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Covariance Operators of Skew Distributions

By

Yosuiom: Nakacamr®

In this paper we extend the concept of a skew distribution on a real
Hilbert space H defined in [4] and [ 6] to that on a complex Hilbert space
K with an antiunitary involution /7, and show the following result which
stems from Theorem.3 in [4]. Whenever a skew distribution m is given
on even or infinite dimensional (K, /'), any two of the following condi-
tions imply the other one:

(i) m is a factor distribution;

(ii) m is %-invariant; and

(iii) any pair of [ -invariant orthogonal subspaces are independent
with respect to m.

In the appendix we give a correspondence of a pair of Fock and
anti-Fock representations to a pair of orthogonal transformations {4, ‘A}
with 4%=—1 on H.

1. Notations and Definitions

In this section we prepare some notations and definitions from papers
[2], [4] and [ 6] with slight modifications.

Let © be a separable complex Hilbert space, 2 a von Neumann alge-
bra on © and E a faithful normal trace on 2 with E(1)=1. By (K, I)
we mean a complex Hilbert space K with an antiunitary involution /I,
namely, (I'€|Ip)=(y|€) for & 7€ K and ['?=1. We denote by F=(F,
A) a strongly continuous (||F(€)||=2]!€]| for some 1>0) and faithful (if €
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0, then F(£)5~0) linear mapping of (K, I") to " with F(['&§)=F(&)*.
Since FE is faithful, F=<0. For any subset K, of K the von Neumann
algebra generated by F(§), £ € K, is denoted by Y(K,). ¥(F) is the union
of A(K,) where K, runs over all finite subsets of K. Introduce the
following equivalence relation into the set F of such linear mappings. (Fi,
A1) and (Fy, Ap)E€F are equivalent if for any finite subset Ky={&y,. .,
£,} of K there exists an isomorphism ¢: Fi(&)—Fy(£), §€ K, of Y1 (Ky)
onto A3(K,) such that

E\(A)=E;(x(4))

for 4€U,(Ky), where E; is a faithful normal trace on U; with E;(1)=1.

An equivalence class m of F classified by the above relation is called
a distribution on (K, I'). Since algebraic structures of all (F, ?') €m is
preserved by an isomorphism as above, the terminologies for m is utilized
as similarly as that for each (F, ). For (F, ¥)Em, let Hr, 7r and
£2r be the Hilbert space, the representation and the cyclic unit vector

respectively such that
E(A)=(np(A4)2r| 2F)
for A€U(F). Denote
Q)= {wr(4): A€A(F)}".

Then it is easily seen that (F, %) and (wroF, 7)) are equivalent. The
latter is called the standard representative of m. From this we may

assume that for every (F, ) €m,
A=4{F(&): £€K}”

in the following. If 2 is a factor for (F, )€m, m is called a factor
distribution.

Let K; be a [ -invariant subspace of K such that ['y=/7|K;. For
distributions m on (K, I') and m; on (K, /1) choose suitable representa-
tives (F, ) €m and (Fi, Wy) Em,y. If Wy CW and F(E)=F1(€) for £ €Ky,
then m is called an extension of m; and denoted by m;=m|K;.

Since for any distribution m on (K, I') there is 1>0 such that



CovariaNcE OPERATORS 71

E(F(&)*F(&)=AlI€])?
for all ¢ €K, there exists a positive operator ¢ on K such that
E(F(p)*F(¢))=(¢7),

which is called the covariance operator of m. It is easily seen that ¢=1"tI".
A family {K,: ¢€I} of subspaces of K is said to be independent

with respect to m, if
E(4,,..-A,)=E(4.,)---E(4,,)

for any A4,€(F,) with F,em|K, and for any ¢y,..., ¢, € L.
A distribution is skew, if for any (F, W) Em

CE®), F(y)].€2nY
and if FEm implies —F&m. It follows from the last condition that

E(F<$1> . 'F($2n+l)) =0.

