o). Moreover suppose
that there exists an H-valued function Gi(r) on [0, o) such that ||G.(r)||x
is locally integrable on [0, oo) and for any u € H we have

(1.6) 460, wa=6:0), wa

for almost all r€[0, o), where the exceptional set may depend on u.
Then G(@r) is weakly differentiable almost everywhere on [0, o) with its
derivative G'(r) and we have G'(r)=G(r) for almost all r€[0, o).

Remark 1.5. It follows from Lemma 1.4 that we can replace the
condition (2) in Definition 1.2 by the following, apparently weaker, condi-
tion:

(2)) F’(r) is weakly absolutely continuous on every finite interval in
[0, ), and there exists an H-valued function F''(r) on [0, o) such that
|1F”’(r)||z is locally integrable on [0, o) and for any u€ H we have%’_—
(F'(r)y, u)g=F" (), u)y for almost all r€[0, =), where the exceptional
set may depend on u.

Proof of Lemma 1.3. It follows from Definition 1.2, (2) that for all
u€H and 0<r1<r;

) F = F @), wa=| E@, wndr,

where F"(r) is the weak derivative of F'(r). Hence we have
(1.8) |F/ )= F G0, wal lulla] IFOllade.
71

Since u € H is arbitrary, we obtain from (1.8)



EiGeEnNrFuNcTION EXPANSIONS 7

(1.9) IF )= F el IF @,

which completes the proof. Q.E. D.

Proof of Lemma 1.4. Let {u,};-, be a complete, orthonormal basis

of H. Then for each n there exists a null set e, in [0, o) such that
d
(1.10) —E’_—(G(r), u)a=(G1(r), unn

holds for r€[0, o) —e,. On the other hand it follows from the local
integrability of ||G,(r)||z that there exists a null set e, such that

(L.11) 4 {161 lnde= 1610l

holds for r€[0, eo)—e(. Put e:Oem and let r€[0, o)—e. Then for
m=g

u € H we have

(112)  (H6C+B =6} —6i(0), u )
~(FA6C+N =6 —6:(0), ¥ ™)
+( 36 +H=6E), 1)y

+ (=G, EM)pg=1+1,+ I,

where NV is an arbitrary positive integer and
N

(1.13) uM=3%(u, un)gttn, 3P =u—u®.
n=1

Since r&e,(n=1, 2,...), we have

(1.14) | I;| >0 (h—0)

for any fixed V.

I, and I; are estimated as follows:
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J 1l =| 2 @100, 8a]

(1.15) A
1 S0l {161 ladi0 (Vo)
| L] <[13™||ullG1()]|a—0  (N—o0).
Noting r & eq, we can see that lhlg [|G1(2)|lzdt is bounded when A—0.

Therefore it follows from (1.14) and (1.15) that for any u€H and r&e
d
(1.16) 5 €, W=, Wi

holds. Q.E.D.

We shall show the existence of B-valued functions w(r, 1) on [0, o)
xCY such that for any u€H w(r, )u is the solution of (1.3) with

suitable initial data. Then we shall investigate the properties of w(r, A).

Proposition 1.6. Let S, T€B. Then there exists a B-valued func-
tion w(r, D=w(, 2; S, T) on [0, o) % C satisfying the following (1)~
(5):

(1) For any u€ H w(r, Du is a unique solution of (1.3) with data
{Su, Tu}.

(2) o, ) is continuous in the uniform topology of B on [0, o)
xC and w(0, )=S.

(3) For each 2€C w(r, A) is continuously differentiable on [0, o)
in the uniform topology of B with its derivative o'(r, 2) in B, and
w'(0, H=T.

(4) For each 2€C w'(r, A) is weakly absolutely continuous on every
finite interval in [0, o). There exists a null set e in [0, o) such that
for any r€[0, o0)—e w'(r, A) is weakly differentiable with its derivative
0”@y, ) €B. The exceptional set e does not depend on 2€C. |l0”’(r, ||
is locally integrable on [0, oo) for each 1€ C and we have

4) C means the set of all complex numbers.
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(1.17) —o"(ry, D+ AN, )=2wlr, 1)

for all re[0, oo)—e and 2€C.
B) o, L, o'(r, 2) and v (r, A) are B-valued, entire funclions for
cach re[0, o).

From Proposition 1.6 we can easily sec the following

Corollary 1.7. Let vo, vo € H: Then there exists a unique solution
of (1.3) with data {ug, vo}.

Proof of Proposition 1.6. First we shall prove the uniqueness of
w(r, 2). To this end it is sufficient to show that if F() is the solution
of (1.3) with data {0, 0}, then F(r)=0. Multiplying the equation

(1.18) —(F(©), wu+AOF®), wu=AF(), u)a

by

Sﬁﬂ/—%r-—t—) and integrating, we obtain

@19 EO, we= | LD R, W,

where u is an arbitrary element of H. Let us take r¢>0. Then taking
account of (1) of Definition 1.2 we have a positive number C(ry) such
that |FO)|g<XC(@ry) is valid for all r€[0, ro ). Hence we obtain
from (1.19)

sinV 2 (r—1¢)

(1.20) |(F),uw)] §§ TR IA@I el de

cr
0

= g(OCro)lull

for rel0, ro ). Here we put

ebr r

S=awna i a0, .
(121) g(r)={|\/f|g° ) 1 (b= 1V 7 ).

TSOHA(t)Hdt it 1=0,

Putting u=F() in (1.20), we have
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(1.22) IF| < g () C(ro).
Repeating this argument, we have for any positive integer n and
re [0, ro

i C(ro) 4] (7 14l oS
w29 [[F)|I< al ¢ UO Vi dt} if 150,

IF(II< —C%(L[rS;HA(t)ndt]" if =0,

and hence F(r)=0 on [0, ro]. Since ro, is arbitrary, we can conclude
F(r)=0 on [0 ,o0).

Next let us prove the existence of w(r, 4; S, T). If we can show
the existence of w(r, 4; I, 0) and w(r, 4; 0, I) satisfying (1)~ (5) in
Proposition 1.6, then we obtain from the uniqueness of w(r, 4; S, T) and

the linearity of the equation (1.3)
(1.24) o, 2; S, TD=w(, 2; I, 0)S+w(r, 4; 0, I)T,

and it is easy to see that w(r, 4; S, T) also satisfies (1)~(5). Accord-
ingly we shall show the existence of w(r, 4; I, 0). The existence of
w(r, 2; 0, I) is proved in a similar way. The proof is divided into the
following four steps.

(I) Let u€e H and 2€C. We consider the integral equation

(1.25) F()=cosV Ar-u+ S;S_m%"”_m)m) di

in the strong sense. We can solve (1.25) by successive approximation.
Denoting the unique solution of (1.25) by F(r)=F(, 2, u), we have
(1.26) FO)=F(, 4, u)=nZOF,,(r, Lu) i
where

Fo(r, 2, u)=cosy A r-u

(1.27) { S To—
P, by wy= || ST AR L wde (n=1, 2,0,
In fact, for each n, F,(r, 4, u) is strongly continuous on [0, o) X C

and the estimation
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(128) N & )l ﬂ(T%Txmmmmem if 240,

(b={ImV2Z|),
i(rSZHA(t)ndt >’Z!IuHH if 1=0,

n!

hold, and hence ) F,(r, 2, u) converges in H uniformly on every finite
n=0
interval in [0, o0). Therefore F(r, 4, u)=) F,(r, 2, u) is an H-valued,
n=0

strongly continuous function on [0, o) XxC. We can easily show that

F(r, 2, u) satisfies the integral equation (1.25) and that we have
(1.29) F(0, 2, u)=u.
Moreover from (1.28) we obtain the estimation

(1.30) EGr, 2, u)|lp=e*""

iuHHa

1 (7
b+ Ty SO||A(t)||dt (20),

glo,nN=17
{4l (1=0),
and taking note of the uniqueness of F(r 4, u) we have
(131) F(T, }x, u1+uz)=F(r, l, u1)+F(T, /1, uz),

where u, and u, are arbitrary elements of H.

We can define a B-valued function on [0, o)X C, x(r, 1), by

(1.32) x(ry, Du=F(@r, 2, u).
In fact it follows from (1.28) and (1.30) that
(1.33) x(r, D= xlr, ),
where

xo(ry A)=cos\V Ar+I

(1.34) { rsinV 4 (r—1)

wlry D= T a1 DA (0=1,2,3.),

which are estimated as follows:
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( lvatr, DI (S (,—jﬁg;w Jde ), if 120
(1.35) { . (n=0,1,2...),
1 %!(rgoiifl(t)iidt)‘, if 1=0

Z ll2(r, Dlj=es".

Accordingly, taking account of (1.31), we can see that x(r, 1) is a B-
valued function on [0, o) C. For each n, x,(r, 4) is continuous on
[0, o) x C in the uniform topology of B and for any fixed r &[0, o)
x,(r, 2) is a B-valued, entire function. Therefore x(r, 1) is continuous on
[0, o©)x C in the uniform topology of B and for any r&€[0, ) 2(r, 4)
is an entire function. We obtain from (1.25) and (1.29)

2 (r, ) =cos\ A r+ I+ XZL‘“@—%;‘)A@),V(;, i,

(1.36) Vv

x(0, H)=1.
(II) Put

W37y D=V TsinV o1+ { cosl (=0 AWat, D,

We can easily show that y(r, 1) is a B-valued, continuous function on
[0, o) xC in the uniform topology of B and for any fixed r €[0, oo)

y(r, 2) is a B-valued, entire function. We have

(1.38) %{x(wh, D—x(r, D} — y(r, D)

= {-ilf(cos VA (r+h)—cosV A r) + \/75in\/7r} 1

+Sf<sin\/7(r +h—1)—sinV 2 (r—¢) —CO&/T(I‘—t))A(t}x(t,i)dt

0 W
r+h a7 _
+S SinV 2 (r+h=10) 43, (0 Dt =T+ Tyt T
r h 2
It is easy to see that
(1.39) lim||Jy || =1im||J5||=0.
h—0 h—0

For J; we have
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(1.40) /sl

I

r+1h| r+h-t
S 1 g cos A sds ||| AW (e, Dl de
r—tn || [Jo

r4 ||
<2e®(” AQIIlxG, Dlidi0  (hoo0),
|

7—|

where b=|Imy A | and we have made use of the estimations

1 (7 ( r+h— o
(1.41) sin V4 (J%h_‘) }z So tCOS\/lsa's <|r+h—t]ebr "
and
(1.42) |r+h—t{<2[h| (e€lr—|hi, r+h|D.

