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Abstract

A necessary and sufficient condition for the quesi-cquivalcnee of two quasifree
primary representations of the canonical commutation relations is derived.

§ 1. Inireduction

A quasifree state of the self-dual CCR algebra (K, 7, I'), which is
a slight generalization of conventional canonical commutation relations, has
been discussed in the preceding work [1]. In the present paper, we
derive a necessary and sufficient condition for the quasi-equivalence of
representations associated with quasifree states, when the representation is
primary (i.e. the associated von Neumann algebra is a factor).

We believe that the following features of the present analysis is worth
mentioning.

(1) Despite of many marked differences on mathematical structure
between the present case of CCR and the case of CAR [27, such as
unbounded B(f) for CCR and bounded B(f) for CAR, the indefinite met-
ric 7 for the test function space K of CCR and the definite metric for
K of CAR, and the difference in the details of the final statement, the
two cases can be treated by essentially the same technique, yielding quite
a similar results.

(2) For CAR, there is a unique C* norm for the * algebra generated
by B(f). In the present case, there is no intrinsic topology in the
algebra generated by B(f). As a result, the topology induced by the

representation plays an important role and serves as an invariant in the
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quasi-equivalence classification of quasifree states.

(3) On a Hilbert space of a definite metric, natural vector topologies
are induced by the metric. On a Hilbert space of an indefinite metric,
the natural topology is generally too weak. Indeed, it is the weak topology
by its algebraic dual in the present case. It seems that a Hilbert space
with an indefinite metric equipped with a certain class of vector topology
is more canonical object to study. Problems concerning the structure (K,
v, I') and Hilbert Schmidt class operators on K, which we have treated
with a help of ordinary tools on a Hilbert space with a definite metric,
might serve as a testing ground for any general theory of a Hilbert space
with an indefinite metric.

The study of quasifree states is probably of no direct physical interest.
However, we know an example of the mathematical structure of free Bose
gas analysed in [37], which turned out to be common to a large class of
systems [4~7]. Our hope is that a complete analysis of CCR and CAR
in the present paper and in [ 2] presents similar useful examples.

In section 2, we obtain simpier properties of the von Neumann alge-
bra associated with quasi-free states. In section 3, a quasifree state is
viewed as a KMS state relative to a Bogoliubov automorphism. In section
4, a bilinear Hamiltonian is introduced which is used in section 5 to discuss
the unitary implementability of a Bogoliubov transformation on a Fock
type representation. In section 6, a necessary and sufficient condition for
the quasi-equivalence of two quasifree primary states of CCR is obtained
as the main Theorem.

We shall freely use the notation in [1].

§ 2. Simple Properties of von Neumann Algebras

Associated with Quasifree States

Lemma 2.1. Let o' be a mapping of K onto itself given by
2.1 o' (fBg=IsgdDIl sf.

o’ leaves N invariant and induces a mapping o of Kjy/Ns onto itself.
Its closure, demoted again by w, as a wmapping of Ks onto itself is an
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antilinear involution satisfying.

(2.2) o, I's]=0,
(2.3) (why, whs)s=C(ha, h1)5s,
and
(2.4) 7s(ohy, ohy)=7s(h2, h1).
Let ©(w) be a mapping of ¥/ Ks, $s, ['s) onto itself given by
(2.5) r(a));ciB(h{). -B(hi,)= ;c?B(coh{)-.-B(wh,‘;L).

Then it is a conjugate * automorphism. There exists an antiunitary in-

volution Tp(w) on $p, uniquely determined by
(2.6) Tns(w)ﬂns(A)-QnSZﬂns(f(w)A)gﬂs~

Proof. From the definition (2.1), if follows that w’ is an antilinear
involution leaving N§ invariant and hence the same is true for w. (2.2)
follows immediately from [w’, I'5]=0. (2.3) follows from the antiuni-
tarity of /s relative to (f, g s and (6.4) of [1]. (2.4) follows from
(6.2) of [1] and I'sysl's=—7s.

By the antilinearity of w, (2.2) and (2.4), r(w) defined by (2.5)
preserves the three relations in the definition of a selfdual CCR algebra
(Section 2 in [17]) and hence t(w) is a conjugate * automorphism.

Due to (2.3) and (2.4), we have ¢y (t(0)4)=py(A4)*, from which
the existence of Ty (w) follows. Q.E.D.

Lemma 2.2. The set of h€Ks satisfying 7s(Lf), B)=0 for all
f€Re K is {EKsDKs}

Proof. 1f feRe K, fi€ E\Ks and g1 €Ky, then r5(fE0, f1Dg1)
=0. Hence 7s([f], h)=0 for he€ {E,K;PKs}".

Let f, g be elements of (1—Ey)Ks in the domain of (25—1)"'. Let

(2.7) h(fP g)=(2S—1)"'(f+25"%(1—8)? )
B—(2S—1)"(g+28"*A—S)"* /).

Then we have
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(2.8) T:S(fl@gla h(fz@gz)):(fl@gl, fz@gz).ls

Since 75 |[ EKBE K| =0, since the restriction of 7% to the orthogonal
complement of [EKEEK ] is 1 and since [(1—E)KB(1—E)DK] is
orthogonal to [ E(K@PEK |, we have from (2.8)

(2.9) (2D g} =7s{(f2D g)"}-

Therefore #s| K | contains vectors {h( SO0}, where f is any ele-
ment of (1—Ey)Ks in the domain of (25—1)"'. Therefore 75 K |+ {E.Ks
@K} is dense in {Ks@Ks}" and hence in Ks.

Since (Il /B gll5)* =l /+ gll3 for £€ EKs and g€ K, {EKs@Ks}"
is closed. Therefore it is the orthogonal complement of ?sﬁ(j. Q.E.D.

Lemma 2.3. Let Rs be the von Ncumani algebra generated by
spectral projections of all mp(asB(f)), fE€Re K on the representation space
of W(Ks, #, ['s) associated with ¢u,. Then the following conditions are
equivalent .

(1) Lug is cyclic for Rs.

(2) 8u, is separating for Rs.

(3) S does not have an eigenvalue 0.

(4) S does not have an cigenvalue 1.

Proof. Using the notation of Lemma 5.5 of [1], we have
RSZRTIS(H1>

with H=Re(Ks@E.Ks), Hi=[Re K]0, Hi= {Re Ks@0}"P0 where
E, is the eigenprojection of IIs for an eigenvalue 1/2. (Since || JSDO|is=
| flls, {Ks@BO0}" is closed.) Since ERs C{Ks@® 0}, H- CRe K5 and hence
we obtain from Lemma 2.2 Hi =Re{(E,KsPKs)"P0}

(1)—(3): Assume that (3) does not hold and Sf=0 for f€Ksg,
f#0. Then h(0Df)=0f and hence I s{(0Df)"} =(0Pf) . Further
(0Df, gP0)s=0 for any g€ Ks. This implies (0P DO, [ g JD0)x,
=0 due to Ej {(06Df )"} =0. Therefore IIs(H,+iH,) is not dense in
i sKs and 21, which can be identified with £%,, is not cyclic due to
Lemma 5.5 (v) of [17.

(3)—>(1): Let
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(2.10) k (f)=S"fP{—1—)"f}

(2.11) k (f)={—1—"fIDS"*f.

If f€(1—Ey)Ks is in the domain of (2S—1)%, we have
(2.12) (ks (f)) = k().

Hence {k+(f)}’\EE‘+I€S, {k_(f)}AEE_KS, where E, and E_ are eigen-
projections of ITs for eigenvalues 1 and 0. By the continuity, this holds
for any f€Ks. Further,

(2.13) k (S2F)+k_(1— 8 f)=(2S—1)fPO,

(2.14) k_(SY2F)+k. ((1—S)Y2f)=0P(2S—1)f.
Therefore the set of k., (f)"+k_(g)" is dense in (1—E;) Ks and hence
k. (f) and k_(f)" are dense in E,Ks and E_Ks, respectively.

