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Abstract

A self-dual CCR algebra is defined and arbitrary quasifree state is realized
in a Fock type representation of another self-dual CCR algebra of a double size
as a preparation for a study of quasi-equivalence of quasifree states.

§ 1. Introduction

A necessary and sufficient condition for the quasi-equivalence of two
quasifree representations of the canonical anticommutation relations (CAR)
has been derived in [117] for the gauge invariant case and in [ 37] for the
general case. We shall derive an analogous result for the canonical com-
mutation relations (CCR) in this series of papers.

A quasifree state of CCR and Bogoliubov automorphisms have been
extensively studied ([5]~[10], {127, [137]). We shall use the formulation
developped in [27].

In section 2, we review the formulation in [27]. A self-dual algebra
is defined when a linear space K, an antilinear involution /" of K and a
hermitian form 7 on K satisfying v(I'f, I 'g)=—71(f, g* are given. In
section 3, we define a quasifree state in terms of a nonnegative hermitian
form S on K such that S(f, g —SUg, I'f)=7(f, g. In section 4,
the structure of S relative to (K, 7, /") is analyzed.

In section 5, basic properties of a Fock representation are stated and
a result in [1] is quoted. A Fock type representation is defined as a

generalization of a Fock representation to the case of degenerate 7 (i.e.
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the case with nontrivial center). In section 6, a quasifree state is realized
as the restriction of Fock type state of a CCR algebra for (Ks, 75, r s)
where Ky is about twice as large as K.

An application to the quasi-equivalence of quasifree states will be

made in a subsequent paper [ 5 ].

§ 2. Basic Notions

Let K be a complex linear space and 7(f, g) be a hermitian form
for f, g€ K. Let I" be an antilinear involution (/*=1) satisfying 7(/'f,
I'e)=—r(g, f)- A self-dual CCR algebra V.(K, v, I') over (K, 1, I")
is the quotient of the complex free * algebra generated by B(f), f€K,
its conjugate B(f)*, f€K and an identity 1 over (the two-sided * ideal
generated by) the following relations:

(1) B(f) is complex linear in f,

@ B(f)*B()~B(@B()*=1(f, &1,

3 BUI*=B(f).

Any one-to-one linear mapping U of K onto K satisfying y(Uf, Ug)
=7(f, g) and I'U=UI" preserves the above relations (1)~(3) and hence
there exists a unique * automorphism t(U) of UK, 7, I') satisfying =(U)
B(f)=B(Uf). U and t(U) shall be called a Bogoliubov transformation
and a Bogoliubov * automorphism.

Any operator P on K satisfying

1) P*=P,

@ 1(f, PH)>0, if Pf0,

@) r(Pfy &=1(f, Pg),

(4) I'Pr=1-P,
is called a basis projection. Such P is linear.

Let L be a complex pre-Hilbert space. A CCR algebra Uccr(L) over
L is the quotient of the free % algebra generated by (a’, f) (fs a), fEL
and an identity by (the two-sided * ideal generated by) the following rela-
tions:

(1) @', f) is complex linear in f,

@ (f, =@a" %
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® (£ ), @, 9= &
L@, 1), @', o=}, a), (g a)]=0.
Let P be a basis projection. Then the mapping a(P) from (K, 71,
I to Vecr(PK) defined by

(2.1a) a(P,(B(f1)---B(f,))=(a(P)B(f1))--- (@(P)B(f2),
(2.1b) a(P)B(f)= (", Pf)+(PIf, a)

is a * isomorphism of (K, 7y, ') onto ccr{PK).

Let 9" be a * algebra with an identity. A state ¢ of I is a complex
valued linear functional over QU satisfying ¢(1)=1 and ¢(4*A4)=0 for
all A€ Associated with every state ¢, there exists a triplet Q,, 7,,
2, of a Hilbert space, a representation of 2% by densely defined closable
operators 7,(A4), A€ and a unit vector £,, cyclic for 7,(2), such that
p(A)=(2,, n,(4)L,), T ,(A)*Dr,(A*) and the domain of 7,(4) is 7,
@Qne,.

