
PubL RIMS, Kvoto Univ.
7 (1971/72), 10b-120

On Quasifree States of the Canonical
Commutation Relations (I)

By

Huzihiro ARAKI and Masafumi SHIRAISHI

Abstract

A self-dual CCR algebra is defined and arbitrary quasifree state is realized
in a Fock type representation of another self-dual CCR algebra of a double size
as a preparation for a study of quasi-equivalence of quasifree states.

§ 1. Introduction

A necessary and sufficient condition for the quasi-equivalence of two

quasifree representations of the canonical anticommutation relations (CAR)

has been derived in [11] for the gauge invariant case and in [3] for the

general case. We shall derive an analogous result for the canonical com-

mutation relations (CCR) in this series of papers.

A quasifree state of CCR and Bogoliubov automorphisms have been

extensively studied ([5]-^[10], [12], [13]). We shall use the formulation

developped in [2].

In section 2, we review the formulation in [2]. A self-dual algebra

is defined when a linear space K, an antilinear involution F of K and a

hermitian form j" on K satisfying f(Tf^ Fg) = —/(/i #)* are given. In

section 3, we define a quasifree state in terms of a nonnegative hermitian

form S on K such that S ( f , g)-S(rg, r/) = r(/, g). In section 4,

the structure of S relative to (K, 7% /") is analyzed.

In section 5, basic properties of a Fock representation are stated and

a result in [1] is quoted. A Fock type representation is defined as a

generalization of a Fock representation to the case of degenerate 7* (i.e.
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the case with nontrivial center). In section 6, a quasifree state is realized

as the restriction of Fock type state of a CCR algebra for (Ks, ?s, Fs)

where Ks is about twice as large as K.

An application to the quasi-equivalence of quasifree states will be

made in a subsequent paper []5j.

§ 2. Basic Notions

Let K be a complex linear space and r(/3 g) be a hermitian form

for y, g^K. Let F be an antilinear involution (F2 = l) satisfying /"(/y,

rg)=-r(g, /)• A self-dual CCR 0/gefcrfl 2X(£, r, O over (j£, r, O

is the quotient of the complex free * algebra generated by B(/), / € K,

its conjugate B(/)*3 f^K and an identity 1 over (the two-sided * ideal

generated by) the following relations:

(1) B(/) is complex linear in f,

(2)

(3)

Any one-to-one linear mapping U of K onto K satisfying r(£//,
= r(/5 g") an(i rU=UF preserves the above relations (1)^(3) and hence

there exists a unique * automorphism r(C7) of 3T.(K, 7*, F) satisfying r(Z7)

B(/) = B([//). t/ and r(C7) shall be called a Bogoliubov transformation

and a Bogoliubov * automorphism.

Any operator P on K satisfying

(1) P2 = P,

(2) r(/, P/)>o3 if
(3)
(4) FPF=1~P,

is called a ^«5/5 projection. Such P is linear.

Let L be a complex pre-Hilbert space. A CCR algebra 21ccR.C£) over

L is the quotient of the free * algebra generated by (af, /), (/, a), f£.L

and an identity by (the two-sided * ideal generated by) the following rela-

tions :

(1) (af
5 /) is complex linear in f,

(2) (/, a) = (aT, /)*,
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(3) [(/, a), (a', £)>(/, g)L,

[C^, /), (a\ #)>[(/, a), (g, a)>0.

Let P be a basis projection. Then the mapping a(P) from ?I(K, r5

O to 2Y
CCR(PK) denned by

(2. la) a(P, (B(/0 - - -BC/J) = (a(P)B(/x)) - . - (a(P)B(/J),

3 a)

is a * isomorphism of ?VK, 7-, F) onto

Let 5Y be a * algebra with an identity. A state (p of ?r. is a complex

valued linear functional over 21 satisfying 0?(1) = 1 and ^(^4*^4)^0 for

all A 6 2X. Associated with every state (p^ there exists a triplet §,,, TT^,

Q9 of a Hilbert space, a representation of ST. by densely defined closable

operators K9(A\ Ae^. and a unit vector Q9, cyclic for 7r^(2I), such that

^n^A*} and the domain of n<p(A) is nv

Let Re K denote the set of f£K such that Ff=f. It is a real

linear space. /6Re K if and only if B(/)* = B(/).