A unitary operator on (K, I') which commutes with I is called a
Bogoliubov transformation. % is a set of Bogoliubov transformations on
(K, I') whose commutant is the algebra of scalar operators. A skew
distribution m is called to be #%-invariant if (F, A) Em implies (FolU, A)
€m and if

here (FoU)(&)=F(U¢).

A self dual CAR algebra ¥.spc(K, ') over (K, I') is a *-algebra
generated by B(¢), £ €K, its adjoint B(&)*, €€ K and the identity which
satisfy the following three relation: B(£) is linear in &, T B(§), B(y)].=
(¢1I'9)1 and B(&)*=B(I'§). If K has a finite dimension, Wspc(K, I')
has a finite dimension. Irrespective of the dimension of K, spc(K, I')
has a unique C*norm and Wspc(K, I') denotes its C*-completion.

A state ¢ on Uspc(K, I') satisfying the following relation is called

a quasifree state:

@(B(£1)---B(€30+1))=0,
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¢(B(£)) - B(€3,))= ngn<s>j1§1 O(B(&2j-1,) B(E s2)s

where n=1, 2,..., the sum is over all permutations s satisfying
s(1)<s(3)<---<s(2n—1) and s(2j—1)<s(2j)

for j=1,..., n and sgn(s) is the signature of s.

2. Resulis

Lemma 1. Let ¢t be a bounded positive oferator. If (t&]n)=0 for any
pair of &€ and 7 in K with (¢|9)=(&|I'y)=0, then t is a scalar operator.

Proof. Choose a complete orthonormal system {¢,: ¢€ I} of K with
&, =TI¢,. Tt follows from the hypothesis that (¢£,|€,)=0 for ¢, £ € I with
¢+k, and hence t&,=4,§, for some 1,20, ¢€ l. For any ¢, and ¢; in [
with ¢o=~¢;, put
Ny =805 Tu=8uT+&0

and y,=§, for ¢=~¢y and ¢=~¢;. Then I'y,=7, for ¢c€ I and {7,: ¢€ I}
is a complete orthogonal system. It follows from the hypothesis that t7,,
= uy,, for some #=0. On the other hand

tvn‘,:t(etu_éq)zltugm_lzlsnl'
Thus A,=#=2,. Repeating the similar argument for each pair of
elements in I, we get A,=x for ¢€ 1. Consequently ¢=ul.
Corollary. Let t be the covariance operator of a skew distribution m
on (K, I'). If [m(&), m(y)],=0 for any pair of & and 7 in K with
(E|g)=(&|Iy)=0, then t is a scalar operator.

Proof. 1t is clear from
2(¢& | n)=E([F(&), F(n)*1.)
for (F, A) Em.

It should be noted that, since the underlying Hilbert space © of 2
for (F, ) Em is assumed to be separable, A(F)" is generated by a coun-
table family of elements. Furthermore, since F is assumed to be faithful,

it follows that K is separable.
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Lemma 2. A skew distribution m with the covariance operator t has
a representative (F, ) €m such that there exist a locally compact space
Z, a positive measure v whose carvier is Z, a v-measurable field {—9(&)
of Hilbert spaces, a v-measurable field £—>V{L) of von Neumann algebras,
a v-imcasurable field —E. of finite normal traces and a v-measurable

operator valued function {—t(&) with t() € B(K) and thal
® (@ ®
2={"s@ w0, v=Pr@w@), B={" o,

CF(&), F(w*]-:zg@(r(osmn(:my(c)

and
= Smc)E;u(c»d»(z),

where B(K) is a full operator algebra on K and 1(%) is the identity in
A©.

Proof. According to the reduction theory and the separability of 9,
we can conclude that there exist a locally compact space Z which satisfies
the second axiom of countability, a positive measure y whose carrier is Z,
a y-measurable field {—9H(&) of non zero Hilbert spaces on Z and a v-
measurable field {—(Z) of factor von Neumann algebras over 9(£) on

Z such that 9 is spatially isomorphic to

[Paa@ over (Po@ao.