Let Re K denote the set of f&€K such that I'f=f. It is a real
linear space. f€Re K if and only if B(f)*=B(f).

Let ¢ be a state of (K, 7, I) such that 7,(B(f)) is essentially
selfadjoint for all f€Re K. Let W,(f)=exp i m,(B(f)), fEReK.
We shall call such state ¢ over A(K, 1, I') as a regular state if W,(f)
satisfies the Weyl-Segal relations:

22) W (NIWo()=W,(f+ Rexp 5 7(g f):

Let ¢ be a regular state over (K, 7, I'). Let N, be the set of

fe€K with m,(B(f))=0, which is a linear subset of K. Let Re N,=N,N
Re K. The collection of distances

(2.3) de(f5 /) Elstlgl“ W) =W, T, T,

defines a vector topology on Re K/Re N,, which we shall denote by 7,. It
also induces a vector topology on (Re K/Re N,)+i(Re K/Re N,)=K/N,,
which will be denoted again by 7,. The topology induced by one distance
dy for a cyclic ¥ is mutually equivalent and is equivalent to 7, [4].
(The cyclicity here refers to W,(f), f€Re K.)
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§ 3. Quasifree States

Definition 3.1. A state ¢ on V. (K, v, I') satisfying the following

relations is called a quasifree statc:

31 eBf)-B(fan1)=0
(3.2) ﬂMﬁ%BUhD=§éﬂHﬁmB0mwm

where n=1, 2... and the sum is over all permutations s satisfying s(1)

<s(2) < <s(n), s(j)<s(j+n), j=1,..., n.

Lemma 3.2. For any state over V.(K, v, I), the hermitian form

defined by

(3.3) eB(f)*B(g)=S(f, &
is positive semidefinite (i.e. S(f, f)=0) and satisfies
(3.4) (g /)=8(g /H—SUT'f, I'g)-

Proof. The positivity of ¢ implies the positive semidefiniteness of S.
SIf, I'g)=eB(fIB(g)")=¢B(g)*B(f)—7r(g /1
=S(g, =18 /- Q.E.D.

Lemma 3.3. The hermitian form
(3.5) (& fs=S(g H+SUS, I'g)
is positive semi-definite and satisfies
(3.6) (g, I'f)s=(f, &)s
3.7 l7(g I’ fs(g g)s-
It is positive definite if v is non-degenerate.

Proof. From Lemma 3.2,

S(f, /H=0,  SUf, I'f)=0.

Hence (g, f)s is positive semidefinite. We also have



CaxonicaL CoMMUTATION RELATIONS (1) 109

(I'g, I'f)s=SU'g, I'f)+S(f, =(f, &)s-

By the Schwarz inequality,

17(g, N)1=<18(g, /)| +|STf, Tl
<S(g, 97 S(f, /)2 +SUf, )2 SUT'g, I'e?

<(S(g, &)+ ST'g, ) (S(f.f)+STf, Tf)*
—(g 5T (f, f)s?.

If (f, f)s=0, we have 7(f, g =0 for all g. If 7y is non-degenerate, we
have f=0. Therefore, (f, g)s is positive definite. - Q.E.D.

Lemma 3.4. The set Ns of f€K satisfying (f, f)s=0 is a I-
invariant subspace of K such that S(f, g)=1(f, g =0 for any f€Ns
and any g€ K. If S is related to a state ¢ by (3.3), then mw,(B(f))=0
is equivalent to f€ Ns. (Ns=N, for a regular ¢.)

Proof. From the positive semidefiniteness of (g, f)s, it follows that
(g f)s=0 for any g€ K whenever f€ Ns. Hence Ns is a subspace of
K. By (3.6), Ns is I'-invariant. From (3.7), r(f, g)=0 for any g€k
whenever f€Ns. This implies that B(f), f€Ns commutes with all
B(g), g€ K. In addition, 0=S(f, f/)=(f, f)s=0 which implies {|7,(B(f))
2,1°=S(f, f)=0 for f€Ns. Therefore f€Ns implies 7,(B(f))=0.
Conversely, 7,(B(f))=0 implies S(f, f)=|lm,(B(f)L,1>=0, S(I'f, I'f)
=|lm,(B(f)*2,/?=0, and hence (f, f)s=0. Q. E.D.

