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§0. Introduction

In this paper we shall consider differential operators of the form

(0.1) j^-J^L-M(r) 0^r<oo,z

where for each r € HO, oo) A(r) is an operator in a Hilbert space H

and & acts on ^-valued functions on fO, co). Restricting the domain of

<£ appropriately, we can regard 3? as an operator in f) = £2 (0, °° ; H}.

Our purpose is to develop an eigenfunction expansion theory associated

with the differential operator <£.

If dim H=l, i.e. jfiT=C, then & is an ordinary second-order differen-

tial operator and A(r) is simply an operator of multiplication by a func-

tion g(r). For real-valued g(r) a rather complete eigenfunction expansion

theory has been worked out by Weyl ^10], Stone Q8j, Titchmarsh Q9j,

Kodaira £4], Q5] and others. But when H is an infinite-dimensional

Hilbert space, it seems that no complete theory, comparable with the one

for ordinary differential operators, has been presented.

Rofe-Beketov Q7] considers the case where A(f) is a bounded self-

adjoint operator-valued function on QO, oo) which is continuous in the

uniform operator topology. He shows that there exist a non-negative

definite, bounded opera tor -valued, interval function p(/), /CR? and a

bounded operator-valued function a)(r, ^) on Q03 oo)5 satisfying
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(0.2)

where C is a bounded, self -ad joint operator on H. o)(r, /I) and p(/) are

incorporated to give an eigenfunction expansion of an arbitrary function

, oo ; H) = ̂  in the following sense: Let t)p = L2( — °°, °° ; H;

and J^(F)=\ o)*(r, ii)F(r)dr, where o)*(r, #) denotes the adjoint
J o

of o)(r, A). Then the mapping F—^J^CF) is isometric from I) mfo f^. He

also discusses the inverse problem in which one determines A(r) and C

from p(/), and the case of A(r) being not necessarily self-adjoint.

V. Gorbacuk and M. Gorbacuk [_2~] obtain similar results to Rofe-

Beketov Q7] for the operator 3? in which A(j) is replaced by — A-\-Q(r),

where A is a lower semi-bounded, self-adjoint operator in H and Q(r) is

a bounded, self-adjoint operator on H for each rG^O, °°)- This situation,

one should note, makes 3? hyperbolic rather than elliptic.

In contrast to Gorbacuk and Gorbacuk's treatment Ja'ger £3] deals

with the elliptic case, i.e. he assumes A(r) = Ai(r) + A2(r), where ^i(r)

is a non-negative, self -adjoint operator in H with domain &(Ai(r)) = D

constant in r and A2(r) is a symmetric operator with domain @(A2(r})

= D. Under the above assumptions together with some asymptotic and

regularity conditions on Ai(r) and A2(r) he determines a unique self-

adjoint operator which is a restriction of -Sf, and obtains an eigenfunction

expansion similar to Rofe-Beketov [T]. The eigenf unctions are obtainable

from the Green functions for 3? by a limiting process.

Jager's results are applicable to the Schrodinger operator — A + q(x)

in R3 with q(x) bounded by a constant multiple of (1 + | x |)"3/2~e(e>0).

In this case $ = L2(Q, oo; H) = L2(Q, oo; L2(S
2)), where S2 is the 2-

^sphere, and ^i(r) and A2(r) are taken to be — ̂ - and q(ra)\ o>€52, ^0r4 J

being the negative of the Laplace -Beltrami operator on S2.

In the present paper we shall consider the eigenfunction expansion

for any self -ad joint restriction Z,0 in ^ of & with bounded A(r) by a me-

thod somewhat different from those explained above.
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In §1 we introduce the "eigenoperator" 0(r, A) of 3? which satisfies

the boundary condition at r = 0

(0.3) BF'(0)-CF(0) = 0,

where B and C are bounded, self-adjoint operators on H. 0(r, ^) is a

bounded operator on H for each pair (r, A) 6 HO, oo) x C and satisfies

(0.4)

§2 prepares Green's formula for H- valued functions which will be

used mainly in §3.

In §3 we define an operator L in I) which is a restriction of 3? and

investigate the properties of L. Roughly speaking, the domain of L is the

set of all #- valued functions F(f) on [J), oo) such that F(r) satisfies the

boundary condition (0.3) and F and &F belong to I).

Now let LQ be a self-adjoint restriction of L, if any. The eigenfunc-

tion expansion problem associated with LQ is discussed in §4. Denoting

by E(ju) the resolution of the identity corresponding to L0, we can show

that for any half -open interval /=(/*i, fi^\ there exists a bounded operator

£(/) taking f) into H such that

(0.5)

holds for any F€fj . The relation (0.5) is a generalization of Kodaira's

formula ([4], p. 188, (4.12) or [5], p. 930, (2.6)). A non-negative

definite, bounded operator-valued, interval function p(/) is introduced by

(0.6) p(/) = £(/)£*(/),

where £*(/) is the adjoint of ?(/) taking /7 into t). We denote Z2(— oo,

oo ; £T; p(dju)) by ^. The eigenf unction expansion for LQ takes the

following form (Theorem 4.18): Define the "generalized Fourier trans-

form" & associated with LQ by

(0.7) ( ^ F ) ( / 0 = ( r , M)F(r)dr in
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Then ^ is a unitary operator from t) onto fyp and we have

(0.8)

where %/ is the characteristic function of the interval /.

In the Appendix we study Riemann-Stieltjes integrals involving vector-

valued functions and operator-valued measuses, and we give the proofs of

some lemmas which are stated in §4.

The author wishes to express his sincere thanks to Professor H.

Yoshizawa for his unceasing encouragement and to Professor T. Ikebe for

his kind advices and discussions.

§1. The Equation - ~~-2- + A(r) - F(r) = 0

Let H be a separable Hilbert space with the norm || ||# and the

inner product ( , )#. For ^T-valued functions F(r) and G(r) on (0, oo)

introduce the norm and inner product by

(1.1) ||f|k = rriinr)||Jdrl^, (F, G)^
LJo J

f) will denote the Hilbert space of all (equivalence classes of) /^-valued

functions F(r) on (0, oo) with ||F||^ <cx), i.e. ij = i2(0, oo ; H). The

subscripts H and I) will be omitted where no fear of confusion occurs.

Let B be the set of all everywhere defined, bounded, linear operators

on H, and let A(r) be a B-valued function on TO, oo). For A(r) we

make the following

Assumption 1.1. (1) For each r€ HO, oo) A(f) is a bounded, self-

adjoint operator on H.

(2) For arbitrary re^O, oo) we have\ \\A(t)\\dt<oo, that is, \\A(r)\\
Jo

is locally integrable on QO, oo)5 where ||^(r)|| denotes the operator norm

of A(r}.

(3) For any r € ^0, oo) there exists a positive number Cr such that
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(1.2)
Jo Jo

for all F6l) such that ||F(r)||# is a bounded function on TO, oo).1)

Now let us consider the initial value problem for the equation

(1.3)

Definition 1.2. Denote by D the set of all H-valued functions F(r)

on [0, oo ) satisfying the following (1) and (2) :

(1) F(r) is strongly continuously differ entiable on [0, oo) with its

strong derivative F'(f).

(2) -F'(r) is weakly absolutely continuous on every finite interval in

[]05 oo), and Ff(r) is weakly differ entiable almost everywhere on QO, oo)

with its weak derivative Ffr(r)2^ such that \\F"(r)\\H is locally integrable on

QO, oo ). Then let us define a differential operator £? by

(1-4)

Let UQ, VQ^H and let h be a complex number. Then an H-valued

function F(r) on [[0, oo) is called a solution of (1.3) with (initial) data

{^0? ^0} if -F^ED, F(Q) = uQ and F\(f) = v^ and the equation

(1.5) (&

holds for almost all r G ^ O , oo).

Concerning Definition 1.2, we have the following

1) In §1 and §2 we shall not use (3) of Assumption 1.1.
2) Here and henceforth we say that an H-valued function G (r) on an interval I is

weakly absolutely continuous almost everywhere on I with its weak derivative G'(r)
if and only if there exists a null set e in / such that

'

holds for any re/— e and any
3) We denote by &(T) the domain of T.
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Lemma 1.3. Let F(f) 6 D and let F'(r) be as in Definition 1. 2.

Then F'(r) is strongly absolutely continuous on every finite interval in

CO, oo).

Lemma 1.4. Suppose that an H-valued function G(r) is weakly

absolutely continuous on every finite interval in QO, oo). Moreover suppose

that there exists an H-valued function Gi(r) on Q), oo) such that ||Gi(r)||#

is locally integrable on QO, oo) and for any u € H we have

(1.6)

/or almost all rG^O, oo)5 where the exceptional set may depend on u.

Then G(r) zs weakly differentiate almost everywhere on £0, oo) with its

derivative G'(r) and we have G'(r) = Gi(r) for almost all r€(J), °°).

Remark 1.5. It follows from Lemma 1.4 that we can replace the

condition (2) in Definition 1.2 by the following, apparently weaker, condi-

tion :

(2)' F'(r) is weakly absolutely continuous on every finite interval in

QO, oo)5 and there exists an //-valued function F"(r) on QO, oo) such that

il^'WIU is locally integrable on £0, oo) and for any u € H we have — =-
dr

(F'(r\ u)H=(F"(r\ u)H for almost all rG[]0, oo)5 where the exceptional

set may depend on u.