Since K is separable, it contains a [ -invariant countable dense Q linear
subset K, where @ denotes the field of rational complex numbers. Since
F is strongly continuous, a *-algebra ¥, generated by {F(§): £§€K} and
the identity has a countable base with respect to the uniform topology.
Hence we may associate with 7€, a v-measurable field {—T({) of
operators with T(&)€A(&) such that

7= (" 1@, 1 TOIIT

and a mapping @;: T—T({) is a *-homomorphism. Put F,(&)=0,(F(£))
for £€ K. Then
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@
F& =" F@an©
and F, belongs to some skew distribution m, on (K, /7). It follows that
[©]
LF@), Fayl. =" 168, D10 av©

for some complex number 1,(§, 7)€C. Since K is separable, it contains
a countable dense linear subset K, on . Then there is a y-null set
NCZ such that

[Fe®), Fen*]e =248 MIQ)
and || F.(&)||<)|F(8)|| for ¢ N and &, 7€ K,. Since
[* 281+ 85, D1OBO=TFOE+ &), Fo)*.
= ACRED, FGp)*]o+ TR, Fo)*],
=" vt D+ 2 OB,

[ 26, n@av)=CF@), Fe1*1.20

and

for &, &1, &2, 7€K, and 1€Q, it follows that 1, is a positive definite
bounded bilinear functional on K; as well as on K. Hence a bounded

positive operator z({) exists on K for { € Z— N satisfying
LFe(8), Fe()*Je =28, DU =2@(L)¢7)1(0)

for &, y€ K. Define t({)=0 for £€N. Then the mapping {—¢({) is a

y-measurable function on Z with values in B(K) and
@
LR, Fp<o =2 @0f I m1©dn(@)

for any &, 7€ K. Since E is a faithful normal trace with ||E||=1 over
9L, there exists a y-measurable field {—FE; of finite faithful normal traces

on Z such that

E:S@E;dy(c).



CoVvARIANCE OPLRATORS 75

It follows that

28 7, = BCFE), Fop*1)=2 {8 InEAE)d(©)
and hence

- SE;(I(C))t(C) dv(©).

Definiticn. A distribution m is a canonical skew distribution, if for
(F, M em
LE(E), FOp* ] =(§ )1

Remark 1. If m is a facltor skew distribution with the covariance

operator ¢, then
LF(E), F(p* ], =2@& 1.

Since t=17"tI', K is a pre-Hilbert space with respect to the inner product
(| ): defined by

(&lm)e=(2t& )

for & 7€ K. Denote by K; the completion of K with respect to ( | ).
Since I' can be extended to K;, we shall denote it by the same letter /.
Then

LF(E), Fp)* ] =(&imil,

that is, F is a canonical skew distribution on (K;, I'), which generates a
self dual CAR algebra ¥ s5pc(K;, I'). Choosing a standard representative
(F, 20), we know that 2 is a hyperfinite II; factor, if K is of infinite

dimension.

If the underlying Hilbert space © of a von Neumann algebra U is
separable, then 2. has a countable generator Jt. Let B, and B denote
*.algebras algebraically generated by 0t on ) and C respectively. Then
B, is countable and the unit ball of B, is uniformly dense in the unit
ball of B. Since B is strongly dense in 2, the unit ball of B is strongly
dense in the unit ball ¥; of U by the Kaplansky’s density theorem and
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hence ?'; is separable. Since the unit ball of a countably decomposable
von Neumann algebra is metrizable by the strong topology, ¥%; satisfies
the second axiom of countability. Thus any subset It of ; contains a
coutable subset Jt;, which is strongly dence in It

Utilizing the same notations as in the last lemma, we have the

following

Lemma 3. A necessary and sufficient condition that a skew distribu-
tion m be %U-invariant is that there be (F, ¥)E€m and t(§) as in Lemmia
2 such that

(1)  E(F(U&)-- - F(UE,)=EF(§1)---F(§,)) for every UEZ; and

(i) ¢() is a scalar operator v-almost everywhere.