Lemma 3.5. For any positive semidefinite hermitian S(g, f) on
K x K satisfying (3.4), there exists a unique quasifree state ¢s satisfying
(3.3). Any quasifree state is rvegular.

Proof. The existence will be seen from Lemma 5.3 and Corollary
6.2. The uniqueness is immediate from (3.1) and (3.2). The regularity
will be seen from Corollary 5.6.

Definition 3.6. Let s, ws, 25 denote the Hilbert space, the repre-
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sentation and the cyclic unit vector canonically associated with the quasifree
state ¢s through the relation

(3.8) ps(A)=(L2s, ns(A)L2s), AWK, 7, ).

If S commutes with a Bogoliubov transformation U, then a unitary

operator Ts(U) on s is defined by
(3.9) Ts(D)ns(A)Ls=ns(c(U)A)2s

and the continuity. (S is defined in Lemma 4.2.)

§ 4. Structure of (S, K, v, I')

Definition 4.1. Ks denotes the completion of K/Ns with respect
to the positive hermitian form induced on K/Ns by (f, g)s. K/Ns is
identified with a dense subset of Ks. The Hilbert space topology on K/Ng

is denoted by ts.

Lemma 4.2. (1) There exists an antiunitary involution I's on Ks

such that T_f=TSf for all f€K where f=f+Ns<€K/Ns.
(2) There exists a bounded operator vs on Ks such that

(4.1) 7(f, =, 15®s
for f, g€ K. It satisfies
(4.2) 1¥=rs, ['stsls=—rs and ||rslls<1.

(8) There exists a bounded operator S on Ks such that

(4.3) S(f, ©=(, SB)s

for f, g€K. It satisfies

(4.9) S*=8§, I'sSI's=1—8, 0<S5<1,
and

(4.5) S—I'sSIs=7s.

Proof. Due to the I-invariance of Ns and (3.6), I’ sf= 77 defines

an antilinear isometric operator on K/Ns and hence the closure I's of
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s is defined on all vectors in Ks and (I'sg, I'sf)s=(f, g)s for all
f> 8€Ks. Since I'?=1, we have I'4=1 and hence /s is an antiunitary
involution on K.

(3.7) and Lemma 3.4 imply the existence of 7s satisfying (4.1) and
llrslls=<1. Since 7(f, g) is hermitian, we have y§=rs. Since y(/'f,
Tg)=—r(g, f)a we have I'sysls=—7s.

From the positivity S(I"f, I f)=0 of S, we have 0<S(f, /)=
[l f1l% for f€K. This together with Lemma 3.4 imply the existence of
S satisfying (4.3), S*=S and 0<S<1. From (3.5), we have S+ 171 sS[ s
=1 and from (3.4), we have (4.5). Q.E.D.

Definition 4.3. Let E., E_ and E, be the spectral projection of 7s
for (0, +0), (—o0, 0) and {0}, respectively. Let K.=FE.Ks and Ky=
E\Ks.

Lemma 4.4. rsEirs—:E;, FsEorS:Eo, TSKi=K¢ and FsKo-—“Ko
Proof. This follows from ['sysl s=—7s. Q. E.D.

§ 5. Fock Representations

Definition 5.1. A quasifree state ¢s is called a Fock state if the
operator S of Lemma 4.2 is a basis projection on Ks. S in such a case
will be written generally as P. The associated representation wp is called

a Fock representation.

Lemma 5.2. If P is a basis projection of (K, 1, I'), then the

quasifree state ¢p of VK, v, I') for P(f, g)=71(f, Pg), if it exists, is
a Fock state.

Remark. In this case y is automatically non-degenerate and Np=0.
P originally given on K is a restriction to K of the operator P on Kp
defined by Lemma 4.2 and we have y(f, Pg)=(f, rePg)r=(f, Pg)p for
f» g€ K. Therefore the appearance of two P is probably not confusing.

