On Quasifree States of the Canonical Commutation Relations (I)

Вy

Huzihiro Araki and Masafumi Shiraishi

Abstract

A self-dual CCR algebra is defined and arbitrary quasifree state is realized in a Fock type representation of another self-dual CCR algebra of a double size as a preparation for a study of quasi-equivalence of quasifree states.

§1. Introduction

A necessary and sufficient condition for the quasi-equivalence of two quasifree representations of the canonical anticommutation relations (CAR) has been derived in [11] for the gauge invariant case and in [3] for the general case. We shall derive an analogous result for the canonical commutation relations (CCR) in this series of papers.

A quasifree state of CCR and Bogoliubov automorphisms have been extensively studied ($[5]\sim[10]$, [12], [13]). We shall use the formulation developped in [2].

In section 2, we review the formulation in [2]. A self-dual algebra is defined when a linear space K, an antilinear involution Γ of K and a hermitian form γ on K satisfying $\gamma(\Gamma f, \Gamma g) = -\gamma(f, g)^*$ are given. In section 3, we define a quasifree state in terms of a nonnegative hermitian form S on K such that $S(f, g) - S(\Gamma g, \Gamma f) = \gamma(f, g)$. In section 4, the structure of S relative to (K, γ, Γ) is analyzed.

In section 5, basic properties of a Fock representation are stated and a result in [1] is quoted. A Fock type representation is defined as a generalization of a Fock representation to the case of degenerate γ (i.e.

Received December 25, 1970.

the case with nontrivial center). In section 6, a quasifree state is realized as the restriction of Fock type state of a CCR algebra for $(\hat{K}_S, \hat{\gamma}_S, \hat{\Gamma}_S)$ where \hat{K}_S is about twice as large as K.

An application to the quasi-equivalence of quasifree states will be made in a subsequent paper [5].

§ 2. Basic Notions

Let K be a complex linear space and $\gamma(f, g)$ be a hermitian form for $f, g \in K$. Let Γ be an antilinear involution ($\Gamma^2 = 1$) satisfying $\gamma(\Gamma f, \Gamma g) = -\gamma(g, f)$. A self-dual CCR algebra $\mathfrak{N}(K, \gamma, \Gamma)$ over (K, γ, Γ) is the quotient of the complex free * algebra generated by $B(f), f \in K$, its conjugate $B(f)^*, f \in K$ and an identity 1 over (the two-sided * ideal generated by) the following relations:

- (1) B(f) is complex linear in f,
- (2) $B(f)^*B(g) B(g)B(f)^* = \gamma(f, g)1,$
- (3) $B(\Gamma f)^* = B(f)$.

Any one-to-one linear mapping U of K onto K satisfying $\gamma(Uf, Ug) = \gamma(f, g)$ and $\Gamma U = U\Gamma$ preserves the above relations (1)~(3) and hence there exists a unique * automorphism $\tau(U)$ of $\mathfrak{N}(K, \gamma, \Gamma)$ satisfying $\tau(U)$ B(f) = B(Uf). U and $\tau(U)$ shall be called a *Bogoliubov transformation* and a *Bogoliubov * automorphism*.

Any operator P on K satisfying

- (1) $P^2 = P$,
- (2) $\gamma(f, Pf) > 0$, if $Pf \neq 0$,
- (3) $\gamma(Pf, g) = \gamma(f, Pg),$
- (4) $\Gamma P \Gamma = 1 P$,

is called a *basis projection*. Such P is linear.

Let L be a complex pre-Hilbert space. A CCR algebra $\mathfrak{A}_{CCR}(L)$ over L is the quotient of the free * algebra generated by (a^{\dagger}, f) , $(f, a), f \in L$ and an identity by (the two-sided * ideal generated by) the following relations:

- (1) (a^{\dagger}, f) is complex linear in f,
- (2) $(f, a) = (a^{\dagger}, f)^*,$

(3) $[(f, a), (a^{\dagger}, g)] = (f, g)_L,$ $[(a^{\dagger}, f), (a^{\dagger}, g)] = [(f, a), (g, a)] = 0.$

Let P be a basis projection. Then the mapping $\alpha(P)$ from $\mathfrak{A}(K, \gamma, \Gamma)$ to $\mathfrak{A}_{\operatorname{CCR}}(PK)$ defined by

(2.1a)
$$\alpha(P_{\mathcal{A}}(\mathsf{B}(f_1)\dots\mathsf{B}(f_n)) = (\alpha(P)\mathsf{B}(f_1))\dots(\alpha(P)\mathsf{B}(f_n)),$$

(2.1b)
$$\alpha(P)B(f) = (a^{\dagger}, Pf) + (P\Gamma f, a)$$

is a * isomorphism of $\mathcal{N}(K, \gamma, \Gamma)$ onto $\mathcal{N}_{CCR}(PK)$.

Let \mathfrak{N} be a * algebra with an identity. A state φ of \mathfrak{N} is a complex valued linear functional over \mathfrak{N} satisfying $\varphi(1)=1$ and $\varphi(A^*A)\geq 0$ for all $A\in\mathfrak{N}$. Associated with every state φ , there exists a triplet \mathfrak{D}_{φ} , π_{φ} , \mathcal{Q}_{φ} of a Hilbert space, a representation of \mathfrak{N} by densely defined closable operators $\pi_{\varphi}(A)$, $A\in\mathfrak{N}$ and a unit vector \mathcal{Q}_{φ} , cyclic for $\pi_{\varphi}(\mathfrak{A})$, such that $\varphi(A)=(\mathcal{Q}_{\varphi}, \pi_{\varphi}(A)\mathcal{Q}_{\varphi}), \pi_{\varphi}(A)^* \supset \pi_{\varphi}(A^*)$ and the domain of $\pi_{\varphi}(A)$ is π_{φ} $(\mathfrak{A})\mathcal{Q}_{\varphi}$.

Let Re K denote the set of $f \in K$ such that $\Gamma f = f$. It is a real linear space. $f \in \text{Re } K$ if and only if $B(f)^* = B(f)$.

