On a Mixed Problem for Hyperbolic Equations with Discontinuous Boundary Conditions

Bу

Kazunari Hayashida*

1. Mixed problems for hyperbolic equations have been studied by many authors. For variable coefficients the powerful tool is the theorem of Hille-Yosida ([3], [4], [5], [7]). In this case the mixed problems have been treated completely by Mizohata [5] and Ikawa [3].

On the other hand $\check{C}ehlov$ [2] has shown the existence of a weak solution for mixed problems under discontinuous boundary conditions. He has imposed the assumption that the space domain is a half space and the equation is the wave equation. His method is the Fourier-Laplace transformation.

In this note we consider a mixed problem under discontinuous boundary conditions of Dirichlet or Neumann type. We proceed mainly along the lines of [3] and [5].

2. Let \mathcal{Q} be a bounded domain in the *n*-dimensional Euclidean space \mathbb{R}^n with boundary $\partial \mathcal{Q}$ of class \mathbb{C}^∞ . We assume that $\partial \mathcal{Q}$ consists of two measurable sets $\partial_1 \mathcal{Q}$ and $\partial_2 \mathcal{Q}$ having no common points. Further let us assume that

(2.1)
$$\partial_2 \mathcal{Q} \cap \overline{\partial_1 \mathcal{Q}} = \phi.$$

We set

$$(u, v)_{k} = \int_{\mathcal{Q}} \sum_{|\alpha| \le k} D^{\alpha} u \ \overline{D^{\alpha} v} \ dx,$$
$$||u||_{k}^{2} = (u, u)_{k}$$

and

Received November 12, 1970.

Communicated by S. Mizohata.

^{*} Department of Mathematics, Nagoya University, Chikusa-ku, Nagoya, Japan.

Kazunari Hayashida

$$(u, v) = (u, v)_0, \quad ||u|| = ||u||_0.$$

Let us denote by $H^k(\Omega)$ the Sobolev space with norm $|| \quad ||_k$ and by $K(\Omega)$ the completion of all u each of which belongs to $C^{\infty}(\overline{\Omega})$ and vanishes in a neighborhood of $\partial_1 \Omega$ with $H^1(\Omega)$ norm.

Consider the elliptic operator L of second order on $\bar{\Omega} \times [0, T]$:

(2.2)
$$L = -\sum_{i,j} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right) + \sum_i b_i(x,t) \frac{\partial}{\partial x_i} + c(x,t)$$

where the coefficients are all in $C^{\infty}(\bar{\mathcal{Q}} \times [0, T])$. We assume that $a_{ij}(x)$ $(=a_{ji}(x))$ are real valued and positive definite on $\bar{\mathcal{Q}}$ and we consider the following equation for real valued $h_i(x)$, $h(x) \in C^{\infty}(\bar{\mathcal{Q}})$:

(2.3)
$$\frac{\partial^2}{\partial t^2} u + Lu + \left(2\sum_i h_i(x)\frac{\partial}{\partial x_i} + h(x)\right)\frac{\partial}{\partial t} u = f.$$

Let us impose the following boundary condition

(2.4)
$$B_1u(x, t) = u(x, t) = 0$$
 on $\partial_1 \Omega \times [0, T]$,

(2.5)
$$B_2 u(x,t) = \left\{ \frac{d}{dn} - \langle h, \gamma \rangle \frac{\partial}{\partial t} + \sigma(x,t) \right\} u(x,t) = 0$$
on $\partial_2 \mathcal{Q} \times [0, T],$

where

$$\frac{d}{dn} = \sum_{i,j} a_{ij}(x) \cos(\nu, x_j) \frac{\partial}{\partial x_i} \qquad (\nu \text{ is the exterior mormal vector}),$$
$$< h, \gamma > = \sum_i h_i(x) \cos(\nu, x_i)$$

and $\sigma(x)$ is C^{∞} on $\partial_2 \mathcal{Q}$. The equation (2.3) has been considered in [3] and [5] under the boundary condition $B_1 u = 0$ or $B_2 u = 0$ on $\partial \mathcal{Q} \times [0, T]$.