Proof of Lemma 1.3. It follows from Definition 1.2, (2) that for all

u e H and 0<>i <r2

(1.7)

where F"(r) is the weak derivative of F'(r). Hence we have

(1.8)
rl

Since u £E H is arbitrary, we obtain from (1.8)
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(1.9) \\F\r2}-

which completes the proof. Q. E. D.

Proof of Lemma 1.4. Let {^«}«-i be a complete, orthonormal basis

of H. Then for each n there exists a null set en in []0, oo) such that

(1.10) (G(r)' U>^=(G^> *«)*

holds for r 6 TO, oo) — en. On the other hand it follows from the local

integrability of ||Gi(r)||# that there exists a null set eQ such that

(l.H) ' I

holds for re[0, oo) — e0. Put e = \Jem and let re[0, oo) — e. Then for
w = o

u^H we have

(1.12) _-

where JV is an arbitrary positive integer and

(1.13) Um^^(u, Un)HUn, um

n=i

Since r<^en(n — l, 2 5 - . - ) , we have

(1.14) l/i |->

for any fixed N.

72 and /3 are estimated as follows:
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r + h

(1.15)

I Cr-r\h\
Noting r ^ e 0 5 we can see that TT-r\ \\Gi(t}\\Hdt is bounded when ft->0.

\h\ J r - | /M

Therefore it follows from (1.14) and (1.15) that for any u^H and r^e

holds. Q. E. D.

We shall show the existence of B-valued functions co(r5 ^) on ^0, °°)

xC4) such that for any u£H to(r, X)u is the solution of (1.3) with

suitable initial data. Then we shall investigate the properties of o)(r, A).

Proposition 1.6. Let S, T€:B. Then there exists a ^-valued func-

tion a)(r, /l) = a)(r, ^; 5, T) o^ [J), oo) x C satisfying the folloiving (1)/^

(5):

(1) For fl/sy u£H o)(r, A)i^ fs c unique solution of (1.3) K;^/? ̂ «^«

(2) to (r, >l) /s continuous in the uniform topology of B on []09

xC «^J o)(0, A) = S.

(3) For ^c/^ ^ G C o) (r, A) /s continuously differentiate on QO,

/w ^^ uniform topology of B M;#/& /^s derivative o)'(r, £) In B,

(4) For each A 6 C o/O", A) is weakly absolutely continuous on every

finite interval in QO, oo). There exists a null set e in £0, oo) such that

for any r G ^ O j oo) — e ti'(r, /I) is weakly differentiate with its derivative

ob"(r, ^)GB. The exceptional set e does not depend on / IGC. ||o)"(r» A)||

is locally integrable on QO, oo) for each /i 6 C and we have

4) C means the set of all complex numbers.
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(1.17) -co"(r, A) + A(r*)co(r, V = la)(r, I)

for all rE[0, oo)-e and A G C.

(5) fl)(r. A), a/ ( r, A) «;/r/ a/ V3 A) «re ~B-ualucd, entire functions for

each rG[]0, oo).

From Proposition 1.6 we can easily see the following

Corollary 1.7. Let u^ v^€H: Then there exists a unique solution

of (1.3) with data {u,0, VQ}.

Proof of Proposition 1.6. First we shall prove the uniqueness of

fl)(r3 A). To this end it is sufficient to show that if F(r) is the solution

of (1.3) with data {0, 0}, then F(r) = Q. Multiplying the equation

(1.18) ~(F'r(t\ u)H+(A(t}F(t\ u)u

by ^H^y =v! -- ; an(j integrating, we obtain
V A

(1.19) (F(r\ u)H=

where u is an arbitrary element of H. Let us take r0>0. Then taking

account of (1) of Definition 1.2 we have a positive number C(r0) such

that ||F(r)||ff^C(r0) is valid for all r€[]05 r0IJ. Hence we obtain

from (1.19)

(1.20)

for r € C O , r0]. Here we put

\T(1.21) ^(r)= IVA

Putting H = jF(r) in (1.20), we have
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(1.22) ITOII^*

Repeating this argument, we have for any positive integer n and

r€ [0, roj.

(1.23)

and hence .F(r) = 0 on QO, r0]. Since r0 is arbitrary? we can conclude

F(r) = Q on [0 ,00).

Next let us prove the existence of o)(r, A; S, jf). If we can show

the existence of o)(r, /I; I, 0) and o)(r, ^; 0, /) satisfying (1)~(5) in

Proposition 1.6, then we obtain from the uniqueness of o)(r, A; 5, J1) and

the linearity of the equation (1.3)

(1.24) o>(r, J; S, r) = o>(r, ^; /, 0)S + o>(r, ^; 0, 7)T,

and it is easy to see that <a(r, ̂ ; 5, T) also satisfies (1)^(5). Accord-

ingly we shall show the existence of o)(r, ^; /, 0). The existence of

a)(r, /i; 0, /) is proved in a similar way. The proof is divided into the

following four steps.

(I) Let u G H and A 6 C. We consider the integral equation

(1.25) F(r)=cosV7W+ f sinv^j>-*) A(fiF(f)dt
Jo v ^

in the strong sense. We can solve (1.25) by successive approximation.

Denoting the unique solution of (1.25) by F(r) = F(r9 ^, u\ we have

(1.26) F(r) = F(r, t, u) = ̂ Fn(r, ^ u) in H,
n=Q

where

(1.27)

~ n-i(t, ^ u)dt (n = l, 2,.-.).

In fact, for each ra, Fw(r, A, &) is strongly continuous on QO, c>o) x C

and the estimation
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(1.28) \\Fn(r, *, u)||^ JL—(—^^\\A(fi\\dty\\u\\a
 if

hold, and hence ^Fn(r, ^, &) converges in # uniformly on every finite
»=o

00

interval in [^0, oo). Therefore jF(r, ̂ , u) = £Fn(r, ^, zx) is an ^T-valued,
«=o

strongly continuous function on |^0, oo) x C. We can easily show that

F(r, A, w) satisfies the integral equation (1.25) and that we have

(1.29) F(0, /I, zO = M.

Moreover from (1.28) we obtain the estimation

(1.30) ||F(r, I, u-)\\H^e^'r)\\u\\H,

g(b,r) =

r

and taking note of the uniqueness of F(r ^, z^) we have

(1.31) F(r, ̂ 5 Ul + u2} = F(r, A, ̂ i) + F(r, ^5 z^2)?

where u\ and z^2 are arbitrary elements of H.

We can define a B-valued function on QO, oo) x C, #(r, A), by

(1.32) x(r, Z)u = F(r, ^ u).

In fact it follows from (1.28) and (1.30) that

(1.33) *(r, J) = 2>i.(r,A),
n = Q

where

(1.34) < rrsin>/Tfr — i^
g (i* = l, 2, 3..-),

which are estimated as follows:
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(1.35)

if A^O

(ra = 0, 1,2...),

if ^ = 0

Accordingly, taking account of (1.31), we can see that #(r, X) is a B-

valued function on QO, oo) x C. For each n, xtt(r, A) is continuous on

QO, oo) x C in the uniform topology of B and for any fixed r € [^0, °°)

^«(r, X) is a B-valued, entire function. Therefore x(r, X) is continuous on

TO, oo)xC in the uniform topology of B and for any r C E ^ O , oo) x(r, X)

is an entire function. We obtain from (1.25) and (1.29)

(1.36)
[ *((),*) = /.

(II) Put

(1.37) j(r, ^)=-VTsinVT

We can easily show that j(r, A) is a B-valued, continuous function on

QO, oo) x C in the uniform topology of B and for any fixed r 6 [^O, oo)

j(r, /I) is a B-valued, entire function. We have

(1.38) -j-{x(r+h, V-x(r, X)}-y(r, X)

= |-^-(cosVT(r+A)-cosVTr)+VTsinVTr|/

It is easy to see that

(1.39)

For /3 we have
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f r
(1.40) li/sl!^

Jr

r-H/i | 1 I rr + h-t
-~\\ c

-\h\ [/I I I Jo
\\A(t)\\\\x(t, X)\\dt

where b = I InW /I I and we have made use of the estimations

(1.41) in V7 (r+h — tsin /—•COSY /I sds I r + A — t\e b\r\h-t\

)Q

and

(1.42) \r+h-t\<,2\h\ (t 6[r- | A|, r+ |A |H).

Therefore we have for all r E QO, oo)

(1.43) lim -j(r, /I)

which implies that for each A G C A; (r, A) is continuously differentiate

on QO, oo ) in the uniform topology of B with its derivative xf(r, X)

= j(r, /I). Let A>0 and u^v^H. Then we have

(1.44) (

= ((-

(cosVT(r+A-0 —

{cosVT(r4-A — Ocoo
A _ .
cosV I (r+h — t) (A(t)x(t, tyu, v)Hdt

We can estimate Ki(j = l, 2, 3) as follows:

"r + h
COSN

h sinV A (r — t
Jo I Jo

(1.45)

t, X)\\dt\\u\\\\v\\,

, X)\\dt\\u\\\\V\\
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and hence x'(r, X) is weakly absolutely continuous on every finite interval

in [0, oo ) for each AeC. We obtain from (1.37)

(1.46) x'(Q,X) = 0.