Let φ be a state of $\mathfrak{V}(K, \gamma, \Gamma)$ such that $\pi_{\varphi}(\mathbf{B}(f))$ is essentially selfadjoint for all $f \in \operatorname{Re} K$. Let $W_{\varphi}(f) = \exp i \overline{\pi_{\varphi}(\mathbf{B}(f))}, f \in \operatorname{Re} K$. We shall call such state φ over $\mathfrak{A}(K, \gamma, \Gamma)$ as a *regular state* if $W_{\varphi}(f)$ satisfies the Weyl-Segal relations:

(2.2)
$$W_{\varphi}(f)W_{\varphi}(g) = W_{\varphi}(f+g)\exp\frac{1}{2}\gamma(g, f).$$

Let φ be a regular state over $\mathfrak{A}(K, \gamma, \Gamma)$. Let N_{φ} be the set of $f \in K$ with $\pi_{\varphi}(\mathbf{B}(f)) = 0$, which is a linear subset of K. Let $\operatorname{Re} N_{\varphi} = N_{\varphi} \cap \operatorname{Re} K$. The collection of distances

(2.3)
$$d_{\varPsi}(f,f') = \sup_{|t| \le 1} || \{ W_{\varphi}(tf) - W_{\varphi}(tf') \} \varPsi ||, \ \varPsi \in \mathfrak{H}_{\varphi}$$

defines a vector topology on Re $K/\text{Re } N_{\varphi}$, which we shall denote by τ_{φ} . It also induces a vector topology on (Re $K/\text{Re } N_{\varphi}) + i$ (Re $K/\text{Re } N_{\varphi}) = K/N_{\varphi}$, which will be denoted again by τ_{φ} . The topology induced by one distance d_{Ψ} for a cyclic Ψ is mutually equivalent and is equivalent to τ_{φ} [4]. (The cyclicity here refers to $W_{\varphi}(f)$, $f \in \text{Re } K$.)

§ 3. Quasifree States

Definition 3.1. A state φ on $\mathfrak{X}(K, \gamma, \Gamma)$ satisfying the following relations is called a quasifree state:

(3.1)
$$\varphi(B(f_1)...B(f_{2n-1})) = 0$$

(3.2)
$$\varphi(\mathbf{B}(f_1)...\mathbf{B}(f_{2n})) = \sum_{j=1}^n \varphi(\mathbf{B}(f_{s(j)})\mathbf{B}(f_{s(j+n)}))$$

where n=1, 2... and the sum is over all permutations s satisfying $s(1) < s(2) < \cdots < s(n), s(j) < s(j+n), j=1,..., n$.

Lemma 3.2. For any state over $\mathfrak{Y}(K, \gamma, \Gamma)$, the hermitian form defined by

(3.3)
$$\varphi(\mathbf{B}(f)^*\mathbf{B}(g)) = S(f, g)$$

is positive semidefinite (i.e. $S(f, f) \ge 0$) and satisfies

(3.4)
$$\gamma(g, f) = S(g, f) - S(\Gamma f, \Gamma g).$$

Proof. The positivity of φ implies the positive semidefiniteness of S.

$$\begin{split} S(\Gamma f, \Gamma g) &= \varphi(\mathsf{B}(f)\mathsf{B}(g)^*) = \varphi(\mathsf{B}(g)^*\mathsf{B}(f)) - \gamma(g, f) \mathsf{1} \\ &= S(g, f) - \gamma(g, f). \end{split}$$
 Q. E. D.

Lemma 3.3. The hermitian form

$$(3.5) \qquad (g, f)_{s} \equiv S(g, f) + S(\Gamma f, \Gamma g)$$

is positive semi-definite and satisfies

$$(3.6) \qquad (\Gamma g, \Gamma f)_{\mathcal{S}} = (f, g)_{\mathcal{S}},$$

$$(3.7) |\gamma(g,f)|^2 \leq (f,f)_S(g,g)_S.$$

It is positive definite if γ is non-degenerate.

Proof. From Lemma 3.2,

$$S(f, f) \geq 0, \quad S(\Gamma f, \Gamma f) \geq 0.$$

Hence $(g, f)_s$ is positive semidefinite. We also have

$$(\Gamma g, \Gamma f)_S = S(\Gamma g, \Gamma f) + S(f, g) = (f, g)_S$$

By the Schwarz inequality,

$$\begin{split} \gamma(g,f) | &\leq |S(g,f)| + |S(\Gamma f,\Gamma g)| \\ &\leq S(g,g)^{\frac{1}{2}} S(f,f)^{\frac{1}{2}} + S(\Gamma f,\Gamma f)^{\frac{1}{2}} S(\Gamma g,\Gamma g)^{\frac{1}{2}} \\ &\leq (S(g,g) + S(\Gamma g,\Gamma g))^{\frac{1}{2}} (S(f,f) + S(\Gamma f,\Gamma f))^{\frac{1}{2}} \\ &= (g,g)_{s}^{\frac{1}{2}} (f,f)_{s}^{\frac{1}{2}}. \end{split}$$

If $(f, f)_s = 0$, we have $\gamma(f, g) = 0$ for all g. If γ is non-degenerate, we have f=0. Therefore, $(f, g)_s$ is positive definite. Q. E. D.

Lemma 3.4. The set N_S of $f \in K$ satisfying $(f, f)_S = 0$ is a Γ invariant subspace of K such that $S(f, g) = \gamma(f, g) = 0$ for any $f \in N_S$ and any $g \in K$. If S is related to a state φ by (3.3), then $\pi_{\varphi}(B(f)) = 0$ is equivalent to $f \in N_S$. $(N_S = N_{\varphi} \text{ for a regular } \varphi)$.

Proof. From the positive semidefiniteness of $(g, f)_S$, it follows that $(g, f)_S = 0$ for any $g \in K$ whenever $f \in N_S$. Hence N_S is a subspace of K. By (3.6), N_S is Γ -invariant. From (3.7), $\gamma(f, g) = 0$ for any $g \in K$ whenever $f \in N_S$. This implies that B(f), $f \in N_S$ commutes with all B(g), $g \in K$. In addition, $0 \leq S(f, f) \leq (f, f)_S = 0$ which implies $||\pi_{\varphi}(B(f))| \mathcal{Q}_{\varphi}||^2 = S(f, f) = 0$ for $f \in N_S$. Therefore $f \in N_S$ implies $\pi_{\varphi}(B(f)) = 0$. Conversely, $\pi_{\varphi}(B(f)) = 0$ implies $S(f, f) = ||\pi_{\varphi}(B(f))\mathcal{Q}_{\varphi}||^2 = 0$, $S(\Gamma f, \Gamma f) = ||\pi_{\varphi}(B(f))\mathcal{Q}_{\varphi}||^2 = 0$, and hence $(f, f)_S = 0$. Q. E. D.

Lemma 3.5. For any positive semidefinite hermitian S(g, f) on $K \times K$ satisfying (3.4), there exists a unique quasifree state φ_s satisfying (3.3). Any quasifree state is regular.

Proof. The existence will be seen from Lemma 5.3 and Corollary 6.2. The uniqueness is immediate from (3.1) and (3.2). The regularity will be seen from Corollary 5.6.