Now we define the boundary condition (2.5) in the weak sense as follows:

Definition 2.1. Let u(., t) be in $H^1(\Omega)$ and (Lu)(., t) be in $L^2(\Omega)$ for $0 \le t \le T$. Further we assume that u is in $\mathscr{E}_i^1(H^1(\Omega))[0, T]^{.1}$. Then u is said to satisfy the boundary condition (2.5) weakly on $\partial_2 \Omega \times [0, T]$,

¹⁾ For the Banach space E the letter $\mathscr{O}_{k}^{*}(E)[0, T]$ means the set of E-valued functions which are k-times continuously differentiable in $0 \leq t \leq T$.

if the following equality holds on [0, T];

(2.6)
$$\left(\left\{ -\frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial}{\partial x_j} \right) \right\} u, \varphi \right) = \sum_{i,j} \left(a_{ij} \frac{\partial u}{\partial x_i}, \frac{\partial \varphi}{\partial x_j} \right)$$
$$+ \int_{\partial_2 g} \left(\sigma u - \langle h, \gamma \rangle \frac{\partial u}{\partial t} \right) \bar{\varphi} \, dS$$

for any $\varphi \in K(\Omega)$.

In addition we define the boundary condition for vector functions as follows.

Definition 2.2. Let $U = \{u, v\}$ be in $H^1(\Omega) \times H^1(\Omega)$ and Lu be in $L^2(\Omega)$. Then U is said to satisfy the boundary condition (B_2) on $\partial_2 \Omega$, if the following equality holds for any $\varphi \in K(\Omega)$;

(2.7)
$$\left(\left\{ -\frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial}{\partial x_j} \right) u, \varphi \right) = \sum_{i,j} \left(a_{ij} \frac{\partial u}{\partial x_i}, \frac{\partial \varphi}{\partial x_j} \right) \right. \\ \left. + \int_{\partial_2 g} (\sigma u - \langle h, \gamma \rangle v) \overline{\varphi} \, dS. \right.$$

In this note we shall prove the following theorems, where we assume that $f(x, t) \in \mathscr{E}^0_t(K(\Omega))[0, T]$ and f(x, 0) has compact support in Ω .

Theorem 1. Suppose that $u_0(x)$, $v_0(x) \in K(\Omega)$, $Lu_0 \in L^2(\Omega)$ and $\{u_0, v_0\}$ satisfies the boundary condition (B_2) on $\partial_2 \Omega$. Then there is a unique solution $u(x, t) \in \mathscr{E}^1_t(K(\Omega))[0, T] \cap \mathscr{E}^2_t(L^2(\Omega))[0, T]$ of the equation (2.3) satisfying

(2.8)
$$u = u_0, u_t = v_0$$
 on $t = 0$ (initial condition)

and

$$(2.9) B_2 u = 0 weakly on \ \partial_2 \Omega \times [0, T].$$

Theorem 2. In addition to the assumption of Theorem 1, assume that $u_0 \in H^2_{loc}(\bar{\Omega} - S)$,²⁾ where S is the boundary of $\partial_1 \Omega(\partial_2 \Omega)$. Then u(x, t) also belongs to $H^2_{loc}(\bar{\Omega} - S)$. Thus the solution satisfies $B_2 u = 0$

²⁾ The space $H_{10e}^2(\overline{Q}-S)$ is the set of functions belonging to locally H^2 in $\overline{Q}-S$.

in the interior of $\partial_2 \Omega$.

Remark. Here we have assumed (2.1). Hence if $\partial_1 \Omega$ is an (n-2)-dimensional compact manifold, our theorem holds. With difference method, Babaeva and Namazov [1] has shown the existence of the solution for our problem also when $\partial_2 \Omega$ is an (n-2)-dimensional compact manifold.

3. Let us consider the space $H = K(\mathcal{Q}) \times L^2(\mathcal{Q})$ with the inner product

$$(U_1, U_2)_H = \sum_{i,j} \left(a_{ij}(x) \frac{\partial u_1}{\partial x_i}, \frac{\partial u_2}{\partial x_j} \right) + (v_1, v_2)$$

+
$$\int_{\partial_2 g} \sigma(x) u_1 \bar{u}_2 dS + c_1(u_1, u_2),$$

where $U_i = \{u_i, v_i\}$ (i=1, 2) and c_1 is a sufficiently large constant depending only on a_{ij} and σ . We denote by $||U||_H$ the *H*-norm of *U*. Obviously the space *H* is complete and by the well-known interpolation relation (see e.g. [6]) the norm $||U||_H$ is equivalent to $||u||_1 + ||v||_0$ $(U = \{u, v\})$.