Therefore we have for all r €[0, o)

(1.43) lim

h—0

G, D=, D) = (r, D =0,

which implies that for each 1€C «x(r, 1) is continuously differentiable
on [0, o) in the uniform topology of B with its derivative =x'(r, 1)
=y(r, A). Let h>0 and u,v€H. Then we have

(144)  (a'(r+hy D) —5'(ry, D}u, v)a
=((—V 2 'sinV 2 (r +k) ++ AsinV 2 r)u, v)
+ So (cosV 7 (r-+h—1)— cosV A (r — 1))
+ go {cosV T (r +h—1) cosy X (r — )} (A@)x (¢, Du, v)uds
+S:+hcosx/7(r+h—t) (A% (2, Dy v)nde
=K, + Ky + Ko,

We can estimate K;(i=1, 2, 3) as follows:

r+h
K | glg oV T dt

r+h
HMHIVIIéST e’ dt[ulli|o]],
g" sin\/T(r—H—s)dS

kel =(| . =

: 1AWl G, Dlldelul]

(1.45)
4 1 r—t+h 14

<k e PIA@ e Dldelulo]

Kol <[P A5, Dldelullol
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and hence x'(r, A1) is weakly absolutely continuous on every finite interval
in [0, o) for each A€C. We obtain from (1.37)

(1.46) x'(0, )=0.

(III) We denote (A(r)—A)x(r, 1) by z(r, A). Then |lz(r, )| is
locally integrable on [0, oo) and for any fixed r€[0, o) z(r, 1) is a

B-valued, entire function. For u,v € H we have
(1.47) (_hl.-(x'(ﬂrh, D—x'(r, Du, v)y—(z(r, Du, v)
- {71#— VT siny 2 (r +B) 4+ Tsiny 2 r) + zcosnr}@, )
+S: {—]];—(cosx/T(r—%—h—t)——cosx/—/l—(r—t))
+\/Tsin\/7<r—t)}(,4(t) x (¢, Du, v)gdt

+S”h —}L—(cos¢7<r+h—z)—1)(A(z)x(t, Du, v)udt

r

+'%S:+h (A4@) x(t, D u, v)rdt—(A(r) z (r, Du, v)n

=L+ Ly+Ls+ Ly

Estimations similar to the ones used in proving lim||J;||=0 (i=1, 2, 3)
B0

give

(1.48) lim|L;| =0 (=1, 2, 3).
k-0

for all re€[0, o) and u,v€ H. Since (A@®)x(t, ) u, v)g is locally

integrable, there exists a null set e(u, v, 1) in [0, o) such that
r+h
(1.49) nm%g (A@)% (&, D, v)rdt=(AF) x (r, D, Vg
h—0 7
holds for any r €[ 0, oo)—e(u, v, 1), which implies that

(1.50) lim|Ly| =0

h—0
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for all r€[0, oo)—e(u, v, ). Therefore we have
d / _
(151) 'd_(x (T, Z)”’) U)‘_ (Z(T, l)”: ‘U)
r

for all r€[0, o©)—e(u, v, ). It follows from Remark 1.5 that for any
u€ H and 1€C we can choose a null set e(u, 1) in [0, o) such that

(1.52) 4@y Dy ) =G0, Du, )

holds for all v€ H and r€[0, oo)—e(u, 4). Proceeding as in the proof
of Lemma 1.4, we can also show that there exists a null set e(4) in
[0, o) such that (1.51) is valid for all u,v€ H and r €[0, o0)—e(l).
Let {A.}7-1 be a countable subset of C which is dense in C. We put
ex=e(l,)(n=1, 2,...) and denote by ey a null set in [0, =) such that
for all r€[0, o0)—e,

(153) A 1a@lia =141

is valid. Let e=\Je, and let r€[0, c©)—e. Then we have for any
m=g

u,v€H and A€C

(1.54) ({]l—l(x'(r—{—h, D—x'(r, 1))—z(r, l)}u, v)H

|

1 7 ’
(-G +h, 2=, 1)) =20, A, o)
+ (A (b, D=2 (o, DY = A& G by A) =5 )} 0 )i
+{z(r; 2m) —2(r, D}u, v)u
=M, + M+ Ms,.

Noting r & e, we have lim|M;|=0. For M,, we have
h—0
1 r+h

@ss) 1Ml = | (e, D=2, 2}, vhds

1 r+1h|
§[_|S N 14| dt-(  max [|%(s,2) — % (s, 2m)|])

r—| 7—|hI<S<T+]h|

X ||ullmllv]lz
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1 |
T (e, 20— 25, Dl el

Since r€e, and x(r, 1) is continuous on [0, o) X C, it is obvious that
lxm[M2| =0 and the convergence is uniform when A tends to 0. We can
easﬂy show that hmi!z(r ) —z(r, 2n)||=0, and hence IlmlM3| =0. Thus
we have proved that (1.51) is valid for all u,v € H, /IEC and r€[0, o)
—e, where the null set e does not depend on u,v€ H and A€ C. There-
fore for r€[0, o0)—e x'(r, X) is weakly differentiable with its derivative
x"(ry D)=2z(r, ).

(IV) 1t is easy to see from (I), (II) and (III) that x(r, 1) satisfies
(2)~(5) of Proposition 1.4 and that x(r, )u is the solution of (1.3) with
data {u, 0} for any u€ H. Consequently we have

(1.56) x(r, )=w(r, 2; I, 0).

Thus we have completely proved the existence of w(r, 1; I, 0). In quite
a similar way we can prove the existence of w(r, 4; I, 0), and by (1.24)
the existence of w(r, 4; S, T) is shown. Q.E.D.

Using Proposition 1.6, we give the following

Definition 1.8. Let H, and H, be closed, linecar subspaces of H
such that

(1.57) H=H GH, (direct sum)

and let By, and C; be bounded, self-adjoint operators on H, into itself
such that
(1.58) ByCy,=Cy B,
and the bounded inverse of Bs exists. Then, putting

0 on Hy identity on H,
(1.59) B= C=
B; on H,, C; on H,

we define a bounded, linear operator ¢(r, X) by
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(1.60) ¢(r, )=w(r,d; B, C).

We can easily show that for each 1€C
(1.61) B¢’ (0, 1) —Ce(0, 2)=0.

Thus we have constructed the ‘“‘eigenoperator” ¢(r, A) associated with %

and the boundary condition
(1.62) BF'(0)—CF(0)=0.
Here we remark that the boundary condition (1.62) is equivalent to

(1.63)
P:F’(0)=B3'C,P,F(0),

where P; and P, are the projection operators onto H; and H,, respectively.

We shall show the properties of @-(a-ri—@* which will be used in §4.

Propesition 1.9. Let w(r, )=w(r, 2; S, T) be as in Proposition
1.6. Then we have following (1)~(3):

(1) For each 2€C and ue H —Q%Ju belongs to D.
0w(r, ) . . . . . .

(2) 1 continuously differentiable on [0, oo) in the uniform

topology of B with its derivative (M) €B, and we have
0w(r, ) ), _ 0w'(r, A)
(1.64) < 02 ol
on [0, o) xC.
do(r, 1)\, . ,
(8) For each 2€C a1 /) weakly absolutely continuous on

every finite interval in [0, o). There exists a null set e in [0, o) such
that for any r€[0,0)—e (M> is weakly differentiable with its

derivative (_@w(r, 4) >”

1eC. H a“’(” /z)>
all relo, 00)—-e and 2€C

(165) ( aw(r l) aw//a(;’ X)

€B. The exceptional set e does not depend on

is locally integrable on [0, oo) and we have for
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and

(1.66) (M> A a"’(; D a"’a(;’ D 4o, D).

Proof. Proposition 1.9 can be proved in a way similar to the proof
of Proposition 1.6. Hence we shall give the outline of the proof. It is
sufficient that we prove (1)~(3) assuming w(r, )=w(r, 4; I, 0). Differ-
entiating the both sides of (1.36) with respect to 4, we have

ow(r, 1) _ S sinV 2 (r—1) 6‘w(t )
(1.67) —— = 2\/_[s1n\/—r I+ T A(r) dt
Tt o T (r— gy SV AG—0)
+{ e T(r—1) A ba@ot, dae.
It follows from (1.67) that %—D— is differentiable in the uniform

topology for each 1€ C and that we have

(1.68) ( Gw(r, ) ) ( \/_sm\/ A(r—t) ——cosx/ 2 r)

0w(t, 1) d

+S:cosx/7(r—t)A(t) 5

_S: <2r H) sinV' 1 (r—0) 4o (2, D)dt.