We shall summarize known properties of a Fock state in the following
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3 lemmas.

Lemma 5.3. Let P be a basis projection for (K, v, I'). A state ¢
of WK, v, I') satisfying
(5.1) eB(IBU f))=0, fePK,
exists, is unique and is a quasifree state @p.

Proof. By splitting B(f) as a sum B(Pf)+B((1—P)f) and bringing
B(Pf) to the left of any other B((1—P)f’) with a help of the commuta-
tion relations, any element A in ¥(K, 7, I') can be written as A=,2;
B(fi)+ XB(g)?;+2 where f;c(1—P)K, g;€PK. Since (5.1) implies
9(OB(f))=¢B(g)Q)=0 for f€(1—P)K, g€PK and QcUAK, 7, I')
by the Schwarz inequality, we have ¢(A)=A1. Hence the uniqueness.

The well known Fock state of Wccr(PK) gives the quasifree state
¢p through the identification of Wccr(PK) with A(K, 7, I') via a(P).
@p clearly satisfies (5.1). Q.E.D.

Lemma 5.4. Let f€Re K and Dy=np[U(K, v, [)]2p. Dy is a

dense set of entire analytic vectors of B(f). The sum

(5.2) Itz B

converges on Dy. Its closure, denoted by Wp(f), is unitary and satisfies
(5.3) Wr(fOWR(f)=Wr(fi+f)exp(1/2)7(f2 f1),

(5.4) (8r, We([)2r)=exp—(1/2)7(f, PS).

f=We(f) is continuous with respect to a norm y(f, Pf)*'* on Re K and
the stromg operator topology on Op.
n
Proof. Let (Dp)» be the subspace of Dp generated by ITmp(B(g;))82p,
i=1

gi€EPK. 1If Weﬂg}o (©p)n, then
(6.5  [zeBUNZI=V2 W+ 7(f, (2P—1) f)**Z]l.

[This follows from a well known calculation: Let {f;} be a complete
n

orthonormal basis of PK with fo=Pf. Then &= IT np(B(f;))2p(n<N)
v=1
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is a complete orthonormal basis of Z (9p)n, for which 7p(B(Pf))0 is
also mutually orthogonal and |7rp(B(Pf))ﬂ)}}-—(k+1)1’zr(f, P2 |0]|
where k is the number of » with j,=0. Hence ||zp(B(Pf))¥||<(N+1)?
7(f, PAOMI¥|. A similar calculation with fo=I"(1—P)f leads to
Iz pBL(L—P) f D | < N2 (f, (P—1) )M %))

From (5.5) we have hml\np(B(f))”WHl/”/n—0 {for TEDO—\]{ Z‘,
(Dp)n}. Hence all such W is an entire analytic vector for n'p(B(f )),
f €ReK, (5.2) applied on ¥ converges absolutely, the closure 7z(B(f))
of 7p(B(f)) is selfadjoint, Wp(f)=exp i7p(B(f)), and Wp(f) is unitary.
[147. (5.4) follows from (25, 7wp(B(f))*"Rr)=(2n)!27"a!"r(f, Pf)".

By the commutation relations, we have

(5.6) n!T'B(f1+ f2)'= l»' B(f)*IB(f2) m! 27 (f, SO

l+2m
From the previous result and the Schwarz inequality, Zk!‘ll!_l(B(fl)kﬁ,
B(f2)'¥) is absolutely convergent for @, ¥ €D, and hence we obtain
{from (5.6) the equality (5.3) for a matrix element between two vectors
® and ¥ in a dense set D,. Hence (5.3) holds.

From (5.3) and (5.4), we have

(5.7 dp(f1, f2)*=|{Wr(f1)—Wr(f2)} 24|
=2{1—(exp— /Dl fa— f1ll}) cos (i/2) 1 (f2, f1)}

where || f]|3=7(f, [2P—1]f), which is 27(f, Pf) for fERe K, and

T(fz,f1)=7’(rf2>rf1)=—T(fz, fl)* is pure imaginary for f, szRe K.