Definition 3.6. Let \mathfrak{H}_S , π_S , \mathfrak{Q}_S denote the Hilbert space, the repre-

sentation and the cyclic unit vector canonically associated with the quasifree state φ_s through the relation

(3.8)
$$\varphi_{S}(A) = (\mathcal{Q}_{S}, \pi_{S}(A)\mathcal{Q}_{S}), A \in \mathfrak{A}(K, \gamma, \Gamma).$$

If S commutes with a Bogoliubov transformation U, then a unitary operator $T_S(U)$ on \mathfrak{H}_S is defined by

(3.9)
$$T_{S}(U)\pi_{S}(A)\mathcal{Q}_{S} = \pi_{S}(\tau(U)A)\mathcal{Q}_{S}$$

and the continuity. (S is defined in Lemma 4.2.)

§ 4. Structure of (S, K, γ, Γ)

Definition 4.1. K_s denotes the completion of K/N_s with respect to the positive hermitian form induced on K/N_s by $(f, g)_s$. K/N_s is identified with a dense subset of K_s . The Hilbert space topology on K/N_s is denoted by τ_s .

Lemma 4.2. (1) There exists an antiunitary involution Γ_s on K_s such that $\overline{\Gamma f} = \Gamma_s \overline{f}$ for all $f \in K$ where $\overline{f} = f + N_s \in K/N_s$.

(2) There exists a bounded operator γ_S on K_S such that

(4.1)
$$\gamma(f, g) = (\bar{f}, \gamma_S \bar{g})_S$$

for $f, g \in K$. It satisfies

(4.2)
$$\gamma_s^* = \gamma_s, \Gamma_s \gamma_s \Gamma_s = -\gamma_s \text{ and } \|\gamma_s\|_s \leq 1.$$

(3) There exists a bounded operator S on K_S such that

$$(4.3) S(f, g) = (\bar{f}, S\bar{g})_S$$

for $f, g \in K$. It satisfies

$$(4.4) S^* = S, \Gamma_S S \Gamma_S = 1 - S, \quad 0 \leq S \leq 1,$$

and

$$(4.5) S - \Gamma_s S \Gamma_s = \gamma_s.$$

Proof. Due to the Γ -invariance of N_s and (3.6), $\overline{\Gamma}_s \overline{f} = \overline{\Gamma f}$ defines an antilinear isometric operator on K/N_s and hence the closure Γ_s of $\overline{\Gamma}_{S}$ is defined on all vectors in K_{S} and $(\Gamma_{S}g, \Gamma_{S}f)_{S} = (f, g)_{S}$ for all $f, g \in K_{S}$. Since $\Gamma^{2} = 1$, we have $\Gamma_{S}^{2} = 1$ and hence Γ_{S} is an antiunitary involution on K_{S} .

(3.7) and Lemma 3.4 imply the existence of γ_s satisfying (4.1) and $\|\gamma_s\|_s \leq 1$. Since $\gamma(f, g)$ is hermitian, we have $\gamma_s^* = \gamma_s$. Since $\gamma(\Gamma f, \Gamma g) = -\gamma(g, f)$, we have $\Gamma_s \gamma_s \Gamma_s = -\gamma_s$.

From the positivity $S(\Gamma f, \Gamma f) \ge 0$ of S, we have $0 \le S(f, f) \le ||f||_S^2$ for $f \in K$. This together with Lemma 3.4 imply the existence of S satisfying (4.3), $S^* = S$ and $0 \le S \le 1$. From (3.5), we have $S + \Gamma_S S \Gamma_S = 1$ and from (3.4), we have (4.5). Q. E. D.

Definition 4.3. Let E_+ , E_- and E_0 be the spectral projection of γ_S for $(0, +\infty)$, $(-\infty, 0)$ and $\{0\}$, respectively. Let $K_{\pm} = E_{\pm}K_S$ and $K_0 = E_0K_S$.

Lemma 4.4. $\Gamma_{S}E_{\pm}\Gamma_{S} = E_{\mp}, \ \Gamma_{S}E_{0}\Gamma_{S} = E_{0}, \ \Gamma_{S}K_{\pm} = K_{\mp} \ and \ \Gamma_{S}K_{0} = K_{0}$ *Proof.* This follows from $\Gamma_{S}\gamma_{S}\Gamma_{S} = -\gamma_{S}$. Q. E. D.

§ 5. Fock Representations

Definition 5.1. A quasifree state φ_S is called a Fock state if the operator S of Lemma 4.2 is a basis projection on K_S . S in such a case will be written generally as P. The associated representation π_P is called a Fock representation.

Lemma 5.2. If P is a basis projection of (K, γ, Γ) , then the quasifree state φ_P of $\mathfrak{V}(K, \gamma, \Gamma)$ for $P(f, g) = \gamma(f, Pg)$, if it exists, is a Fock state.

Remark. In this case γ is automatically non-degenerate and $N_P=0$. P originally given on K is a restriction to K of the operator P on K_P defined by Lemma 4.2 and we have $\gamma(f, Pg)=(f, \gamma_P Pg)_P=(f, Pg)_P$ for $f, g \in K$. Therefore the appearance of two P is probably not confusing.

We shall summarize known properties of a Fock state in the following

3 lemmas.

Lemma 5.3. Let P be a basis projection for (K, γ, Γ) . A state φ of $\mathfrak{A}(K, \gamma, \Gamma)$ satisfying

(5.1)
$$\varphi(\mathbf{B}(f)\mathbf{B}(\Gamma f)) = 0, \quad f \in PK,$$

exists, is unique and is a quasifree state φ_P .

Proof. By splitting B(f) as a sum B(Pf) + B((1-P)f) and bringing B(Pf) to the left of any other B((1-P)f') with a help of the commutation relations, any element A in $\mathfrak{N}(K, \gamma, \Gamma)$ can be written as $A = \sum \mathcal{P}_i$ $B(f_i) + \sum B(g_j) \mathcal{P}'_j + \lambda$ where $f_i \in (1-P)K$, $g_j \in PK$. Since (5.1) implies $\varphi(QB(f)) = \varphi(B(g)Q) = 0$ for $f \in (1-P)K$, $g \in PK$ and $Q \in \mathfrak{A}(K, \gamma, \Gamma)$ by the Schwarz inequality, we have $\varphi(A) = \lambda$. Hence the uniqueness.

The well known Fock state of $\mathfrak{A}_{CCR}(PK)$ gives the quasifree state φ_P through the identification of $\mathfrak{A}_{CCR}(PK)$ with $\mathfrak{A}(K, \gamma, \Gamma)$ via $\alpha(P)$. φ_P clearly satisfies (5.1). Q. E. D.