On the other hand we obtain from (1.37),

(1.69) %’—D az{ N/TSin\/_}:r-I+S:c05\/7(r—t)A(t)w(t, l)dt}

=(— 1_ sinVTr—Lcosﬁr)I
2V 2 2

S cosV 4 (r—t)A(t)—%—@—dt

= TV T (=0 AW, D,
and hence we have (60)(62’ A) '= awé;’ A) . Thus (2) has been

0w'(ry, 2) . .
proved. It is easy to see that _a(/zr’—) is weakly absolutely continuous
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on every finite interval in [0, oo). Let u, v€ H. Then we have

(1.70) L ({ 6’a)’(r+h A) 6a)’(arl, 2) }u, v)y

o'(r+h, )—o'(r, i)
az h )”

_ 6 1 Tk 1"
_W{Tgr (0"t D, V)nde |

z%_{-}lb_gfh (A — Doz, D u, v)Hdz}.

Here we have made use of the fact that w"(r, )=(A(r)—Dw(r, 1). Let

N be an arbitrary positive number. Then the integral

Nlo .
1.71) go 9w -not, Dy, v)H] di

g l({(/m) z)—‘?’-“’—(—t—’l ot, Dk, v 'dt

is continuous on C. Therefore we can interchange of the order of

differentiation and integration in (1.70) to obtain

am (b DL,

Z%S <{(A(t) 2 a“’(t 00, 1) _ l)}u, v)Hdt.

It follows from (1.72) that

(1.73) Zr(‘@é:f—l) ,v) ({(A() z)a"’(” D _(r, z)}u, V)

holds almost everywhere. Using arguments similar to the ones in proving
(4) of Proposition 1.6, we can easily show that we can choose a null set
e in [0, o) which does not depend on u,v€ H and A€ C such that for
any r€[0, ©)—e, A€C and u,vE H (1.73) holds. And we have for
almost all r €[ 0, o)

@) (20 DY ()2 D, =20 D)
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which completes the proof of (3). (1) is immediate from (2) and (3).
Q.E.D.

§2. Green’s Formula for H-valued Functions

In this section we shall give Green’s formula for H-valued functions

which will be useful in §3.

Proposition 2.1 (Green’s formula). Take H-valued functions Fi(r)
and Fy(r) on [0, o) such that F;€D (i=1, 2). Take a finite, closed
interval [a, 8] in [0, o). Then we have

8
2.1 S {(LF\(r), Fo(r)u—(Fi(r), LF:(r))n}dr
:[Fla FZ](B)_[Fls F2:|(a)a

where
(2.2) ZLF(r)=—F{(r)+A(n)F(r)  (i=1,2),
and

(2.3) LFy, FpJ(r)=(Fy(r), Fo(r))a—(Fi(r), Fz(r)m.

Proof. Since Fj(r) and F,(r) are strongly absolutely continuous,”

- d
(Fi(r), Fo(r))y is absolutely continuous on [, §]. We calculate ar
(Fi(r), Fa(r))g as follows: we have

@4)  AFr+h), Falr+m)—(Fi(r), Fo(r)a}

=( F{(r—l—h}z—F{(r) ’ Fz(r)>+<F{(r), Fz(r+hlz——F2(r)

+(Fir+m— Ry, BTN g g,

Since Fj(r) is weakly differentiable almost everywhere, we have

(2.5 lim J=(F{(r), Fa(r))

5) See Lemma 1.3 in §1.
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for almost all r€[«a, 8] and it follows from the strong differentiability
of F. z(r ) that

(26) lim Jy = (F(r), Fi(r))
for all r€la, . As for J3, we have
@7 RISIFC - R0 )

1

Since Fj(r) exists, ]is bounded when /4 tends to 0.

Z(Far+h) = Fo(r))

Hence
(2.8) limJs| =0

=0
for all r€[a, #]. Therefore we obtain for almost all r€[a, £ ]
@9 L), Fr)=(Fi), Ft)+EFL), Filr).
Integrating (2.9) we can show

210) (i, FolrD| = AE), Fotr D+ FLr), Firddabdr

Quite similarly we have

2.11)  (Fi(r), F3(r)m

‘::Sj{(F 1(r)s F3(r))u+ (Fi(r), F3(r))u} dr.

(2.1) is obtained from (2.10) and (2.11). Q.E.D.

Corollary 2.2. Let F1€D and let F, satisfy (1) of Definition 1.2.
Then we have

@12 (@re), FEowd
= {EO, B+ UOFE), Pt dr
~ O, B

for 0<a<pB<eo.

Proof. Notice that it is not necessary to show (2.9) that F, satisfies
(2) of Definition 1.2. Then (2.12) is obtained immediately from (2.10).
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Q.E.D.

§3. The Operator L

Let # be the differential operator defined in Definition 1.2. We

consider a restriction L of % which satisfies the boundary condition
(3.1) BF'(0)—CF(0)=0,

where B and C are bounded, self-adjoint operators on H defined in Defini-
tion 1.8. When the differential operator % and the boundary condition
(3.1) are given, an operator L will be defined by LF=%F on the set of
all functions F(r) such that F and ZF are well-defined as elements of §
and F satisfies (3.1). We shall prove that L is a closed operator and
that if F, (n=1, 2,...) belong to the domain of L and both F, and LF,
converge in Y, then the sequence F,(r) and F,(r) also converge in H for

any r=0. These results will be used in §4.

Definition 3.1. Let % be as in Definition 1.2. Let us denote by 2
the set of all H-valued functions F(r) on [0, o) which satisfy the following
condition :

i FeD.

(i) We have

(3.2) BF'(0)—CF(0)=0.

(iii) Both F(r) and LF(r)=—F"(r)+ Ar)F(r) belong to H.
Then we define an operator L in Y by

B(L)=2
(3.3)
LF(r)=2F().

Theorem 3.2. Let L be as in Definition 3.1. Then L is a closed
operator. Further, if F,€2 n=1, 2, 3... and two sequences F, and LF,
are Cauchy sequences in Y, then two sequences F,(r) and F,(r) are Cauchy
sequences in H and they converge uniformly on every finite interval in
[0, ). Put F=lim F, in Y. Then thereis a null set ¢ in [0, o) such

N—o0
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that we can modify F(r) on e to obtain

(3.4) F,(r)—>F(r) in H,
and
(3.5) F,(r)—>F'(r) in H

Sfor all rel0, oo).

In order to prove this theorem, we prepare several lemmas.

Lemma 3.3. Let G, be a sequence of H-valued functions on [a, ],
where [, 5] is a finite interval in [0, o), satisfying the following:

(@) For all ue H, (Gr), u)y is absolutely continuous on [, B]
and G, is weakly differentiable almost everywhere with the weak derivative
G, on [, B].

(b) Both G, and G, are Cauchy sequences in L(a, B; H). Then the

sequence G,(r) converges uniformly in H on [a, B].

Proof. We show that G,(r) converges uniformly on [ a—zi'ﬁ s 5].

Take a smooth function p(¢) on [@, B] such that p(t)=1 for €

[ a—zi—ﬂ ,,6’:' and p(¢)=0 for tel_a, a—;—ﬁ ] Then for all uwe€ H and

re[#27 4]

(36) (G,,(T) - Gm(”)s u)Hz S % [P(t)(cn(t) - Gm(t)9 u)H] dt

r
a

= 4 G0 —6u®), ) +p®) CHO—Go), W} de.
From (3.6) we obtain
3D 1164 —~6nDila = CP{] 16,0 —6a@ l1de+ 6300~ Go0ll
where C(p) is a positive constant depending only on p(¢). Since G, and

G, are Cauchy sequences in L;(a, B; H), it follows from (3.7) that

lim ||G,(r) —G,(r)|lg=0 and the sequence G,(r) converges uniformly on
m, N0

5

s B]. Similarly we can show that G,(r) converges uniformly on
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[a, axb ], Q.E.D.

Using Green’s formula we obtain

Lemma 3.4. Let FE 9D and let p(r) be a smooth function on [0, o)

with a compact carrier in [0, o0). Then we have
(3.8) |pF'|g=(pW, pF)s—2(pF’, p'F)s—(4pF, pF),
—(p(0)B31C;P:F(0), p(0)F(0))g,

where W=LF, B; and C; are as in Definition 1.8 and P, is the projec-
tion operator onto H,.

Proof. Let p(r)=0 for r =R and G€ 2. Putting F;=F and F,=
pG and [a, B]=[0, R] in the formula (2.12) of Corollary 2.2. we obtain

(LF, pG)y=(F', (pG))y+(AF, pG)y+(F'(0), p(0)G(0))a,
which is rewritten in the form
(3.9) (pF's 6)y=(pW, G)y—(p'F’, G)y
—(4pF, G)y—(p(0)F'(0), G(0))z
Putting G=pF in (3.9) we have
(3.10)  (pF', pF')y=(pW, pF)y—2(pF’, p'F)y—(4pF, pF);
—(p(0)F'(0), p(0)F(0))z.
Since Fe€ 92, F satisfies the boundary condition (3.1) which is equivalent to
PiF(0)=0
(3.11)
P,F'(0)=B;'C;P,F(0).9
Therefore we obtain
(3.12)  (p(0)F'(0), p(0)F(0))z=(p(0)B3'C:P:F(0), p(0)F(0))z,
and (3.8) is obtained from (3.10) and (3.12). Q.E.D.

Using Lemma 3.3 and Lemma 3.4 we prove

6) See (1.63) in §1.
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Lemma 3.5. Let F, be as in Theorem 3.2. Then there exists an
H-valued function V(r) on (0, o) such that Fi—V in L.(x, 8; H) for
any positive numbers o, B(a<pB), and F,(r) is a Cauchy sequence in H
Jfor any r>0.