Since 7(f1, f1)=0 for f1 €Re K, we have from (3.7)

(5.8) |T(f2a fl)] = |T(f2—f1, f1)|§||f2—f1 lelfth

Hence f—Wp(f)&2p is continuous. By (5.3) and (3.7), this implies the
continuity of f—>Wp(f)¥ for =Wp(g)2pr, g€Re K. Since 7p(B(g))
=lim (i) *(W(¢tg)—1) on D, for fERe K, and since Wp(g1)---Wp(gn)
.thjos a multiple of Wp(2 g;)@2p, finite linear combinations of Wp(g)%2p,
g €Re K, are dense in Op. Therefore f—>Wp(f) is continuous. Q.E.D.

Lemma 5.5. Let Re Kp be the real Hilbert space obtained by the
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completion of Re K with respect to the inner product (fi, f2)p=r1(f1,
@P—-1)f2), f1, f2E€Re K. If f=lim f,, facRe K, then Wp(f)=limWp
(fx) exists and does not depend on {f.} for a fixed f.

Let Hy be a linear subset of Re Kp. Denote by Hi the set of vectors
f€Re Kp such that (f, v p=0 for all g€H,. Let Rp(H\) be the
von Neumann algebra generated by Wp(f), f€H,. Let H, denote the
closure of H, in Re Kp. Then

(0) Rp(Re Kp) is irreducible and Rp(0) is trivial,

() Rep(H)=Rp(H),

(i) Rp(H:)'=Rp(H7),

(iii) (Rp(H1)\URp(H,))'=Rp(H,+ Hs),

(iv) (Rp(Hy)NRp(H:))”"=Rp(HyNHy),

(v)  2p is cyclic for Rp(H,) if and only if P(H,~+iH,) is dense in

PKp. (P is the closure of P on Kp.)

(vi) 8p is separating for Rp(H,) if and only if P(H}+iHY) is

dense in PKp,

(vii) Rp(H)) is a factor if and only if HiN\H+ is 0.

Proof. The existence of the unique limit Wp(f) for f €Re Kp
follows from Lemma 5.4. The von Neumann algebra Rp(H:) is R(H;/Re
Kp) in the notation of [1J], where |(fi, f2)s and r(fi, f2) are respec-
tively (f1, f2) and ( fi, Bf2). (i)~(iv) and (vii) follow from Theorem 1
of [17]. (0) and (v) follow from Lemma 5.1 of [1]. (vi) follows from
(v) and (ii). Q.E.D.

Corollary 5.6. A Fock representation is regular and irreducible.

This is due to Lemmas 5.4 and 5.5.

The Fock representation defined above is applicable only for the case
of non-degenerate y. We now consider its generalization to the case of

degenerate 7.

Definition 5.7. A quasifree state ¢s in called a Fock type state if
Ns=0 and the spectrum of the operator S in Lemma 4.2 is contained in

{0, 1/2, 1}. The corresponding representation is called a Fock type
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representation.

Lemma 5.8. Let K, v, I' be given. Let II (f1, f2) be a positive
semidefinite hermitian form on K satisfying (3.4), where S is to be replaced
by II. Assume that Ny=0 and the spectrum of the operator I defined by
Lemma 4.2 is contained in {0, 1/2, 1}. Let E,, E, be defined as in De-
Jfinition 4.3. Let

(5.9) Ky=KnBEKy,
(5.10) fn(fEBg)“—‘fnfEBan,
(5.11) (1D g1, f2Dg2) =1, Tafdn+i{(g, f2In—(f1, g)u}-

Let 5[5—9'.(]?,7, #u, I'n) and identify A = WK, 1, I') with the subalgebra
W (KPO, 7, ['n) of A. Let

(5.12)  I(f®Q)=AE.f+(Eof —ig)/2s B{GEf+ £)/2},
(5.13) H(hy, ho)=7n(h1, 1T hy).

Then ¢g is a Fock state of A and its restriction to U is the Fock
type state @j.