Lemma 5.4. Let $f \in \text{Re } K$ and $D_0 \equiv \pi_P [\mathfrak{A}(K, \gamma, \Gamma)] \mathcal{Q}_P$. D_0 is a dense set of entire analytic vectors of B(f). The sum

(5.2)
$$\sum_{n=0}^{\infty} n!^{-1} i^n \pi_P(\mathbf{B}(f))^n$$

converges on D_0 . Its closure, denoted by $W_P(f)$, is unitary and satisfies

(5.3)
$$W_P(f_1)W_P(f_2) = W_P(f_1+f_2)\exp(1/2)\gamma(f_2, f_1),$$

(5.4)
$$(\mathfrak{Q}_P, W_P(f)\mathfrak{Q}_P) = \exp(-(1/2)\gamma(f, Pf)).$$

 $f \rightarrow W_P(f)$ is continuous with respect to a norm $\gamma(f, Pf)^{1/2}$ on Re K and the strong operator topology on \mathfrak{P}_P .

Proof. Let $(\mathfrak{F}_P)_n$ be the subspace of \mathfrak{F}_P generated by $\prod_{j=1}^n \pi_P(\mathcal{B}(g_j)) \mathfrak{Q}_P$, $g_j \in PK$. If $\Psi \in \sum_{n=0}^N (\mathfrak{F}_P)_n$, then (5.5) $\|\pi_P(\mathcal{B}(f))\Psi\| \leq \sqrt{2} (N+1)^{1/2} \gamma(f, (2P-1)f)^{1/2} \|\Psi\|$.

[This follows from a well known calculation: Let $\{f_j\}$ be a complete orthonormal basis of PK with $f_0 = Pf$. Then $\mathbf{\Phi} = \prod_{\nu=1}^n \pi_P(\mathbf{B}(f_{j_\nu})) \mathcal{Q}_P(n \leq N)$

is a complete orthonormal basis of $\sum_{n=0}^{N} (\mathfrak{H}_{P})_{n}$, for which $\pi_{P}(\mathbb{B}(Pf))\boldsymbol{\emptyset}$ is also mutually orthogonal and $||\pi_{P}(\mathbb{B}(Pf))\boldsymbol{\emptyset}|| = (k+1)^{1/2}\gamma(f, Pf)^{1/2}||\boldsymbol{\emptyset}||$ where k is the number of ν with $j_{\nu} = 0$. Hence $||\pi_{P}(\mathbb{B}(Pf))\boldsymbol{\mathcal{Y}}|| \leq (N+1)^{1/2}$ $\gamma(f, Pf)^{1/2}||\boldsymbol{\mathcal{Y}}||$. A similar calculation with $f_{0} = \Gamma(1-P)f$ leads to $||\pi_{P}(\mathbb{B}[(1-P)f])\boldsymbol{\mathcal{Y}}|| \leq N^{1/2}\gamma(f, (P-1)f)^{1/2}||\boldsymbol{\mathcal{Y}}||.]$

From (5.5) we have $\lim_{n\to\infty} ||\pi_P(B(f))^n \Psi||^{1/n}/n = 0$ for $\Psi \in D_0 = \bigvee_N \{\sum_{n=0}^N \{(\mathfrak{S}_P)_n\}\}$. Hence all such Ψ is an entire analytic vector for $\pi_P(B(f))$, $f \in \operatorname{Re} K$, (5.2) applied on Ψ converges absolutely, the closure $\overline{\pi}_P(B(f))$ of $\pi_P(B(f))$ is selfadjoint, $W_P(f) = \exp i\overline{\pi}_P(B(f))$, and $W_P(f)$ is unitary. [14]. (5.4) follows from $(\mathcal{Q}_P, \pi_P(B(f))^{2n}\mathcal{Q}_P) = (2n)! 2^{-n} n!^{-1} \gamma(f, Pf)^n$.

By the commutation relations, we have

(5.6)
$$n!^{-1}B(f_1+f_2)^n = \sum_{k+l+2m=n} k!^{-1}B(f_1)^k l!^{-1}B(f_2)^l m!^{-1}2^{-m}\gamma(f_2, f_1)^m.$$

From the previous result and the Schwarz inequality, $\sum k!^{-1}l!^{-1}(B(f_1)^k \boldsymbol{\Phi}, B(f_2)^l \boldsymbol{\Psi})$ is absolutely convergent for $\boldsymbol{\Phi}, \boldsymbol{\Psi} \in D_0$ and hence we obtain from (5.6) the equality (5.3) for a matrix element between two vectors $\boldsymbol{\Phi}$ and $\boldsymbol{\Psi}$ in a dense set D_0 . Hence (5.3) holds.

From (5.3) and (5.4), we have

(5.7)
$$d_P(f_1, f_2)^2 \equiv ||\{W_P(f_1) - W_P(f_2)\}\mathcal{Q}_P||^2$$
$$= 2\{1 - (\exp(-(1/4))||f_2 - f_1||_P^2)\cos(i/2)\gamma(f_2, f_1)\}$$

where $||f||_P^2 \equiv \gamma(f, [2P-1]f)$, which is $2\gamma(f, Pf)$ for $f \in \text{Re } K$, and $\gamma(f_2, f_1) = \gamma(\Gamma f_2, \Gamma f_1) = -\gamma(f_2, f_1)^*$ is pure imaginary for $f_1, f_2 \in \text{Re } K$. Since $\gamma(f_1, f_1) = 0$ for $f_1 \in \text{Re } K$, we have from (3.7)

(5.8)
$$|\gamma(f_2, f_1)| = |\gamma(f_2 - f_1, f_1)| \leq ||f_2 - f_1||_P ||f_1||_P.$$

Hence $f \to W_P(f) \mathcal{Q}_P$ is continuous. By (5.3) and (3.7), this implies the continuity of $f \to W_P(f) \mathcal{\Psi}$ for $\mathcal{\Psi} = W_P(g) \mathcal{Q}_P$, $g \in \text{Re } K$. Since $\pi_P(B(g)) = \lim_{t \to 0} (it)^{-1}(W(tg)-1)$ on D_0 for $f \in \text{Re } K$, and since $W_P(g_1) \dots W_P(g_n) \mathcal{Q}_P$ is a multiple of $W_P(\sum g_j) \mathcal{Q}_P$, finite linear combinations of $W_P(g) \mathcal{Q}_P$, $g \in \text{Re } K$, are dense in \mathfrak{H}_P . Therefore $f \to W_P(f)$ is continuous. Q. E. D.