(Ill) We denote (A(r)-X) *(r, /I) by *(r, /I). Then |jz(r, ^)|| is

locally integrable on [J), oo) and for any fixed r € CO, oo) ^(r, ̂ ) is a

B- valued, entire function. For u, v €E £T we have

(1.47) (*'(r+/*, *)-*'(r, *)X **-(*(r, J)n, t;)

-(— ^ ^ sinv/ ^ (r+A) + V /I sinV A r) + ^cosV A r\(u, v)H

(r,

Estimations similar to the ones used in proving lim||/,-|| = 0 (i = l, 2, 3)
rt-^O

give

(1.48) lim|i f- |=0 (f = l, 2, 3).

for all r € HO, oo) and u^v^H. Since (^4(^) Jc (^, A) w, v)^y is locally

integrable, there exists a null set e(u, v, X) in QO, oo) such that

(1.49) lim
h-+Q

holds for any r€QO, oo) — e(u, v, X), which implies that

(1.50) lim £4 1=0
h->0
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for all r 6 CO, oo) — e(u, v^ /0- Therefore we have

(1.51) —=-(x'(r, X)u, v) = (z(r, X)u, v)
dr

for all r € C O , oo)— - e(u, v, X). It follows from Remark 1.5 that for any

u G H and X £ C we can choose a null set e(u, A) in []0? oo) such that

(1.52) 4-(*'(r> *>' ^) = Wr> *X *)dr

holds for all v £ H and r E L0> oo) — e(W j ^). Proceeding as in the proof

of Lemma 1.4, we can also show that there exists a null set e(A) in

[0, oo) such that (1.51) is valid for all u,veH and r e [0, oo) — e(/0.

Let {/l«}»=1 be a countable subset of C which is dense in C. We put

en = e(^n) (n = l, 2,- . .) and denote by e0 a null set in [^0, oo) such that

for all r£[0, oo)-e0

(1-53) -

is valid. Let e = \Jem and let r G ̂ 0, °o) — e. Then we have for any
m^Q

u, v £z H and >! 6 C

(1.54) -L(*'(r+/i, A)-^'(r, A))-z(r,

, , _

r, lm) — z(r, A)}u, v)H

Noting r ^ em? we have lim|Mi =0. For M^ we have

(1.55)
r + h

max 11 x (s, A) — x (s,

xllulUMI*
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1 rr-r\h\

+ TTT\ \\*mX(t, Zm)-Lv(t
\ f l I J r - | / j |

Since r E eQ and x(r, /I) is continuous on []03 °o) x C, it is obvious that

lim | M2 | = 0 and the convergence is uniform when h tends to 0. We can
xm-»x
easily show that lim \z(r, /0 — z(r, ^)|| = 0, and hence lim|M3 | =0. Thus

xm-»x xm-»x
we have proved that (1.51) is valid for all u,v^H, A € E C and r £ [0, oo)

— e, where the null set e does not depend on u^v^Hand / l€C. There-

fore for r E H05 oo) —e ^'(^j ^) is weakly differentiate with its derivative

x"(r, $ = z(r, A).

(IV) It is easy to see from (I), (II) and (III) that x(r, ^) satisfies

(2)^-(5) of Proposition 1.4 and that #(r? £)u is the solution of (1.3) with

data {w, 0} for any u^H. Consequently we have

(1.56) *(r, A) = a>(r, A; /, 0).

Thus we have completely proved the existence of o)(r, A; J, 0). In quite

a similar way we can prove the existence of o ) ( r , A; I, 0), and by (1.24)

the existence of o)(r5 /I; 5, T) is shown. Q. E. D.

Using Proposition 1.6, we give the following

Definition 1.8» Let HI and HI be closed^ linear subspaces of H

such that

(1.57) H=Hl®H2 (direct sum)

and let B2 and C2 be bounded', self-adjoint operators on H2 into itself

such that

(1.58) B2C2 = C2B2

and the bounded inverse of B2 exists. Then, putting

10 on HI [identity on HI
C=l

B2 on HZ, (C2 on H2,

we define a bounded, linear operator <j)(r, X) by
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(1.60) 0(r, *) = fl>(r, J ; f i ,C) .

We can easily show that for each

(1.61) £0'(0, A) - C0(0, A) - 0.

Thus we have constructed the "eigenoperator" 0(r, A) associated with

and the boundary condition

(1.62) £F(0)-CF(0)-0.

Here we remark that the boundary condition (1.62) is equivalent to

(1.63)

where PI and P2 are the projection operators onto HI and H2, respectively.

We shall show the properties of - ~r - which will be used in §4.

Proposition 1.9. Let o)(r, ^) = o)(r, A; 5, T) be as in Proposition

1.6. Then we have following (1)^(3):

'(1) For each t€C and u€H ^^ ' u belongs to D.

differ ent

-

(2) - - is continuously differ entiable on TO, oo) in the uniform

topology of B with its derivative ( - -^ - ) '^B, and we have

on CO, oo)xC.

(3) For each ^SC ( ^r )' is weakly absolutely continuous on
\ (/A /

every finite interval in QO, oo). There exists a null set e in QO, oo) such

that for any r 6 [0, oo) — e ( ~y V is weakly differentiate with its
\ C/A /

derivative ( ^y^ ) " G B. The exceptional set e does not depend on\ OA. J

is locally integrable on [0, oo) and we have for

all r E HO, °°) — e and

/-. £,-\ ( 9co(r, A) \, d(d"(r,(L65) v^—;=—gr
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and

(1.66)

Proof. Proposition 1.9 can be proved in a way similar to the proof

of Proposition 1.6. Hence we shall give the outline of the proof. It is

sufficient that we prove (1)^(3) assuming u)(r, X) = a)(r, A; /, 0). Differ-

entiating the both sides of (1.36) with respect to A1, we have

(1.67) 9Q)fr. A) = _ r
a I 2V A Jo VA 9/.

It follows from (1.67) that - ^j2 - is differentiate in the uniform

topology for each A £ C and that we have

(L68)

+ ('cosVT(r - ,)A(,) **><'• *> dt
Jo (/A

On the other hand we obtain from (1.37),

(1.69) 9 f t ) ( ' ® =-

2V

$
r _ ^ _

— j^sinv >l (r —
»2v A

and hence we have ( ^ A) )'= ^'Q^ ^ • Thus (2) has been

proved. It is easy to see that - --r - is weakly absolutely continuous
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on every finite interval in [J)3 oo). Let u, v € H. Then we have

(L70)

= d f o'tr + h, A)-o)'(r. A) u \
dJ.\ h ' /

Here we have made use of the fact that &)"(r, A) = G4(r) — A)co(r, <£). Let

TV be an arbitrary positive number. Then the integral

r^ a(•N
(1.71)

Jo
dt

is continuous on C. Therefore we can interchange of the order of

differentiation and integration in (1.70) to obtain

It follows from (1.72) that

(1.73) - ^ . u ,

holds almost everywhere. Using arguments similar to the ones in proving

(4) of Proposition 1.6, we can easily show that we can choose a null set

e in j^O, oo) which does not depend on u^v^H and A G C such that for

any r 6 HO, oo) — e5 ^^C and u,v£.H (1.73) holds. And we have for

almost all r € ^0, oo)
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which completes the proof of (3). (1) is immediate from (2) and (3).

Q.E.D.

§2. Green's Formula for //-valued Functions

In this section we shall give Green's formula for //-valued functions

which will be useful in §3.

Proposition 2.1 (Green's formula). Take H-valued functions F\(r)

and F2(r) on [[0, oo) such that 7% G D (z" = l3 2). Take a finite, closed

interval [/z, /?] in CO, oo). Then we have

(2.1)

where

(2.2) JWO= -^(r) + ̂ (r)F,(r) (f = 1, 2),

(2.3) [Fl3 F?](r) = (F1(r), ^(r))n-(^(r), F2(r))*.

Proo/. Since FJ(r) and F2(r) are strongly absolutely continuous,5)

(F((r), F2(r))H is absolutely continuous on [a, /?j. We calculate -r~

(Fi(r), F2(r))n as follows: we have

(2.4)

Since -Fi(r) is weakly differentiable almost everywhere, we have

(2.5) lim /! = (JT(r), F2(r))

5) See Lemma 1.3 in §1.
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for almost all r € [a, $~] and it follows from the strong differentiability

of F2(r) that

for all r €E (j2, QT\. As for /3, we have

(2.7) |.
h

is bounded when h tends to 0.Since F2(r) exists,

Hence

(2.8) l imi/ 3 |=0
/J-O

for all r G [jot, [T\. Therefore we obtain for almost all r £ [a,

(2.9) -^-(Fi(

Integrating (2.9) we can show

(2.10) (Fi(r), F2(r)]

Quite similarly we have

(2.11) (FxCr), F2(r))H "
C

(2.1) is obtained from (2.10) and (2.11). Q.E.D.

Corollary 2.2. Let FI 6 D cwrf /^ F2 satisfy (1) o/ Definition 1.2.

