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Boundary Values of Hyperfunction Solutions
of Linear Partial Differential Equations

By

Hikosaburo KOMATSU* and Takahiro KAWAI

Let P(#, D} be a linear partial differential operator with real analytic

coefficients in a domain V in Rn+1 and let SC^ be a real analytic

hypersurface non-characteristic with respect to P(#, D). The purpose of

this paper is to show that every hyperfunction solution u of P(x, D)u = Q

on one side of V\S has boundary values on S which are hyperfunctions

of n variables on 5.

This fact has been proved by H. Komatsu [_6~] and P. Schapira Q8]

in the case where P(x, J9) is elliptic. Their method applies with minor

modifications to the general operators.

In §1 we show that the Cauchy-Kowalevsky theorem for the dual

equation with the initial values on 5 is equivalent to a theorem of division

of hyperfunctions with supports in 5 by the differential operator P(x, D).

We define the boundary values in § 2 and prove the uniqueness of

hyperfunction solutions of the Cauchy problems.

I. Division of Hyperfunctions with Supports in S

Let P(x, .D) be a linear differential operator of order m with real

analytic coefficients defined on a domain V in Rw+1 and let S be an ori-

ented real analytic hypersurface in V non-characteristic with respect to

P(x, JD).

We denote by $0 and & ('jtf and '^) the sheaf of real analytic func-
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tions and that of hyperf unctions on V (on S respectively). When K is a

compact set in V (in 5), the space jtf(K) ('jtf(K)) has a natural (DFS)-

topology and its dual is identified with the space &K(V} ('^#(5)) of

hyperfunctions with supports in K under the inner product

where dx (da)) denotes the Lebesgue measure on V (on 5).

Let P'(x, D) be the formal dual of P(x, D). Then, P(x9 D) and

P'(x, D) induce sheaf homomorphisms P(x, D): &->& and P'(x> D}\ $0

— >j/ respectively. We denote by 3$p and s#p' the kernel sheaves, i.e., the

sheaf of solutions of

(D P(*,

and that of solutions of

(2) P'(x,

respectively.

Theorem 1. Let K be a compact set in S. Then, there is no non-

trivial solution of (1) over V with support in K:

(3) *£(F) = 0.

The quotient space &K(V}/P&K(V} is identified with the dual of the

(DFS)-space st

Proof. Consider the complexes:

(4)

(5)

which are dual to each other in the sense that s/(K} and ^#(F) with

their natural (DFS)-and (FS) -topologies are the strong dual spaces of each

other and that P'(x, D) and P(x, D) are continuous linear operators dual
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to each other.

The 0-th cohomology group of (4) is <stfp'(K) and the 1-st cohomology

group of (4) vanishes by the Cauchy-Kowalevsky theorem. In particular,

P'(x, jD) has a closed range. Thus it follows from Serre's lemma (see

e.g. Q5] Theorem 19) that P(x, D) has a closed range and that the co-

homology groups of (4) and (5) are the strong dual spaces of each other.

Therefore, &K(V)/P&K(V) is the dual of jtfp'(K) and ker P(x, D) =

^PK(Y^ vanishes.

Let Cj(x, D\ / = !, 2,..., TTI, be linear differential operators of order

m—j with real analytic coefficients on a neighborhood of 5 for which 5

is r en-characteristic (e.g. Cj(x, D} — (d/dn}m~~J). Then the Cauchy-

Kcwa'evsky theorem yields the topological isomorphism

(6) p:

defined by

(7)

we have, therefore, the dual isomorphism

(8) p': '3SK(ST~@K(V}/P3SK(V).

Obviously p can be extended by (7) to a continuous linear operator

p: jtf(K)-+'jtf(K)m. Since the open mapping theorem holds for (DFS)-

spaces, the exact sequence

(9) b-+fj*(K)m -J^->jtf(K) p/(^D)>j^(^)->Q

splits topologically and we have the topological isomorphism :

(10)

defined by

(11)

Correspondingly the dual exact sequence

(12) o<
splits topologically.
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Since p is the composite of the differential operators (Cj(x, D)) and

the restriction to 5, the dual p': f@K(S)m-*@ K(7) is the mapping (//)M>
m

j ( x 9 Z>)(/y(g)<y5), where C'j(x, D) is the formal dual of Cj(x, D) and

fj &$s is the hyperfunction on V defined by

(13)

Consequently, each /£E^#(F) is uniquely decomposed as

m
(14)

3 = 1

where f j € f & K ( S ) and g"€^#(F). Under this correspondence we have a

topological isomorphism

(15) @K( V)^f<%K(ST@@K( V}.

In particular, the inverse (p')'1: @K(V)/ P@K(V)^' @K(S)m of

isomorphism (8) is the mapping which takes the class of / to (/}) in the

decomposition (14). Obviously fj depend on the choice of Cj(x, D).