Let <p be a state of $f.(K, Y, O such that n9(B(f)) is essentially

self adjoint for all /6Re K. Let W^(/)=exp i~t

We shall call such state <p over 31 (X, 7, T) as a regular state if

satisfies the Weyl-Segal relations:

(2.2) W,(/)W,(£) = W,(/-f g)exi>i-r(# /)•

Let <^ be a regular state over 21 (A^5 7*, /"). Let JVP be the set of

feK with 7TV(B(/)) = 0, which is a linear subset of K. Let Re N9 = N<pr^

Re .K. The collection of distances

(2.3) drC^/O^supJi-tW^^-W,^/)}^!!, FE£V,

defines a vector topology on Re K/Re N^ which we shall denote by ?9. It

also induces a vector topology on (Re K/Re AQ + i(Re K/Re NJ = K/N9,

which will be denoted again by r9. The topology induced by one distance

dr for a cyclic W is mutually equivalent and is equivalent to r9

(The cyclicity here refers to W9(/), /€Re K.)
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§ 3. Quasi free States

Definition 3.1. A state <p on SY. (K, 7, F} satisfying the following

relations is called a quasifree state:

(3.1)

(3.2)
3 ~

where n — \^ 2... <2#d £/z# swm 25 cwcr «// permutations s satisfying 5(1)

Lemma 3.2. For any state over ty.(K, f, /), the hcrmitian form

defined by

(3-3) ^(B(/)*B(^)) = S(/, ^),

/5 positive semidefinite (i.e. 5(/5 /)^>0) «?^ satisfies

(3.4) r(^, /) = s(# /) - 5(r/, r^).
Proof. The positivity of 0> implies the positive semidefiniteness of 5.

S(Tf, r^) = ?»(B(/)B(g)*) = ̂ (B(g)*B(/))-r(^ /)!

= S(g,f)-r(g,f). Q.E.D.

Lemma 3.3. 77ze hermitian form

(3-5) (g, /)s - S(# /) + 5(/y, Fg)

is positive semi-definite and satisfies

(3.6) (rg,rf>s=(f, g)s,

(3-7) lr(^/)|2^(/,/)sfe^)S-

It is positive definite if f is non-degenerate.

Proof. From Lemma 3.2,

s(f, /)^o, sc/y, r/)^o.
Hence (^3 /)^ is positive semidefinite. We also have
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(rg, rf)s

By the Schwarz inequality,

g) + s(rg,
"

If (/, /)5 = 0, we have r(/, g) = Q for all g. If r is non-degenerate, we

have /=0. Therefore, (/, g)5 is positive definite. " Q. E. D.

Lemma 3.4. The set Ns of f£K satisfying (/, f)s = Q is a F-

invariant subspace of K such that 5(/, g) = T(f> gO — 0 for any f^Ns

and any g^K. If S is related to a state <p by (3.3), then 7r,,(B(/)) = 0

is equivalent to f£Ns. (Ns = N(p for a regular cp.}

Proof. From the positive semidefiniteness of (g-, f)s, it follows that
(g-, f)s = 0 for any g€K whenever f£zNs. Hence Ns is a subspace of

K. By (3.6), Ns is T-invariant. From (3.7), r(/, g-) = 0 for any gG^

whenever /G7V5. This implies that B(/), f£Ns commutes with all

B(#), g-e Jf. In addition, O^S(/, /)^(/3 /)5 = 0 which implies !|TT^(B(/))

J2J|2 = S(/, /) = 0 for feNs. Therefore feNs implies 7r,,(B(/)) = 0.