The formulation in this section is radically due to the book of H.G. Garnir.³⁾

Set the operator A(t) in such a way that

(3.1)
$$A(t) = \begin{pmatrix} 0 & 1 \\ -L & -M \end{pmatrix},$$

where $M=2\sum_{i}h_{i}(x)\frac{\partial}{\partial x_{i}}+h(x)$ (see (2.3)). Then A(t) is a closed operator from H to itself having the following definition domain

$$(3.2) D(A(t)) = \{U = \{u, v\} \ \middle| \ u, v \in K(\mathcal{Q}), \ Lu \in L^2(\mathcal{Q}) \\ and \ U \text{ satisfies the boundary condition } (B_2) \text{ on } \partial_2 \mathcal{Q} \\ in the sense of Definition 2.2\}.$$

³⁾ Les Problèmes aux Limites de la Physique Mathématique, Birkhäuser, 1958.

Since D(A(t)) is independent of t, we write simply by D(A).

Remark. Mizohata [5] and Ikawa [3] have set

 $H = H^1_0(\Omega) \times L^2(\Omega)$

and

$$D(A) = (H^2(\mathcal{Q}) \cap H^1_0(\mathcal{Q})) \times H^1_0(\mathcal{Q})$$

for the case of the Dirichlet type boundary condition. They have set also for the case of the Neumann type boundary condition as follows:

$$H = H^1(\Omega) \times L^2(\Omega)$$

and

$$\begin{split} D(A) = & \Big\{ U = \{ u, v\} \, \Big| \, u \in H^2(\mathcal{Q}), \, v \in H^1(\mathcal{Q}) \text{ and} \\ & \frac{d}{dn} u - \langle h, \gamma \rangle v + \sigma u = 0 \quad \text{on } \partial \mathcal{Q} \Big\}. \end{split}$$

Lemma 1. There is a positive constant c_2 depending only on A(t)and $\sigma(x)$ such that it holds that for any $U \in D(A)$,

$$|(U, A(t)U)_{H} + (A(t)U, U)_{H}| \leq c_{2} ||U||_{H}^{2}.$$

Proof. We easily see

$$(3.3) \qquad (U, A(t)U)_{H} + (A(t)U, U)_{H} \\ = \sum_{i,j} \left(a_{ij} \frac{\partial u}{\partial x_{i}}, \frac{\partial v}{\partial x_{j}} \right) + (v, -Lu - Mv) \\ + \int_{\partial_{2} g} \sigma u \bar{v} dS + c_{1}(u, v) \\ + \sum_{i,j} \left(a_{ij} \frac{\partial v}{\partial x_{i}}, \frac{\partial u}{\partial x_{j}} \right) + (-Lu - Mv, v) \\ + \int_{\partial_{2} g} \sigma v \bar{u} dS + c_{1}(v, u).$$

Since U satisfies the boundary condition (B_2) on $\partial_2 \Omega$ (see Definition 2.2), we have

(3.4)
$$\sum_{i,j} \left(a_{ij} \frac{\partial u}{\partial x_i}, \frac{\partial v}{\partial x_j} \right) + \int_{\partial_2 g} \sigma \ u \bar{v} \ dS$$

Kazunari Hayashida

$$= (Lu, v) - \left(\sum_{i} b_{i} \frac{\partial u}{\partial x_{i}} + cu, v\right)$$
$$+ \int_{\partial_{2} g} < h, \gamma > v \bar{v} \, dS.$$

Further it is easily seen that

(3.5)
$$(Mv, v) + (v, Mv) = 2 \int_{\partial_2 g} \langle h, \gamma \rangle v \bar{v} \, dS$$
$$- 2 \sum_i \left(\frac{\partial h_i}{\partial x_i} v, v \right) + (hv, v) + (v, hv).$$

Combining (3.4), (3.5) and (3.3), we have proved the lemma.

Lemma 2. If λ is real and $|\lambda| \ge c_2$, we have for any $U \in D(A)$ $||(\lambda I - A(t))U||_H \ge (|\lambda| - c_2)||U||_H.$

Proof. We easily see

$$\|(\lambda I - A(t))U\|_{H}^{2} \ge \lambda^{2} \|U\|_{H}^{2} - \lambda \{(U, A(t)U)_{H} + (A(t)U, U)_{H}\}.$$

By Lemma 1 we get

$$\begin{aligned} \| (\lambda I - A(t)) U \|_{H}^{2} \ge & (\lambda^{2} - |\lambda| c_{2}) \| U \|_{H}^{2} \\ \ge & \{ (|\lambda| - c_{2})^{2} + c_{2} (|\lambda| - c_{2}) \} \| U \|_{H}^{2}. \end{aligned}$$