Lemma 5.5. Let $\operatorname{Re} K_P$ be the real Hilbert space obtained by the

completion of Re K with respect to the inner product $(f_1, f_2)_P = \gamma(f_1, (2P-1)f_2), f_1, f_2 \in \text{Re } K$. If $f = \lim f_n, f_n \in \text{Re } K$, then $W_P(f) \equiv \lim W_P(f_n)$ exists and does not depend on $\{f_n\}$ for a fixed f.

Let H_1 be a linear subset of Re K_P . Denote by H_1^{\perp} the set of vectors $f \in \text{Re } K_P$ such that $(f, \gamma_P g)_P = 0$ for all $g \in H_1$. Let $\mathbb{R}_P(H_1)$ be the von Neumann algebra generated by $W_P(f)$, $f \in H_1$. Let \overline{H}_1 denote the closure of H_1 in Re K_P . Then

- (0) $R_P(\operatorname{Re} K_P)$ is irreducible and $R_P(0)$ is trivial,
- (i) $R_P(H_1) = R_P(\bar{H}_1),$
- (ii) $R_P(H_1)' = R_P(H_1^{\perp}),$
- (iii) $(R_P(H_1) \cup R_P(H_2))'' = R_P(H_1 + H_2),$
- (iv) $(\mathbf{R}_P(H_1) \cap \mathbf{R}_P(H_2))^{\prime\prime} = \mathbf{R}_P(\overline{H}_1 \cap \overline{H}_2),$
- (v) Ω_P is cyclic for $\mathbb{R}_P(H_1)$ if and only if $\overline{P}(H_1+iH_1)$ is dense in $\overline{P}K_P$. (\overline{P} is the closure of P on K_P .)
- (vi) Ω_P is separating for $R_P(H_1)$ if and only if $\overline{P}(H_1^{\perp} + iH_1^{\perp})$ is dense in $\overline{P}K_P$,
- (vii) $R_P(H_1)$ is a factor if and only if $\overline{H}_1 \cap H_1^{\perp}$ is 0.

Proof. The existence of the unique limit $W_P(f)$ for $f \in \operatorname{Re} K_P$ follows from Lemma 5.4. The von Neumann algebra $R_P(H_1)$ is $R(H_1/\operatorname{Re} K_P)$ in the notation of [1], where $(f_1, f_2)_S$ and $\gamma(f_1, f_2)$ are respectively (f_1, f_2) and $(f_1, \beta f_2)$. (i) \sim (iv) and (vii) follow from Theorem 1 of [1]. (0) and (v) follow from Lemma 5.1 of [1]. (vi) follows from (v) and (ii). Q. E. D.

Corollary 5.6. A Fock representation is regular and irreducible. This is due to Lemmas 5.4 and 5.5.

The Fock representation defined above is applicable only for the case of non-degenerate γ . We now consider its generalization to the case of degenerate γ .

Definition 5.7. A quasifree state φ_S in called a Fock type state if $N_S=0$ and the spectrum of the operator S in Lemma 4.2 is contained in $\{0, 1/2, 1\}$. The corresponding representation is called a Fock type

representation.

Lemma 5.8. Let K, γ , Γ be given. Let $\Pi(f_1, f_2)$ be a positive semidefinite hermitian form on K satisfying (3.4), where S is to be replaced by Π . Assume that $N_{\Pi}=0$ and the spectrum of the operator Π defined by Lemma 4.2 is contained in $\{0, 1/2, 1\}$. Let E_{\pm} , E_0 be defined as in Definition 4.3. Let

(5.9)
$$\tilde{K}_{\Pi} = K_{\Pi} \bigoplus E_0 K_{\Pi},$$

(5.10) $\tilde{\Gamma}_{\Pi}(f \oplus g) = \Gamma_{\Pi} f \oplus \Gamma_{\Pi} g,$

(5.11)
$$\tilde{\gamma}_{II}(f_1 \oplus g_1, f_2 \oplus g_2) = (f_1, \gamma_{II} f_2)_{II} + i \{ (g_1, f_2)_{II} - (f_1, g_2)_{II} \}.$$

Let $\widetilde{\mathfrak{A}} = \mathfrak{N}(\widetilde{K}_{\Pi}, \widetilde{\tau}_{\Pi}, \widetilde{\Gamma}_{\Pi})$ and identify $\mathfrak{A} = \mathfrak{A}(K, \gamma, \Gamma)$ with the subalgebra $\mathfrak{N}(K \oplus 0, \widetilde{\tau}_{\Pi}, \widetilde{\Gamma}_{\Pi})$ of $\widetilde{\mathfrak{A}}$. Let

(5.12)
$$\widetilde{H}(f \oplus g) = \{E_+ f + (E_0 f - ig)/2\} \oplus \{(iE_0 f + g)/2\},\$$

(5.13)
$$\widetilde{H}(h_1, h_2) = \tilde{\tau}_{\Pi}(h_1, \widetilde{H} h_2).$$

Then $\varphi_{\tilde{\pi}}$ is a Fock state of $\tilde{\mathfrak{A}}$ and its restriction to \mathfrak{A} is the Fock type state φ_{π} .

Proof. $\tilde{\Gamma}_{\Pi}$ is an antiunitary involution of \tilde{K}_{Π} and $\tilde{\tau}_{\Pi}$ is a hermitian form satisfying $\tilde{\tau}_{\Pi}(\tilde{\Gamma}h_1, \tilde{\Gamma}h_2) = -\tilde{\tau}_{\Pi}(h_1, h_2)^*$. From (5.12), it follows that $\tilde{\Gamma} \tilde{\Pi} \tilde{\Gamma} + \tilde{\Pi} = 1$, $\tilde{\Pi}^2 = \tilde{\Pi}$,

(5.14)
$$\tilde{\tau}_{II}(f_1 \oplus g_1, \tilde{II}(f_2 \oplus g_2))$$

= $(f_1, IIf_2)_{II} + (g_1, IIg_2)_{II} + i\{(g_1, IIf_2)_{II} - (f_1, IIg_2)_{II}\}$
= $\tilde{\tau}_{II}(\tilde{II}(f_1 \oplus g_1), f_2 \oplus g_2),$

and

(5.15)
$$\tilde{\tau}_{II}(f \oplus g, \ \tilde{II}(f \oplus g)) \ge 0.$$

Therefore $\tilde{\Pi}$ is a basis projection and $\varphi_{\tilde{\Pi}}$ is a Fock state.

The restriction of $\varphi_{\tilde{II}}$ to \mathfrak{A} is φ_{II} as is seen from (5.14). Q. E. D.