^ M;^ /zflz;^

(2.12) r^FiCr), F2(r))ffrfr

FiCr), F2(r))fl} dr

-(Fi(r),F2(r)) "

/or

. Notice that it is not necessary to show (2.9) that F2 satisfies

(2) of Definition 1.2. Then (2.12) is obtained immediately from (2.10).
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Q.E.D.

§3. The Operator L

Let J&? be the differential operator defined in Definition 1.2. We

consider a restriction L of & which satisfies the boundary condition

(3.1)

where B and C are bounded, self -adjoint operators on H defined in Defini-

tion 1.8. When the differential operator 3? and the boundary condition

(3.1) are given, an operator L will be defined by LF=J?F on the set of

all functions F(r) such that F and ££F are well-defined as elements of I)

and F satisfies (3.1). We shall prove that L is a closed operator and

that if Fn (n = l) 2 , . - - ) belong to the domain of L and both Fn and LFn

converge in i), then the sequence Fn(r) and F'n(f) also converge in H for

any K>0. These results will be used in §4.

Definition 3.1. Let <£ be as in Definition 1.2. Let us denote by 2

the set of all H-valued functions F(r) on [J), oo) which satisfy the following

condition :

(i) F6D.

(ii) We have

(3.2)

(iii) Both F(r) and &F(r} = -F"(r} + A(r}F(r} belong to

Then we define an operator L in i) by

(3.3)

Theorem 3.2. Let L be as in Definition 3.1. Then L is a closed

operator. Further, if Fn€@ n = l, 2, 3 - - . and two sequences Fn and LFn

are Cauchy sequences in f), then two sequences Fn(r) and Ff
n(r} are Cauchy

sequences in H and they converge uniformly on every finite interval in

|̂ 0? oo). Put F=lim Fn in f). Then there is a null set e in £0, oo) such
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that we can modify F(r) on e to obtain

(3.4) Fn(r^F(r) in H,

and

(3.5) F;(r)->F'(r) in H

for all r<E[0, oo).

In order to prove this theorem, we prepare several lemmas.

Lemma 3.3. Let Gn be a sequence of H-valued functions on [a, /?],

where Qa, (T\ is a finite interval in QO, oo), satisfying the following:

(a) For all u£H, (Gn(r\ u)H is absolutely continuous on jj2, $~]

and Gn is weakly differ entiable almost everywhere with the weak derivative

G'n on [a, £] .

(&) Both Gn and G'n are Cauchy sequences in Li(a, /9; H). Then the

sequence Gn(r) converges uniformly in H on [_a, /£Tj.

Proof. We show that Gn(r) converges uniformly on - — — , @ .
L Z J

Take a smooth function p(t} on Qa, @~] such that p(t) = 1 for £6

./?] andXO = 0 for t G Ta, al^ ]. Then for all u e ^ and

(3.6)

From (3.6) we obtain

(3.7) |iG,,(r)-Gw(r)i|ff

where C(p) is a positive constant depending only on p(t). Since Gn and

G^ are Cauchy sequences in L\(pi^ $\ H\ it follows from (3.7) that

lim ||GB(r) — Gm(r) \\H=Q and the sequence Gw(r) converges uniformly on
W,W-»oo

— o-^-j# • Similarly we can show that Gn(r) converges uniformly on
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Using Green's formula we obtain

Lemma 3.4, Let F€^ and let p(r) be a smooth function on [J), °o)

with a compact carrier in Q), oo). Then we have

(3.8)

where W=LF, B2 and C2 are as in Definition 1.8 and PI is the projec-

tion operator onto H2.

Proof. Let p(r) = Q for r^R and G€^. Putting Fl = F and F2 =

pG and [a, /?H = [05 ^H in the formula (2.12) of Corollary 2.2. we obtain

which is rewritten in the form

(3.9) (PF, G')» = (/>r, G\-(p'F\ G),

-(ApF, G),-(XO)F'(0), G(0))ff.

Putting G—pF in (3.9) we have

(3.10) (PF', PF'\ - (p W, PF\ - 2 (PFr, p'F\ - (APF,

Since F€®, F satisfies the boundary condition (3.1) which is equivalent to

f P!fXO) = 0
(3.11)

I P3F(0)-52-
1C2P2F(0).6)

Therefore we obtain

(3.12) (XO)^'(O), p(0)F(0-))H=(P(0)B^C2P2F(0\ p(0)F(0))H,

and (3.8) is obtained from (3.10) and (3.12). Q. E. D.

Using Lemma 3.3 and Lemma 3.4 we prove

6) See (1.63) in §1.
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Lemma 3.5. Let Fn be as in Theorem 3.2. Then there exists an

H-valucd function F(r) on (0, CXD) such that F(-*V in L2(a, /S; H) for

any positive numbers a, /?(a</?)5 and FH(r) is a Canchy sequence in H

for any r>0.

Proof. Take a smooth function jo(r) such that 0<^jD<^l, p(r) = 0 for

O^r^ and r!>/? + l and p(r} = l for a'^r^/9. Put F=Fn — Fm and

W=Wn—Wni) where Wn = LFH. Since FH — Fm^^ we can use Lemma

3.4 to obtain

(3.13)

Let us estimate the tei-m — (Ap(FH — Fm), p(FH — Fnt))^. From (3) of As-

sumption 1.1 we obtain

(3.14) -(AP(Fn-Fm), p(F,-Fm)^

C/s+i
= - (A(r)p(r)(Fn(r) - Fm(r)\ p(r)(Fn(r} - Fm(r)))Hdr

It follows from (3.13) and (3.14) that

(3.15) \\p(F:-F'm)\\z^\\Wn- Wm^\\F,-Fm\\^

+ 2C(p-)\\P(F'n-F'm)\,\\FH-Fm\\,

where C(/>) is a positive constant depending only on p(r). Since F» and

WH are Cauchy sequences in f)5 pF^ becomes a Cauchy sequence in I),

which implies that Ff
n is a Cauchy sequence in L2(a, /?; H). Therefore

we have proved the existence of V(r) satisfying F'n-^V in L^(cc^ /9; H).

Applying Lemma 3.35 putting Gn = Fn, we can see that Fw(r) is a Cauchy

sequence in H f or r > 0. This finishes the proof. Q. E. D.

In the following lemma we shall show that F'H is really a Cauchy
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sequence in £2(0, $; H).

Lemma 3.6. Let Fn be as in Theorem 3.2 and let V(r} be as in

Lemma 3.5. Then F'n-^V in L2(0, /9; H) and the sequence Fn(r) converges

uniformly on []05 /?] for any /?>0.

Proof. Take a smooth function jo(r) on TO, oo) satisfying 0^/><U3

jo(r) = l for 0<><^/2 and jo(r) = 0 for rSj/S + l. It follows from Lemma

3.5 that there exists a positive number r0<^/9 such that Fn(r0) is a Cauchy

sequence in H and 2 !|5j- 1 | l | |C2 | [ro<l. Let us estimate \\Ftt(fy —

Using repeatedly the relation

(3.16) (Fn(Q)-Fm(Q\ u)

where u 6 ^T, we have

(3.17)

JO J 0

It follows from (3.17) that

(3.18) ||F»(0)-Ffll(0)|i2^||F»(ro)-F)B(ro)ir

Proceeding as in the proof of Lemma 3.5, we have from (3.8), (3.14)

and (3.18)
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(3.19) \\p(F'.-F£\\*

As \\Bzl\\\\C2\\r0<l/2, it follows from (3.19) that

(3.20) ±-\\

which implies that lim (F^ — F^) — 0 in L2(0, 0; IT). On the other hand
w,?n->oo

the sequence Fn is assumed to be a Cauchy sequence in t). Thus we

have shown Fn and F'n are Cauchy sequences in L2(0, &\ H) for any

/3>0. Hence we can make use of Lemma 3.3 to see that the sequence

Fn(r) converges uniformly on Q03 /?]. Q. E. D.

Lemma 3.7. Let Fn be as in Theorem 3.2. Then for any /? > 0

Fr/
n is a Cauchy sequence in £i(0, &\ H) and F'n(r) converges uniformly in

H on [0, £].

Proof. Since F'£r*) = A(r}Fn(r)-Wn(r\ we obtain

(3.21)

OSsa/3

+
o

where Wn — LFn. By (2) of Assumption 1.1 ||^(r)|| is locally integrable,

i.e.

(3.22)
Jo

Moreover it follows from Lemma 3.6 that
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(3.23) lira max \\FH(s')-Fm(s')\\B=0.
n.m-^ao o^s^/3

From (3.21), (3.22) and (3.23) we see

(3.24) \\Ffc-) -FXS)\\Hds-+Q (», /n->oo).
Jo

Recalling that the sequence F'n is a Cauchy sequence in Z2(0, /?; H), we

can use Lemma 3.3 to show that the sequence Fr
n(f) converges uniformly

on [0, £]. Q. E. D.

Using Lemma 3.6 and Lemma 3.7, we can easily show

Lemma 3.8. Let F and Fn be as in Theorem 3.2 and let V be as

in Lemma 3.5. Then there exist H-valued functions FQ(r) and VQ(r) on

Q0, oo ) satisfying the following (i)^(iii) :

( i ) We have FQ(r) = F(r) and VQ(r)=7(r) for almost all r € [0, oo).