Proof. r 7 is an antiunitary involution of IZH and 7y is a hermitian
form satisfying (" h1, [hy)=—7u(hi, hs)*. From (5.12), it follows
that P+ M =1, I*=1I,

(5.14) (/i@ g, T ([P ge))
=(f1, II f2)u+ (g1, T g)n+i{(gy, I fo)n—(f1, I g2)u}
:?ﬂ(ﬁ(fl@gl)’ f2@g2)s

and

(5.15) t(fD g T(fDg)=0.

Therefore IT is a basis projection and ¢j is a Fock state.

The restriction of ¢z to 2 is ¢y as is seen from (5.14). Q.E.D.

Corollary 5.9. For any II in Lemma 5.8, the Fock type state ¢
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exists. The commutant wp() is abelian and is generated by mwp(B(f)),
fEEKy.

Proof. From Lemmas 5.8 and 5.5 (ii), the following computation
suffices: If fPge(KP0)*, then (f, rr(1—Ep) fr)n= (g Eof1)n=0 for
all f1 €K and hence f€EyK; and g=0. Q.E. D.

§6. A Realization of a Quasifree State on a Fock Type

Representation
Lemma 6.1. (1) Let
(6.1) K5=KsDKs,
(6.2) 15( /1D g1, 2D g)=(f1, 1sf2)s— (&1, Ts82)s>
(6.3) I's=I's®Prls.

Then ' is an antilinear involution and 15 is a hermitian form satisfying
ys(Lshy, Tshy)=—715(h1, h2)*. If Ns=Ns- and ts=rtg, then there exists
a one-to-one linear map U of Kg onto Kg. such that Uh=h for h=(f+
Ns)@(g+Ns), f,g€K. It satisfies Ul's=I5U and 75(h1, h)=74
(Uhy, Uhy).

(2) Let

(6.4) (1D g1, f2Dga)s=(f1, f2)s+(g1, &2)s
+2(f1> 51/2(1'—5)1/25’2).9
+2(g1, Sllz(l—S)llzfz)S.

Then it is a I g-invariant positive semidefinite form satisfying
(6.5) [75(h1, h2) | <Al s]lhell 5

The kernel Ng (i.e. the set of h satisfying ||h||s=0) comsists of fD—Ff,
fEEKs. If Ns=Ns: and ts=tg,, then Ng.=UNj.

(38) (6.4), rs and I's induce on K5/Ng a positive definite inner
product (hy, hy)s=(hy1, h2)s, a hermitian form 7s(hy, hy)=715(h1, hs) and
an antilinear involution I sh=(I"sh)" satisfying (I'sh1, I shs)s=(hs, h1)3
and ?s(Lshy, [shy)=—%s(hs, ki) where h=h+ N§ € Ks/Ns. The closure
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of 3s and ['s on the completion Ks of K5s/N, denoted by the same letter,
satisfy the same properties. r s is antiunitary and therve exists an operator

Ts such that
(6.6) 7s(h1, ha)=(h1, f’shz)g,
(6.7) PE=%s, [sisls=—%s.

If Ns=Ns- and ts=rts, then U of (2) induces a one-to-one linear
map of Ks onto Ks, such that U s=1s.U and 75/( U'ﬁl, Uhy)=%s(hy, ha).

(4) Let
(6.8) IIs=(1/2)(1+7s).
Then fsﬂsfszl—ﬂs, (=I5 and ihe spectrum of Il s is contained
i {0, 1/2, 1}.

(5) For feK, let [ f1=(fB0)+Ns and identify Ki/N§ with a
dense subset of Ks. Then
(6.10) Lf) IsLghs=5S(f; -

(6) If Ns=Ns- and t5=ts, then tp,=tg, and eigenspaces of I s
and Il s for an eigenvalue 1/2 are mapped by U.

Proof. (1) The properties of I'§ and 7§ are immediate. Since Ks and
Ks- is the completion of K/Nsg=K/Ns. with respect to ts=rts,, there
is a natural identification map U which is linear. If f;, g;€K and h;=
(fi+Ns)®(g;+ Ns), then

75(h, h2)=71(f1, f2)—71(g1, g2)=715(h1, h2),
I'shy= f1+Ns)DU g1+ Ns)=1 gh,.