Corollary 5.9. For any II in Lemma 5.8, the Fock type state φ_{II}

exists. The commutant $\pi_{\Pi}(\mathfrak{A})'$ is abelian and is generated by $\pi_{\Pi}(B(f))$, $f \in E_0 K_{\Pi}$.

Proof. From Lemmas 5.8 and 5.5 (ii), the following computation suffices: If $f \oplus g \in (K \oplus 0)^{\perp}$, then $(f, \gamma_{II}(1-E_0)f_1)_{II} = (g, E_0f_1)_{II} = 0$ for all $f_1 \in K$ and hence $f \in E_0K_{II}$ and g=0. Q. E. D.

§ 6. A Realization of a Quasifree State on a Fock Type Representation

Lemma 6.1. (1) Let

(6.2)
$$\gamma'_{s}(f_{1}\oplus g_{1}, f_{2}\oplus g_{2}) = (f_{1}, \gamma_{s}f_{2})_{s} - (g_{1}, \gamma_{s}g_{2})_{s},$$

(6.3)
$$\Gamma_{S}^{\prime} = \Gamma_{S} \oplus \Gamma_{S}$$

Then Γ'_{S} is an antilinear involution and γ'_{S} is a hermitian form satisfying $\gamma'_{S}(\Gamma'_{S}h_{1}, \Gamma'_{S}h_{2}) = -\gamma'_{S}(h_{1}, h_{2})^{*}$. If $N_{S} = N_{S'}$ and $\tau_{S} = \tau_{S'}$, then there exists a one-to-one linear map U of K'_{S} onto $K'_{S'}$ such that Uh = h for $h = (f + N_{S}) \bigoplus (g+N_{S})$, $f, g \in K$. It satisfies $U\Gamma'_{S} = \Gamma'_{S'}U$ and $\gamma'_{S}(h_{1}, h_{2}) = \gamma'_{S'}(Uh_{1}, Uh_{2})$.

(2) Let

(6.4)
$$(f_1 \oplus g_1, f_2 \oplus g_2)'_S = (f_1, f_2)_S + (g_1, g_2)_S + 2(f_1, S^{1/2}(1-S)^{1/2}g_2)_S + 2(g_1, S^{1/2}(1-S)^{1/2}f_2)_S.$$

Then it is a Γ'_{s} -invariant positive semidefinite form satisfying

(6.5)
$$|\gamma'_{S}(h_{1}, h_{2})| \leq ||h_{1}||'_{S}||h_{2}||'_{S}.$$

The kernel N'_{S} (i.e. the set of h satisfying $||h||'_{S}=0$) consists of $f \oplus -f$, $f \in E_{0}K_{S}$. If $N_{S}=N_{S'}$ and $\tau_{S}=\tau_{S'}$, then $N'_{S'}=UN'_{S}$.

(3) (6.4), γ'_{S} and Γ'_{S} induce on K'_{S}/N'_{S} a positive definite inner product $(\hat{h}_{1}, \hat{h}_{2})_{S}^{2} \equiv (h_{1}, h_{2})'_{S}$, a hermitian form $\hat{\gamma}_{S}(\hat{h}_{1}, \hat{h}_{2}) \equiv \gamma'_{S}(h_{1}, h_{2})$ and an antilinear involution $\hat{\Gamma}_{S}\hat{h} \equiv (\Gamma_{S}h)^{2}$ satisfying $(\hat{\Gamma}_{S}\hat{h}_{1}, \hat{\Gamma}_{S}\hat{h}_{2})_{S}^{2} = (\hat{h}_{2}, \hat{h}_{1})_{S}^{2}$ and $\hat{\gamma}_{S}(\hat{\Gamma}_{S}\hat{h}_{1}, \hat{\Gamma}_{S}\hat{h}_{2}) = -\hat{\gamma}_{S}(\hat{h}_{2}, \hat{h}_{1})$ where $\hat{h} = h + N'_{S} \in K'_{S}/N'_{S}$. The closure

of $\hat{\gamma}_s$ and $\hat{\Gamma}_s$ on the completion \hat{K}_s of K'_s/N'_s , denoted by the same letter, satisfy the same properties. $\hat{\Gamma}_s$ is antiunitary and there exists an operator $\hat{\gamma}_s$ such that

(6.6)
$$\hat{\gamma}_{S}(h_{1}, h_{2}) = (h_{1}, \hat{\gamma}_{S}h_{2})_{S}^{2},$$

(6.7)
$$\hat{\gamma}_{s}^{*} = \hat{\gamma}_{s}, \quad \hat{\Gamma}_{s} \hat{\gamma}_{s} \hat{\Gamma}_{s} = -\hat{\gamma}_{s}.$$

If $N_S = N_{S'}$ and $\tau_S = \tau_{S'}$, then U of (2) induces a one-to-one linear map of \hat{K}_S onto $\hat{K}_{S'}$ such that $\hat{U}\hat{\Gamma}_S = \hat{\Gamma}_{S'}\hat{U}$ and $\hat{\gamma}_{S'}(\hat{U}\hat{h}_1, \hat{U}\hat{h}_2) = \hat{\gamma}_S(\hat{h}_1, \hat{h}_2)$. (4) Let

(6.8)
$$\Pi_{s} = (1/2)(1 + \hat{\gamma}_{s}).$$

Then $\hat{\Gamma}_{S}\Pi_{S}\hat{\Gamma}_{S}=1-\Pi_{S}$, $\Pi_{S}^{*}=\Pi_{S}$ and the spectrum of Π_{S} is contained in $\{0, 1/2, 1\}$.

(5) For $f \in K$, let $[f] \equiv (\tilde{f} \oplus 0) + N'_{S}$ and identify K'_{S}/N'_{S} with a dense subset of \hat{K}_{S} . Then

(6.9)
$$\hat{\gamma}_{s}([f], [g]) = \gamma(f, g).$$

(6.10)
$$([f], \Pi_{S}[g])_{S}^{\hat{}} = S(f, g).$$

(6) If $N_s = N_{S'}$ and $\tau_s = \tau_{S'}$, then $\tau_{\Pi_s} = \tau_{\Pi_{S'}}$ and eigenspaces of Π_s and $\Pi_{S'}$ for an eigenvalue 1/2 are mapped by \hat{U} .