Proof. Take a smooth function p(r) such that 0=p <1, p(r)=0 for
ogrg% and r==F+1 and p(r)=1 for a<r<f. Put F=F,—F, and
W=W,—W,, where W,=LF,. Since F,—F,€2 we can use Lemma
3.4 to obtain

(3.13) HP(F,;—F,/,L)H,Z,::(}?(W,,— W), P(Fn"Fm))h
"2(P<F;1_Frln)a P/(Fn_Fm))l)
’(AP(F)L_Fnz>; P(Fn'_Fm))()-

Let us estimate the term—(Ap(F,—Fy), p(Fy—Fu))y. From (3) of As-

sumption 1.1 we obtain
(3.14) —(Ap(Fu—Fy), p(Fu—Fpu))s
= — (AP O E) ~ Fal)), pOED) = Fu)lr
SConllp(Fu—Fu)ll§ =< Cpa|| Fu— Faull3.

It follows from (3.13) and (3.14) that

(3.15) | p(Fy—=F)|? S| W= Walls| | F— Falls
+2C(Pl p(Fr— F) || Fu— Faullg
+ Cpr1|lFu—Faullf,

where C(p) is a positive constant depending only on p(r). Since F, and
IV, are Cauchy sequences in Y, pF, becomes a Cauchy sequence in b,
which implies that F, is a Cauchy sequence in Ls(w, 8; H). Therefore
we have proved the existence of V(r) satisfying F,—V in Ly(a, 8; H).
Applying Lemma 3.3, putting G,=F,, we can see that F,(r) is a Cauchy
sequence in H for r>0. This finishes the proof. Q. E.D.

In the following lemma we shall show that Fj is really a Cauchy
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sequence in Lq(0, B; H).

Lemma 3.6. Let F, be as in Theorem 3.2 and let V(r) be as in
Lemma 3.5. Then F,—V in L;(0, B; H) and the sequence F,(r) converges
uniformly on [0, B for any B>0.

Proof. Take a smooth function p(r) on [0, oo) satisfying 0 =p =1,
p(r)=1 for 0<r<<f and p(r)=0 for r=p+1. It follows from Lemma
3.5 that there exists a positive number r,<< @ such that F,(r,) is a Cauchy
sequence in H and 2||B7Y!||Cyllro<1. Let us estimate ||F,(0)— F,(0)| z-
Using repeatedly the relation

(3.16) (Fn(o)_Fm(O)a w)=(Fy(ro)—Fu(ro), u)

= GO EO=Fu0), war,

where u € H, we have

(B.17)  1F2(0) = FalO)l5=(Filro) = Falro), Fi(0) = Fa(O)i
P ED = Folr)), PO = Fol0)adr

= 1Fu(r0) = Faro)|[*= " (Furo) = Furo), pr)FRr) = Fi(r)r
(GO EY = Far), Furo) = Furodadr

= I E = Fs, pOED ~ Fi0)ndrdr.
It follows from (3.17) that
(3.18)  [F(0) = Fu(OI*< I Fulro) = Fao)l
+20|F o) = Falro)l {1 FOE0 — Fiode
+[ ("1o@Fo - Fawlia
<IFs(ro) = Falro)liy+ Vol Furo) = FaCro) lalpFa— F3)ll

+ roll p(Fp = I

Proceeding as in the proof of Lemma 3.5, we have from (3.8), (3.14)
and (3.18)
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(3.19) |lp(F—FII3
g” W,— Wm“bHFn"‘Fme+2HP<F1,L_F;n)HhHPI(Fn_‘Fm)“b
+ C/S'+1“F11_Fm||%+ HBEIHHCZH{HFn(rO)_Fm(TO)H%I

+ 210 |Falro) = Falrollull p (Fr— Fp)llg+ roll p(Fr— F)lIE}

As ||BZYIIIC, i <1/2, it follows from (3.19) that
1 ’ N\
(320) T“P(Fn_Fm)ll%
<2{llp' (Fs—Fu)llg +Vro [ B | Call[| Fa(ro) — Fulro)lla} p(F— Fplls

+H Wn— an!![)llF;L—Fnzl|I)+C/3+1||Fn_Fm||%
+||BEI||||C2|||!Fiz<r0)—Fm(rO)HHa

which implies that lim (F,—F,)=0 in L;(0, 8; H). On the other hand

7,M—ca

the sequence F, is assumed to be a Cauchy sequence in Y. Thus we
have shown F, and F, are Cauchy sequences in L»(0, #; H) for any
£>0. Hence we can make use of Lemma 3.3 to see that the sequence
F,(r) converges uniformly on [0, £ . Q.E.D.

Lemma 3.7. Let F, be as in Theorem 3.2. Then for any >0
F} is a Cauchy sequence in L1(0, B; H) and F,(r) converges uniformly in
Hon [0, 8]

Proof. Since Fi(r)=A@)F,(r)— W,(r), we obtain

@20 (P~ Fa6)lnds
= {14 )~ Fno) + (W)~ W)
= (max||Fu(s)— Fa ()l ¢ {14 ds
+ 1 = W s,

where W,=LF,. By (2) of Assumption 1.1 ||4(r)|| is locally integrable,
ie.

B
(3.22) SoliA(t)Hdt<00.

Moreover it follows from Lemma 3.6 that
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(3.23) ,,,l,ffi g?;‘ﬂ”Fn(S)_Fm(S)HHZO-

From (3.21), (3.22) and (3.23) we see

(3:20) (IF —~Fa@linds >0 (n, m=roo).

Recalling that the sequence F) is a Cauchy sequence in L.(0, 8; H), we
can use Lemma 3.3 to show that the sequence F,(r) converges uniformly

on [0, B Q.E.D.

Using Lemma 3.6 and Lemma 3.7, we can easily show

Lemma 3.8. Let F and F, be as in Theorem 3.2 and let V be as
in Lemma 3.5. Then there exist H-valued functions Fo(r) and Vo(r) on
[0, oo) satisfying the following (i)~(iii):

(i) We have Fy(r)=F() and V(r)=V(r) for almost all r €[ 0, o).

(i)  Fu(r) converges to Fy(r) in H uniformly on every finite interval
in [0, o). Similarly F,(r) converges to V(r) in H uniformly on every
finite interval in [0, o0), and hence Fy(r) and Vo(r) are strongly con-
tinuous omn [0, o).

(iii) We have for any u€ H and any r,c €[ 0, o)

(3.25) (Fo(r), wha=CFo(e), i+ | (a0, wnds,
and -
(3.26) (Po(r), win=(Va(e)y wh+ | (Y0, wnds,

where Y(r)=lim F,(r) in L0, B; H] for any §=0.
Proof. Let us define Fy(r) and Vy(r) by
Fo(r)=limF,(r) in H,
(3.27) e
Vo(r)=lmF,(r) in H.
N—>o0
By Lemma 3.6 and Lemma 3.7, the sequences F,(r) and F,(r) converge
uniformly on every finite interval in [0, o), and hence Fy(r) and Vy(r)

are strongly continuous. On the other hand we have

(3.28) F=lm F, inb,
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and in view of Lemma 3.5 we have
(3.29) V=lim F, in L0, B; H)

for any =0. Therefore we have Fo(r)=F(r) and V,(r)=V(r) for almost

all r=0. Letting n—ooin the relation

(3.30) (Fo(r), W= (Fy(c), u>H-+§:<f;<zx Wdi

we obtain (3.26). Similarly we obtain (3.27), noting that the existence
of Y(¢) was proved in Lemma 3.7. Q.E.D.

Proof of Theorem 3.2. Let Fy(r) be as in Lemma 3.8. Since Fy(r)
=F(r) for almost all r€ [0, o) by (i) of Lemma 3.8. and lim F,=F
in §, we have F,—F, in Y. It follows from (3.25) that Fy(r) ’gmstrongly
continuously differentiable with its strong derivative Fj(r)=Vo(r). Similar-
ly (3.26) implies that V,(r) is weakly absolutely continuous and is weakly
differentiable almost everywhere with its weak derivative Vj(r)=Y(r).
Therefore Fy(r) satisfies (i) of Definition 3.1. We show that Fo(r) satis-
fies the boundary condition (3.1). Since we have F,(0)—F,(0) and F,(0)
—Fi(0)="V,(0) by Lemma 3.8, we obtain

(3.31)  BF}(0)— CF}(0)=lim (BF’(0)— CF,(0))=lim 0=0.

Thus we have shown that F, satisfies (ii) of Definition 3.1.

Next we show that LFy=W in Y, where W =lim W,=1im LF,.
N—o0a N—>o00
We defined in Lemma 3.8

(3.32) V)= Y(r)zlnim F(r) in L,(0, B; H)
for any f=0. As F.(r)=AG)F,()— W,(r), we have
(333)  YO)=lim (AWEN W) in L0, 8; H).

On the other hand limW,=W in }) and we have for 3 >0

(3.34) Sf”A(T)Fn(T)—A(r)Fo(r)”Hdr
égoﬂ”‘ﬁ’(””dr;;gfgﬂ 1Fu(r)— Fo(r)|la—0,

which implies A(r)F,(r)—>A(r)Fo(r) in L(0, 8; H). Here we have made

use of the uniform convergence of F,(r) on [0, 8]. It follows from
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(3.33) and (3.32) that

(3.35) Y(r)=A@)Fo(r)—W(r)  in Li(0, B; H),

and hence we have for almost all r&[0, o)

(3.36) W(r)=—Y(r)+ A(r)Fo(r)= — V(r)+ A(r)Fo(r)
= —Fi(r)+ A(r)Fo(r),

which implies that #Fy=W. Thus we have shown that F,€2 and LF,
=W. Since F=F, in §), the closedness of L has been completely proved.
(3.4) and (3.5) are obtained immediately from ii) of Lemma 3.8, which
completes the proof. Q.E.D.

§4. The Eigenfunction Expansion

Let L be the closed operator discussed in the preceding section.
Now we shall prove the eigenfunction expansion for self-adjoint operators
which will be obtained as a restriction of L.