Now set for any $\varphi, \psi \in K(\mathcal{Q})$

$$(3.6) B_{i} [\varphi, \psi] = \sum_{i,j} \left(a_{ij} \frac{\partial \varphi}{\partial x_{i}}, \frac{\partial \psi}{\partial x_{j}} \right) \\ + \left(\sum_{i} b_{i} \frac{\partial \varphi}{\partial x_{i}} + c\varphi, \psi \right) + \int_{\partial_{2}\varrho} \sigma \varphi \bar{\psi} \, dS \\ - \lambda \int_{\partial_{2}\varrho} \langle h, \gamma \rangle \varphi \bar{\psi} \, dS \\ + \lambda (M\varphi, \psi) + \lambda^{2} (\varphi, \psi).$$

Then using the interpolation relation for the trace of functions (see e.g. [6]), we see that there is a positive constant c_3 such that if λ is real and $|\lambda| \ge c_3$, it holds for any $\varphi \in K(\mathcal{Q})$,

$$|B_t[\varphi,\varphi]| \geq c_3^{-1} ||\varphi||_1^2.$$

62

It is easily seen that

$$|B_t[\varphi, \psi]| \leq c_4 ||\varphi||_1 ||\psi||_1$$
 for any $\varphi, \psi \in K(\Omega)$.

Hence by the theorem of Lax-Milgram we have the following

Lemma 3. For any given anti-linear functional l on $K(\Omega)$ there is a unique solution $u \in K(\Omega)$ of the equation

$$B_t[u, \varphi] = l(\varphi)$$
 for any $\varphi \in K(\Omega)$.

From Lemma 3 we immediately see that

Lemma 4. If λ is real and $|\lambda| \ge c_3$, then for any $F \in H$ there is a unique solution $U \in D(A)$ of the equation

$$(3.7) \qquad (\lambda I - A(t))U = F.$$

Proof. Put $U = \{u, v\}$ and $F = \{f, g\}$. Then the equation (3.7) is equivalent to

$$(3.8) v = \lambda u - f$$

and

(3.9)
$$Lu + \lambda(\lambda + M)u = g + (\lambda + M)f.$$

Let us put in Lemma 3

$$l(\varphi) = ((\lambda + M)f + g, \varphi) - \int_{\partial_2 g} \langle h, \gamma \rangle f \bar{\varphi} \, dS.$$

Then l satisfies the assumption of Lemma 3 by the well-known inequality. Thus there is a $u \in K(\mathcal{Q})$ such that $B_t[u, \varphi] = l(\varphi)$ for any $\varphi \in K(\mathcal{Q})$. In particular, taking φ as in $C_0^{\infty}(\mathcal{Q})$, we see that (3.9) holds and $Lu \in L^2(\mathcal{Q})$. Hence we get from (3.6), (3.8) and (3.9)

$$\sum_{i,j} \left(a_{ij} \frac{\partial u}{\partial x_i}, \frac{\partial \varphi}{\partial x_j} \right) + \int_{\partial_2 g} u \bar{\varphi} \, dS$$
$$- \int_{\partial_2 g} \langle h, \gamma \rangle v \bar{\varphi} \, dS$$
$$= \left(- \left\{ \sum_{i,j} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial}{\partial x_j} \right) \right\} u, \varphi \right) \text{ for any } \varphi \in K(\mathcal{Q}).$$

By Definition 2.2, this equality implies that U satisfies the boundary condition (B_2) on $\partial_2 \mathcal{Q}$. Thus $U \in D(A)$. Therefore we have completed the proof.

Let us rewrite by new c_2 the maximum of c_2 and c_3 . Then combining Lemmas 2 and 4, we obtain

Lemma 5. If $|\lambda| \ge c_2$, then it holds that

$$\|(\lambda I - A(t))^{-1}\|_{H} \leq \frac{1}{|\lambda| - c_{2}}.$$

4. In this section we shall prove that D(A) is dense in H. Let us denote by $C^{\infty}_{(0)}(\mathbb{R}^{\underline{n}})$ the set of C^{∞} functions on $x_n \leq 0$ having compact support there. Then we have

Lemma 6. For u in $C^{\infty}_{(0)}(\mathbb{R}^{n})$ there is a sequence $\{\varphi_{i}\}$ in $C^{\infty}_{(0)}(\mathbb{R}^{n})$ such that (i) $\varphi_{i} \rightarrow u$ in $H^{1}(\mathbb{R}^{n})$

(ii)
$$\frac{\partial}{\partial x_n} \varphi_i = 0$$
 on $x_n = 0$

and

(iii) if $u(x', x_n)^{4} = 0$ for the fixed x' and any x_n , then each $\varphi_i(x', x_n)$ vanishes also for the x' and any x_n .