(ii) Fn(r} converges to F0(r) in H uniformly on every finite interval

in [0, oo). Similarly F'n(r} converges to F0(r) in H uniformly on every

finite interval in Q05 oo)5 and hence -F0(r) and VQ(f) are strongly con-

tinuous on QO, oo).

(iii) We have for any u^H and any r, c 6 CO, oo)

(3.25) (Fo(r), u)H=(FQ(c

and

(3.26) (F0(r), u}H=(^(c\

where F(r) = lim FJ(r) in Li[0, 0] H~] for any @^>Q.

Proof. Let us define -F0(r) and F0(r) by

n ,
(3.27) {

( F0(r) = limF;(r) in H.
W-»oo

By Lemma 3.6 and Lemma 3.7, the sequences Fn(r) and F'n(r) converge

uniformly on every finite interval in QO, oo)5 and hence .Fo(r) and F"0(r)

are strongly continuous. On the other hand we have

(3.28) F=lim Fn in fy
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and in view of Lemma 3.5 we have

(3.29) r=lim F'H in L2(0, £; H)

for any /3^>0. Therefore we have FQ(r) = F(r) and Fo(r)=F(r) for almost

all r^>Q. Letting n— >oo in the relation

(3.30) (Fn(r\ u)H=(Fv(c\ u)H+ (\F'n(t\ u}Hdt
Jc

we obtain (3.26). Similarly we obtain (3.27), noting that the existence

of Y(t) was proved in Lemma 3.7. Q. E. D.

Proof of Theorem 3.2. Let F0(r) be as in Lemma 3.8. Since F0(r)

= F(r) for almost all r 6 LO, oo) by (i) of Lemma 3.8. and lim Fn = F
n—*oa

in I), we have Fn-*FQ in Jj. It follows from (3.25) that F0(r) is strongly

continuously differentiate with its strong derivative Ff
Q(r^)= F0(r). Similar-

ly (3.26) implies that F0(r) is weakly absolutely continuous and is weakly

differentiate almost everywhere with its weak derivative V f
Q ( r ) = Y ( r ) .

Therefore F0(r) satisfies (i) of Definition 3.1. We show that F0(r) satis-

fies the boundary condition (3.1). Since we have FU(Q)-+FQ(Q) and ^(0)

~>JPo(0)=F0(0) by Lemma 3.8, we obtain

(3.31) SF£(0)-C^(0) = lim (BFi(0)-CFB(0)) = lim 0 = 0.

Thus we have shown that FQ satisfies (ii) of Definition 3.1.

Next we show that &FQ=W in f), where W = lim Wn = lim
ff->00 W-»00

We defined in Lemma 3.8

(3.32) KJ(r)= r(r) = lim F^(r) in L^O, 0; #)
W-*o<3

for any /?;>0. As F%r) = A(r)Fn(r) - Wn(r\ we have

(3.33) F(r) = limU(r)^(r)-rK(r)) in ^(0, 0; fl).
«->oo

On the other hand lim JFW = W in ^ and we have for /?I>Q

(3.34)

O

which implies A(r)Fn(r)-+A(r)FQ(r) in Li(0, $; ^T). Here we have made

use of the uniform convergence of Fn(r) on QO, /?]. It follows from
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(3.33) and (3.32) that

(3.35) F(r) - A(r)FQ(r) - W(r} in L,(0, 0 ; fl),

and hence we have for almost all rE^O, c*>)

(3.36) r(r) - - F(r) + ̂ (r)F0(r) - - ^

which implies that <£ FQ = W. Thus we have shown that FQ €E 2 and LF0

= W. Since F=FQ in I), the closedness of L has been completely proved.

(3.4) and (3.5) are obtained immediately from ii) of Lemma 3.8, which

completes the proof. Q. E. D.

§4. The Eigen function Expansion

Let L be the closed operator discussed in the preceding section.

Now we shall prove the eigenfunction expansion for self-adjoint operators

which will be obtained as a restriction of L.

Now let us assume that there exists a self -adjoint restriction of L,

which will be denoted by L0, that is, LQ is a self -adjoint operator and

£o£S£-7) We denote by E(ju) the resolution of the identity associated

with L0. E(ju) is assumed to be right continuous.

First we give the definition of a sort of Riemann-Stieltjes integral

which will be useful in the section.

Definition 4.10 (1) Let \^jUi, /^H be a finite, closed interval in R =

( — oo 3 oo). Let Q(ju) and a(ju) be R-valued functions on \_n\i #2] and

let U(ju) be an H-valued function on Q/^i, fi^\. Denote by A a finite

subdivision of the interval Q/*i, ^2] determined by the points ^0, yiyrfn,

where

(4.1) jui

7) Let, for example, \\A(r)l be bounded on [0, oo). Then defining LlF=<gF for every
function F(r} which satisfies (i) and (ii) of Definition 3.1 and has a compact carrier,
we can show that Ll is a semi-bounded, symmetric operator. The Friedrichs ex-
tention of L1 becomes a self-adjoint restriction of L.
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By the norm d — d(A) of A we mean the largest of the numbers 7]i+i—7]i

(f = 0, 1, 2, . - . , Ti-1).

If the limit

(4.2)

or

(4.3) lim

where ^5^/2^+1 (z — 0, 1, 2 , . - - , ra — 1), exists in the sense of weak con-

vergence in H independently of the manner of subdivision and of the choice

of the numbers-?] ,', then the limit is denoted by \ Q(ju)a(dju)U(ju) or
JC/*i,/*23

\ Q((i)U(d(i).
JC/*l,/i23

(2) Suppose that for any #£(/*!, /*2H ^0 integral

(4.4) ( QMa(driU(ri or
JL/i./^J

exists in the sense of (1) <2??d suppose that there exists

(4.5) lim Q(tia(dtiU(ti or lim Q(-q)U(d-q)
A»-»A*1 + 0 jQt,/*23 /*-»/*! -"-0

o/ ^g<2^ convergence in H. Then we define the integral on

the half -open interval (#1, /^H ^V

(4.6)

or

(4.7)

We state two lemmas which give sufficient conditions for the ex-

istence of the integrals defined above. We shall give the proof of these

lemmas in the Appendix.

Lemma 4.2. Denote by f^, #2H
 a finite, closed interval in R. Let

be a E-valued function on £#i5 /^D which is continuously differentiate

in the uniform topology of B with its derivative ¥ E B. Let U(ju) be an

It-valued, strongly continuously differentiate function on [_/JLi> /JL^} with its

strong derivative —^—. Let a(ju) be a ^-valued function on Q#i, /^2H
u/jLt
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such that \\a(fi)\\ is bounded on

dU
—-J — , uju is integrable on [7*1, #J in the sense of Riemann for uEH.

Then the integral \ Q(jjt)a(dju)U(ju) exists in the sense of Definition
•Jl>i'A*2ii

4.1 and we have for any u

(4.8)

Lemma 4.3. Denote by ^i, #2H « ^»f^ c/os^ interval in R.

«5 in Lemma 4.3. /,£/ ̂ (A) be an H-valued function on

~is bounded on Q/*l3 ^2H and-~r ~

integrable on Q^ij A2H ̂  ^^ 5^^5g o/ Riemann for any uE H. Then the

integral \ Q(/t)V(dju) exists in the sense of Definition 4.1 and we
J L/»1»A*23

have for any u^H

(4.9) (\ Q(tiV(dv\ u\=(Q(^V(^\ u}H-(Q(^ V(^\ u)
\^C^i./*2D /

We shall show how the resolution of the identity E(ju) of L0 and

the eigenoperator 0(r, ^) are related each other.

Proposition 4.4.8) Let F6i) and let I=(#i9 A2H be a finite half-

open interval in R. Then we have

(4.10) F(

where Pf (i = l, 2) are projection operators onto HI (i = l, 2) defined in

Definition 1.8

8) Cf. Kodaira [4], p. 188, (4.12); or [5], p. 930, (2.6).
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(4.11)

F(r, /) -

F(r, /0 =

integral of the right-hand side of (4.10) exists in the sense of Defini-

tion 4.1.

To prove this proposition we prepare some lemmas. We have to show

that the integral of the right-hand side of (4.10) exists.

Lemma 4.5. Let FEl) and let F(r, ju) and F' (r, ju) be as in Pro-

position 4.2.

(i) Then for an arbitrarily fixed r 6 [0, oo)5 F(r, li) and F'(r, #),

as functions of ju € R, are strongly right continuous on R and the strong

limits

I s-lim F(r, ??)
?->/*- 0

s-lim F(r,ii)
9-»/*-0

exist for any /*€R. Therefore for each r €E [0, cx>) ||F(r, /Oil «^

IJFXr, /^)|| cr^ bounded functions on every finite, closed interval Q#i, /JL^\SR..

(ii) Denote by dQ(r) (or c?i(r)) ^/z^ set of all discontinuous points of

F(r5 ju) (or F f ( r , /*)) and denote by d=d(LQ) the set of all discontinuous

points of E({Ji). Then we have for any r G £0, oo)

(4.13) di(r)Sd (£ = 0, 1),

and hence both d$(r) and d\(r) are enumerable sets.