Proof. (1) The properties of Γ'_{S} and γ'_{S} are immediate. Since K_{S} and $K_{S'}$ is the completion of $K/N_{S} = K/N_{S'}$ with respect to $\tau_{S} = \tau_{S'}$, there is a natural identification map U which is linear. If $f_{j}, g_{j} \in K$ and $h_{j} = (f_{j} + N_{S}) \bigoplus (g_{j} + N_{S})$, then

$$\gamma'_{S}(h_{1}, h_{2}) = \gamma(f_{1}, f_{2}) - \gamma(g_{1}, g_{2}) = \gamma'_{S'}(h_{1}, h_{2}),$$

 $\Gamma'_{S}h_{1} = (\Gamma f_{1} + N_{S}) \oplus (\Gamma g_{1} + N_{S}) = \Gamma'_{S'}h_{1}.$

Since such f_j and g_j are dense in K_s , these equalities imply $U\Gamma_s = \Gamma_{s'}U$ and $\gamma_s(h_1, h_2) = \gamma_{s'}(Uh_1, Uh_2)$.

(2) (6.4) is obviously a Γ'_{s} -invariant hermitian form. We have

(6.11)
$$(f \oplus g, f \oplus g)'_{S} = ||S^{1/2}f + (1-S)^{1/2}g||_{S}^{2} + ||(1-S)^{1/2}f + S^{1/2}g||_{S}^{2} \ge 0.$$

We also have

(6.12)
$$\gamma'_{S}(f_{1} \oplus g_{1}, f_{2} \oplus g_{2}) = (S^{1/2}f_{1} + (1-S)^{1/2}g_{1}, S^{1/2}f_{2} + (1-S)^{1/2}g_{2})_{S}$$

$$-((1-S)^{1/2}f_1+S^{1/2}g_1,(1-S)^{1/2}f_2+S^{1/2}g_2)_S$$

due to $\gamma_s = 2S - 1$, which implies

$$\begin{aligned} |\gamma_{S}'(f_{1} \oplus g_{1}, f_{2} \oplus g_{2})| &\leq ||S^{1/2}f_{1} + (1-S)^{1/2}g_{1}||_{S}||S^{1/2}f_{2} + (1-S)^{1/2}g_{2}||_{S} \\ &+ ||(1-S)^{1/2}f_{1} + S^{1/2}g_{1}||_{S}||(1-S)^{1/2}f_{2} + S^{1/2}g_{2}||_{S} \\ &\leq ||f_{1} \oplus g_{1}||_{S}'||f_{2} \oplus g_{2}||_{S}'. \end{aligned}$$

By (6.11), $||f \oplus g||'_{S} = 0$ is equivalent to (2S-1)f = 0 and f+g=0. Namely N_{S} consists of $f \oplus -f$, $f \in E_{0}K_{S}$. $E_{0}K_{S}$ is the set of $f \in K_{S}$ such that $(f, \gamma_{S}g)_{S} = 0$ for all $g \in K_{S}$. If $N_{S} = N_{S'}$ and $\tau_{S} = \tau_{S'}$, then there is a natural identification of K_{S} with $K_{S'}$ which identifies $E_{0}K_{S}$ with $E'_{0}K_{S'}$ due to $(f, \gamma_{S}g)_{S} = \gamma(f, g) = (f, \gamma_{S'}g)_{S'}$ for $f, g \in K$. (E_{0} and E'_{0} are orthogonal eigenprojections of S and S' for an eigenvalue 1/2. Since the orthogonality refers to different inner product, E_{0} and E'_{0} need not be the same.) This implies $N'_{S'} = UN'_{S}$.

(3) Immediate from (1) and (2).

(4) Let $\hat{K}_{S}^{+}, \hat{K}_{S}^{-}$ and \hat{K}_{S}^{0} be the subspace of \hat{K}_{S} generated by $\{S^{1/2}f \oplus -(1-S)^{1/2}f\}^{+}, \{(1-S)^{1/2}f \oplus -S^{1/2}f\}^{+}$ and $\{E_{0}f \oplus E_{0}f\}^{+}$, respectively, where f runs over K_{S} . It is easily seen that they are mutually orthogonal and altogether generate \hat{K}_{S} . For $h_{\sigma}, h'_{\sigma} \in \hat{K}_{S}^{\sigma}$ we have $\hat{\gamma}_{S}(h_{\sigma}, h'_{\sigma'}) = \sigma \delta_{\sigma\sigma'}(h_{\sigma}, h'_{\sigma'})_{S}^{-}$ where $\sigma = +, -$ or 0. Therefore $\hat{\gamma}_{S}h_{\sigma} = \sigma h_{\sigma}$ and the spectrum of Π_{S} is contained in $\{0, 1/2, 1\}$.

(5) Immediate from definitions.

(6) From the proof of (4) and the last part of the proof of (2), it follows that \hat{K}_{S}^{0} for S and S' are mapped by U if $N_{S} = N_{S'}$ and $\tau_{S} = \tau_{S'}$.

The topology τ_{Π_S} is the strong topology of \hat{K}_S . Let $(f_{\alpha} \oplus g_{\alpha})^{\wedge}$ be a Cauchy net relative to τ_{Π_S} where $f_{\alpha}, g_{\alpha} \in K_S$. $S^{1/2}f_{\alpha} + (1-S)^{1/2}g_{\alpha} \equiv$ F_{α} and $(1-S)^{1/2}f_{\alpha} + S^{1/2}g_{\alpha} \equiv G_{\alpha}$ are Cauchy in K_S . Therefore $f_{\alpha} + g_{\alpha} =$ $\{S^{1/2} + (1-S)^{1/2}\}^{-1}(F_{\alpha} + G_{\alpha})$ and $(2S-1)(f_{\alpha} - g_{\alpha}) = \{S^{1/2} + (1-S)^{1/2}\}$ $(F_{\alpha} - G_{\alpha})$ are Cauchy. Conversely, if $f_{\alpha} + g_{\alpha}$ and $(2S-1)(f_{\alpha} - g_{\alpha})$ are Cauchy in K_S , then F_{α} and G_{α} are Cauchy and hence $(f_{\alpha} \oplus g_{\alpha})^{\wedge}$ is Cauchy in \hat{K}_S .

If $N_s = N_{S'}$ and $\tau_s = \tau_{S'}$, then the properties of a net f_{α} being Cauchy relative to τ_s and $\tau_{S'}$ are the same. Furthermore, $\gamma_s = 2S - 1$ and $(f, \gamma_S g)_S = (f, \gamma_{S'}g)_{S'}$ imply that $(2S-1)g_{\alpha}$ is Cauchy relative to τ_S if and only if $(2S'-1)g_{\alpha}$ is Cauchy relative to $\tau_{S'}$ by the duality.

Combining above two sets of arguments, we see that $(f_{\alpha} \oplus g_{\alpha})^{\hat{}}$ is Cauchy relative to $\tau_{\Pi_{S}}$ if and only if $(f_{\alpha} \oplus g_{\alpha})^{\hat{}}$ is Cauchy relative to $\tau_{\Pi_{S}'}$. Q. E. D.