Since such f; and g; are dense in K, these equalities imply Ul's=1"s-U
and 75(h1, hz)=75/(Uh1, Uhz).

(2) (6.4) is obviously a I s-invariant hermitian form. We have
(6.11) (fDg, fDs=IIS"f+A—8)"gll5+I(1—8)"*f+ 5 g]5=0.

We also have

(6.12) 75(f/iD g1, f2D g)=(S"2fi+(1—5)"? g1, SY2f2+(1—5)"?go)s



118 Huzwiro ArRAKI AND MASAFUMI SHIRAISHI

—((A=8)"2f1+ S g1, 1= 8)*f2+ 52 go)s
due to rs=2S5—1, which implies
l75(f1D g1, F2B82) | IS A1+ A=) glisl| ST 2 f2+ (1 — ) golls
A =821+ SV gills|[A— ) °fo+ §*2 galls
=l /1D g5l f2Dgeils

By (6.11), ||f@Dglls=0 is equivalent to (25—1)f=0 and f+ g=0.
Namely Ns consists of fD—f, f€EKs. EKs is the set of f€ Ky such
that (f, rsg)s=0 for all g€Ks. If Ny=Ns and ts=rs, then there
is a natural identification of Kg with Kg- which identifies E,Ks with
EiKs: due to (f, 7s&)s=71(f, & =(f, rs'gs  for f, g€ K. (E, and E|
are orthogonal eigenprojections of S and S’ for an eigenvalue 1/2. Since
the orthogonality refers to different inner product, E, and E; need not be
the same.) This implies N = UNjg.

(3) Immediate from (1) and (2).

(4) Let K%, K5 and K% be the subspace of Kg generated by {S'*f
B—A—=S)f}", {1—'2fP—SY2f}" and {E,fPDEof}", respectively,
where f runs over Ks. It is easily seen that they are mutually orthogo-
nal and altogether generate Ks. For h,, h.€ K% we have 7s(h,, hi)=
00,./(hsy hi)s where 0=+, — or 0. Therefore 7sh,= 0h, and the spec-
trum of ITs is contained in {0, 1/2, 1}.

(5) Immediate from definitions.

(6) From the proof of (4) and the last part of the proof of (2), it
follows that K% for S and S’ are mapped by U if Ns=Ng- and ts=Tts"

The topology vy, is the strong topology of Ks. Let ( faDga)” be
a Cauchy net relative to ty, where f,, go €Ks. SY’fo+(1—S8)1?g,=
F, and (1—8)"*f,+ S'?g,=G, are Cauchy in Ks. Therefore f,+ g.=
(SU2 41— S U(Fu+C,) and (28 —1)(fu—ga)=4{S 12+ (1— )7}
(Fy—G,) are Cauchy. Conversely, if f,+ g and (25 —1)(fo— ga) are
Cauchy in Ks, then F, and G, are Cauchy and hence (f.Dga)” is
Cauchy in Ks.

If Ns=Ns, and ts=rts,, then the properties of a net f, being
Cauchy relative to tg and tg- are the same. Furthermore, y5=25—1
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and (f, rsgs=(f, rs’gs  imply that (25—1)g, is Cauchy relative to
ts if and only if (28'—1)g, is Cauchy relative to ts- by the duality.
Combining above two sets of arguments, we see that (f.PDgas)" is
Cauchy relative to tp, if and only if (f.Dg.)” is Cauchy relative to
Tirgs Q.E.D.

S

Corollary 6.2. The map [ €K—[ f]€Ks induccs a * homomor-
phism as of UK, 7, I') into W(Ks, 7s, ['s). The restriction of a Fock
type state @, of U(Ks, 75, ['s) to asq(K, v, ") gives a quasifree state
¢s of WK, v, I") through ¢nasd)=¢s(A).

This is immediate from Lemma 6.1.