Now let us assume that there exists a self-adjoint restriction of L,
which will be denoted by Lo, that is, L, is a self-adjoint operator and
L, L.’ We denote by E(x#) the resolution of the identity associated
with L,. E(u4) is assumed to be right continuous.

First we give the definition of a sort of Riemann-Stieltjes integral

which will be useful in the section.

Definition 4.1. (1) Let [ #1, uz | be a finite, closed interval in R=
(—o0, o). Let Q(r) and a(y) be B-valued functions on [ p1, Uz ]| and
let U(u) be an H-valued function on [ 1, t2 . Denote by 4 a finite
subdivision of the interval [ (1, U | determined by the points 7o, Y1y---5Yns

where

4.1) =< < <Yp= Us.

7) Let, for example, | A(r)| be bounded on [0, ). Then defining L,F=_%F for every
function F(r) which satisfies (i) and (ii) of Definition 3.1 and has a compact carrier,
we can show that L, is a semi-bounded, symmetric operator. The Friedrichs ex-
tention of L; becomes a self-adjoint restriction of L.
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By the norm 0=0(d4) of 4 we mean the largest of the numbers 7;.1—7;
(i=0, 1, 2,-.., n—1).
If the limit

(42) Jim 2 Q@) —at)U(r})
or
(43) Jim - Z0G(Ulr)— U,

where 7;<7;i<%;.1 (=0, 1, 2,..., n—1), exists in the sense of weak con-
vergence in H independently of the manner of subdivision and of the choice

of the numbersy ;, then the limit is denoted by S , O(wa(dw)U(y) or
LEyspe
[ owuvtan.
Cauripgd
(2) Suppose that for any u€ (u1, 2| the integral
(4.4) [ omatapvey o | omuan
Crs pe] L a1

exists in the sense of (1) and suppose that there exists

@5 tim | OmaldnUe) o tim | owm)Udn)

P p+0 —p1+0
in the sense of weak convergence in H. Then we define the integral on
the half-open interval (i1, Us | by

o) | oewatanptm= im |

or

an | ewupn=1m |  o@ua.
(r1p23 © Capa]

—H1+0

,”2](?(77)&(0377) U(x).

©

We state two lemmas which give sufficient conditions for the ex-

istence of the integrals defined above. We shall give the proof of these

lemmas in the Appendix.

Lemma 4.2. Denote by [ u1, #s | a finite, closed interval in R. Let
Q(y) be a B-valued function on [ p1, s | which is continuously differentiable
in the uniform topology of B with its derivative Zg € B. Let Ulu) be an
H-valued, strongly continuously differentiable function on [ t1, M2 | with its
strong derivative % Let a(y) be a B-valued function on [ 1, Us ]
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. dQ
such that ||a(u)|| is bounded on [ u1, uz2| and (W a() U(p) +Q(u)a( 1)
dU
du w
Then the integral S

> o is integrable on [ p1, Mz | in the sense of Riemann for u € H.

O(wa(du)U(y) exists in the sense of Definition
]

K1sk2

4.1 and we have for any ue H

a8 (§ ewatnuw, v)
=(QUa) Ulz), i — (@) U), whn

(2 v+t &Y. u)sdn

#1

Lemma 4.3. Denote by [ u1, ys | a finite closed interval in R. Let
O(y) as in Lemma 4.3. Let V(u) be an H-walued function on [ f1, tz]

d .
such that ||V(@)l|lg is bounded on [ 1, (2] and(—dg-V(,a), u>H is
integrable on [ uy1, U] in the semse of Riemann for any u € H. Then the
z'ntegralg Q) V(duy) exists in the semse of Definition 4.1 and we

K1k
have for any u€ H

@9 (§ ewram, w)i=Qua)V (), wu—QUu) ¥ (un, v)

- S:(%% Viw, u )Hdﬂ-

We shall show how the resolution of the identity E(x) of L, and
the eigenoperator ¢(r, 1) are related each other.

Proposition 4.4.» Let FEY and let I=(u1, us) be a finite half-

open interval in R. Then we have
410)  FG, D={ 0, ))PFO, dp)+BFPFO, du),

where P; (i=1, 2) are projection operators onto H; (i=1, 2) defined in
Definition 1.8 and

8) Cf. Kodaira [4], p. 188, (4.12); or [5], p. 930, (2.6).
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F(r, D=EDF)(r)=(E(#2) —E(u))F(r),
(4.11) F@r, )=(E(u)—E0)F(r),
F(r, 1)=E()—E)F) ().

The integral of the right-hand side of (4.10) exists in the sense of Defini-
tion 4.1.

To prove this proposition we prepare some lemmas. We have to show
that the integral of the right-hand side of (4.10) exists.

Lemma 4.5. Let FeYy and let F(r, 1) and F (r, y) be as in Pro-
position 4.2.

(i) Then for an arbitrarily fixed r €[ 0, o), F(r, u) and F'(r, u),
as functions of u€R, are strongly right continuous on R and the strong
limits
s-lim F(r,y)
7—=p—0
sllim F'(r,7)

1—4—0

(4.12)

exist for any uc€R. Therefore for each rel0, ) ||F(r, n)|| and
F'(ry p)|| are bounded functions on every finite, closed interval [ 1, s J<R.

(ii) Denote by do(r) (or di(r)) the set of all discontinuous points of
F(r, n) (or F'(r, 1)) and denote by d=d(L,) the set of all discontinuous
points of E(u). Then we have for any r €[ 0, o)

(4.13) d(nsd (=0, 1),

and hence both do(r) and d\(r) are enumerable sets.
(iii) For FEY the integral of the right-hand side of (4.10) exists in
the sense of Definition 4.1 and we have for ue H

@19 (§ 66, P, d+ B3 PR, du), u)a

=H2

=¢(r, )(P1F'(0, #)+ B3 PoF(0, p1), wn

M
p=py

= (PG PO, 10+ BPF(O, 1), w )i
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Here the integral of the right-hand side of (4.14) exists in the semse of
Riemann integral on [ p1, U2 .
Proof. Putting s-lim F(r, y)=F(r, £#—0), we show that F(r, £#—0)

n-4—0

exists for any r=0 and #€R and if E(#x)=FE(x#—0) then F(r, #—0)=
F(r, #). In fact take a sequence #, such that u,<<x and #,—>u. Then

we have

{ (E(tn) — EQu))F—(E(p—0)— E(u))F in b,
(4.15)

L(E(ptn) — EQ))F—>L(E(u—0)—E(@))F ~ in b

Here we have made use of the fact that Lo&L. Then we can apply

Theorem 3.2 to obtain
(4.16) F(r, )= (E(tn) — EQ0)F(r)—>(E(u—0)—E(0))F(r) in H.

Thus we have shown that s-lim F(r, 5) exists and
T—p—0

(4.17) F(r, n—0)=(E(«—0)—E(0))F(r)
holds for r—=0 and #€R. If E(x—0)=E(x), then we have
(4.18) F(r, n—0)=(E(x) —EQ0)F(r)=F(r, ).

Similarly we can show F(r, u) is strongly right continuous. In the same
way we can prove that F'(r, u4) is strongly right continuous and that
sllm F(G, 9)=F(r, #—0) exists and F'(r, 4—0)=F'(r, p) if E(u)=
E(,a 0) Thus (i) and (ii) of Lemma 4.5 has been proved.

Let r€[0, o) be fixed. Then putting

{ Q(u)=¢(r, 1),
V(w)=P,F'(0, )+ B3P, F(0, p),

(4.19)

we can show that Q(x) and V() satisfy the condition of Lemma 4.3, and
hence there exists the integralg Q(,a) V(dy). In fact it follows from
(

K1s p2]
0 A
Proposition 1.6 and Proposition 1.9 that ¢(r, 1) and Lg;f—)—, as functions

of 4, are continuous in the uniform topology of B. By (i) ||[V(u)|lg is

bounded on [ #;, #2 . Further, (i) and (ii) imply that ¢(r, £) ——=V(n),u >
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is at most discontinuous of the first kind for any u € H and that the set

0 .
of all discontinuous points of (ﬂé—ﬂ)/x V(w), u)H is an enumerable set.

< ¢(r, )

Hence V(w),u >H is integrable on [ 4;, #s] in the sense of

Riemann.

Therefore by Lemma 4.3 there exists the integral

(4.20) LD

for 4 € (41, us] and we have for ue H

az  (§ owrian, w)=@m e, v
(52 5) u s

Since V() is strongly right continuous, there exists

@an tim (@@ ¥dn, w)a=Qm V), wa|'

gm( 00() V(n), )adm

which completes the proof. Q.E.D.

=H2

Put

g ¢(r, DV(dy)  if >0,
(05 p]
(4.23) Ulr, )=1 0 if u=0,
(s rtan it a<o,
(»,0]
where
(4.24) V(u)=PiF'(0, )+ B3'P;F(0, u).

We shall show some properties of U(r, u).

Lemma 4.6. Let r€[0, o) and xcR.

(i) Then for any peR U( -, ) €D. And (UG, 0|y is locally
bounded on [0, oo)xR.

(ii) There exists the integral S(M’M pU(r, dy) on every finite half-
open interval (Y1, M2 | and for every r €[0, oo). Putting
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gm UG, d) i 1>,
(4.25)  V(r, )={ 0 if p=0,

——S qU(r, dy) if u<0,
(#, 0]

we have a null set e in [0, o) such that for r€[0, oo)—e
(4.26) LU, p=V(r, u)

holds, where we define LU(r, n) by —U"(r, u)+ A@)U(r, p).
(ili) We have for any peR

{ U0, #)=F(0, u),
U'(0, 1)=F'(0, x).