However, the sum ^Cj(x, D)(/y(g)(J5) and P(x, D)g do not depend on

Cj(x, D) because neither im p~1 = j&p'(K) nor ker p depends on Cj(x, D).

The uniqueness of the decomposition shows that the components fj

and g are independent of the compact set K which contains the support

of /. Namely we have an isomorphism

(is) s,

which preserves the support, where F* denotes the space of sections with

compact supports and 3? Q
s(&) \ s the restriction to S of the sheaf of sec-

tions of & with supports in 5.

Let us denote tf\(9f)\s by @s for short. Since &s and '& are

flabby, it follows that the isomorphism is extended to a sheaf isomorphism

(see e.g. f4] Lemma 2.3). Thus we have proved the following theorem.

Theorem 2. If Cj(x, D\ y = l,..., TTI, are linear differential opera-

tors of order m—j with real analytic coefficients on a neighborhood of S

for which S is non-characteristic, then we have a sheaf isomorphism



HYPERFUNGTION SOLUTIONS 99

(17) SSS^'&

defined by

(18) /= f C'j(x, D) (//g>ffs) + P(x, D)g,

ivhere /G^53 fj£'3B and g£&s. The last component g does not depend

on the choice of C'j(x, D).

In particular, there is no non-trivial solution g^.^p(V) with support

in S:

(19) #g(n=o.
This theorem means that on division by P(x, D) each f£&s has a

unique quotient g€&s and a remainder 2 CyO&> ^0(/;®^s) with /;-E^.

We have derived this from the Cauchy-Kowalevsky theorem via the duality

of jtf(K) and # ' K(V) and that of rj*(K) and r@K(S). Conversely Theorem

2 implies the exactness of (12) and hence that of (9). Thus Theorem 2

of division is equivalent to the Cauchy-Kowalevsky theorem.

2. Boundary Values of Hyperfunction Solutions

Let W be an open subset of V. We have the following commutative

diagram :

0 0
4 4

> 0

(20) o ->^w(r) — >^( r) — >^ (r\s) — > o
4 P(*,D> J, P(*,D) j P(x,D)

o ->^5^(r) — >^(r) — >& ( JF\5) — > o,
4
o

where ^snw(fF) denotes the space of hyperfunctions on W with supports

in Sr\W. Since & is flabby, the last two rows are exact; the last two

columns are exact by the definition; the 0-th cohomology group of the

first row and that of the first column vanish since there is no non-trivial

solution with support in Sr\W.

For the remaining cohomology groups we have a natural homomor-
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phism

b : ®P(W\S}/®P( r )-^SAw( WVP@s^w( W).

Let u€@p(W\S) and let u be an extension in &(W). Since P(x, D}u

= 0 on W\S, Pu belongs to 08sr\w(W}. If ui is another extension

of u, u — ui belongs to ^s^w(W^)- Therefore the class of Pu in

&sr\w(W)/P@sr\w(W) is determined uniquely by u. If u is the restric-

tion to W\S of a u<a@p(W), we have Pu = Q. Thus we can define a

homomorphism b which assigns for the class of u € &p( JF\ 5) the class

of Pu

Theorem 3. The homomorphism

(21) b: ®p(W\S}/®p(W}^

is infective for any open set W in V and commutes with restrictions, b is

surjective if and only if

(22) P(x, D}3$( W} 3 ®s

Proof. By the definition it is clear that b commutes with restric-

tions. To prove the injectivity, let Pu = Pui for a HI 6 &sr\w(W)- Since

u — Ui^L^p(W) and its restriction to W\S is equal to u^ the class of u

is zero.

Let b be surjective. Then, for each g£&s^w(W} there exist h£.

^snw(JF) and u£@(W) such that g+Ph = Pu. Thus

Conversely suppose that for each g^L^Sr,w(W) there is a U

such that g=Pu. Then, the restriction u of a belongs to

Therefore b is surjective.

It is known that (22) holds if the coefficients of P(x, D) are con-

stants or if P(x, D) is elliptic.

Now, let a) be an open set of S and let W^)W be two open sets

in V with Sr\W=Sr\W' = a>. The restriction &P(W\S)-+9P(W'\S)

induces a homomorphism

(23) r : <%p( W\ 8}/<%p( W}-+@p( Wf\ S)/@p( W).
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Since aSfw(W)/P&Sfw(W) = aSfw>(WyPaSrw>(W') and since the

injections bw and bw commute with r, it follows that r is injective.

r is sur jective if and only if @p( W \ S ) = &p( W \ S) \ w\s

+ @P(Wr')\w\s and this holds if

(24) ff Hr, #0=o
by the Mayer- Vie toris theorem.