The proof of Lemma 6 is familiar, so it is sufficient to show construction of φ_i . The functions φ_i are given as follows;

$$\varphi_i(x', x_n) = \int_{-\infty}^{x_n} \alpha_i(s) \frac{\partial u}{\partial x_n}(x', s) ds,$$

where

$$\alpha_i(s) = \begin{cases} 0 & \text{if } s > -\frac{1}{i} \\ 1 & \text{if } s < -\frac{2}{i} \end{cases}$$

For the bounded function $\sigma(x')$ on $x_n = 0$, let us take a new sequence 4) Put $x' = (x_1, \dots, x_{n-1})$.

64

 $\{\varphi_i \exp(x_n \sigma(x'))\}$. Then we have also the following

Lemma 7. For u in $C^{\infty}_{(0)}(\mathbb{R}^{n})$ there is a sequence $\{\varphi_{i}\}$ in $C^{\infty}_{(0)}(\mathbb{R}^{n})$ such that the properties (i), (iii) in Lemma 6 hold and in the place of (ii) the following property holds:

(ii)
$$\left(\frac{\partial}{\partial x_n} + \sigma(x')\right)\varphi_i = 0 \quad on \quad x_n = 0.$$

Generalizing Lemma 7, we prove the following

Lemma 8. For any $u \in K(\Omega)$, there is a sequence $\{\varphi_i\} \subset C^{\infty}(\overline{\Omega})$ satisfying $\left(\frac{d}{dn} + \sigma(x)\right)\varphi_i = 0$ on $\partial_2\Omega$ such that each φ_i vanishes in a neighborhood of $\overline{\partial_1\Omega}$ and $\varphi_i \rightarrow u$ in $H^1(\Omega)$.

Proof. We may assume that u is in $C^{\infty}(\bar{\mathcal{Q}})$ and u=0 in a neighborhood of $\overline{\partial_1 \mathcal{Q}}$. For each point P in $\bar{\mathcal{Q}}$ let us take an open neighborhood U(P) in such a way that

$$\overline{U(P)} \subset \Omega$$
 for $P \in \Omega$,
 $u = 0$ in $U(P)$ for $P \in \overline{\partial_1 \Omega}$

and

$$\overline{U(P)} \cap \overline{\partial_1 \mathcal{Q}} = \phi \quad \text{for } P \in \partial_2 \mathcal{Q}.$$

Since (2.1) holds from our assumption, such a selection of U(P) is possible.

Now there is a finite point set $\{P_1,\ldots,P_N\}$ and the union of $U(P_k)$ $(1 \leq k \leq N)$ covers $\overline{\mathcal{Q}}$. Let the function α_k be in $C_0^{\infty}(U(P_k))$ such that $\sum_{k=1}^N \alpha_k \equiv 1$ in \mathcal{Q} . We assume that the points $P_1,\ldots,P_{N'}(N'\leq N)$ are in $\partial_2 \mathcal{Q}$. Each subdomain $\overline{U(P_k) \cap \mathcal{Q}}(1 \leq k \leq N')$ can be mapped in a one to one C^{∞} way into $y_n \leq 0^{5}$ such that theo perator $\frac{d}{dn}$ on $U(P_k)$ is transformed into $\frac{\partial}{\partial y_n}$. Applying Lemma 8 for $\alpha_k u$ on $y_n \leq 0$, we can find a sequence $\{\varphi_i^{(k)}\} \in C^{\infty}(\overline{\mathcal{Q}})$ $(1 \leq k \leq N')$ having the following property that

⁵⁾ We denote by (y_1, \dots, y_n) the new coordinate.

Kazunari Hayashida

 $\varphi_i^{(k)} = 0$ in a neighborhood of $\overline{\partial_1 \Omega}$,

(4.1)
$$\left(\frac{d}{dn} + \sigma(x)\right)\varphi_i^{(k)} = 0 \quad \text{on } \partial_2 \Omega$$

and

$$\varphi_i^{(k)} \to \alpha_k u \quad \text{in } H^1(\Omega).$$

Setting

(4.2)
$$\varphi_i = \sum_{k=1}^{N'} \varphi_i^{(k)} + \sum_{k=N'+1}^{N} \alpha_k u,$$

we easily see

 $\varphi_i \rightarrow u$ in $H^1(\Omega)$.