Remark 6.3. 1t is possible to realize ¢s directly in a Fock representa-
tion in the following manner: Define Ks=KsPKs, ['s=1sPI s,

Tg(fl@gla fz@gz)Z(fh Tsfz)s“(gl, ngz)s
+i{(g1, Eof2)s—(f1, Eogz)s}

and

(6.13) (f1D g1, f:Dg2)s=(f1, f2)s+ (g1, g2)s

+2(f1, A—Eo)SY*(1—8)"? g3)s

+2(g1, (1 —Ep)SY*(1—8)2f3)s.
Then (6.13) is positive definite and

| 75(h1, h2) | <|lhall5]lRol5.
Let K5 be the completion of Kg relative to [|h||%, 75 and I'% be the
closure of y§ and I'g, 75(h1, ha)=(h1, r5h2)5 and Ps=(y%5+1)/2. Then
Ps is a basis projection. Let a% be the * homomorphism of A(K, 7, I")
into A(KY, 7%, I'%) induced by f— fEP0. Then the restriction of the
Fock state ¢p, of A(KG, 75, ['s) to asq(K, r, I") induces the quasifree
state ¢s of WK, 1, ).
This method has a defect that a canonical identification map U can

not be defined between K%, 7%, ['5 and K%., 75, I'§ even if Ng=Ng-

and ts=rtgs-, due to the dependence of the operator E, on S.
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Lemma 6.4. Let ¢s be a quasifree state of A(K, 1, I"). The induced
topology t,, on K is the same as ts of Definition 4.1.

Proof. Denote W, (f) by Ws(f). Since 25 is cyclic for K, 7, I")
and 7s(A)Rs, A€U(K, v, I'), is entire for mjzlim-it‘l(ws(tf)
—1), fERe K, @ is cyclic for Rs. o

By [5], it is known that r, is a vector topology and is given by
one distance dg(f1, f2) for a cyclic #". Therefore it is enough to show

the equivalence of || f||3—0 and
doy(f, 0)=2{1—exp(— [l f|I%/4)}— 0,

where (5.7) is used. This equivalence is obvious. Q. E.D.

References

[1] Araki, H, A lattice of von Neumann algebras associated with the quantum
theory of a free Bose field, J. Math. Phys. 4 (1963), 1343-1362.

[2] ————, On the diagonalization of a bilinear Hamiltonian by a Bogoliubov
transformation, Publ. RIMS Kyoto Univ. 4 (1968), 387-412.
[3] ———, On quasifree state of CAR and Bogoliubov automorphisms, Publ. RIMS

Kyoto Univ. 6 (1970), 385-442.

[4] Araki, H, and E.J. Woods (to be published).

[5] Araki, H, On quasifree states of the canonical commutation relations (II), this
issue.

[6] Dell’ Antonio, G.F., Structure of the algebras of some free systems, Connt.
Math. Phys. 8 (1968), 81-117.

[7] Manuceau, J.,, Etude de quelques automorphismes de la C*-algébre du champ
de bosons libres, Ann. Inst. Henri Poincaré, 8 (1968), 117-138.

[8] ———, C*-algébre de relations de commutation, ibid. 139-161.

[9] Manuceau, J., and A. Verbeure, Quasi-free states of the C.C.R algebra and
Bogoliubov transformations, Comm. Math. Phys. 39 (1968), 293-302.

[10] Manuceau, J., F. Rocca and D. Testard, On the product form of quasifree
states, Comm. Math. Phys. 12 (1969), 43-57.

[11] Powers, R.T. and E. Stgrmer, Free states of the canonical auticommutation
relations, Comm. Math. Phys. 16 (1970), 1-33.

[12] Robinson, D.W., The ground state of the Bose gas, Comm. Math. Phys. 1 (1965),
159-171.

[13] Rocca, F., M. Sirugue and D. Testard, On a class of equilibrium states under
the Kubo-Martin-Schwinger condition, II, Bosons, Comm. Math. Phys. 18 (1970),
119-141.

[14] Nelson, E., Analytic vectors, Annals of Math. 710 (1959), 572-615.