Conversely, 7r,(B(/)) = 0 implies S(f, /) = ||7r,(B(/))^||2 = 0, 5(r/, T/)

= ||7Tf,(B(/))*fl<p||2 = 0, and hence (/, /)s = 0. Q. E. D.

Lemma 3.5. For any positive semide finite hennitian S(g, /) on

KxK satisfying (3.4), there exists a unique quasifree state cps satisfying

(3.3). Any quasifree state is regular.

Proof. The existence will be seen from Lemma 5.3 and Corollary

6.2. The uniqueness is immediate from (3.1) and (3.2). The regularity

will be seen from Corollary 5.6.

Definition 3.6. Let §5, TT.S, *G5 denote the Hilbert space, the repre-
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sentation and the cyclic unit vector canonically associated with the quasifree

state <ps through the relation

(3.8) cps(A) = (Qs, ns(A)Qs), A e %.(K, r, O-

If S commutes with a Bogoliubov transformation U, then a unitary

operator T5(C7) on §5 is defined by

(3.9) i:s(U)7is(A)Qs = 7ts(r(U}A)Qs

and the continuity. (S is defined in Lemma 4.2.)

§ 4. Structure of (S, K, r, H

Definition 4.1. Ks denotes the completion of K/NS with respect

to the positive hermitian form induced on K/NS by (f, g)s- K/NS is

identified with a dense subset of Ks. The Hilbert space topology on K/Ns

is denoted by r^.

Lemma 4.2. (1) There exists an antiunitary involution Fs on KS

such that JJ=rsf for all f^K where f=f+Ns€K/Ns.

(2) There exists a bounded operator 7-5 on Ks such that

(4.1) r(f, g)=(f, rsg)s

for f, g£K. It satisfies

(4.2) r%=rs, rsrsrs=-rs and ||rsIU<i.

(3) There exists a bounded operator S on Ks such that

(4.3) S(f, g) = (f, Sg)s

for f, g^K. It satisfies

(4.4) s*=s,rssrs=i-s, o^s^i,
and

(4.5) s-rssrs=rs.
Proof. Due to the F-invariance of Ns and (3.6), Fsf= Ff defines

an antilinear isometric operator on K/N$ and hence the closure FS of
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Fs is defined on all vectors in Ks and (Fsg, Fsf)s = (f, g)s for all

/, g£Ks. Since F2 = l, we have F2
S = \ and hence Fs is an antiunitary

involution on KS.

(3.7) and Lemma 3.4 imply the existence of YS satisfying (4.1) and

llrs lU^l- Since r(/5 g) is hermitian, we have Y* = Ys- Since j(Tf,

—T(g>D> we have rsYsrs=—Ys'
From the positivity S(Ff, T/)^0 of S, we have 0<;S(/, /)<;

|| for f£K. This together with Lemma 3.4 imply the existence of

5 satisfying (4.3), S* = S and 0^5^1. From (3.5), we have S+rsSFs

= 1 and from (3.4), we have (4.5). Q. E. D.

Definition 4.3. Let £"+, E_ and EQ be the spectral projection of YS

for (0, +c>o), (—°°, 0) and {0}, respectively. Let K± = E±KS and KQ =

E0KS.

Lemma 4.4. FsE±rs=E+, FSEQFS=EQ, FSK± = K+ and FSKQ = K0

Proof. This follows from FsTs^s=—Ts' Q. E. D.

§ 5. Fock Representations

Definition 5.1. A quasifree state cp$ is called a Fock state if the

operator S of Lemma 4.2 is a basis projection on Ks. S in such a case

will be written generally as P. The associated representation UP is called

a Fock representation.

Lemma 5.2. // P is a basis projection of (K, /, /"), then the

quasifree state (pP of W.(K, 7, F) for P(/, g) = r(f, Pg\ if it exists, is

a Fock state.

Remark. In this case 7 is automatically non-degenerate and Np=Q.