The other properties of $\{\varphi_i\}$ is obvious from (4.1) and (4.2). Hence we have finished the proof.

Finally we have

Lemma 9. The definition domain D(A) (see (3.2)) is dense in H.

Proof. Let the vector function $\{u, v\}$ be in $H(=K(\mathcal{Q}) \times L^2(\mathcal{Q}))$. First we take a sequence $\{v_i\} \subset C_0^{\infty}(\mathcal{Q})$ converging to v in $L^2(\mathcal{Q})$. Secondly we set $u_i = \varphi_i$ for the sequence $\{\varphi_i\}$ in Lemma 8. Obviously, $\{u_i, v_i\} \rightarrow$ $\{u, v\}$ in H. Since $\left(\frac{d}{dn} + \sigma(x)\right)u_i = 0$ on $\partial_2 \mathcal{Q}$, we see that (2.7) holds by Green's formula. Thus each $\{u_i, v_i\}$ satisfies the boundary condition (B_2) on $\partial_2 \mathcal{Q}$. Hence D(A) is dense in H.

5. In virtue of Lemma 5 and 9, we can apply the theory of evolution equations quite similarly as in [3] and [5] as follows. Suppose that $F(t) = \{0, f(t)\}$ is in D(A) and $F(t), AF(t) \in \mathscr{E}_{t}^{0}(H)[0, T]$. Then for any given $U_{0} = \{u_{0}, v_{0}\} \in D(A)$, there is a unique solution $U(t) = \{u(t), v(t)\} \in D(A) \cap \mathscr{E}_{t}^{1}(H)[0, T]$ of the equation

(5.1)
$$\frac{d}{dt}U(t) = AU(t) + F(t) \quad \text{in } 0 < t \le T$$

with the initial condition $U(0) = U_0$. The equation (5.1) is equivalent to

66

(2.3). Since $v = u_t$ and (2.7) holds, we see that u satisfies the boundary condition (2.5) weakly on $\partial_2 \Omega \times [0, T]$ (see Definition 2.1). Hence Theorem 1 in Section 2 has been shown.

The statement of Theorem 2 is proved quite similarly as in Theorem 1, if we add to the definition domain D(A) the condition that $u \in H^2_{loc}$ $(\bar{Q}-S)$.

Finally, we show the energy inequality for $U(t) \in D(A) \cap \mathscr{E}_t^1(H)[0, T]$. It is easily seen that from Lemma 1

$$\begin{split} \frac{d}{dt} \|U(t)\|_{H}^{2} &= (U'(t), U(t))_{H} + (U(t), U'(t))_{H} \\ &= (AU(t) + F(t), U(t))_{H} + (U(t), AU(t) + F(t))_{H} \\ &\leq 2c_{2} \|U(t)\|_{H}^{2} + 2\|U(t)\|_{H} \|F(t)\|_{H}. \end{split}$$

From this it follows

$$||U(t)||_{H} \leq e^{c_{2}t} \Big(||U(0)||_{H} + \int_{0}^{t} ||F(s)||_{H} ds \Big).$$

Hence

$$||u(t)||_1 + ||u'(t)||_0 \leq Ce^{c_2 t} \Big(||u(0)||_1 + ||v(0)||_0 + \int_0^t ||f(s)||_0 ds \Big).$$

References

- Babeava, A.A. and G.K. Namazov, Hyperbolic equations with discontinuous coefficients, degenerate on the initial plane, *Izv. Akad. Nauk Azerbaidzan SSSR* Ser. Fiz. - Tehn. Mat. Nauk, no. 5 (1967), 11-16 (Russian).
- [2] Čehlov, V.I., A mixed problem with discontinuous boundary conditions for the wave equation, *Soviet Math. Dokl.* 9 (1968), 1472-1475.
- [3] Ikawa, M., Mixed problems for hyperbolic equations of second order, J. Math. Soc. Japan, 20 (1968), 580-608.
- [4] Lions, J.L., Une remarque sur les applications du théorèmes de Hille-Yosida, J. Math. Soc. Japan, 9 (1957), 62-70.
- [5] Mizohata, S., Quelque problèmes au bord, du type mixte, pour des équations hyperboliques, Séminaire sur les équations aux derivées partielles, Collèdge de France, 1966-1967, 23-60.
- [6] _____, Partial Differential Equations, Iwanami, 1965 (Japanese).
- [7] Yosida, K., On operator theoretical integration of wave equations, J. Math. Soc. Japan, 8 (1956), 79-92.