Proof. By the formula (4.14) and Proposition 1.6 and Proposition 1.9
it is easy to see that for each #€R U(, #)€D and ||UG, p)|lg is
locally bounded on [0, =) xR. If we put

[, ws vy it w>o,
Ny
(4.28)  V(r, )=1 0 if =0,

[, e v ita<o,

(4.27)

then it follows from Proposition 1.6 and Proposition 1.9 that we have for
almost all re[0, o)

(4.29) LU, p)=V(r, 0.

Again using (4.14), we can see that for each r&l0, o) ||U(r, )|z is

locally bounded on R and (U(r, #), u)y is integrable on any finite interval

in R in the sense of Riemann, where u is an arbitrary element of H.

Moreover U(r, u), as a function of 4, is right-continuous. Therefore by

Lemma 4.3 the integral g U, dy) exists and V(r, p) is well-defined.
H1sH2]

( -
We shall show V(r, #)=V(r, #) on [0, c=)xR. It follows from
(4.25) and the right continuity of U(r, x4) that

430) (VG 0, w=UCr, ), w) || = (WG, ), wdy

= u(UGr, 1, )= { (UG, ), Wy
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holds for u € H. Noting (4.23) we obtain
(4.31)  w(UGr, 1), u)=p(d(r, )V (1), u)— u(g(r, )V (1), u)
_ﬂg:(_a¢(ar;7 Dy, u)dm

and
@32y ('we, », wan={ 1@, DY m, w-6e Or©), wdy

G2 v, o

= ('@, DY), wdn—u@(r, OV, w

—SZ(ﬂ—z)( Wg; Dy, u,)d/l.

By (4.30), (4.31) and (4.32) we have for u€ H

@38 (VG 1, 0=, DV, )= (5-Cale, DIV (), w )
On the other hand from (4.28) we obtain

430 (PG, i, w)=n@(r, V), 0= (F-Cadr, )V ), )

and hence V(r, ©)=V(r, u).
Let us show (4.27). For any u€ H

(4.35)  (U(0, 1), u)=(4(0, )V (1), u)—(g(0, 0)¥(0), u)

SICSIRY

0

holds. Recalling Definition 1.8 we have for any #€R

(4.36) ¢(0, #)=B.
It follows from (4.35), (4.36) and (4.24)
(4.37) (U0, 1), u)=(B(V (1) —V(0)), u)=(BV(n), u)

=(B(P1F'(0, )+ B3'P,F(0, 1)), u).
From Definition 1.8 we have BP;=0 and BB;'P;=P,. As (E(u)—E(0)F
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€ 2, we have P, F(0, #)=0. Therefore (4.37) becomes

(4.38) (U0, p), u)=(F(0, 1), u),

and hence U(0, #)=F(0, x). Similarly, noting that

S ¢'(ry 9)V(dy) if #>0,
0, pJ
(4.39) U(r, 0)=1{ 0 if #=0,

—S ¢'(r, PV (dy) if 7 <0,
(#,0]

we obtain U’(0, #)=F'(0, x), which completes the proof. Q.E.D.

In the following lemma we shall show that F(r, x) satisfies the

integral equation (4.26) as well as U(r, u).

Lemma 4.7 Let FeYy and let F(r, y) be as in (4.11).
(i) Then for any u€R there exists a null set e(u) in [0, o0) such
that
[, aFe an it a>o,
0, 7
(4.40) LF(r, £)=1 0 if 4=0,

—S 7Fr, d)  if #<0
(0, ]

holds for all r €[ 0, oco)—e(u). Here the integral of the right-hand side
of (4.40) exists in the sense of Definition 4.1.

G) ||FGr, wllg is locally bounded on [0, oo)xR.

Proof. We shall prove (4.40) assuming #>0. Using (i) and (ii) of
Lemma 4.5 we can easily show that the integral S _ndF(r, 7) exists.
Since F(r, u)=(EFE(u)—E(0))F(r), by spectral reé?e?entation of Ly we
have for GE€Y

@41)  (LoFCy ), 605 = | 7d(FC, ), 60
= 4G, ), 6y — | (P, m), Gy

Notice that Ly& L. Then from (4.41) we obtain
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a2y [ (@F, w, 6eDudr={ uF G, m, Ge)udr
— "0 e, m, 6@)udrdy.

Using Schwartz’ inequality, we can estimate the integral in the right-hand
side of (4.42) to obtain

443 (' 10, ), 6al dran={'{ 1FG, Dllalic®lludrdy
<" 1B — B FIlliGlls dn

=uIIFls[IG]]s-

T o

Hence by Fubini’s theorem we have

#(EGr, 1), G(r)
~{ e, », 6o dnfdr

(4.44) S:(,?F(r, ), G(r)dr = S:

—_——

ZS::(S(O’F]??F(I‘, dn), G("))ydr,

where, noting (4.43), we can see that S(o 7F(r, dp)€Y. Thus it follows
s M
from (4.44) that (.SfF( . ﬂ)—S(O 7F( -+, dy), G>b =0 holds for all GEY)
sp]

and hence ZF(r, ,a)———S(O’IL]WF(r, dy) for almost all r. Quite similarly we
can prove the case #<0. If x#=0, then clearly both sides of (4.40) are
equal to zero, for F(r, 0)=0 on [0, o).

Next we shall prove (ii). We take $>0 and a finite, closed interval
[u1, #2] in R. Further we take a smooth function p(r) on [0, co) such
that 0=p(r)<1, p(r)=1 on [0, 8], and p(r)=0 on [8+1, o). Replacing
F@) and W) by F(r, #)—F(r, #1) and L(E(u)—E(u;))F(r) respectively

in (3.8) in Lemma 3.4, we have
(4.45)  ||p(F'C-y &)= F'Cey )}
=(pL(E(4) — EQu))F, F( +, ) —F(+, #1))s
—2(p(F'(e, 1) —F'(ey 1)), p'(F (-, ) —F(oy £21)))g
_(AP(F('7 /,t)—F(', ﬂl)): P(F<°3 ﬂ)—F('y ﬂl)))‘)
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— (B CPy(F(0, 1)~ F(0, 1)), F(O, 1)~ F(0, 1))

=K, +K;+K;3+K,.
Let €[z, 42 ], then K;(i=1, 2, 3, 4) are estimated as follows:
(4.46) | Ky | < (ILCEC) — ECu)) F 1o ICECae) — EQa ) F |l
= max(| |, |#2])||F|13.

(4.47) Kz | <2[p(F'Cy )= F'Cc; )y C(PIIF ]y,
where C(p) is a positive constant depending only on p(r).
(4.48) | K3 <Cg.1llFll3,
where we have made use of (3) of Assumption 1.1.
(4.49) | Ko | <[|BZ | Cal[I1FCO, 1) —F(0, pe1)ll%-

Notice that ||F(0, #)|| is bounded on [ 41, #2] by (i) of Lemma 4.5. Then
we can see that there exists a constant K =K(u;, #2, 8, F) such that

B
(450) SOHFI(T, ﬂ)—F’(T, ﬂl)“%ldréK(ﬂly U2y 33 F)

8
holds for #€[ 41, #s ], which implies that So [|F'(ry #)||%dr is bounded on
(41, #2]. Since

5D FG, w=IFO, DllatVB]IFG, mld [+

for r € [0, 8] and ||F(0, u)||z is bounded on [ #1, 42, [|[F(r, )|z is
bounded on [0, B]x[ 41, #2]. This proves the Lemma 4.7. Q.E.D.

To complete the proof of Proposition 4.4, we only need

Lemma 4.8. Let T(r, 1) be an H-valued function on [0, o0) x R
which satisfies the following (a)~(d):

@) TG, g is locally bounded on [0, o) xR.

(b) For any re[0, ) and u € H, (T(r, u), u)y is locally integrable
on R in the sense of Riemann.

() T(C, w)eD for any u€R. And we have
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[ TG an it a>o,
0, p}
(452) 2T(r, m)={ 0 if 4=0,

—S 2T, dp)  if #<0
(w, 0]

for almost all r€70, o).

(d T, ©)=T'(0, p)=0.
Then it follows that T (r, £)=0 on [0, =o)xR.

Proof. We shall prove the case #>0. In a similar way we can
prove the case #=0 and the case #<0. Integrating (4.52) and noting
(d), we have for all ue H

(453) (10, ), W
= (0= T, 20, wy + 7T, 90, wydn ds.

It follows from (4.53) and (a) that T(r, x#)=0. Q.E.D.

Proof of Proposition 4.4. Put T(r, W) =F@, #)— U@, #). Then
by Lemma 4.6 and Lemma 4.7 we can see that 7(r, u) satisfies the con-
ditions (a)~(d) in Lemma 4.6. Hence we have T(r, #)=0, that is,
FG, )=U(, p). Q.E.D.

Now we define an operator-valued function which will play an im-

portant role in the eigenfunction expansion of L.

Definition 4.9. Let I=(u1, us ] be any finite, half-open interval in
R. Then we define a linear operator £(I) on Y into H by

(4.54) 2(I)F=P,F'(0, I)+ B3 'P,F(0, I).

Proposition 4.10. The operator &(I) is a bounded, linear operator
taking Y into H and hence its adjoint £*(I) is also a bounded, linear
operator taking H into Y.

Let I1=(u1, U2 and I,=(vy, v2 | be finite, half-open intervals in R.

(i) Then the relations
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{ E(IL\ V) =£6(1)+ (1),
(4.55)

EX(I\U I)=&*(1,) + £*(12)

are valid if IyN\I;=¢.
(ii)) We have for arbitrary I, and I,
E(Il)f*(Iz)ZS*(IlmIz)——:E(Ilf-\Iz)f*(IlﬂIz),

(4.56) {
E(I)E(I)=¢(IiN 1) =&(IiNI)E(I; N\ I3).