Corollary 6.2. The map $f \in K \to [f] \in K_s$ induces a * homomorphism α_s of $\mathfrak{A}(K, \gamma, \Gamma)$ into $\mathfrak{A}(\hat{K}_s, \hat{\gamma}_s, \hat{\Gamma}_s)$. The restriction of a Fock type state φ_{Π_s} of $\mathfrak{A}(\hat{K}_s, \hat{\gamma}_s, \hat{\Gamma}_s)$ to $\alpha_s \mathfrak{A}(K, \gamma, \Gamma)$ gives a quasifree state φ_s of $\mathfrak{A}(K, \gamma, \Gamma)$ through $\varphi_{\Pi_s}(\alpha_s A) = \varphi_s(A)$.

This is immediate from Lemma 6.1.

Remark 6.3. It is possible to realize φ_s directly in a Fock representation in the following manner: Define $K'_s = K_s \bigoplus K_s$, $\Gamma'_s = \Gamma_s \bigoplus \Gamma_s$,

$$\gamma_{s}''(f_{1} \oplus g_{1}, f_{2} \oplus g_{2}) = (f_{1}, \gamma_{s}f_{2})_{s} - (g_{1}, \gamma_{s}g_{2})_{s}$$

+ $i\{(g_{1}, E_{0}f_{2})_{s} - (f_{1}, E_{0}g_{2})_{s}\}$

and

(6.13)
$$(f_1 \oplus g_1, f_2 \oplus g_2)''_s = (f_1, f_2)_s + (g_1, g_2)_s + 2(f_1, (1-E_0)S^{1/2}(1-S)^{1/2}g_2)_s + 2(g_1, (1-E_0)S^{1/2}(1-S)^{1/2}f_2)_s.$$

Then (6.13) is positive definite and

$$|\gamma_{S}''(h_{1}, h_{2})| \leq ||h_{1}||_{S}''||h_{2}||_{S}'$$

Let K_s'' be the completion of K_s' relative to $||h||_s'', \bar{r}_s''$ and Γ_s'' be the closure of γ_s'' and $\Gamma_s', \bar{r}_s''(h_1, h_2) = (h_1, \gamma_s''h_2)_s''$ and $P_s = (\gamma_s''+1)/2$. Then P_s is a basis projection. Let α_s'' be the * homomorphism of $\mathfrak{A}(K, \gamma, \Gamma)$ into $\mathfrak{A}(K_s'', \bar{r}_s'', \Gamma_s'')$ induced by $f \to \bar{f} \oplus 0$. Then the restriction of the Fock state φ_{P_s} of $\mathfrak{A}(K_s'', \bar{r}_s'', \Gamma_s'')$ to $\alpha_s''\mathfrak{A}(K, \gamma, \Gamma)$ induces the quasifree state φ_s of $\mathfrak{A}(K, \gamma, \Gamma)$.

This method has a defect that a canonical identification map U can not be defined between K_{S}'' , $\bar{\tau}_{S}''$, Γ_{S}'' and $K_{S'}''$, $\bar{\tau}_{S'}''$, $\Gamma_{S'}''$ even if $N_{S} = N_{S'}$ and $\tau_{S} = \tau_{S'}$, due to the dependence of the operator E_{0} on S. **Lemma 6.4.** Let φ_S be a quasifree state of $\mathfrak{A}(K, \gamma, \Gamma)$. The induced topology τ_{φ_S} on K is the same as τ_S of Definition 4.1.

Proof. Denote $W_{\varphi_S}(f)$ by $W_S(f)$. Since \mathcal{Q}_S is cyclic for $\mathfrak{N}(K, \gamma, \Gamma)$ and $\pi_S(A)\mathcal{Q}_S$, $A \in \mathfrak{N}(K, \gamma, \Gamma)$, is entire for $\overline{\pi_S(B(f))} = \lim_{t \to 0} \operatorname{-it}^{-1}(W_S(tf) - 1)$, $f \in \operatorname{Re} K$, \mathcal{Q}_S is cyclic for \mathbb{R}_S .

By [5], it is known that τ_{φ} is a vector topology and is given by one distance $d_{\Psi}(f_1, f_2)$ for a cyclic Ψ . Therefore it is enough to show the equivalence of $||f||_S^2 \rightarrow 0$ and

$$d_{\mathcal{Q}_{S}}(f, 0) = 2\{1 - \exp(-||f||_{S}^{2}/4)\} \rightarrow 0,$$

where (5.7) is used. This equivalence is obvious. Q. E. D.

References

- [1] Araki, H., A lattice of von Neumann algebras associated with the quantum theory of a free Bose field, J. Math. Phys. 4 (1963), 1343-1362.
- [2] _____, On the diagonalization of a bilinear Hamiltonian by a Bogoliubov transformation, *Publ. RIMS Kyoto Univ.* 4 (1968), 387-412.
- [3] _____, On quasifree state of CAR and Bogoliubov automorphisms, Publ. RIMS Kyoto Univ. 6 (1970), 385-442.
- [4] Araki, H., and E.J. Woods (to be published).
- [5] Araki, H., On quasifree states of the canonical commutation relations (II), this issue.
- [6] Dell' Antonio, G.F., Structure of the algebras of some free systems, Comm. Math. Phys. 9 (1968), 81-117.
- [7] Manuceau, J., Etude de quelques automorphismes de la C*-algèbre du champ de bosons libres, Ann. Inst. Henri Poincaré, 8 (1968), 117-138.
- [8] _____, C*-algèbre de relations de commutation, *ibid.* 139-161.
- [9] Manuceau, J., and A. Verbeure, Quasi-free states of the C.C.R algebra and Bogoliubov transformations, *Comm. Math. Phys.* 9 (1968), 293-302.
- [10] Manuceau, J., F. Rocca and D. Testard, On the product form of quasifree states, *Comm. Math. Phys.* 12 (1969), 43-57.
- [11] Powers, R.T. and E. Størmer, Free states of the canonical auticommutation relations, Comm. Math. Phys. 16 (1970), 1-33.
- [12] Robinson, D.W., The ground state of the Bose gas, Comm. Math. Phys. 1 (1965), 159-171.
- [13] Rocca, F., M. Sirugue and D. Testard, On a class of equilibrium states under the Kubo-Martin-Schwinger condition, II, Bosons, *Comm. Math. Phys.* 19 (1970), 119-141.
- [14] Nelson, E., Analytic vectors, Annals of Math. 70 (1959), 572-615.