(iii) For F6l) the integral of the right-hand side of (4.10) exists in

the sense of Definition 4.1 and we have for u£H

(4.14) (( 0(r, /0(PiF(0, dji) + B?P2F(09 d&\ u\
\J((il,fJL'i~\ /

P = P<2

fi = fi1
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Here the integral of the right-hand side of (4.14) exists in the sense of

Riemann integral on ^l5 fi^\.

Proof. Putting s-lim F(r, y) = F(r, # — 0), we show that F(r, ju — Q)
Tj-^p-Q

exists for any r^O and /*ER and if E(ju)=E(/j — 0) then jF(r, /* — 0) =

F(r, fi). In fact take a sequence JJLH such that jUn</ji and /*»->/*. Then

we have

n
(4.15)

in

Here we have made use of the fact that LQ<ZL. Then we can apply

Theorem 3.2 to obtain

(4.16) F(r,^) = (E(AO-^(0))F(r)^(^U-0)-^(0))F(r) in H.

Thus we have shown that s-lim F(r, ^) exists and
^-*/*-o

(4.17) F(r, ja-0) = (£(/£-0)-JE(0))Kr)

holds for r;>0 and /^€R. If E(/£ — Q) = E(#), then we have

(4.18) F(r? /«-0)

Similarly we can show F(r, /^) is strongly right continuous. In the same

way we can prove that F'(r, ft) is strongly right continuous and that

s-lim F(r, iy) = F(r, ^-0) exists and F(r, ^-0) = F(r, A) if
7-»^-0

E{fjL — 0). Thus (i) and (ii) of Lemma 4.5 has been proved.

Let r G CO, oo) be fixed. Then putting

000=00-, /O,
(4.19)

we can show that Q(fJL) and F(/^) satisfy the condition of Lemma 4.3, and

hence there exists the integral \ Q(ft)V(d/ji). In fact it follows from
^^ AA.(

Proposition 1.6 and Proposition 1.9 that $(r, A) and - ^j, - , as functions

of ^, are continuous in the uniform topology of B. By (i) 1|F(/OII# is

bounded on £/*i, A2D- Further, (i) and (ii) imply that f - ^ -
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is at most discontinuous of the first kind for any u^H and that the set

of all discontinuous points of ( - i - juV(ju), u\ is an enumerable set.

Hence ( - ^ - V(/JL)^U\H is integrable on f^i, #2] in the sense of

Riemann.

Therefore by Lemma 4.3 there exists the integral

(4.20)

for jU € (AI? #2] and we have for u

(4.21) (\
V^C^,

Since F(^) is strongly right continuous, there exists

(4.22) lim ({ Q(v)V(dv, u\=(Q(i)V(rf), u)a

which completes the proof. Q. E. D.

Put

(4.23) £7(r, /<) =

if

if

if

where

(4.24) F(/«)=P1F(0> A) + 51^2^X0,

We shall show some properties of Z7(r, ^).

Lemma 4.6. Let r E QO, °o)

(i) Ttew for any yeR U( -, ft) € D.

bounded on [^0, oo) x R.

(ii) 772£r£ ^5^5 ^^ integral \ yU(r, dff) on every finite half-
J(^l>^2^

open interval (/^i, /*2j and for every r € LO, oo). Putting
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if

(4.25) F(r,/<) = if A = 0,

~i ^u(r' d^ if <"<0>
we have a null set e in [_0, <=o) such that for r6|J), oo) —<

(4.26) #U(r,fi)=r(r,u)

we define &U(r, ft) by — Uff(r,

(iii) We have for any ju G R

(4.27)

Proof. By the formula (4.14) and Proposition 1.6 and Proposition 1.9

it is easy to see that for each /*€R £/(r, #)£D and ||i7(r3

locally bounded on CO? °°) x R- If w^ put

(4.28)
L
0

-1̂ ,0]

then it follows from Proposition 1.6 and Proposition 1.9 that we have for

almost all r€FO, oo)

(4.29)

Again using (4.14), we can see that for each rGTO, oo) ||E/(r, JJL)\\H is

locally bounded on R and (£/(r, ^), u)^ is integrable on any finite interval

in R in the sense of Riemann, where u is an arbitrary element of H.

Moreover [7(r, #), as a function of ju, is right-continuous. Therefore by

Lemma 4.3 the integral \ yU(r, drf) exists and F(r, #) is well-defined.

We shall show F(r//0= F(r, /«) on [0, oo)xR. It follows from

(4.25) and the right continuity of i7(r, ju) that

(4.30)
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holds for u^H. Noting (4.23) we obtain

(4.31)

and

(4.32) (r, 17), iO<fy = {(0(r, 7)^(7), «)-(^r, 0)F(0), a

, 0)F(0), it)

By (4.30), (4.31) and (4.32) we have for u<£.H

(4.33)

On the other hand from (4.28) we obtain

(4.34)

and hence F(r, /^)=F(r, /^).

Let us show (4.27). For any u

(4.35)

holds. Recalling Definition 1.8 we have for any #GR

(4.36) 0(0, fi) = B.

It follows from (4.35), (4.36) and (4.24)

(4.37) ( U(0, /O, u) = (B( V(fi) - F(0)), «) - (B V(ft), a)

= (B(P1F'(0, ti) + B?P,F(0, fi)\ u}.

From Definition 1.8 we have 5P! = 0 and BB^P^ — Pz- As (E(ju)—E(Q))F
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G^3 we have PiF(0, ju) = Q. Therefore (4.37) becomes

(4.38) (£^(0, /O, u) = (F(Q, {JL\ u\

and hence [7(0, ju) = F(Q, /^). Similarly, noting that

i f /<>0 ,

(4.39) 0

*, on

we obtain £/'(05 /O — ̂ '(0? #)> which completes the proof. Q. E. D.

In the following lemma we shall show that F(r, A) satisfies the

integral equation (4.26) as well as C/(r, /*)•

Lemma 4.7 L^ F€§ *wd /^ F(r, /^) fe «5 w (4.11).

(i) Then for any #6R there exists a null set e(y) in [^0,

(4.40)

i f A < 0

/or a// r ECO, oo) — e(^). //ere ^/z^ integral of the right-hand side

of (4.40) ejwsJs m ^/z^ sewse of Definition 4.1.

(ii) ||F(r, fi)\\H is locally bounded on QO, CXD) x R.

Proof. We shall prove (4.40) assuming #>0. Using (i) and (ii) of

Lemma 4.5 we can easily show that the integral \ ydF(r, fj) exists.
J(0,A*]

Since F(r, #) = (£(/*)— JE(0))F(r), by spectral representation of L0 we

have for

(4.41)

o

Notice that Lo^i. Then from (4.41) we obtain
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(4.42) ^F(r, fi\ G(r))H<fr= /£(*Xr, /i\ G(r))Hdr
Jo Jo

o o

Using Schwartz' inequality, we can estimate the integral in the right-hand

side of (4.42) to obtain

(4.43)
oJo

Hence by Fubini's theorem we have

(4.44) (<?F(r, ft), C(r))dr - ff(F(r, fi), G(r))
Jo

where, noting (4.43), we can see that \ ^^(^"5 ^) € i). Thus it follows
J(o,^

from (4.44) that (&F( - , /«)-( ^( -, ^), G) =0 holds for all Ge$
\ J(o3 / ij /^

and hence J§? F(r, /^) = \ ^^(r, G?9y) for almost all r. Quite similarly we
Jco,/*:

can prove the case /*<0. If # = 0, then clearly both sides of (4.40) are

equal to zero, for F(r, 0) = 0 on LO, oo).

Next we shall prove (ii). We take /?>0 and a finite, closed interval

C/^ij /*2H m R- Further we take a smooth function p(r) on QO, oo) such

that 0^jD(r)^l, Xr) = l on C°' ̂ 1 and X7")^0 on C^ + 13 °°)- Replacing

F(r) and JF(r) by F(r, #)-F(r9 Ai) and L(E(tt) - E(vd)F(r) respectively

in (3.8) in Lemma 3.4, we have

(4.45)

-(Ap(F(; fi)-F(;
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= JSTl

Let n £ [ _ f i i , #2! then £,-(1 = 1, 2, 3, 4) are estimated as follows:

(4.46) \K,

(4.47)

where C(p) is a positive constant depending only on p(f).

(4.48) tfsl^VillFUS,

where we have made use of (3) of Assumption 1.1.

(4.49) I^I^II^IIIMIPXO, /0-JXO, /rOllir .

Notice that ||F(0, ju)\\ is bounded on [>i, AzU by (i) of Lemma 4.5. Then

we can see that there exists a constant K=K(/ti, fa, @, F} such that

(4.50)

f/8

holds for /JL 6 H/^i, #2], which implies that \ IJF'Cr, ju)\\2
Hdr is bounded on

Jo
. Since

(4.51)

for r 6 [0, #] and ||F(0, fi)\\H is bounded on [>i, ^2], ||Ffc V)\\H is

bounded on [^0, #] X Q#l5 /*2]- This proves the Lemma 4.7. Q. E. D.

To complete the proof of Proposition 4.4, we only need

Lemma 4.8. Let T(r, ju) be an H-valued function on [[O, oo) x R

which satisfies the following (a)~^(d):

(a) ||r(r, IJL)\\H is locally bounded on QO, oo)xR.