Hence £*(I) maps H into 2(L,).

(iii) For arbitrary I, and I, we have
(4.58) §(UDNE*(L)=§(LiND)E(LiN L)
Especially if IyN\I;=¢, we have
(4.58) §(11)§*(12) =0.

(iv) For a finite half-open interval I=(A1, 22| in R, we define an
B-valued function o(I) by

(4.59) o(I)=&(D)§X(1).>

Then 0 is a symmelric, non-negative definite, finitely additive, operator-
valued interval function.
(v) Put

&0, ) if x>0,
(4.60) §w)=10 if #=0,  o(u)=&(w)&*(w).
—&((u, 0) if 4<0,

We have 0(p2)—0(u1)=0((tt1, #2]) for w<ups and |lo(wl| is locally
bounded on R. Let U(u) be an H-valued strongly continuous function.
Then for any n€R 0(u)U(u) is at most discontinuous of the first kind
in H and right strongly continuous. If E(u)=E(u—0), then o(u) U(x)
is strongly continuous at (.

Proof. If we can show that &(I) is a closed operator, then &(I) is

9) Cf. [4], p. 117, (5.22) or [5], p. 931 (2.11).
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seen to be a bounded operator by the closed graph theorem. Let F, be a
sequence in 3. Suppose that there exist Fy€l and uo€ H such that
{ F,—F, in b,

5(I)Fn_’u0 in H.

(4.61)

Since [ is a finite interval, it follows that
E(I)F,—E(I)F,,
(4.62)
L()E(I)F"'_)L()E(I)FQ.
Noting that Ly&L, we can apply Theorem 3.2 to obtain
{ Fn(Oa I)'—)FO(Os I) in }Ia

F (0, IN)—>Fy0, I) in H.

(4.63)

Therefore from the definition of &(I) we have
(464) S(I)F,,':PJ.F;(O, I)‘f‘BElCszFz(O, I)
—PF{(0, I)+ B3;1C,P,Fo(0, I)=E(I)F, in H.

Comparison of (4.63) with (4.60) gives the result that &(I)Fy=u,, i.e.
&(I) is a closed operator.

Next we shall prove (i)~(iv). (i) is obvious by the fact that E(I)
is an additive interval function. If F €Y, then we have

(4.65) S(IDE(I2)F=P\(E(1) (E(I2)F))'(0)+ B3 Po(E(1)(E(I2)F))(0)
=Pi(E(ILiN1L)F)'(0)+ B3 ' Py (E(IiN 1) F)(0)
=§(LN1)F,

which proves the first relation of (4.55). Taking the adjoint in both sides
of (4.65), we have

(4.66) E(I)e*(Ip)=¢*(I1N 1),

which proves the second relation of (4.55). Using (ii) we can prove (iii).

In fact we have for ue H
(4.67)  E(I)E*I)u
=Py (E(I)§*(12)u)'(0)+ B3 *Po(E(1)§*(13)u)(0)
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=P, (E(Iy N\ 1)e*(IiN Iz)u)'(0)
+ B3 Po(E(Ii N 12)§*(1iN Iz)u)(0)
=&INL)E*(IiNI)u,

which proves (iii). Obviously o(I)=0 and p(¢)=0. If Iy\I;=¢, then
we make use of (4.55) and (4.58) to obtain

(4.68) o(I1\U L) =&(1,\U I)§*(1,\U I;)
=(6() +E(I))(E* (1) +€*(12)
=&(I)E*(11) +€(13)6*(12)
=0(11)+ 0(12).

Thus p is finitely additive. Finally we show (v). If 0<x<u, then we
have p(u)U(u)=&(1)&*((0, #0o])U(x). Noting that the strong continuity
of U, it follows from Lemma 4.5 that o(x#) and p(#)U(x) have the
properties stated in (v) and the proof is complete. Q. E.D.

In the following proposition, £§*(I) is represented by ¢(r, #) and p(x).

Proposition 4.11. Let I=(u1, y2] be a finite, half-open interval in
R. Then the equation

(4:69) EDu)r)= | o, wo(dmu

holds for any u€ H. The integral exists in the sense of Definition 4.1.

(4.69) is written symbolically in the form

(4.70) §x ()= Sl¢(r, w)o(dy)

Proof. Putting F=£&*(I)u in (4.10) and noting the definition of
&(I), we have

) EDFDO={ o, 0dmE*Da.

#1
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It follows from (4.58) that

(4.72)  (§(n2) —E()EX(I) =§(2)E*(n2) —€(11)E*(11) = 0(n2) — 0(71)

for 4y <71 <72=<p. And it follows from (4.56) that

(4.73) E()§*(I)=¢*(I).

By (4.72) and (4.73) we obtain (4.68) from (4.70). Q.E.D.

Denote by C, the set of all H-valued function F(r) on [0, oo) such
that F(r) has a compact support in [0, o) and F(r) is strongly con-
tinuous on [0, o).

Let us represent £(I) by ¢*(r, #) and o(x).

Proposition 4.12. Let F€ Cy and I=(u1, U2} be a finite half-open
interval in R. Then we have

@3, «DF0={ _otan| | #C, wF@ar],

H1sHg

where for each r€ [0, o) and u€R, ¢*(r, u) is the adjoint of ¢(r, u).

Proof. Put U(,a)=go¢*(r, WF@)dr. Since Fe Cy, U(y) is an H-
valued smooth function. Hence it follows from (v) of Proposition 4.10
and Lemma 4.2 that the integral Slp(d,a)U (#) exists in the sense of

Definition 4.1. Let us prove (4.73). Using (4.69) we obtain for u € H
and Fe C,

T8 GDF wa=(F, eDw)={" F0),{ 6, woldmundr

={1(§ e, o, Y,

where we assume the carrier of F is contained in [0, ro]. Making use
of the formula of integration by parts (4.4), we obtain from (4.74)

7o
0

@) EDF, wa={"{ew e, mFOwW

p=
HA=uy

- S:(o(/t) @%%ﬂm w)duhdr
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=H2

=<0(u)g:¢*(r, WF(r)dr, u) ’

HA=H
r *
— (" (o 22X DGy ar, u)dr
#1 0 ou
~({ pam [§s¢, wF@rar ) w)e
) 7o %
where we used the fact that —a«s ¢*(r, w)F(r)dr is equal to g 04*(r, 1)
ou o o Ou
F(r)dr in the strong sense. This proves the proposition. Q.E.D.

We are now in a position to discuss the eigenfunction expansion for
L.

Definition 4.13. Let U(y) and V(u) be H-valued functions on a
finite, closed interval [ u1, us | in R. Denote by 4 a finite subdivision of
[u1, Uz ] determined by the points 7o, Y1,---5 Yn as in Definition 4.1. 0(4)
means the norm of A. Let o(y) be the operator-valued function defined
in (4.68). If the limit

(4.76) Jim S (00— 0D U, Vi

exists independently of the manner of subdivision and of the choice of the

numbers 1) €[ 7, nis1] then the limit is denoted by

(4.77) SU (oAU, V()
, ](p(dv)U (s V(n))u exists for

any u€ (U1, H2| and that the limit lim (0dp)Ulp), V(q)g ex-
#2]

pop+0 J g,

Cu,

Let us assume that the integral S

ists. Then we put

@78) { (U, Vapu=lim {  (edn)UCp), V)

r—=p1+0

As for the existence of the integral S ](p(d'//) U(y), V(3))r, we have
2

K1
Lemma 4.14. Let U(y) and V(u) be H-valued strongly continuously
differentiable functions on [ t1, #z2 . Then the integral (4.77) exists and

we have
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@19 | (edm)UCu), V()=o) Ulm), V()
—(o(u) Ular), V(#1))a

_ S“ {<0(ﬂ) Z—ﬂq, V() >H+ (p(/z) U(,a),%)H} du.

#1

Lemma 4.14 will be proved in the Appendix.

Proposition 4.15. Let F€ Cy and let I=(u, u2] be a finite half-
opened interval in R. Putting

(4.80) FoF)w={ 3, WFCr,

we have
B BEDF))=| 40, W) (FoF )2

) IECFI={ (o(dm)(#oF) ), (FoF) )
and

IFl3=lim { ((duXFoF ), (FoF N

=

(i) LE(DF ()= pr, o(da)(FoF)w)

Sfor almost all r€[0, o).

Proof. From (v) of Proposition 4.10 and Lemma 4.2 it follows that
the integral S1¢<r’ we(dp)(FoF)(u) exists for every r€[0, o). We
shall prove this proposition assuming that I=(0, #, ]. We can treat the

general case in a similar way. Take u € H. By Proposition 4.2 and Pro-
position 4.12 we have

48D EDF@, wa=({ o, WEAWF, u)a
(6, e F, =" (LB ) F, u)ndn
(1, etdm(FoF)a, %, o )a

—\" o(dn)(F oF)(n), 05, 1), mdu.
S (S(o,p] ou

0
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Again we make use of the formula of integration by parts to obtain

(482)  (EDFO), wa=(0(a)F o)), %, 1))
{7 (ot T g, pyu )
(o #oFrm, 2 4 )ay
R O

=(¢(r, u2)o(u2)(FoF)(#2), u)n

— S:z(—a% 0()(F o F)(12)+ 6(ry 1)0(12)-L (QF) , u)z_fdu

=(S(O’ﬂ¢(r, w)o(du)(FoF)(u), u)y,

which implies (i). Let F&C, and let the carrier of F is contained in
[0, ro]. Then from (i) we have

(4.83) |[BE(DF|2=(E(DF, F)=S(S( b, (D (FEY, i
- S:O(o(ﬂ)(f oF)(1), 6% (r, ﬂ)F(r))Hl“:: dr
AR e 270 D pr)

(0(#) d(" of) | gxr, u)F@)) }d,adr

=p2

=(o(W)(F F)(u)(F o F )(u))

=H1

= {(otisorr, 7/.?(%’“)”

+(0(0) S FF), (FF)W) )af d
={ (otam(F DR, FoF) )

Here we have made use of Fubini’s theorem on the ordinary Riemann
integral and (4.79). It is easy to see that (iii) is obtained from (i). This
proves the proposition. Q.E.D.
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To define the ‘“generalized Fourier transform” associated with L, we
must make some preparations.