Since
(2.15) I s{(fP0)} =(1/2)A+7){(fDON} =k, (28—1)"1S2f)N

for f€(1—E)Ks and since f€ KS—>k+(f)/\EIzs is continuous, ITs {(Ks
DONDO} = 1T s{(1— E)Ks0)Y DO} + T 5(E,KsPO) is dense in 5Ky,
if (3) holds.

(3) & (4). This follows from I'sSI's=1—S.

(4) 2 (2). By Lemma 5.5 (ii) of [1], Lemma 2.1 and Lemma 2.2

Rs= Tns(w)Rs TJIS((D)-

Furthermore, we have ¢y (v(0)4*)=¢1_5(4) for A€aA(K, 7, I).
Therefore by (3) & (1), £y, is cyclic for R5 if and only if (4) holds.
Since £y, is separating for Rs if and only if it is cyclic for R§, we have
@) 2 (2). Q.E.D.

Lemma 2.4. The center of Rs is generated by exp imgy (B(h)),
heRe (EKsDO)N. In particular, Rs is a factor if and only if Ky=0.

Proof. From the beginning part of the proof of Lemma 2.3, we have
H NHf =(E,KsP0) PO and hence this Lemma follows from Lemma 5.5
of [1].
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Lemma 2.5. 2y is separating for the center of Rs.
Proof. Since {(Re E;Ks@0)"P0}+=Re KsP0 and since T s(Rsp0)

is dense in I?SKHS, we obtain the Lemma by Lemma 5.5 (vi) of [1].
Q.E.D.

§ 3. KMS Conditions

Lemma 3.1. Suppose that S does not have an eigenvalue 0. Let

3.1) Hs=1og{S1—9)""}.

Then expiHs is a Bogoliubov transformation on Ks and ¢s is t(exp
iHs) invariant.

Proof. Since 0<S<1, we have H¥=Hs. Since S commute with
rs, we have r(e'fsf, efsg)=r(f, g). Since I'sSI's=1—S, we have
I'sHsI's=—Hs. Therefore exp iHs is a Bogoliubov transformation.

Since S(f, g) is invariant under this transformation due to [S, Hs]

=0, ¢s is t(exp iHs) invariant. Q.E.D.

Definition 3.2. Suppose that S does not have an eigenvalue 0. Let

Os be an infinitesimal generator defined by
(32) exp it@,s: Ts(exp itHs),

where Ts(+) is defined on s by Definition 3.6 of [17].

Lemma 3.3. Suppose that S does not have an eigenvalue 0 and
identify Ds, ns(A) and Qs with Opg, npasd) and Qp,. If A€ Rs then

(3.3) Tuy(0)AQn, = e OS2 A*Qy.
Proof. Let feD(S™Y2). Then
Tug(0)mn [ BI(fD0)Y)]12n=nn [BODI sf)") 12,
=r[B(A—8)"2S™ VI s fB0)")12n,
=e %"y [B((fDO)NT*2n,,

where we have used
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T Blk_(S™V2I s f)) 1R, =0

not only for f€(1—Ep)KsND(S %) but also for fe&E.Ks. By using
this result repeatedly, and by using the commutativity of Ty (w)7r /B
(fPO)YN)ITr(w) with e=®s"zy; [B((gP0)")Je®s'?, we obtain

(3.4) Tr (@) [ B{(rBOY) ] wr [ B((f2D0)N) 12m
=e %y [B(f2DONT* - mu [ B /LD T* 2r,

If the support of the Fourier transform of e'#s'f is in [ —I, I], then
e ?s/% is bounded by e ™'* on 7y [B((fB0)N) "2z, By the estimate
(5.5) of [17], we have the convergence of

(3.5) e OSPWs(f) Qny= > n!"1i"e= "2y [B((fB0YN "2
#=0
where f is assumed to be in Re K5 and Wg(f) denotes W, (f)=Wg,
{(fP0) PO0}). Therefore
(3.6) T”S(a))Ws(f).QnS=e’@S’ZWs(—f).Q”S.

A linear combination of Ws(f) such that e’”s’f has a Fourier trans-

form with a compact support, is dense in Rgs. Therefore
(e 05y, A*Qp )=, Tp(0)ALy,)

holds for any A€ Rs and ¥ in the domain of e~2s/2, This implies that
A*Q; . €D(e ®s'?) and (3.3) holds. Q.E.D.

Corollary 3.4. ¢s is a KMS state of (Ks, 1s, I's) for the auto-
morphism t(exp itHg).
Proof. This follows from the antiunitarity of Ty ().

Corollary 3.5. Let j(A)=Tp(w)ATy(w) for A€ Rs. Then (25,
4/(4)27)=0,

§ 4. Bilinear Hamiltonian

Lemma 4.1. Assume that 7 is non-degenerate. Let K, be finite di-

mensional subspace of K. Then there exists a I'-invariant finite dimensional
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subspace Ki of K such that KiDKi, and the restriction of the hermitian
form 7 to K is nondegenerate. Further, there exists a basis projection P
for (Ki, 1, I').

Proof. Let fi...f, be a linearly independent basis of K. Let K;=K;
+7I'K, and [} be a maximal linearly independent subset of fi+ 1/ f%,
i(fs—1I'fr), k=1, ..., n. f} is a complete set of linearly independent I’
invariant vectors of K.

Since f} is invariant, v(f}, fi,)*=7(f7, fi)=7U fi, T'fi)=—71
(f» fi,) and hence 7(f7,, f7,) is purely imaginary. In particular, 7(f7,
fi)=0.

If v restricted to K, is not identically 0, let f; and f}, be a pair
such that y(f}, f7,)=0 and set ey=f7, ea=i[7( [}, fi)) fin [i=Fi—
ir(es, fi)ei+ir(er, f7)es. Then e; and e; are I invariant, y(e;, ez)=
i and 7(e1, f7)=7(ez f7)=0. Apply the same procedure to f7. Repeat
this process until we obtain es;_jes, k=1...1 and f§*Y, 7>2[, such that
r(f$Y, iy =r(e,, fU1)=0, r(e;, €;)=0 unless (j, j)=(2k—1, 2k)
or (2k, 2k—1) and y(ezr_1, €2r)=1i, k=1, ..., L.

Next, let gz, £=1...s be a maximal linearly independent subset of
fi#*Y. Let by €K such that r(gi, h1)70. Let h{ be either one of
I'hy+hy and i(hy—1"hy) such that (g1, A))70. Let e21+1=h{—ik§ {r
(ezrs h1)ezp_1—7(e24-1, hi)ezry. We have 7(ez1, g)=r(hi, g1)70. Let
ez2=ir(e2:1, g) g1 and gr=gr—ir(ears2, gr)eu_1+ir(es1, gez o
Next apply this procedure to g,’,, k=2, ..., s. After repeating this process
s times, we obtain e; j=1, ..., 2/+2s such that I'e;=e;, 7(e;, €;-)=0
unless (j, j)=(2k—1), or (2k, 2k—1) and 7(e2-1, e2)=i, k=1, ...,
l+s. Further, the subspace K; of K generated by e;..-e3,2s and the
projection P defined by Pf=i;{r(e2k, flezr—1—7(eze-1, f)esr} have the
desired properties. Q.E.D.

Remark. We see from the above proof that if K has a finite dimension,

then dim K is even and there exists a basis projection P for (K, 7, 1).

Lemma 4.2. If v is non-degenerate, (K, v, I') is simple (as a
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* algebra) and has a trivial center.