(b) For any rGCO, °°) and u£H, (T(r, /i), U)H is locally integrable

on R in the sense of Riemann.

(c) T(-, ft) € D for any fj. € R.
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r, dig) if

(4.52) J*?r(r, /OH ° if

O*, 0]

/<?r almost all r€;I05 oo).

(d) r(o, /o=no, /o=o.
TAe» tf follows that T(r, //) = 0 o» [0, oo)xR.

Proof. We shall prove the case /*>0. In a similar way we can

prove the case /* = 0 and the case /*<0. Integrating (4.52) and noting

(d), we have for all u^H

(4.53) (r(r, ti\u)H

It follows from (4.53) and (a) that T(r, #) = Q. Q. E. D.

Proof of Proposition 4.4. Put T(r, #) = F(r, ju)-U(r, ju). Then

by Lemma 4.6 and Lemma 4.7 we can see that T(r, ju) satisfies the con-

ditions (a)-^-(d) in Lemma 4.6. Hence we have T(r, /^) = 0, that is,

F(r, A)^C7(r, /«). Q. E. D.

Now we define an operator-valued function which will play an im-

portant role in the eigenf unction expansion of LQ.

Definition 4.9. Let I— (#1, #2H be any finite, half-open interval in

R. Then we define a linear operator f (/) on t) into H by

(4.54) f(/)F=Pi*"(0, /) + 521P2F(0, /).

Proposition 4.10. 77ze operator f (/) zs a bounded, linear operator

taking f) m^o ^" izwd /zgncg /Ys adjoint f *(/) w «/5o c bounded, linear

operator taking H into i).

Z,e£ /i = (/^i5 /^2H fl»^ ^2 = (^i, v2H te ^m'^5 half -open intervals in R.

(i) 77zew #Ae relations
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(4.55)

are valid if

(ii) We have for arbitrary /i and /2

(4.56)

*(/)

(iii) For arbitrary /i and /2 we

(4.58) f (/Of *(/2) = f (A n /2)f *(/i n J2).

Especially if

(4.58)

(iv) For a finite half-open interval J=(Ai, ^H ^ R5 w^ define an

^-valued function p(/) ^3;

(4.59)

p es « symmetric^ non-negative definite, finitely additive, operator-

valued interval function,

(v) Put

(4.60)

is locally

bounded on R. Let £7(/0 #e «^ H-valued strongly continuous function.

Then for any JJL € R p (A) #(/0 ^ «^ m^5^ discontinuous of the first kind

in H and right strongly continuous. If E(/JL)=E(IJL — 0), then p(/t)U(ju)

is strongly continuous at fi.

Proof. If we can show that f (I) is a closed operator, then f (/) is

9) Cf. [4], p. 117, (5.22) or [5], p. 931 (2.11).
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seen to be a bounded operator by the closed graph theorem. Let Fn be a

sequence in h. Suppose that there exist F0 € i) and HO € H such that

f Fn-*F0 in 6,
(4.61)

>u0 in #.

Since / is a finite interval, it follows that

(4.62)
L0E(I)F,,^L0E(I)F0.

Noting that L0^L, we can apply Theorem 3.2 to obtain

f F,(0, /)->F0(0, /) in tf,
(4.63)

[ FB(0, /)->F£(0, /) in H.

Therefore from the definition of f (I) we have

(4.64) f(/)F, = P1F;(0> I) + B^C2P2F2(Q, 7)

-*-PiF5(0, I) + B^C2P2F0(Q, J) = f(/)F0 in fl".

Comparison of (4.63) with (4.60) gives the result that $(I)F0 = uQ, i.e.

f (/) is a closed operator.

Next we shall prove (i)~(iv). (i) is obvious by the fact that E(I)

is an additive interval function. If F £ f), then we have

(4.65)

which proves the first relation of (4.55). Taking the adjoint in both sides

of (4.65), we have

(4.66) £(/2)£*(/2) = £*(/i A 72),

which proves the second relation of (4.55). Using (ii) we can prove (iii).

In fact we have for u£H

(4.67)
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which proves (iii). Obviously p(/)^0 and p(0) = 0. If I1r^I2 = ̂  then

we make use of (4.55) and (4.58) to obtain

(4.68)

Thus p is finitely additive. Finally we show (v). If 0</*</J0 then we

have p(p)U(f*) = $(#)$*((Q, AoZW/O- Noting that the strong continuity

of U9 it follows from Lemma 4.5 that p(#) and p(/jt)U(fi) have the

properties stated in (v) and the proof is complete. Q. E. D.

In the following proposition, ?*(/) is represented by $(r, ju) and p(ju).

Proposition 4.11. Let I=(^ jU2~] be a finite, half-open interval in

R. Then the equation

(4.69) (£*(/»(/•)

Ao/^5 /or flwy u^H. The integral exists in the sense of Definition 4.1.

(4.69) is written symbolically in the form

(4.70) ?*(/) = 0, ft)p(dft)

Proof. Putting F—f*(I)u in (4.10) and noting the definition of

, we have

(4.71)
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It follows from (4.58) that

(4.72) (£(?2)-£(?i))£*(/) = ̂ ^

for /*i<^i<^2^/*2- And it follows from (4.56) that

(4.73) £(/)£*(!) = £*(/).

By (4.72) and (4.73) we obtain (4.68) from (4.70). Q. E. D.

Denote by C0 the set of all /f-valued function F(r) on QO, oo) such

that F(f) has a compact support in QO, oo) and F(f) is strongly con-

tinuous on QO, CXD).

Let us represent ?(/) by 0*(r, /*) and

Proposition 4.12. L0/ F^CQ and /=(/*i, /*2j #0 « finite half -open

interval in R. Then we have

(473).

and /*€R, 0*(r, /^) is the adjoint of

Put £/(^) = ^*(r, fJt)F(r}dr. Since Fe C0, E/(/0 is an H-
Jo

valued smooth function. Hence it follows from (v) of Proposition 4.10

and Lemma 4.2 that the integral \ p(d#)U(fj[) exists in the sense of

Definition 4.1. Let us prove (4.73). Using (4.69) we obtain for u^H

and Fe C0

(4.74)

where we assume the carrier of F is contained in QO, r<J. Making use

of the formula of integration by parts (4.4), we obtain from (4.74)

(4.75)
O /* = /*

™> -H*



46 YOSHIMI SAITO

=(J^(d/£) [J V(r,

^ fr0 Cr°ftf/>*(r /A
where we used the fact that -^-\ 0*(r, p)F(r)dr is equal to \ °^ J7 » A;

(//£ Jo Jo a/t

F(r)dr in the strong sense. This proves the proposition. Q. E. D.

We are now in a position to discuss the eigenfunction expansion for

io-

Definition 4.13. Let £/(/*) and V({f) be H-valued functions on a

finite, closed interval Q/*i, /*2] in R. Denote by A a finite subdivision of

E#i3 #2] determined by the points ^Oj V i 5 - - - j ^» ^5 ^ Definition 4.1. 5(J)

means the norm of A. Let p(ju) be the operator -valued function defined

in (4.68). // the limit

(4.76) lim nZ\(p(n+i)-p(ydWW,nri»H
3(J)-»0 *=0

exists independently of the manner of subdivision and of the choice of the

numbers ^ 6 \jrji, ^-+iH then the limit is denoted by

(4.77) \
J l>|.,.-

Let us assume that the integral \ (p(c?^)£/(^)3 V(jf))H exists for

any /t€.(jUi, fi^\ and that the limit lim \ (p(d^)Z7(^)3 V(jf))H ex-

(4.78)

As for the existence of the integral \ (p(^)t/"(^), V(f])}H^ we have
Jc/*i./*23

Lemma 4.14. L^ C/(^) fl^^ F(#) ̂  H-valued strongly continuously

differentiate functions on Q^i, /^2D- Then the integral (4.77) e;wsfc and

we have
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(4.79) \
•>[>i.A*

Lemma 4.14 will be proved in the Appendix.

Proposition 4.15. Let F^CQ and let 7=(^l3 #2H be a finite half-

opened interval in R. Putting

(4.80) (j

(i)

(ii)

(iii)

for almost all rE^O, oo).

Proof. From (v) of Proposition 4.10 and Lemma 4.2 it follows that

the integral \ 0(r, ^)p(^)(J5"0^
r)(/^) exists for every rG^O, oo). We

shall prove this proposition assuming that /=(0, fi^\. We can treat the

general case in a similar way. Take u^H. By Proposition 4.2 and Pro-

position 4.12 we have

(4.81)

(0,/.Z]

(0,/*3
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Again we make use of the formula of integration by parts to obtain

(4.82)

= (00, /^pteOC^o^X/^), u)H

= (\ 0(r,
\J(o,/*:

which implies (i). Let F£ CQ and let the carrier of F is contained in

£0, r0]. Then from (i) we have

(4.83)
o \(/» l fA.2:

Here we have made use of Fubini's theorem on the ordinary Riemann

integral and (4.79). It is easy to see that (iii) is obtained from (i). This

proves the proposition. Q. E. D.
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To define the "generalized Fourier transform" associated with LQ we

must make some preparations.

Denote by 1I0 the set of all //-valued functions U(ju) on R which

satisfy the following

(1) U(/JL) has a compact carrier.