P originally given on K is a restriction to K of the operator P on Kp

defined by Lemma 4.2 and we have Y(f> -f>^r) = (/5 YpPg)p=(f> Pg)p for

/, g^K. Therefore the appearance of two P is probably not confusing.

We shall summarize known properties of a Fock state in the following
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3 lemmas.

Lemma 5.3. Let P be a basis projection for (K, 7, /"). A state cp

of 3l(j&T, f, F) satisfying

(5.1) P(B(/)B(/7)) = 0, fePK,

exists, is unique and is a quasifree state (pp.

Proof. By splitting B(/) as a sum B(P/) + B((l— P)/) and bringing

B(P/) to the left of any other B((l— P)/') with a help of the commuta-

tion relations, any element A in &(K, r, 7") can be written as A=^^i

where ft€(l-P)K, gj^PK. Since (5.1) implies

= 0 for fe(l-P)K, gePK and QZ%(K, r, O

by the Schwarz inequality, we have (p(A)-=k. Hence the uniqueness.

The well known Fock state of 5ffccR(P£") gives the quasifree state

cpp through the identification of 3IccR.(P^) with 31 (j£, r, O via a(P).

<pp clearly satisfies (5.1). Q. E. D.

Lemma 5.4. Let f€ReK and DQ = 7tp[^(K, r, rj^Qp- &o is a

dense set of entire analytic vectors of B(/). The sum

(5.2) ZX-
K = 0

converges on D0. Its closure, denoted by Wp(/), is unitary and satisfies

(5.3) Wp(/1)Wp(/2) = Wp(/1+/2)exp(l/2)r(/2, /i),

(5.4) (^P, Wp(/)£p) = exp-(l/2)r(/, P/).

/->Wp(/) z*5 continuous with respect to a norm f ( f , P/)1/2 on Re

^^ strong operator topology on §p.

Proof. Let (§p)M be the subspace of §p generated by

. If re E(§p)«5 then

(5.5) ||7

[/This follows from a well known calculation: Let {/;•} be a complete

orthonormal basis of PK with fo = Pf. Then (^= H
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N
is a complete orthonormal basis of 2 Gl?/3)^ for which nP(B(Pf))0 is

also mutually orthogonal and \\nP(B(Pf))<D || = (& + l)1/2r(/, P/)1/2||0||

where A is the number of v with ;v = 0. Hence \\nP(E(Pf^¥\\^(N+l)112

r(/, P/)1/2I|F||. A similar calculation with /0 = r(l-P)/ leads to

From (5.5) we have lim||7rXB(/))'f5r||1/ffA = 0 for ^e
W-»oo

Hence all such W is an entire analytic vector for 7Tp(B(/)),

, (5.2) applied on W converges absolutely, the closure nP(B(f))

of 7Tp(B(/)) is selfadjoint, Wp(/) = exp inP(B(f)\ and W/>(/) is unitary.

[14]. (5.4) follows from (^ 7rP(B(/))2^F) = (27i)! 2^7i!-1r(/,

By the commutation relations, we have

(5.6) nrlE(fl + f2r= E kl-lB(fl)
kll-lB(f2yml-l2-mr(f2, fiY-

k+l+2m=n

From the previous result and the Schwarz inequality, 2 k\~ll\~l(B(fi)k0,

B(/2)^F) is absolutely convergent for 0, ¥ E DQ and hence we obtain

from (5.6) the equality (5.3) for a matrix element between two vectors

0 and W in a dense set D0. Hence (5.3) holds.

From (5.3) and (5.4), we have

(5.7) rfX/i, /2)
2

where |i/||?. = r(/, [2P-1]/), which is 2r(f, Pf) for /€ Re K, and

r(/2,/i) = r(r/2,r/1)=-r(/2,/i)* is pure imaginary for /1; /26Re ^.

Since r(/i, /i) = 0 for /iSRe^C, we have from (3.7)

(5.8) |r(/2, /Ol = lr(/2-/i, /i)l^|l/2-/ili/>!l/ilip.