Proof. Necessity: By virtue of Lemma 2, there exists a representa-

tive F&€m such that
2{° W vz U@ an© =Crwe), Fun*.

@
=[F®), Fa*lo=2 " (021 D10 dv(o).

Since © is separable, # contains a countable family %, which is strongly
dense in % by the preceding discussion. Thus there is a y-null set NCZ
such that

QUS| Up)=(()él )

for any {€Z—N, U, and & yp€K,. Since (%,)'=%' is the algebra
of scalar operators, it follows that ¢({) is a scalar operator for {€Z—N.

Sufficiency: If () is a scalar operator v-almost everywhere, then
, ®
CFUR), Fom* =2 @ Ue | i@ d©

=2{° e @ v =[FE), Fy*]..

Further, since F(U¢), U€# is strongly continuous, faithful linear mapping
in & with F(UI'é)=F(U¢)*, U induces an automorphism t(U) of (K,)
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for any finite K, in K such that t(U)F(&§)=F(U¢), é€ K, and E(c(U)A)
=E(4), A€ A(K,) by ().

Lemma 4. Let B be a canonical skew distribution. If [ &;, I'&;:
i=1,-.., n] and [ I'n;: j=1,-.., m] are orthogonal, then the quasifree
state E with E(B(9)*B(&))=2"1(&|n) on a C*-algebra of a self dual CAR
algebra Nspc(K, I') satisfies

E(B(¢1)---B(£)B()-- B(m)) =E(B(§1)--- B(£2))E(B(1)--- B(7m)),
where [wy: k=1,..., I| denotes the subspace spanned by wi,-.-, w;.

Proof. If n or m are odd, then the left side and at least one of the
factors in the right side are 0 due to E(B(&;)B(%;))=E(B(y,)B(&;))=0.

If n and m are even,
k
E(B(§1)---B(§)B(n1)---B(ym)) = X sgn(0) 11 E(B(£025-1))B(§o21)))
g Jj=
where 2k=n-+m, &,,;=7%; for i=1,..., m, sgn is the signature of the
permutation ¢ satisfying
0(1)<0(3)<--<0(2k—1) and 0(2j—1)<0a(2j)

for j=1,..., k. If there is j with 1<j<{k such that 1=0(2j—1)=n
and n+1=<0(2j)<n-+m, then

1]
jl;ll E(B(Ea(zj'— 1))3(5.7(21'))) =0.

Therefore we have only to consider the sum over all permutations ¢

satisfying
1=0(2j—1)<0a(2j)<=n
for j=1,..., 27'n and
n+1<02i—1+n)<02i+n)<n+m

for i=1,..., 27 'm. Let s and ¢ denote the permutations

1 2... n ( n+l n+2... n+m >
s= nd t= .
<0‘(1)o‘(2)---6(n) ) ¢ o(n+1)o(n+2)...0(n+m)
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Then sgn(d)=sgn(s)sgn(z) for ¢ considered. Consequently

E(B(§1)---B(§2)B(71)---B(7m))

— 2 sgn@{ 1T BB 1) B I EB(Eaaioronm) BEuarin)}
= (X sen(®) [T EBEaar-1)BGan))
{; sgn(t) ’I:IIE(B(Wt(z;'—1))3(77:(21')))}

=E(B(§1)---B(ED))E(B(71)--- B(7m)),

where s and ¢ satisfy the condition in the definition of a quasifree state.

Since FE is faithful and y has the carrier Z, it follows that a func-
tion {—>E,(1(£)) is v-measurable and 0<E,(1({))< +oco y-almost every-
where. Define a probability measure # on Z by du({)=E.(1())dv().
Then # and v are equivalent and hence the p-measurability and the y-

measurability coincide.

Theorem. Let m be a skew distribution on (K, I') whose dimension
is even or infinite. Any two of the following conditions imply the vemaining
one:

(1) m is a factor distribution;

(i) m is #U-invariant; and

(iii) any pair of [ -invariant orthogonal subspaces are independent
with respect to m.