Proof. Let 3 be a non-zero two sided * ideal of (K, 7, ") and A4
be a non-zero element of . A4 is a polynomial of B(f1), ---, B(fs) for
a finite number of fi...f,€K. Let K, be the subspace of K generated
by fi---f» and apply the preceding Lemma. A can be written as

N
(4.1) A= 2. B(e1)" 2y,
n=0
where £, is a polynomial of B(e.), k=2, 3, .... We may assume that

Pn+0 if A0. Let A;=2¢ if N=0 and 4;=[B(es), [---[B(es),4]--- 1]
(the N fold commutator with B(ez)) if N>0. Then 4, €3, A;=(—i)¥
N!2?y=+0, and A, no longer contains B(e;). Repeating this process, we
see that 1€ and hence § =A(K, 7, I'). Namely A(K, 7, I') is simple
as a * algebra.

Next, let 4 be a central element of A(K, 7, ') and (4.1) holds.
Assume that 2y==0. If N=-0, then we have Py= (N!)"}"[B(e,), [..-
[B(es), A7]-.-]=0, which is a contradiction. Hence N=0. Repeating this
reasoning, we see that A4 must be a multiple of the identity operator.

Q. E.D.

Definition 4.3. Assume that v is non-degenerate. Let H be a finite
rank operator on K satisfying

(4.2) Hf= J,‘Z_?lr(gj, i
for any feK. Then (B, HB)€A(K, r, I') is defined by
(43) (B, HB)= 3. B(/)B( &)

Remark. An operator H on K is called a finite rank operator if its
domain is K and its range has a finite dimension. Any finite rank
operator H can be written as Hf= ), e;,(f)f; for all f€K, where f;€K

i=1
and e; is in the algebraic dual of K. The trace of H is then defined by
n
(4.4) tr H= 'Zl ej(f,-)
i=

and is independent of the choice of f; and e; for a given H. If H is of
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finite rank, then AH is of finite rank for any linear operator A defined
on the whole K, and if H is given by (4.2), then

(4.5) tr AH= jé (a5 Af).

Lemma 4.4. Assume that 7 is non-degenerate. (B, HB) is indepen-
dent of the choice of f; and g; for a given H, is linear in H and satisfies

(4.6) [(B, HB), B(f)]=B(Hf)—B{H'Tf),
4.7) L(B, H'B), (B, HB)]=2(B, [a(H"), «a(H)]B),
(4.8) ¢s((B, HB))= ‘JE SUfi I g1,

(4.9) (B, HB)*=(B, H'B),

where H' is defined by
(4.10) r(fs H' @ =r(Hf, »),

which is equivalent to

(4.11) H'f= élr(fj, ei

if H satisfies (4.2), and

(4.12) a(H)=1/2)(H—-T'H'T),
which satisfies

(4.13) TFa(H)'T' = —a(H),

(4.14) (B, HB)=(B, a(H)B)—(1/2)tr H.

Conversely, if H satisfies

(4.15) T'H'l’'=—H,
then
(4.16) a(H)=H.

Proof. (4.11) obviously satisfies (4.10) and (4.10) uniquely specifies
H' by the non-degeneracy of 7. (4.9) follows immediately from (4.11).
We have
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(417 [®HB), B(NI= 5 BU1(gn £)+1U fn BT g)
=B(Hf)——B(FH*I“f)
where we have used the equality

(4.18) FH*rfzfjfjl g 1(f5 Ff)=j231 g (fi T'f)*

== 5 Tarfs /).

Further, we have (4.8) by (3.3) of [1] and (4.3). Suppose that the
same H can be written as in (4.2) in two different ways in terms of fj,
g; and f}, gi. Let K; be the subspace spanned by f; g, fi, & and K;
be as given by Lemma 4.1 Then (B, HB) given by (4.3) can be con-
sidered as an element of A(K;, 7, I'). Since K; has a finite dimension,
(K1)s=Kj, r5'is bounded and the right hand side of (4.8) can be written

as
(4.19) ¢s((B, HB))=tr{r5'(1—S)H},

which is independent of the choice of f; and g;. Since the center of A(K,
7, I') is trivial, (4.6) implies that (B, HB) is independent of the choice
of f;, g; for a given H up to a possible addition of a multiple of an
identity and (4.19) then proves that (B, HB) is independent of the choice
of f;, g; for a given H.

Since
(g, TH'D)' f)=y(I'H'T'g, f)=—1(I'f, H'T g)
=—vHI'f, I'g)=7(g, THTY),

we have (I"'H'I")'=I"HI" and hence (4.13) follows from (4.12). By (4.18),
we have
(4.20) (B, 'H'I'B)=—YB(I' g)B(f;)=—(B, HB)—tr H.
Therefore we have (4.14).

By (4.11) we have
By (4.6), we have ’

[(B, H'B), (B, HB) J=22{B(aH’)f;))B(I"g;) +B(f;B(a(H)I g;)}.
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By (4.13), we have a(H)[ g;=—ITa(H')'g; and hence
[(B, H'B), (B, HB)]=2(B, {a(H)H— Ha(H')}B).
By (4.14), this is the same as 2(B, [a(H’), a(H)B). Q.E.D.

Remark 4.5. (B, HB) defined by (4.3) and H' defined by (4.11) are

not uniquely determined by H for a general 7.

Lemma 4.6. For any choice of f; and g; satisfying (4.2), the for-
mulae (4.6), (4.7) and (4.8) hold, H' defined by (4.11) satisfies (4.8) and
(4.10), and c(H) defined by (4.12) satisfies (4.14). If v (f, Hg)=7(Hf, g)
for all f and g in K, then there exists a choice of f; and g; such that
H'" defined by (4.11) coincides with H.

Proof. First half follows from the computation in the proof of Lemma
4.4. For the second half, assume that r( f» Hg)=r(Hf, g) for all f and
g in K and H is expressed as Hf= Z (gl )f;. Let Hi=H—H",
where H' is defined by (4.11) using }J and gj. From (4.10) and the
assumption, 7(H.f, g)=0 for all f and g. Namely, the range of H, is
in the Null space of 7 (the set of f such that r(f, g)=0 for all g€Kkj).
Then H; has a representation Hif= Zr(g » f)f; where f7 is in the Null
space of 7. Then HI defined by (4 11) using f7 and g7 is 0 as opera-
tor due to y(f7, f)=0 for all f. Hence we have

Hf= j:&lT(gé, DI+ J@lr(gf, NI

H' using this representation is H. Q.E.D.

Lemma 4.7. Let g5 be a Fock type state. Let E, be the eigenprojec-
tion of Il for an eigenvalue 1/2. Let H be a finite vank operator on Ky
such that E,H=HE,=0. Then H can be represented by (4.2) with f;
and g; in (1—Ey)K, and (B, HB) defined by (4.3) and H' defined by
(4.11) do not depend on the choice of such f; and g;. If ru(f, Hg)=
ru(Hf, g) for all f and g, then H'=H.

Proof. Since H=(1—E,)H(1—E,), we may restrict our attention to
(1—Ey)K, where 7 is non-degenerate. Hence the present Lemma follows
from Lemma 4.4. Q.E.D.
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§ 5. Unitarily Implementable Bogoliubov Automorphisms

Lemma 5.1. Let H be a finite rank operator such that v(f, Hg)=
r(Hf, g) and I'H'=—H. Fix f; and g; in (4.2) such that H'=H and
define the corresponding (B, HB). Let ¢g be a Fock type state of (K, 7,
I). Then Dy=ny (K, 7, ') ]|2y is a dense set of analytic vectors for
wul (B, HB) . The unitary operator

(5.1) Qu(H)=exp(i/2)74[ (B, HB) ]
satisfies

(5.2) Qu(H) Wu( f)Qu(H)*= Wn(e™f)
for fE€Re K and

(5.3) Qu(H)7g(A)Qn(H)*=p(x(e™) 4)

Jor A€U(K, v, I'), where 7y(A) denotes the closure of wp(A).