Hence /->WX/)$p is continuous. By (5.3) and (3.7), this implies the

continuity of f-+VfP(fyP for ¥ = WP(g)tiP, g^Re K. Since xP(B(g))

-l) on D0 fo r /GReK, and since WX#i)...WX#»)

P is a multiple of Wp(^~|g}-)J2p, finite linear combinations of

G Re /C, are dense in §P. Therefore /->WX/) is continuous. Q. E. D.

Lemma 5.5. L^ Re £p ^ M^ real Hilbert space obtained by the
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completion of Re K with respect to the inner product (/i,

(2P-l)/2), /15 /2 ERe K. If f = \imfn, fn 6Re K, then

(/«) exists and does not depend on {/«} for a fixed f.

Let HI be a linear subset of Re KP. Denote by H^ the set of vectors

feReKp such that (/, TP g)p=0 for all g^H^ Let RP(#i) be the

von Neumann algebra generated by WP(/)5 /G//I. Let HI denote the

closure of HI in Re KP. Then

(0) Rp(Re KP) is irreducible and Rp(0) is trivial,

(i)
(ii)

(iii)

(iv)

(v) tip is cyclic for RP(Hi) if and only if P(Hi + iHi) is dense in

PKp. (F is the closure of P on KP.)

(vi) tip is separating for RP(Hi) if and only if P(H^ + iHi) is

dense in PKp^

(vii) Rp(Hi) is a factor if and only if HiP\H{ is 0.

Proof. The existence of the unique limit WP(/) for /EReXp

follows from Lemma 5.4. The von Neumann algebra Rp(Hi) is R(//i/Re

KP) in the notation of Ql], where [(/i, /2)5 and K/i5 /2) are respec-

tively (/i, /2) and (/i, 0/2). (i)^-(iv) and (vii) follow from Theorem 1

°f LIU- (0) and (v) follow from Lemma 5.1 of Ql], (vi) follows from

(v) and (ii). Q. E. D.

Corollary 5.6. A Fock representation is regular and irreducible.

This is due to Lemmas 5.4 and 5.5.

The Fock representation defined above is applicable only for the case

of non-degenerate 7. We now consider its generalization to the case of

degenerate 7.

Definition 5.7. A quasifree state (ps in called a Fock type state if

NS = Q and the spectrum of the operator S in Lemma 4.2 is contained in

{0, 1/2, 1}. The corresponding representation is called a Fock type
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representation.

Lemma 5.8. Let K^ 7, F be given. Let H (/i, fz) be a positive

semidefinite hermitian form on K satisfying (3.4), where S is to be replaced

by IT. Assume that Nn = Q and the spectrum of the operator II defined by

Lemma 4.2 is contained in {0, 1/2, 1}. Let E±, EQ be defined as in De-

finition 4.3. Let

(5.9)
(5.10)
(5.11)

Let 2[=ST.(£ff, f,r, fn} and identify II = 2t.(X, Yi F) with the subalgebra

Sl(*®0, fn, fff) o/St. Let

(5.12)

(5.13)

^ zs a Fock state of 31 and its restriction to SI is the Fock

type state <pn.

Proof, fjj is an antiunitary involution of Kn and fn is a hermitian

form satisfying f^TAi, r&2)= — 7ff(&i, A2)*. From (5.12), it follows

that fnf+n=i, n2=n,

(5.14)

l, ng2)n+i{(gl,

and

(5.15)

Therefore 77 is a basis projection and ^^ is a Fock state.

The restriction of #># to SI is #># as is seen from (5.14). Q. E. D.

Corollary 5.9. For any 77 in Lemma 5.8, the Fock type state (pn
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exists. The commutant 7Tff(£l)' is abelian and is generated by

Proof. From Lemmas 5.8 and 5.5 (ii), the following computation

suffices: If f®g£(K®0)\ then (/, Tn(l~E0)fl)n=(g, £0/i)ir = 0 for

all fi^K and hence f€EQKn and g=0. Q. E. D.