It is also known that (24) holds for any open set W if the coefficients

of P(XJ jD) are constants or if P(#, D) is elliptic.

Taking the inductive limit with respect to the open neighborhoods of

a), we have the injection

(25) b :

where #+(o>) (#£(o))) denotes the space of germs of solutions on

which vanish on the negative (positive) side of S. 3$+ are sheaves over

S which describe the boundary behavior of solutions outside 5.

It follows from Theorem 3 that b in (25) is surjective if and only if

(26) P(x, 0)#(o>):> ̂ (a>).

Furthermore, noticing that the sheaf associated with the presheaf

(#?(fl>)0#?(a)))/#p(a>) is the restriction tf l
s(@

p} | 5 to S of the first de-

rived sheaf with support in S (see H4ID, we have the injection

(27) b: jr}s(a
p)\s-»as/pas

which is surjective if and only if

(28) P(oc,D)@ s^^s.

Obviously (28) is satisfied if P(x, D) is locally solvable on 5, i.e. if

(29) P(x, D): @(x}-+@(x} is surjective for x G 5.

This is known for operators with constant coefficients or of elliptic

type. Moreover, T. Kawai \^\ proves the existence of local elementary

solutions and hence the local solvability of operators P(#3 D) of simple

characteristics with real principal parts. Thus (27) is an isomorphism for

such operators. Combining this with the isomorphism & S/P& s^' &m
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given in Theorem 2, we have an isomorphism

(30)

Definition. Let W be an open set in F, let c^ = Sr\W and let W+

be the positive part of W\S. For each solution u€~.38p(W^) we define

its boundary values (/}) 6 '^(o))OT on 5 to be the image of u under the

composite of mappings ^p(r+)-^^J(6o)->(^f(to)0^?(a)))/^F(o))-^->

^5(fl>)/P,^s(fl))— ̂ ^(ft))™, where the last mapping is the isomorphism ob-

tained in Theorem 2 as an extension of (p')"1 m (8). In other words,

(/}) E '^(a))™ is the unique /n-tuple of hyperfunctions on a) which satisfy

m
(31) P(x, D)u

for an extension u€&( W) vanishing on the negative side of W\S.

As we remarked earlier, the extension u which satisfies (31) is

uniquely determined by u and does not depend on the choice of Cj(x, D\

so that we call u the canonical extension of u.

Let Os be the characteristic function of W+ in W. Then, there are

unique linear differential operators Bj(x, D), / = !,•••, m, of order / — I

with real analytic coefficients in a neighborhood of S such that S is non-

characteristic and that

(32)

for any u G J2/( ̂ F) or more generally for any u 6 ^( JF) which is real

analytic in the normal direction on S (see Ql] for the real analyticity in

parameter and the restrictions of hyperfunctions to submanifolds).

Conversely if Bj(x, D), y = l , - - - 5 w, are linear differential operators

of order j — l with real analytic coefficients for which 5 is non-character-

istic, we can find linear differential operators Cj(x9 D) of order m—j such

that 5 is non-characteristic and that (32) holds. This is only a local

formulation of Green's formula.
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Therefore, if u is the restriction to W+ of a solution ui^.j^p(W/}

we have

(33) fj = Bj(x, D)Ul\S9 y = l,..., m.

This holds also for the restriction u of a solution ui^&p(W), because

HI is real analytic in the normal direction on 5 by Sato's fundamental

theorem of analyticity (see CO-

Taking this into account we will write the boundary values

(34) fj = Bj(X,D)u\s+, j=l,...,m.

Similarly we can define the boundary values Bj(x, D)u\s_ of solu-

tions u on the negative side of fF\S. The following is clear from the

definition.

Theorem 4. A solution &G«^F(fF\5) is extended to a solution

u e &p( W) if and only if

(35) Bj(x, D)u\s+ = Bj(x, D)u \ s_, y = l,..., m.

This may be regarded as a generalization of the classical Painleve

theorem.

If the operator P(x, D) is locally solvable on S or if (28) holds,

then the isomorphism (30) shows that the Plemelj problem

(36) Bj(x, D}u | s+-Bj(x, D}u \ s_=fh y = 1,-., m

has a local solution u E ̂ +(^)©^?(A;) for any fj£'&(x) on 5.

Lastly the Holmgren theorem by T. Kawai Q2] and P. Schapira

asserts that

(37) ^(^)n^p(co)={0} and

Therefore the mapping ^^(o)}^^((d)m is injective. Thus we have

Theorem 5. A solution u^^p(W+) on the positive side of W\S

vanishes in a neighborhood of a) = Wr\ S if and only if the boundary values

BJ(X, D)u\s vanish for all j =!,•••, m.
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