Proof. We shall use Lemma 5.8 of [17] and identify 77(fP0) and 2%
with 7;(f) and £y5. By Lemma 5.5 (v) of [ 1], it is easily seen that 27
is cyclic for 7z(A(K, 7, ")) and hence we may also identify the whole
space 97 with Oy. It follows that D, is dense.

From (5.5) of [1] we obtain

(5.4) I7a[(B, HB) ¥ || <[ (N+2)(N+1)J"*6||Z ||

N

for a constant G independent of N, where ¥ € ), (Dp)n. Since 7y (B,
n=0

HB)] increases N at most by 2, we have

(5.5) 7z [(B, HB)'¥ || <[(V+2n)I NI~ JH26"||#].

Therefore, ), n!™'t"||n [ (B, HB) "¥||<oco for small >0 and such
¥ is analytic for 7y (B, HB)]. Since (B, HB)*=(B, HB) by (4.9), the
closure 7y (B, HB)] is selfadjoint and
(5.6) Qu(tH)¥ = n:ZJO n!=*{(it/2)na[ (B, HB)}}"¥

for sufficiently small ¢.

From (5.5) of [1] and (5.4), we also have the convergence of
(5.7) It m B G/ 2w B, HB}'Y
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for small ¢. Therefore Qp(¢tH)¥, ¥ €D, is in the domain of 7Z(B(f))
for small ¢ and (5.7) gives 7z(B(f))Qn(tH).
From the absolute convergence of (5.6) and (5.7) for small ¢, we

have absolute convergence of
(5.8) QuH)Y, 7r(B(f))Qu(tH)0)
= 2, (nlm)~1"="(t/2)"*™(¥, na[ (B, HB)"B(f)(B, HB)"]0)

nm

for @, ¥ € Dy, and small ¢. By re-ordering the summation, we obtain

(5.9) Zn! " (—it/2)"@, za{((B, HB), [ [(B, HB), B(f)]-- ]]}0)

n

= 2n!l"(—it)"(¥, ma[ B(H"f)]0).

Since (¥, mz(g)®) is continuous in g when g is restricted to a finite

dimensional subspace, (5.9) becomes

@, ma[B(Ln!" (—itH)"f)]0)= (¥, ma B(e™""f)]0).
Therefore we have
(5.10) Qu(tH)*zy[B(f)]Qu(tH)O=my[¥ (e " f)]0

for small ¢ and all ® € D,. Since a unitary transform of a selfadjoint oper-
ator is selfadjoint and n',,[B(e““Hf)] is essentially selfadjoint on D,, we

have

(5.11) Qu(tH)*za[ B(f)JQn(tH)=na[B(e ™ f)],

for sufficiently small . By using (5.11) repeatedly, we obtain (5.3) for a

general ¢ and for a general A.
From (5.2) of [1] and (5.3), we obtain (5.2). Q.E.D.

Lemma 5.2. Assume that 7 is non-degenerate. Let P be a basis

projection and K=Kp. Then
(5.12) (2p, Qp(tH)2p) =detp(Pe *HP)~112,

where detp is the determinant of PK and the branch of the square root is
determined by the continuity in t.
Proof. Let
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(5.13) F(&)=(2p, Qp(tH)2p).

Then

(5.14) 2/i)f'(£)=(2p, Qp(tH)np((B, HB))2p).
We decompose f; as

(5.15) fi=fit+fi

(5.16) fi=e H(Pe~ " P)~1 Pf;,

(5.17) 1= fi—fie(l—PK.

The operator C,=Pe "*#P is a bounded operator on PKp, because a
finite rank operator H is bounded on PKp. Since 7(f, g)=(f, g)pr for
/> g€ PK, we have

(5.18) C¥C;=C!C,=Pe'* Pe~ " P=PP'P
where
(5.19) P’ =¢tHpe—itH

is another basis projection. Since

(5.20) (fs PA—=P)Pf)p=71(Pf, (1—P)Pf)=0,
we have
(5.21) PP'P=P—P(1—P)P=>P.

Therefore (Pe ##P)~! is also bounded on PKp and
(5.22) oo > |detp(Pe " P)~! | =detp(PP'P) 1?40,

Therefore f; and f; are well defined and we have

(5.23) (B )*Qr(tH)* 2p =Qp(tH)*np (" f1)*2p=0,
(5.24) 7 (B(f1)2p=0.

Therefore

(5.25) F@)=G/2)k@) f@),

(5.:26) KO1= 3 [B(), B g)]
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N

=— j;l 7(gis f7)
=—tr H1—P){l—e "4 (Pe-"2pP)~1 P},
From I'H'I'= —H, we have
(5.27) tr Hl1—P)=tr H'PI'=Y1(g;, [ PT'f;)
=—Xr(I'f; Pl gj)=tr (FH'T")P)= —tr HP.
Hence

(5.28) k(t)=tr HP+tr H(1— P)e *#(Pe~"*Hp)-1p
=tr He ""H#(Pe-"*Ep)-1p

= i%tr rlog(Pe~"*HpP)

where the trace is taken on PK. Substituting (5.28) into (5.25), we

obtain

(5.29) f(©)=exp—(1/2)tr plog(Pe "*#P)=detp(Pe *¥P)~"?.  Q.E.D.

Corollary 5.3. Let ¢n be a Fock type state such that K=Kjy. Let
H be a finite rank operator satisfying v(Hf, @ =1(f, Hg), 'HI ' =—H
and EqH=HEy=0. Then

(5.30) (2, Qu(tH)Qy)=detp (E e #E,)1?

where E. is the eigenprojection of II for an eigenvalue 1.

Proof. Immediate from Lemmas 4.7 and 5.2.

Lemma 5.4. Let P, and P; be basis projections for (K, v, ). 1 is
necessarily non-degenerate. Assume that K is complete with respect to
Wflle,=7(f, @Pi—=1)f)'?, j=1, 2, and that the topologies by these two
norms are the same.

(1) Let 0(Py, P;) be a non-negative selfadjoint operator on K satisfying

(5.31) [sinh 6(Py, Py) P f=—(P1—P2)*f.

Such O(P:, P3) exists, is bounded and commutes with Py, P;, 1p=2P1—1,
7p,=2P;—1 and I'. 0(P1, P;) and O(P,, P.) are the same operator.
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(2) Let ’02=Sinh 0<P1, Pz), U1=COSh G(Pl, Pg) and u“j(Pl/Pz) be
bounded operators on K salisfying

(5-32) 1111(P1/Pz)=P1Flo, uzz(Pl/Pz):(l —P)F,
(5-33) ulz(Pl/Pz):(vlvz)”lPle(l—Pl),
(5.34) Uz1(P1/P3) = —(v1v3) '(1 — P1) P, P1.

where 1 —Fyy is the cigenprojection of 0(Py, P;) for an eigenvalue 0.

Such u;;(P1/P;) is unique and satisfies

(5.35) iy (Py/ Po)usi(Pr/Po) =8 5uss(Pr/ Py),
(5.36) w;(P1/Pz)*=u;(P1/Pz),
(5.37) T'uia(Py/ Py =up (PL/Py),
(5.38) P2=kjj= ey (=D (P P+ (= Fio)Py,
(539 1-Pem 2 v pren(—Dhan(Py/P)+ (1= Fio)(1—Py),
(5.40) 7puii(P1/Pg)=(—1)""u;(P1/Py)7p,
(3) Let

(5.41) H(Py/P;)= —i0(Py, Py)(u12(P1/P3)+ uz1(P1/P2)).