(2) U(fJi) is at most discontinuous of the first kind and left continuous.

(3) There exists a finite number of points @i = @i(U) (i = l, 2 , . . - 3 N,

/ ? i< /3 2 <- - - <&N) such that if on each closed interval []/?,-, &+J (i = l,

2 , . . - , N— 1) we define an //-valued function

E/GO if

(4.84)
[ s-limt/0?)

1-+/3i + Q

then E/;(/0 is strongly continuously differentiate on £/?,-, &+J (i = l,

2,..., JV-1) and tf(/0 = 0 for

Clearly U0 is a vector space.

Definition 4.16. Let U, F<EU0 <md let &([/) (f = l,..., TV)

/ = !, 2,..-, M) ^ «5 m (3) o/ ^/z^ definition of 11Q. We rearrange

the points @i(U) and /?y(F) in the order of their magnitude. Thus we

obtain a finite number of points ?k(k = l, 2,..., K) such that — °°<Ti

<T2<---<TK <°° and we have {&•(£/)} \J {f)j(V)} = {rk}- Then we

define a map ( , )/), which takes llo X Uo into C by

(4.85) (U, V)p=

By Lemma 4.14 (£7, V)p is well defined.

We can easily show the following relation'.

i) (ff+F, r )„=(£/,
2)

3) (^ V\ - (F,

4) (ff, F

£/, F" and W are elements of U0. We put \\U\\ P = <J(U, U)p. There-

fore if we denote by 31 the set of all U£.U0 such that (U, U)P = Q, then

the factor space llo/?t becomes a pre-Hilbert space with the inner product
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( , )r We define §p by the completion of Uo/9t The inner product and

the norm of §p are also denoted by ( , )p and \\ \\p respectively. Then by

(ii) of Proposition 4.15 we can see that the operator J^0 maps CQ into §p

and we have \\^QF\\p = \\F\\^ for F^CQ. We denote by & the unique ex-

tention to t) of J^o- We call the operator !F the generalized Fourier

transform associated with LQ.

By (ii) of Proposition 4.15 & is an isometric operator on i).

As for the representation of J^"*, we have

Proposition 4.17. If f /EUo, then the relation

(4.86)

holds. Here /?i, / ? 2 5 - - - 5 @N are as in (3) of definition of U0.

Proof. Obviously we can assume that N=2. Then for F^C0 we

have from Proposition 4.15

(4.87) (F, &* CO - (^F, U)p = (&0F, U)p

( 0 l t / 3 2 l JO

where we assumed that the carrier of F is contained in Q03 r0]. Integra-

ting by parts as in proving Proposition 4.15, we obtain from (4.87)

(4.88) (

for any F€ C0, which implies (4.86). Q. E. D.

We can state an eigenf unction expansion theorem for LQ.

Theorem 4.18. Let us suppose that a self-adjoint restriction LQ of

L exists with the resolution of the identity E(ju). Let fyp and IF be as in

Definition 4.16.

(i) Then ^ is a unitary operator from i) onto I)r

(ii) Let I be an interval in R and let %/ be the characteristic func-

tion of /. Then we have

(4.89)
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(iii) F belongs to ®(LQ) if and only if v(&F) E fy,. //

then we have

(4.90) L*F

Proof. We can easily show (ii) and (iii) using Proposition 4.15. We

shall prove (i). We have seen that & is an isometric operator on i) into

fyp. Hence if we show that J5"* is isometric, then the proof will be com-

pleted. To this end we need

Lemma 4.19. An H-valued function on R is called a step function

if there exists a finite number of mutually disjoint half -open interval Ij =

(#73 y/H and Uj^H (/ = !, 2,- . . , K) such that

, uj if juelj (; = 1, 2, . .- , K\

(4-91) = K

1 0 t t u £
3

We denote by Us the set of all step functions. Clearly USCU0 . Then Us

is dense in i)r

The proof of Lemma 4.19 will be given in the Appendix.

From Lemma 4.19 we have only to prove that for C/Glls we have

\\^U\\^ = \\U\\p.
1^ Let Z7(/Obe as in (4.91). Then it follows from Pro-

position 4.17 and Proposition 4.11 that

(4.92)

K r
= E \ 4(r9

J=iJij

Therefore, noting (4.58), we have
K K

(4.93) ||JF*[7||2 = ( 2 '

K

j,k=l

10) Cf. [4], p. 117.
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= Z (£(/*)£*(/*)"*, «*)fl

which completes the proof. Q. E. D.

Appendix; The Proofs of Lemma 4.29 4.3, 4.14 and 4.19

In this section we shall give the proofs of lemmas which was stated

in §4. First we shall prove Lemma 4.2, 4.3 and 4.14 which give the

sufficient conditions for the existence of integrals defined in Definition 4.1

and 4.13. We shall give the proof of Lemma 4.2 only, because we can

prove Lemma 4.3 and Lemma 4.14 in quite a similar way. Next Lemma

4.19 will be proved.

Proof of Lemma 4.2. Let A be a subdivision as in Definition 4.1 and

let ^/6[3?*5 7?*+iD (& = 0? I ? - - - ? ft — 1). Then we have for u€.H

(1)

where

(2)

Since we have

(3) /}»:
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we can see that there exists a positive number e(J) such that

(4)

and

lim e(J) = 0.

Similarly we have

(5)

It follows from (1), (4) and (5) that

(6) lim S(J) = (( Q(ti)a(dfi)U(v\ u\
S(4)-»0 \^C/*i^2] /

exists and the formula of integration by parts (4.4) holds for any u£H.

Q. E. D.

Proof of Lemma 4.19. Since U0 is dense in $p, in order to prove

this lemma it is sufficient to show that for an arbitrary £/ElIo and any

£>0 we can choose U££US satisfying \\U— U€\\p<e. Further, with no

loss of generality, we can assume that there exists a finite, half-open

interval (£1, j92] such that U(ju) = Q for ^^(^1^2] and if we put

(7)
I s-lim

then C/"i(^) is strongly continuously differentiate on [^0i /?2H- Put

dU(8) M— _sup

and

(9) L= sup
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Clearly we have M<oo and by (v) of Proposition 4.10 we have also

L< oo. Let us choose a subdivision of [j9i, /?2j by the points @I = I]Q

02 such that

(10) max (j)k — yk-i

and let us define U££US by

(11) U£(tt}= iuk if # € ( •

where we put uk= s-lim U(TJ) (A; = 0, 1, 2 , . - - , TV—1).

It follows from Lemma 4.14 that

(12)

Since we have

(13) £i

r«+1r7,.i
= k L

KI is estimated as follows

(14) \Ki | ̂ (^k^i—^k)2 ||P(A+I)||( sup
+1

3(/98-/90
2

'
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where we used (10). In a similar way we have

/I r\ I T7~ \ \ IT \ ^ W£+l ^Jk) f.2
(15) I K2 I , I A3 I < -y-r -rv-£ .

From (14) and (15) we obtain

#-ir(i6) i iD- -^n a =r

which completes the proof. Q. E. D.

References

[I] Coddington, E.A. and N. Levinston, Theory of Differential Equations, McGraw-
Hill, New York, 1955.

[2] Gorbacuk, V.I. and M.L. Corbacuk, Expansion in eigenfunctions of a second-
order differential equation with operator coefficient, Dokl. Akad. Nauk SSSR
184, No. 4 (1969), 774-777 (Russian). (Soviet Math. 10, No. 1 (1969), 158-162).

[ 3 ] Jager, W., Ein gewohnlicher Differentialoperator zweiter Ordnung fur Funk-
tionen mit Werten in einem Hilbertraum, Math. Z. 113 (1970), 68-98.

[ 4 ] Kodaira, K., On singular solutions of second-order differential operators, I, II,
Sugdkn 1 (1948) 177-191; Ibid. 2 (1948), 113-139. (Japanese).

[ 5 ] _ 5 The eigenvalue problem for ordinary differential equations of the se-
cond order and Heisenberg's theory of 5-matrix, Amer. ]. Math. 71 (1949), 921-
945.

[6] Neumark, M.A., Linear differential operators^ Gosudarstr. Izdat. Tehn. -Teo.
Lit., Moscow, 1954.

[ 7 ] Rofe-Beketov, F. S., Eigenfunction expansions for infinite system of differential
equation in non-selfadjoint and self-adjoint cases, Mat. Sb. 51 (93) (1960), 293-
342 (Russian).

[ 8 ] Stone, M. H., Linear transformations in Hilbert spaces and their applicatiosn
to analysis, Amer. Math. Soc. Colloquium Pub. 15, New York, 1932.

[ 9 ] Titchmarsh, E. C., Eigenfunctions associated with second-order differential equations,
part I, Oxford Univ. Press, London, 1946.

[10] Weyl, H., Uber gewohnliche Differentialgleichungen mit Singularitaten und die
zugehorigen Entwicklungen willkiirlicher Funktionen, Math. Ann. 68 (1910),
220-269.

[II] Yosida, K., On Titchmarsh-Kodaira's formula concerning Weyl-Stone's eigenfunc-
tion expansion, Nagoya Math. /. 1, (1950), 49-58. Errata, Ibid. 6 (1953), 187-188.