Denote by 1, the set of all H-valued functions U(x) on R which
satisfy the following

(1) U(x) has a compact carrier.

(2) U(y) is at most discontinuous of the first kind and left continuous.

(3) There exists a finite number of points #;=p£:(U) (=1, 2,..., N,
B1<B:<--<PBn) such that if on each closed interval [ 8;, Bi;1] (i=1,

2,..., N—1) we define an H-valued function
U(w) if Bi<u=pii,

simU(y)  if #=4;,
7—-B8;+0

(4.84) U(w)=

then U;(x) is strongly continuously differentiable on [ 8;, B;,1] (i=1,
2,y N—1> and U(,U):O for ﬂ%[ﬁla BN:}
Clearly U, is a vector space.

Definition 4.16. Let U, Vel, and let ((U) (i=1,-.., N) and
Bi(V) (j=1, 2,..., M) be as in (3) of the definition of Uy. We rearrange
the points 3,(U) and B;(V) in the order of their magnitude. Thus we
obtain a finite number of points 7y(k=1, 2,..., K) such that —oo<7,
<7< <rg<co and we have {B:(U)}\U{B;(V)}={ri}. Then we
define a map (,),, which takes Uy x Uy into C by

485 U= 5 (edmUw, V)

k=1 J(

By Lemma 4.14 (U, V), is well defined.

We can easily show the following relation:

1) (U+V, W)=, W),+V, W),

2) (aU, V),=U,aV),=aU, V), (ael),

3 WV, =W1U,,

4) (U, 7),=0
where U, V and W are elements of Uy. We put ||U||,=V(U, U),. There-
fore if we denote by N the set of all U,y such that (U, U),=0, then
the factor space Wo/N becomes a pre-Hilbert space with the inner product
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(), We define Yy, by the completion of Uo/N. The inner product and
the norm of 9, are also denoted by (,), and || ||, respectively. Then by
(ii) of Proposition 4.15 we can see that the operator F, maps C, into Y,
and we have ||FF\||,=||F||y for F€ Cy. We denote by F the unique ex-
tention to Y)Y of Fo. We call the operator F the generalized Fourier

transform associated with L.

By (ii) of Proposition 4.15 % is an isometric operator on Y.

As for the representation of %#*, we have

Proposition 4.17. If Uclly, then the relation

N-1
(4.86) FHUO=5 [ b mo(dm U

1= P+l
holds. Here (81, B2,---, By are as in (3) of definition of 1.
Proof. Obviously we can assume that N=2. Then for Fe(C, we

have from Proposition 4.15
(4.87) (F, #*U)=(FF, U),=(F,F, U),
= otam (s, wF@dr, U,
(B1,8,] 0

where we assumed that the carrier of F is contained in [0, ro]. Integra-

ting by parts as in proving Proposition 4.15, we obtain from (4.87)

(4.88) & F* )=, | 0, me(dmUm);

1

for any Fe Cy, which implies (4.86). Q.E.D.
We can state an eigenfunction expansion theorem for L,.

Theorem 4.18. Let us suppose that a self-adjoint restriction L, of
L exists with the resolution of the identity E(u). Let Y), and F be as in
Definition 4.16.

(i) Then F is a unitary operator from Y onto Y),.

(ii) Let I be an interval in R and let x%; be the characteristic func-

tion of 1. Then we have

(4.89) E)=7*nZ.



EicenrFuNcTION EXPANSIONS 51

(iii) F belongs to 2(Lo) if and only if u(FF)EY,. If Fe2(Ly),

then we have
(4.90) L F=F*u-FF.

Proof. We can easily show (ii) and (iii) using Proposition 4.15. We
shall prove (i). We have seen that & is an isometric operator on § into
h,. Hence if we show that #* is isometric, then the proof will be com-

pleted. To this end we need

Lemma 4.19. An H-valued function on R is called a step function
if there exists a finite number of mutually disjoint half-open interval I;=
(45, vi] and u;€ H (j=1, 2,..., K) such that

w if pel; (j=1, 2,..., K),
(4-91) Ulp)= K
0 if u¢\JI,.
i=1
We denote by Us the set of all step functions. Clearly U, CUy. Then U,
is dense in Y),.

The proof of Lemma 4.19 will be given in the Appendix.

From Lemma 4.19 we have only to prove that for U€1ll; we have
|Z*U|ly=|U||,.*® Let U(x) be as in (4.91). Then it follows from Pro-
position 4.17 and Proposition 4.11 that

@) FUO= 5 60 meldmUu)
X J
=3 { 86, motdmu,
i=1J;
K
= glf*(f,)u]
Therefore, noting (4.58), we have
@93 U= L Dy 2 D)y

= 5 UL un

jirk=1

10) Cf. [4], p. 117.
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I
DM

l(é(fk)f*(fk)uk, UrH

k

Il
Mx

l(p(Ik)uln 79)e

Il

- e
1l

which completes the proof. Q. E. D.

Uiz,

Appendix: The Proofs of Lemma 4.2, 4.3, 4.14 and 4.19

In this section we shall give the proofs of lemmas which was stated
in §4. First we shall prove Lemma 4.2, 4.3 and 4.14 which give the
sufficient conditions for the existence of integrals defined in Definition 4.1
and 4.13. We shall give the proof of Lemma 4.2 only, because we can
prove Lemma 4.3 and Lemma 4.14 in quite a similar way. Next Lemma

4.19 will be proved.

Proof of Lemma 4.2. Let 4 be a subdivision as in Definition 4.1 and
let 7:€[9i, 7is1] (i=0, 1,..., n—1). Then we have for u€ H

M SU="E QU@ @)U, wa

=(Qr5-1)a(12) U(7-1), w)r—(Qr6)a 1) U(y), u)H—E I;

where
@ Li=Q)a(n)Uni) —Qn;-1)a(n) Uln;-1), w)n
=((Q(r1) —Q(ni-1a(n:) U(n3), wln
+Q(;-)a()(U(;) — Ui-1)), wln
=IP 4 I,

Since we have

@ 1 =(Saat) U, )utri—7i-)
+( G2 atn) (U= Uen), w)alni—7i-)

o ((w—2am e U, u Jud
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we can see that there exists a positive number &(4) such that

=e()(@i—7i-1)

(l:]-: 2:“'3 77'_1)3

@ |1 (52 o) Un, w o= 1i-1)

and
lim e(4)=0.
(-0

Similarly we have

5)

17 (0 ST ), w ) (a =7 | < () = 7-1)
(=1, 2,..., n—1).
It follows from (1), (4) and (5) that

®) lim S<">=<SU Qe UH), u )

3(4)-0

exists and the formula of integration by parts (4.4) holds for any u € H.
Q. E.D.

Proof of Lemma 4.19. Since 1, is dense in ), in order to prove
this lemma it is sufficient to show that for an arbitrary U€l, and any
€>0 we can choose U,€lU, satisfying ||U—Ue||,<e. Further, with no
loss of generality, we can assume that there exists a finite, half-open
interval (81, B2 ] such that U(u)=0 for # ¢ (B.182] and if we put

s-/lgim U@ if u=4,
7-81+0

then U;(u) is strongly continuously differentiable on [ 8; B2 ] Put

©) M= s, U%ﬂﬂ

and

©® L= sup_[lo(x)ll

B1<p<
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Clearly we have M < oo and by (v) of Proposition 4.10 we have also
L< oo. Let us choose a subdivision of [ 81, 82| by the points 81=1q
<<,y <yn=p2 such that

82

(10) Jmax =) <35 — g

and let us define U.€ U, by

(A1) U= (we  if 2€w 1ee]  (B=0,1, 2,..., N—1),
{0 if p¢(B1, B2l

where we put u,= s-lim U(y) (k=0, 1, 2,..., N—1).

—7+0

It follows froquemma 4.14 that

an U@ = Uew), U= U

E=BE-1

= (e()(U(p) —ur), Ul)—ur)

pgt+0

~S::H<p(”) Z—Z’ U(u)—ur )d,a

Mk+1 dU
- U) —ui), 27 )d
S” (oCx @) —u) dﬂ) P
:K1+K2+K3.

Since we have

(13) Ky =(00r+1)(Upr1) —ur)y Uprar) —un)a

Nk + Tk+
=S ‘ 18 l(o(mﬂ)%, %)adﬂdv,

Tk Tk

K, is estimated as follows:

dU
14 K| <(ppi1— 2 + _') i
( ) I 1'_(77k 1 77k) I]p(k 1)”<vk<?}é€k+1 d'u H>
< (a1 —ne) LM?
2 LM? — (rs1—70)

<(77k—(-1

— k) — 7= — e,
3(B2— B LM 3(B:—B1)
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where we used (10). In a similar way we have

: (77k+1—77k> 2
(15) |Kz|, |Kal<————3(82__‘81) e,

From (14) and (15) we obtain

a8 NU-VIP=5  (odm U~ V), V)~ Ul

k=0

&

=0 82— P
which completes the proof. Q. E. D.

<NZ_:1 Teel — Tk ez o2
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