Then H(P,/Py)'=H(P,/P;), H(P,/P;)*=—H(P,/P;) (* is relative to
(fs ®er), TH(P/P;)H= —H(P,/P),

(5.42) U(Pl/Pg)exp iH(Pl/Pg)=l71+ UIl[Pl, Pz:}

is a Bogoliubov transformation for (K, 1, 1), and

(5.43) U(Pl/PZ)TPlU(Pl/PZ):PZ-
Proof. (1) Since P; is bounded with respect to the norm || [[p, it
is also bounded with respect to the norm || ||p. Therefore (P1—P;) is

bounded. The operator on the right hand side of (5.31) can be rewritten

as
(544) '—(Pl—Pz):= "—Pl(].—Pz)Pl—‘(l—'Pl)Pz(l"—Pl).

Since (f, Pl(l'—PZ)Plf)Pl:T(Plf) (I*Pz)Plf)éo for fEK and (1—P1)
P,(1—P)=I'P,(1—P;)P,I", we have —(P;—P;)?=>0. Hence there exists
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a nonnegative selfadjoint operator @(Py, P;) satisfying (5.31). (P,—P;)?
obviously commutes with /. It commutes with P; due to (5.44). By
symmetry, it commutes with Ps.

Let K=max {||(P1—P2)%||p, [[(Pi—P2)?||p,}. Let fu(x) be a sequence
of real polynomials of x such that

lim sup _ | fo(x)—sinh Wx | =

n—oo x&[0,K
Such f, exists due to the Weierstrass approximation theorem. Then
0(Py, Py)= }limfn(—(P1—Pz)2>:0(Pz, Py).
(2) We see that (5.33) is partially isometric by the following com-

putation :
{PP;(1—P)}*PP;(1—P1)= (1—P1)rpPerp P1P:(1—P1)
=—(1—P)P;P,P;(1—P)={(P,—P)* —(P.—Py)*}y(1—P,)
=033l —Py).

We also see that uz(P1/P;)=1"1,,(P,/P,)I" is also partially isometric and
(56.35) holds. From P¥=P;, Pf=rpPsrp, Pirp,=P1 and (1—Py)7p=
—(1—P;), we have (5.36).

Since Py PP, +(1—Py)P,(1—Py)+ P, P;(1—Py)+(1—P,)P;P,=P; and
P,(1—Fyp)=P,(1—F,,), we have (5.38) and (5.39). (5.40) follows from
rpPi=P; and (1—P))yp=—(1—P).

(8) From (5.36) and 6 (P, P;)*= 6(P,, P;), we have H(P,/Py)*=
—H(Py/P;). From (5.40) and [7p, 0(P1, P2)]=0, we have H(Pi/P;)'=
rp,H(P1/P2)*rp,=H(P:1/P;). From (5.37) and [0(P:/P3), [ ]=0, we have
I'H(P,/P,)[" = —H(Py/P;). Since (ui2(Pi/Pz)+us(P1/P3))?=Fy,, vi(1—
Fi9)=(1—F10),[ P1, P;]J(1—F10)=0, and u,2(P1/P;)+uz(P1/P3)=(v1v3)""
[Py, P, ], we obtain (5.42).

Finally we have
U(P1/Py)' =715 U(P1/P2)*rp, =v1—vi '[P, P2,
U%+P1[P1, Pz]_[Ph Pz:lpl"ﬂfz[Pb PZ:IP1[P1, P2]=P2-

Hence we have (5.43). Q.E.D.
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Lemma 5.5. Let P, and P; be basis projections for (K, v, ). As-
sume that || |i;, j=1, 2, give the same topology, with respect to which K
is complete and that 0 (P, Py) is in the Hilbert Schmidt class. Then

there exists a unique unitary operator T(Py, P;) on £p, such that
(5.45) T(Py, Po)*np(A)T(P1, Pp)=mnp(c[U(P:/P2)]A),
(5.46) (2p, T(P1, P2)R2p)=detp[sech (P, P2)]""2.

Proof. Let F;, be the spectral projection of O(Py, P;) for the infinite
interval (r, o) relative to the inner product (f, g)p. Then H(Py/P)F;,
is of finite rank for r>0. Therefore it is of the form (4.2). Since 0(Pi,
P;) commutes with /°, Py and 7p, F1, commutes with them and (H(P,/P;)
Fi)'=H(P\/Py)Fy,, I'pH(P\/P)F:,I'p=—H(P1/P;)F;,. Let

(5.47) U,=exp i H(P,/P,)F},,
(5.48) P,=U!P,U,

(5.49) T,=Q(H(P:/Pz)F,).
(5.50) ar=(2p, T;2)|(2p, T;2p)| 7"
(5.51) T,=atT,.

From (5.12) and (5.22), we have
(5.52) (2p, TF2p)=1|(Lp, (T})*L2p,)]
=detp (P {P:F1,+(1—Fi,)} )~
=detp[ sech{0(Py, P;)F:,} ]2

In particular, it does not vanish and hence «, is well defined.
If 6(Py, P;) is in the Hilbert Schmidt class, then 1—sech 0(Pi, P2) is
in the trace class and

(5.53) 11_{{)1(5?1:1, T}2p)=detp[sech O(P1, P2)]"*>0.

Further

(5.54) (T} 8p, TF2p)| =|(2p, QH(P/P;)[ F1,,—F1,1)2p,)]
=detp[ sech{0( Py, P;)(Fy, —F;,)} 1?1
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as r, r'—0.

Setting &, =(TFp, TF2p)|(T}8p, TF2p)| ", we see from (5.54)
that T%2p —af, TF82p—0 as r, r'—0. Substituting this to (5.53), we see
that aff,—1 as r, r'>0 and hence T}2p is a Cauchy sequence as r—0.

Let
(5.55) Rp,=lim T}2p,

r—+0

We now have
(5.56) (85, Wp(f)25,) =rli}}3 (8p, Wp(c(U,) f)8p,)

=(2p, Wp,(f)2p).
Since {Wp(f)} is irreducible, £p, is cyclic and the vector state of 7p
QUK, 1, I) by 25, is ¢p,
Let T(Py, P;) be a closed linear operator satisfying
(5.57) T(Pr, PYWr(f)2p,=Wp(c(U}) )25,

Since the mapping defined by (5.57) is isometric and the range is total,
such T(P;, P;) exists as a unitary operator.
We have (5.45) from (5.57) and (5.46) from (5.53). Q.E.D.

Corollary 5.6. Let U be a Bogoliubov transformation on K and P
be a basis projection. Then v(U) is unitarily implementable on Dp if PU
(1—=P)U'P is in the trace class on Kp.

Proof. Let UPU'=P’, Uy=U(P/P), U;=U(P/P)U. Then U=
U IUZ. Since U, commutes with P, ¢p is invariant under U, and t(U;)

is implementable by a unitary operator Tp(U,;) on Op:
(5.58) Tp(Uz)m o (A)To(Uz)* = p(r(Us) A).

Because PU(1—P)U'P= —(sinh 6(P, P))?P is in the trace class,
I'PUQ1—P)U'PI'= —(sinh 0(P, P))?>(1—P) is also in the trace class and
hence 6(P, P') is in the H.S. class. Then T(P, P’) implements t(U")
and T(P, P)Tp(U,) implements t(U). Q.E.D.

Lemma 5.7. Let (f, g)1 and (f, g)2 be positive definite inner products
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on K such that K is complete with respect to both || f|li=(f, f)i'? and
I flle=C(fs f)}'% and the two norms give the same topology on K.
(1) There exists a bounded linear operator @ on K with a bounded

inverse a~' such that

(5.59) (fs @:2=(af, agh.

(2) A bounded linear operator Q on K is in the Hilbert Schmidt
(vesp. trace) class relative to (f, g)s if and only if Q is in the H.S. (resp.
trace) class relative to (f, gh.

(3) If Q is in the trace class, the trace of Q relative to (f, g)1 and
(fs )2 are the same.