§ 6. A Realization of a Quasifree State on a Foek Type

Representation

Lemma 6.1. (1) Let

(6.1) K'S=KS@KS,

(6.2) r's(fi@gi, /n©#) = (/i, Tsf^s-dgi, Tsg2)s,

(6.3) r's=rs@rs.

Then F's is an antilinear involution and f's is a hermitian form satisfying

r's(r'shi, rr
sh2)=—r's(hi, A2)*. If NS = NS' and rs = rS', then there exists

a one-to-one linear map U of K's onto K's> such that Uh=h for h =

Ns)®(g+Ns), f,g€K. It satisfies Ur's = r's,U and r'sfri, h

(2) Let

(6.4)

+ 2(gl,

Then it is a F f
s-invariant positive semidefinite form satisfying

(6.5) \r's(hi, A2)|^||Ai||i||A2||i.

The kernel N's (i.e. the set of h satisfying p||s = 0) consists o//0— /,

f£E0Ks. If NS = NS, and r5 = i>, then Nr
s>=UN's.

(3) (6.4), r's and F's induce on Kf
s/N's a positive definite inner

product (hi, ^2)5 = ^1? ^2)5, a hermitian form ?s(hi, ^2)^^5(^13 A2) and

an antilinear involution F sh = (F shY satisfying (F shi, F 5^2)3 = (^2, ^1)5

and fs(Fshi, Fsh2)= -?s(*2, AI) wAer^ h=h + Nf
seKf

s/N's. The closure
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of Ts and f s on the completion Ks of Kf
s/N's, denoted by the same letter,

satisfy the same properties. F s is antiunitary and there exists an operator

Ys such that

(6.6) Ts(hi9

(6.7) n = Ts

If Ns=Ns' and ts^^s^ then U of (2) induces a one-to-one linear

map of Ks onto KS' such that UFS = FS>U and Ts'(Uhi,

(4) Let

(6.8) 775

Then FSITSFS = 1 — /7S, n^ = IIs and the spectrum of II s is contained

in {0, 1/2, 1}.

(5) For f€K, let C/] = (/©0) + ̂  and identify K's/N
f
s with a

dense subset of Ks. Then

(6-9)
(6-10)

(6) If NS=NS' and r5 = r5', then •cns = 'Cns' and eigenspaces of U s

and II s * for an eigenvalue 1/2 are mapped by U.

Proof. (1) The properties of Fr
s and YS are immediate. Since Ks and

KS' is the completion of K/NS=K/NS' with respect to rs = ̂ s^ there

is a natural identification map U which is linear. If /}, gj € K and hj =

\ then

Since such fj and gj are dense in Ks, these equalities imply Urs =

and Ts(hi, h2) = Ts'(Uh1, Uh2).

(2) (6.4) is obviously a /"^-invariant hermitian form. We have

(6.11) (f@

We also have

(6.12)
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due to 7*5 = 25—1, which implies

S)l»

By (6.11), \\f®g\\r
s = Q is equivalent to (2S-1)/ = 0 and f+g=0.

Namely Ns consists of f@-f,f€EQKs. EQKS is the set of f€Ks such

that (/, Tsg)s = Q for all g£Ks. If NS = NS> and rs = rs^ then there
is a natural identification of Ks with KS' which identifies E0KS with

E'vKs- due to (/, Tsg)s = r(f, g) = (f, rs'g)s> for /, geK. (E0 and E'Q
are orthogonal eigenprojections of 5 and S' for an eigenvalue 1/2. Since

the orthogonality refers to different inner product, E0 and E'0 need not be

the same.) This implies N'S'=UN'S.

(3) Immediate from (1) and (2).