In this case m is the canonical skew distribution up to a scalar con-

stant.

Proof. (i) and (ii) imply (iii): According to (i), (ii) and Lemma 3,
the covariance operator ¢ of m is a scalar operator, say 2¢t=A41 for 1>0.
Put B(&§)=2A"Y2F(€). Again by (i)

LB(&), B(n)* 1. =E(B(&), B(n)*Jr1=2"E(CF(&), F()* 1.)1=(¢m1,

hence B is a canonical skew distribution. Then B(§), £ € K generate a
self dual CAR algebra spc(K, I'), we have
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E(F(§1)--- F(&)F () F(qm))
=2"MI2E(B(&)). - B(§)B(n1)--- B(7m))
=2"WIE(B(§1)-- B(E)E(B(1)- - B(4m))
=E(F(&1)-- - FE)EFCp)---F(n))

for any orthogonal subspaces [&;, 1§t i=1,..., n] and [9;, I'y;: j=1,--,
m_| by Lemma 4.

(i) and (iii) imply (i): Employing the same notations as in Lemma
2, we find a u-measurable field {—>F,(¢) of operators on Z and a g-me-
asurable operator valued function £—¢({) with the remaining properties in
Lemma 2 such that

@
F&= " F@av)

and
1= (1@,

It follows from (ii) and Lemma 3 that ¢({) is a scalar operator, say 2t(%)
=2(0)1 and 2(&)>0 for {€Z—N and x(N)=0. Putting B.(&§)=2(Z)"?
F.(&) for {€Z—N and B.(¢)=0 for { €N, we have a u-measurable field

£—B.(&) of canonical skew distributions. According to Lemma 4
E(F(1)-- F(an)F()- - Flm)
= (2@ BB BEe)Ben)-- Bz du(O)
= (1@ " E(BE)- Biles)E(Bilrn)-- Be(ram)) (O
On the other hand
E(F(&1). - F( ) EF(n)- - Flnam))
— (1@ BB - Be(€a) O3 B Be(12) - B (ram) v Q).

Selecting &; and 7; being mutually orthogonal such that &,.;,=I¢; and
Ym+i=17;. Then by (iii)

[a@/zrrane =@ dn (uemaue
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for any integers n=0 and m=>0. Therefore 1({) is constant g-almost
everywhere and hence A({)=2Z for some A2>0 u-almost everywhere. Let

B(£) be an operator in 2 which corresponds to {—>B(§). Then
@ @
F&= " F@a©={" 2B@ a0 =15

and hence B is a canonical skew distribution on (K, I'). Taking a stan-
dard representative (F, ) Em, we can conclude that the von Neumann
algebra 2 is a factor.

(ili) and (i) imply (ii): By (i), if (¢|9)=(&|I4)=0, then

(¢& |7) = E(m(7)*m(£)) = E(m(7)*) E(m(£))=0.

It follows from Lemma 1 that 2t=A21 for some A>0. Put B(§)=
A"Y2F(g). Then B is a canonical skew distribution by (i). Since

E(F(§1)---F(¢m))=A"E(B(§1)- - B(€20))

=1"% sgn(0) 1 B(BGvi-1)B(Eer)

=Z”§ sgn(0) ,-fle(B( Uz,2j-1))B(UE,255))
=1"E(B(U¢,)---B(U¢3,)) = E(F(U¢,).--F(U¢zn)),

it follows from Lemma 3 that m is %-invariant.

Remark 2. In case where the last theorem is valid, the covariance
operator of m is a scalar operator. Making use of the results of Segal
[5], we have that if A€W and t(U)A=A for all U€%, then A4 is a

scalar operator, where t(U) is the *-automorphism induced by

(U)F(&)=F(U$).