Proof. (1) 1If there is no positive a such that || f|l.<la||f||: for all
S €K, then there exists a sequence f, such that || f,|li=1 and || fu||.=n.
Then ||f,/n|;—>8 while || f,/n|lz=1 does not tend to 0. Hence, under
our assumption that the two norms induce the same topology on K, there
exists a>0 such that || f|[;=<al|f||; for all f€K. Similarly there exists
a’>0 such that || f|i=Sa/||f||z for all f€K.

Since |(f; )2 =il fll2llgllz=<<a?®|| fll1]| gl|:, there exists by the Riesz
theorem a bounded linear operator «, such that

(fa g)2: (fs aOg)l-

Since (f, g): is hermitian and positive, ¢, is hermitian and positive rela-
tive to (f, g)i. Setting a=(ao)'’?, where the positive square root is
taken relative to (f, g)1 we obtain (5.59) and a@=a*>0 relative to (f,
g)l-

From (f, &®f)i=|fll3=(a")2l|f|l}, we obtain a’>(a’)"? and a=
(a")7! relative to (f, g)1 and hence || !||;<{a’. Namely « has a bounded
inverse.

(2) Assume that {eg} is an orthonormal basis of K relative to (f,
D1 Let eg=a'es. Since ' has a bounded inverse and {eg} is total,
{ep} is also total in K. Hence {ep} is an orthonormal basis of K relative
to (f, g

Let Q* denote the adjoint of Q relative to (f, g): and |Q|; denote
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the absolute value of Q relative to (f, g);. We have |Q|}=Q*Q. From
(f, Qg)2=(f, *Qen=Q*a*f, gh=(a*Q*a’f, g):, we obtain |Q|}=
atQ*a*Q.

Assume that Q is in the H.S. class relative to (f, g);. Then tri|Q|}
EZﬂ“Qe;&”%< oo, It is then known that aQa ' is also in the H.S. class

relative to (f, g):. Hence

(5.60) tr2] Q1= T Qe l§= T(eh, a*Q*aQep):
= ;(6/9, a'Q*a*Qa ep)
=tr;(aQa ) *(aQa ) < oo.

and Q is in the H.S. class relative to (f, g)a.

Next assume that Q is in the trace class relative to (f, g). Let Q=
W;|Q|; be the polar decomposition of Q relative to (f, g);. Let W, be
the adjoint of W; relative to (f, g);. Then W,Q=|Q|;. W; and W; are
bounded. Hence |Q|.= W,W1|Q|: is in the trace class relative to (f, gh

and so is a|Q|.a”!. We now have

(5.61) trlelz=§(e/’sr, |Q]2¢5)2
= ;(eﬁa a|Q|a e
=tri| Q| 1< 0.

Therefore Q is in the trace class relative to (f, g)2.
(3) The computation of (5.61) shows tr,Q=tr;Q for any Q.

Lemma 5.8. In Lemma 5.5, (P, Py) is in the H.S. class if and
only if Py—P, is in the H. S. class.

Proof. 1f Pi—P, is in the H.S. class, —(P;— P;)*=sinh?d (P, P,)
is in the trace class and hence (P, P;) is in the H.S. class. If 6(P;, P;)
is in the H.S. class, then P;—P, is in the H.S. class, as is obvious
from (5.38). Q.E.D.

§ 6. Quasi-equivalence for Non-degenerate Case

In this section, we shall be concerned with S and S which do not
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have an eigenvalue 1/2. Since the corresponding IIs and ITs- give Fock

states, we shall denote Ps and Pgs- instead of IIs and Is-.

Definition 6.1. Two quasifree representalions ws and Ts- are quasi-
equivalent if there exists a (homeomorphic) x isomorphism p from Rs=
AWs(f); f€Re K}’ onto Rs:={Ws-(f); fE€Re K} such that pWs(f)
=Ws.(f) for all f€ReK.

Lemma 6.2. Let ¢s and ¢s- be quasifree states of WK, v, I') such
that S and S do not have an eigenvalue 1/2. Assume that the following
3 conditions hold:

(1) Ns=Ns..

(2) The topologies induced by || flls and ||fl|ls: on K are equivalent.

Identify Ks, vs, I's with Ks-, vs., I's: by the closure of the identi-
fication map fe€Ks—fe€Ks for fEK. Identify Kg, 15, I's with K,
15 I's through definitions (6.1)~(6.3) of [1]. Identify Ks, Ts, ['s with
Ks:, 754 I's: due to Lemma 6.1 (6) of [1].

(3) Ps—Ps is in the Hilbert-Schmidt class on Ks=Ks.

Then ws and ws- are quasi-equivalent.

If S and S do not have an eigenvalue 0 in addition, ¢s and @s-
are unitarily equivalent.

Proof. (1)~(3) imply the unitary equivalence of (Dpy, 7p,, £p;) and
(Drpg.» TPy, 2p;.) due to Lemma 6.1 (6) of [1], Lemmas 5.5 and 5.8.
The vector £p, and £p,, are separating for the center of Rs and Rs- by
Lemma 2.5. Therefore s and mg,, which are restrictions of 7wp, and
Tp,, to a subalgebra, are quasi-equivalent.

If S and S do not have an eigenvalue 0, then £p and 2p, are
cyclic for Rs and Rs.. Hence ws and 7. are unitarily equivalent.

Q.E.D.

Lemma 6.3. Let &, be the set of positive semidefinite hermitian
forms S on K satisfying (3.4) of [1] and such that the associated operator
S does not have an eigenvalue 1/2. Define the quasi-equivalence S~S' by
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the requirements (1)~(3) of Lemma 6.2. Then this is an equivalence
relation.

This is obvious from the form of requirements (1)~(3).

If Ns=Ns/, S and S’ do not have an eigenvalue 1/2 and dim (K/
Ns)< oo, then we have a representation of canonical commutation relations
for a finite degree of freedom and hence all representations are quasi-
equivalent, a well known result of von Neumann. Hence we have a com-

mon W * algebra Rs=R;- generated by Ws(f), f€Re K, and ¢s can be
viewed as the unique state of Rs=Rs- satisfying ¢s(Ws(f))=(2s, Ws
for

(f)2s). This makes it meaningful to speak of the norm ||¢s—¢s
such S and §'.

Lemma 6.4. Let @5 and ¢s- be quasifree states of (K, v, ") such
that Ns=Ns. and S and S’ do not have an eigenvalue 1/2 nor 1. Assume
that dim (K/Ns)<oco. Then

(6.1) llgs—@s- 22{1—detpS(PSPS,PS)~1/4}'

Proof. Let w be as in Lemma 2.1. (2.3) and (2.4) imply [, 75 ]=0
and hence [w, Ps ]=0. Since » is the same for S and S’ in the present
case, we also have [w, Ps-|=0. This implies wH(Ps/Ps-)= —H(Ps/Ps-)o
and t(w)(B, H(Ps/Ps)B)= —(B, H(Ps/Ps-)B). Hence we obtain

(6.2) [ Try(w), Qp {H(Ps/Ps,)} ]=0.

Therefore, 2ps and 2'=Qp {H(Ps/Ps/)}*R2p, are invariant under Tp(w)
and vector states of the representation 7(B(f))=np[B(fPH0)], f€K of
UK, v, I') by Lp; and £’ are ¢s and @s-.

By Lemma 6.5 of [2], Lemma 3.3 and Corollary 3.5, we obtain

=2(1—[(2p, 2)D).

(6.3) llos—g@s

By (5.46), we obtain |(2p,, £')| =detp,(PsPs-Ps) ''* and hence (6.1).
Q.E. D.