(4) Let £J, KS and K% be the subspace of Ks generated by {S1/2/

®-(l-S)1/2/r, {(l-S)1/2/®-S1/2/r and {EQf®E0/r, respectively,
where f runs over Ks. It is easily seen that they are mutually orthogo-

nal and altogether generate Ks. For ha, h^K^ we have Ts(htr9h
f
ff^ =

ffdffr'dir, hDs where <7=+, — or 0. Therefore fsha= ffha and the spec-

trum of II s is contained in {0, 1/2, 1}.

(5) Immediate from definitions.

(6) From the proof of (4) and the last part of the proof of (2), it

follows that K°s for S and Sf are mapped by U if NS = NS' and ts = ^s'-

The topology tns is the strong topology of Ks. Let (f a@gaY be
a Cauchy net relative to rHs where /fl, ga^Ks. Swfa + (l-S}l!2ga =

Fa and (l-S)ll2fa + Sl!2ga^Ga are Cauchy in Ks. Therefore fa
jrga =

{Sll2 + (l-S)ll2}-l(Fa + Ga) and (2S-l)(/a-^)={Sl'2 + (l-S)1/2}

(Fa—Ga) are Cauchy. Conversely, if fa + ga and (25 — !)(/« — ̂ a) are

Cauchy in ^5, then F^ and GQ; are Cauchy and hence (fa®ga)* is

Cauchy in Ks.

If NS = NS' and r5 = r5', then the properties of a net /a being

Cauchy relative to r^ and r$' are the same. Furthermore, ^5 = 25— 1
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and (/, Tsg)s = (f, Ts'g)s' imply that (25— l)ga is Cauchy relative to

ts if and only if (2S' — l)ga is Cauchy relative to TS' by the duality.

Combining above two sets of arguments, we see that (fa®ga)~ is

Cauchy relative to tn8 if and only if (fa@ga)^ is Cauchy relative to

r/r6/. Q. E. D.

Corollary 6.2. The map f E £— ̂ H/] £ Ks induces a * homomor-

phism as of SICK, 7*5 O *wto SI (Ks, f 5, /%). Tfe restriction of a Fock

type state (pEs of §I(£5, f 5, rs) to as3[(K9 T-> F) gives a quasifree state

<ps of SI(K, r, r) through (pns(asA) = cps(A).

This is immediate from Lemma 6.1.

Remark 6.3. It is possible to realize <^5 directly in a Fock representa-

tion in the following manner: Define ^5 =

and

(6.13) (fi@g

+ 2(fl,(l-E0)S
ll2(l-S)l!2g2)s

Then (6.13) is positive definite and

Let KS be the completion of K's relative to ||&||£, f£ and F's be the

closure of r's and r's, ?£(Ai, A2) = (Ai, ̂ 2)5 and P5 = (rJ + l)/2. Then

PS is a basis projection. Let a!f
s be the * homomorphism of 21 (K, 7% 7")

into SI (^5, f 5, TJ) induced by /->/©0. Then the restriction of the

Fock state ^ of 21 (^, fS, rj) to a^2I(K, r, O induces the quasifree

state <ps of 2I(K, r, O-

This method has a defect that a canonical identification map U can

not be defined between Kg, f£, T5 and ^^, fS', rj/ even if NS = NS<

and r^^r^', due to the dependence of the operator £"0 on S.
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Lemma 6.4. Let <ps be a quasifree state of 21 (K, 7% /"). The induced

topology -c9s on K is the same as TS of Definition 4.1.

Proof. Denote W,5(/) by W5(/). Since J25 is cyclic for 2r.(X r, H

and ns(A)Qs, AeW^K, r, O, is entire for 7

— 1), /GRe j&r, J?5 is cyclic for R5.

By Q5], it is known that r9 is a vector topology and is given by

one distance dr(/i, /2) for a cyclic W. Therefore it is enough to show

the equivalence of ||/|||— »0 and

daa(f, 0) = 2{l-exp(-|!/|

where (5.7) is used. This equivalence is obvious. Q. E. D.
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