3. Appendix

Let K be a complex Hilbert space and I” be an antiunitary involution.
A projection e on K is called a basis projection if /'el ' =1—e. Restricting
the coefficient to the real number field and define the inner product ( | ),
by
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&), =RE ),

we have a real Hilbert space (K, ( | ),), which we denote by K,. Here
R denotes the real part. Then the operator i of multiplying  on K, is an
orthogonal transformation on K, with i®= —1. Since the set {£€K: I'¢
=¢} forms a real Hilbert space for the inner product ( | ),, we designate
it by H. Then iH is a set {£€K: I'é=—¢} and K,=H®PiH. The

complexification H+iH of H with the inner product

(Er+i&a|m+in)=(E1]71)—(Ealm2) +i{(E2] 1) — (&1l 72)}

is naturally isomorphic to K. For any orthogonal transformation v on H

there corresponds a Bogoliubov transformation z on K such that
u(ér+if2)=vé 1 +ivé;

for &, &; € H. Conversely, since every Bogoliubov transformation is reduced
by H, the restriction v of u onto H is an orthogonal transformation on
H. Since v=1 iff u=1, this correspondence is bijective. Let A4 be an
orthogonal transformation on H with 42=—1 and e be the projection

onto the complex subspace of K such that
eK={¢—idA¢:Z¢ € H}.
Then e is a basis projection, I'(§+id§)=&—iA§ and
(1—e)K={&+ids: §€ H}.

Proposition 1. There is a bijection between the family of pairs {e,
1—e} of basis projections on (K, I') and the family of pairs {A, 'A} of
orthogonal transformations with A*=—1 on H.

Proof. With A satisfying ‘AA=A'A=1 and A*= —1, we associate
basis projections e and 1—e as above.

Suppose that e is a basis projection. Let H be the real Hilbert space
{9+1T7y: y€eK}. Choose €€ H. If §=y9+1y and E=%"+TIy for » and
7 €eK. Then yp—7%'=I'(y—7%") and y—7' € eK, which implies that y=7".

Thus we may define a transformation 4, on H by

Ay +I)=i(y—Tp)=in+1(iy)
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for y€ek. Then A, is an orthogonal transformation with 43= —1. Since

for é=7-+177 and 7€ eK we have

E+idyé=2I'7€(1—e)K and &—id,é=2y€ ek,
it follows that A, is associated with e and 1—e. Hence the mapping
{4, A} —{e, 1—e} defined above is onto. Suppose now that e is a basis

projection associated with a given orthogonal transformation A with AZ=
—1 such that

eK={£—iA¢: £ H},

and that A, is associated with e as above. Since, then, for any £§€ H we
have y=¢& —idé €eK and I'y=&+idé € (1—e)K, it follows that

p+1Ty=2¢& and i(yp—17)=24¢.
Therefore Ao§=A4¢ for &€ H, that is, Ag=A.

Remark 3. 1t is clear that a self dual CAR algebra spc(K, I') on
(K, I') and a Clifford algebra Uc;;(H) coincide, if K is of even or in-

finite dimension.

A family {K,: ¢€ I} of [-invariant subspaces of (K, I') is said to
be independent with respect to a quasifree state ¢ on Wspc(K, I') if

p(A,-- A, )=9(A4,)-¢(4,,)

for any A, €Aspc(K,, I') and for any ¢i,-.., ¢, €I, where Aspc(K,, I')
is the C*-subalgebra of Uspc(K, I') generated by B(&), £€K and the
identity. It is shown in [27] that there is a one to one correspondence
between an operator s on (K, I') with 0<s<X1 and ['s'=1—s, and a
quasifree state ¢ on %TSDC(K, I") as the following

(s&[7)=e(B(1)*B(£)).
Proposition 2. Let ¢ be a quasifree state on Wspc(K, I'). Then ¢

is central if and only if any pair of I'-invariant subspaces are independent
with vespect to ¢.

Proof. The only if part is clear from Lemma 4. It suffices to show
the if part. If € and % are non zero vectors with (£|y)=(£|l'%), then
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(s&|m)=@(B(n)*B(&))=¢(B(n)*)p(B(£))=0.

It follows from Lemma 1 that s is a scalar operator, that is, s=2711.
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