Lemma 6.5. Let S and S’ be hermitian forms belonging to &y such
that NS=NSI and Ts=Ts"% Let
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(6.4) x(S)=Tanh '28"%(1—S)!?, g(S)=[25—1|"'(2S—-1),
(6.5) x(S)=Tanh *2(8N*(1—8)'? a(S)=|25—1]| (28 —1).
Then e XSeXS) gnd e XS7ex(S) gre bounded and the following condi-
tions arve equivalent:

(1) Ps—Pgs. is in the Hilbert Schmidt class.

(2) 1—0(8)e *DexS(S") is in the Hilbert Schmidt class.

3) 1—0(8)e *Sexg(8) is in the Hilbert Schmidt class.

Proof. For each feKs, let

(6.6) IIfH?sE“gs"t;gll(f, rs&s|=2S—1)flls

and K% be the completion of Ks relative to (6.6). Let (f, g)5k=(f, (2S
—1)?g)s. Consider K5=Ks@®K?% equipped with an inner product (1D &1
2P g2)s =(f1, fo)s+ (g1, g% If ts=r1s, Ks is identified with K.
Since (f, rsg)s=(f, rs'g)s» K% can be identified with K% and hence
K5 with K.

The mapping from f€Ks to (25§—1)f € K is isometric as a mapping
from K% into Ks. Since |2S—1|=sech x(S), eX®|28—1|=2[1+
e 2x(9)7]"1 i5 bounded above and below by 2 and 1 both on K and on K%.
Hence the closure of e *®) is a bounded mapping from K% onto Ks and
its inverse is a bounded mapping from Ks onto K%. We shall denote the
closure and its inverse again by e X and eX*®, A similar statement
holds for S’. Hence e X®eX(5) and e ¥S7ex(5) are bounded on K.

Due to
(6.7) 2(1 gl =ILS"*+ Q=" f+ o3
+{ICS"2+A =) - 2IIEr°
and v 2 =>S"?+(1—S)"?=>1, the mapping vs from fPHgEKs to (f+g)
D(f— g)Eng and its inverse are bounded, where f and g are in K.
Let o5 be the closure of vs, which is a bounded mapping from Ks onto

Kg with a bounded inverse. Obviously ts=1g-.

By a direct computation, we have

1 e"“s)O'(S)}

(6.8) ZﬁSPSi:gl:Ii
eXS)g(S) 1
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Hence the condition (1) is equivalent to the following two conditions:
()a(S)e x5 —e~x(59g(§") is in the H.S. class as a mapping from K%{=
K% into Ks=Kgs.. (B)(S)e*S)—eXS7¢(S’) is in the H.S. class as a map-
ping from K into K%. Here a mapping Q from a Hilbert space H; into
another Hilbert space is in the H.S.class if ) ||Qekl|3<<co where ek
is a complete orthonormal set on H; and the noro;n is in H,.

Since [|Qf|%/lle™*9)Q fl|s is bounded below and above uniformly, (3)
is equivalent to the condition (2). The condition (2) implies that e X¢S"
0(8)—e *g(S)=1—0(S) e *SexSg(8)) e x5 (S") is in the H.S.
class as a mapping from K% into Ks (cf. Lemma 5.7), and hence ().
Namely (1) and (2) are equivalent.

By symmetry, (1) and (3) are equivalent. Q.E.D.

Remark 6.6. From the above calculation, we have
(6.9) 4i|Ps—Ps||}.s. = ||B[1—0(S)e *DeXg(S) 18 % s.
+IBL1—a(S8)e *exNa(S) 187 4. s.

where the H.S. norm is relative to (f, g)§ on the left hand side, relative
to (f, g)s on the right hand side and

B=V2[1+exp—2x(S)] "*¥(=S"2+(1—S)"?)

satisfies 1<{8<V' 2. As a consequence

(6.10) |Ps—Ps/

b5, =(1/8)11—0(S)e X0 ( )% s.

Lemma 6.7. Assume that K is separable. Let S and S’ be in S,.
Assume that S and S' do not have an eigenvalue 1, Ns=Ng., t5s=Tg-
and Ps—Pg. is not in the H.S. class. Then there exists a sequence of I
invariant finite dimensional subspaces K, of Ks such that hermitian forms
Si(fs @=(f, Sg)s and S,(f, =(f, S's f» gEKa, satisfy lim||gs,
—gs,ll=2.

Proof. Let E, and E, be the spectral projection of S for intervals
[1/2,1] and [1/241/n, 1], n=3, 4, ..., respectively. Let f, be a com-
plete orthonormal basis of E,Ks relative to (f, g)s such that E,f,=f,
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or 0 for all n and . For any subset A of «, let K(A) be the subspace
of Ks=Kys- spanned by f, and ['f,, « €4 and E(4) be the orthogonal
projection on K(A) relative to (f, g)s. Let I, be the set of a such that
E,fo=f. and I denote any finite set of c.

Let 7(f, )=/, Ts&)s(=(f, Ts-)s). Let S(4) and S(A) be the
hermitian forms on K(4), defined by S(A)(f, g)=(f, Sg)s, S(A(f, g =
(fs S'g)s. The restriction of 7 and I's=I"s. to K(A4) are denoted by
the same letters.

By constructicn of Ks, Nswy= Ns/ay=0. Since 7(fu, {'sfa)=0,
7(Zcafar, Zcafa) >0 for Zeafa#0 and 7(Fcal fo, Zeal fo) <0 for
Zeol fo70, we see that S(4) and S(A") belong to &, for (K(A), 7, I's).
We have S(A)E(A)=E(A)SE(A) and S'(A)E(A)=E(A)*S'(4A)E(4), where
E(4)* is the adjoint of E(A) relative to (f, g)s~. Since ts=ts-, there
exists an operator a with a bounded inverse such that (f, g)s-=(f, ag)s
and « is hermitian and positive relative to (f,g)s. Then E(A)*=
a 'E(A)a.

We have lim E(J)=E(I,) and hm E(I,)=1. Hence lim lim S(I)E
(IN=S and hrnT llm S(DHE(I)=S' (as strong limits of ope1nat6r1:s[)" Since
[E(,), S= 0 and x(S)E(I,,) is bounded, we have lim {0(S(I)) exp x
(SUNYEUI)=(0(S)exp x(S)E(L,). (If f(x) is plecewlsél continuous and
its jump points are not eigenvalues of (, then lim Q;=(Q implies 11m f
(@D =£(Q). [8]) We also have lim {o(S'(I)exp—2(S'(I}YE)={o(S (In))
exp—x(S'(1,)} E(1,)) and llm lO-(S (In))exp— x (S'(I.)} E(I,) =0 (S")exp
—x(S’). Since ,[a"lll‘lE(A)gE(A)aE(A)g||a[|E(A), sech x(S'(A4)) cosh
% (S(A)) =[E(A)aE(A)]* (on K(4)) and its inverse are uniformly bounded.
Hence e X®@exSU) and  its inverse e ¥SIexS'UN  are  uniformly

bounded due to 1/2<e*cosh x=<1 and hence
(6.11) lim lim 0(S'(I))e ¥ WexSIg(S(T))
n Itl,
=0(8)e XSexS)g(8),

Since x~' is continuous for xz €[ |la||™", |l@~!||J, we also obtain as an in-

verse of (6.11)

(6.12) lim lim 0(S(1))e XS xS g(S'(1))=0(S)e ¥ eXS5(S").
n ItI,
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We now have

(6.13) lim lim ||(1 —0(S(I))e XS xS Wig(S'(1))||z. s.
n Itl,
>|1—0(S)e XSexSg(S)|| g 5. = o0,

where the H.S. norm is relative to (f, g)say(=(f, g)s for f, g€ K(I)).
By Remark 6.6, we have hm hnll [|Pscy— Ps/ryllm.s. =o where the H.S.
norm is relative to (f, g)S(l) Since det Q=1+tr(Q—1) for Q=1, we

obtain

(6.14) lim lim detps(l)(PS(I)Ps ([)PS([)) =0.

m ItI,
Hence we can find a finite set I(n) such that ||@sumy— @s umyll=2[1—
(1/n)] due to Lemma 6.4. Q.E.D.

Lemma 6.8. Assume that K is separable. Let S and S’ be in &,.
Assume that Ns=Ng:,, ts=tg and tr(Ps—Ps/)*=—oco. Then ms and
s are not quasi-equivalent.

Proof. First assume that S and S’ do not have an eigenvalue 1.
Then £p, and Lp,, are cyclic and separating by Lemma 2.3. Hence, if
ws and mgs. are quasi-equivalent, they are unitarily equivalent and there
exists a unitary mapping W, from ©p, to Dp,, such that W Ws(f) W=
Ws-(f) for all f€Re K. By continuity, we have

WoWe (fEOWst=We . (fD0)

for all f€ Ks=Ks.

Since the set of W’'2p; with isometric W’ in (Rs)" is total, there
exists such W’ satisfying b=(W'Qp, W;'82p,)7#0. The vector states of
Rs by £p; and 2p,, are denoted by ¢s and ¢s- (cf. Lemma 6.4). Then

(6.15) los—osll<2(1—[b]%)!2=2—0.

We now have a contradiction because there exists a I  invariant
subspace K, of Ks such that the restriction of ¢s—@s- to the subalgebra
generated by Wp(fD0), f€K, has a norm larger than 2—0, due to
Lemma 6.7.

For the general case, let E; be the eigenprojection of S for an
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eigenvalue 1 (relative to (f, g)s) and x be a positive Hilbert Schmidt

class operator on E1Ks. Let
(6.16) 510:S+(—1+C05h2 x)El—I-fs(sinhszl)Ts,

(6.17) Si(fs @=(f, S108)s, f>g€K.

Then S; is in &, for (K, 1, ). We have N5 =N,

(618) (fa g)sl—”—(f, {1+(COSh zx_l)(E1+rSE1FS)} g)S>

for f, g€Ks, vs5,=7s and

(6.19) S1=S8+(—1+cosh®x sech2x)E; + I s(sinh®x sech2x)E,[ s,
(6.20) x(S1)=x2(S)+2x(E,+ ' sEis).

Note that 2(S)=0 on E;KsPI sEKs. Hence we have

(6.21)  |11—0(S)e *DeX50g(S)%. 5. =2[|(1—e*)E1|}.5. < oo,

By Lemma 6.2, ms and 75, are quasi-equivalent. By (6.19), S; does
not have an eigenvalue 1. By Lemma 6.5, S;S;. Similarly, there exists
S1 €&y such that S; does not have an eigenvalue 1, 7, and 7s  are
quasi-equivalent and S';S;. Since Ps,—Ps;=Ps—Ps-—(Ps—Ps)+(Ps-
—Ps}) is not in the H.S. class, 75, and 7] are not quasi-equivalent by

preceding conclusion. Hence 75 and mg- are not quasi-equivalent. Q.E.D.

Lemma 6.9. If S and S are in €, and quasifree representations
Ts and mws. are quasi-equivalent, there exisis an operator E on Ks=Kg-
such that E commutes with S, S’ and I', is an orthogonal projection rela
tive both (f, g)s and (f, g8)s, Sf=Sf and (g, f)s=(g, f)s: for f€
to (1—E) K and EKs is separable.

Proof. Since ts5=rts- due to the quasi-equivalence of 75 and ms,
there exists an operator & with a bounded inverse such that (f, g)s-=
(af, ag)s for all f, g€ Ks=Ks- and « is hermitian and positive relative
to (f, &s-

We can construct inductively a separable subspace K, of Ks for each

ordinal #< s in such a way that K, is mutually orthogonal relative to
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both (f, g)s and (f, g)s’, invariant under S, S’, /" and « and Ks=PK,.
The construction of such K, proceeds as follows: Assume that K., #' <gu,
be given. If the orthogonal complement, relative to (f, g)s, of the union
of K., #'<u, is 0, then set g=us. Otherwise take a vector f, from
there and let K, be the subspace of Ks spanned by Qf, where @ runs
over arbitrary polynomials of «, S, S’, /" and 1. The required properties
are satisfied inductively.

Let E, be an orthogonal projection onto K, relative to (f, g)s. (1—
E,)Ks is spanned by the union of K, #'5~x, and hence E, is hermitian
relative to (f, g)s- due to the « invariance of each K.

Corresponding to the decomposition Ks=(PK,, we have the decomposi-
tion Ks=@K,. Let E',L be the orthogonal projection onto K, relative to
(f> &s- By similar reason as before, Eﬂ is hermitian also relative to (f,
g)s- and commutes with Ps, Ps. and F's. Let P, 7, I", be the restric-
tions of Ps, 7s, r s to Ks. Let . T,y £, be the Fock representation of
QI(IZ,L, T s r ») corresponding to the basis projection P,. Then Dp, Zp, is
(unitarily equivalent to) the incomplete infinite tensor product &Q(9,, £,.)
and Wp (f)=QWp,(f.) for f=Qf,.

Any normal state ¢ of Rs={Ws(f); f€Ks} is a countable sum of
vector states. Each vector in DsC9p, is a countable linear combination
of product vectors. Each product vector has a form Q¥ , where all ¥,
except a countable number is £,. Therefore there exists a countable set
A of p for each normal state ¢ such that @(Ws(f))=(2sWs((1—
EYN2s)p(Ws(Ef)) for f€Ks where E=#§AE,L.

If s and 7s  is quasi-equivalent, then (2s/, Ws(f)f2s/) has an ex-

tension to a normal state of Rs and hence
(25, Ws(f)Rs)=(82s, Ws((1—E)f)25)( 25+, Ws(Ef)Ls").
This implies that
(6.22) S(f, =S(1—-E]Jf,[1-E g+ S(Ef, Eg)

and hence E has the required properties. Q.E. D.
Theorem. Two primary quasifree representations Ts and Ts- are

quasi-equivalent if and only if the following 3 conditions hold:



CanonicaL COMMUTATION RELATIONs (11) 151

(1) Coincidence of the kernmel: Ns=Ns.. (Ns is the set of f€K
such that S(f, f)+SUI'f, I'f)=0.)

(2) Coincidence of the induced topology: ts=ts. (Ts is the topology
induced on K/Ns by || flls=LS(f, f)+SUTf, ['F)IV2)

(8) 1—e XSeXST s in the Hilbert Schmidt class, where %(S)=
tanh2SY%(1—S)''2, S is defined by S(f, g)=S(f, Sg)+ SUf, I'Sg) and
the positive square root is relative to (f, g)s=S(f, g+ SUf, I'g).

The condition (3) is equivalent to the condition that Ps— Ps. is in
the H.S. class.

Proof. By Lemma 2.4, a quasifree state ¢s is primary (i.e. Rjs is
a factor) if and only if S does not have an eigenvalue 1/2 (i.e. SE&,).
Since Ws(f)=1 if and only if f€Ngs, the condition (1) is obviously
necessary. By Lemma 6.4 of [ 1] and due to the equivalence of topologies
induced by quasi-equivalent representations, the condition (2) is necessary.
The equivalence of (3) and an alternative condition is in Lemma 6.5. By
Lemmas 6.9 and 6.8, the condition (3) is necessary. By Lemma 6.2, the

three conditions are sufficient. Q.E.D.

Corollary. A Bogoliubov transformation U is wunitarily implementable
on a Fock representation mp if and only if P— UPU" is in the H.S. class.

Remark. In general, the condition (3) is not equivalent to the condi-
tion that S*?—(S)'? is in the Hilbert Schmidt class. They become

equivalent if x(S) is bounded.
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