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Abstract

A nece?sar> and sufficient condi t ion for the q u ? H - e q u i v a l e n c e of two quasifree
primary representations of the canonical commutation relations is derived.

§ 1. Introduction

A quasifree state of the self-dual CCR algebra 2f.(^3 Y, F\ which is

a slight generalization of conventional canonical commutation relations, has

been discussed in the preceding work Ql], In the present paper, we

derive a necessary and sufficient condition for the quasi-equivalence of

representations associated with quasifree states, when the representation is

primary (i.e. the associated von Neumann algebra is a factor).

We believe that the following features of the present analysis is worth

mentioning.

(1) Despite of many marked differences on mathematical structure

between the present case of CCR and the case of CAR Q2], such as

unbounded B(/) for CCR and bounded B(/) for CAR, the indefinite met-

ric T f°r the test function space K of CCR and the definite metric for

K of CAR, and the difference in the details of the final statement, the

two cases can be treated by essentially the same technique, yielding quite

a similar results.

(2) For CAR, there is a unique C* norm for the * algebra generated

by B(/). In the present case, there is no intrinsic topology in the *

algebra generated by B(/). As a result, the topology induced by the

representation plays an important role and serves as an invariant in the
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quasi-equivalence classification of quasifree states.

(3) On a Hilbert space of a definite metric, natural vector topologies

are induced by the metric. On a Hilbert space of an indefinite metric,

the natural topology is generally too weak. Indeed, it is the weak topology

by its algebraic dual in the present case. It seems that a Hilbert space

with an indefinite metric equipped with a certain class of vector topology

is more canonical object to study. Problems concerning the structure (K,

f, 7") and Hilbert Schmidt class operators on K, which we have treated

with a help of ordinary tools on a Hilbert space with a definite metric,

might serve as a testing ground for any general theory of a Hilbert space

with an indefinite metric.

The study of quasifree states is probably of no direct physical interest.

However, we know an example of the mathematical structure of free Bose

gas analysed in j^3j, which turned out to be common to a large class of

systems E4~7]. Our hope is that a complete analysis of CCR and CAR

in the present paper and in Q2] presents similar useful examples.

In section 2, we obtain simpler properties of the von Neumann alge-

bra associated with quasi-free states. In section 3, a quasifree state is

viewed as a KMS state relative to a Bogoliubov automorphism. In section

4, a bilinear Hamiltonian is introduced which is used in section 5 to discuss

the unitary implementability of a Bogoliubov transformation on a Fock

type representation. In section 6, a necessary and sufficient condition for

the quasi-equivalence of two quasifree primary states of CCR is obtained

as the main Theorem.

We shall freely use the notation in

§ 2. Simple Properties of von Neumann Algebras

Associated with Quasifree States

Lemma 2.1. Let a)' be a mapping of Kf
s onto itself given by

(2.1)

o)f leaves N's invariant and induces a mapping a) of Kf
s/N

f
s onto itself.

Its closure, denoted again by a), as a mapping of Ks onto itself is an
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antilincar involution satisfying.

(2.2) [>, F5] = 0,

(2.3) (u)hi, coh2)s
:=(h2i hiTs,

and

(2.4) f s ( a h i , (J)h2^) = fs(h2, hi).

Let r(co) be a mapping of S'/1C5, Ys> /s) onto itself given by

(2.5)

zY zs # conjugate * automorphism. There exists an antiunitary in-

volution THS(O)) on feff^ uniquely determined by

(2.6) T^»7r^,(^)^ = 7r^(r(a))^)^6,

Proof. From the definition (2.1), if follows that a)' is an antilinear

involution leaving N's invariant and hence the same is true for a). (2.2)
follows immediately from [V, FS^ = 0. (2.3) follows from the antiuni-
tarity of Fs relative to (/, g) s and (6.4) of [1]. (2.4) follows from

(6.2) of [i] and rsrsrs=-rs.
By the antilinearity of a), (2.2) and (2.4), r(o)) defined by (2.5)

preserves the three relations in the definition of a self dual CCR algebra

(Section 2 in Ql]) and hence r(co) is a conjugate * automorphism.
Due to (2.3) and (2.4), we have <pns(r(_(ji))A) = (pns(A}*i from which

the existence of Tffs(a>) follows. Q. E. D.

Lemma 2.2. The set of h^Ks satisfying f s ( L f ^ A) = 0 for all
K is {EQKS®KS}\

Proof. If /€ReK, f^E,Ks and ^eK5, then r^/00, /i©#i)
-0. Hence fs([/], A) = 0 for he{E0Ks®Ks}\

Let /, ^ be elements of (1 — EQ)KS in the domain of (25— I)"1. Let

(2.7)

Then we have



124 HUZIHIRO ARAKI

(2.8) r's(fi@gi,

Since ^S\^E0K^EQK\ = 0, since the restriction of f| to the orthogonal

complement of rE0K®E0K1 is 1 and since [(l-£0)^ffi(l -£o)£~] is

orthogonal to [JE0K@EQK^], we have from (2.8)

(2.9) {h(/2®£2)}
A = ?S{C/2©g-2)

A}.

Therefore fsL&J contains vectors {h(/©0)}A
3 where / is any ele-

ment of (l-Eo)Ks in the domain of (25- 1)'1. Therefore f~

©ICs}A is dense in {KS@KS}^ and hence in Ks.

Since (\\f®g\\'s)
2 = \\f+g\\2

s forfeE0Ks and g£Ks,

is closed. Therefore it is the orthogonal complement of f5[J£J. Q.E.D.

Lemma 2.3. Let Rs be the von Neumann algebra generated by

spectral projections of all nns(asB(f)), f£ReK on the representation space

of ty.(Ks, f , F s) associated with cpn^ Then the folloiving conditions are

equivalent :

(1) Snjs is cyclic for Rs.

(2) &ns is separating for R$>

(3) S does not have an eigenvalue 0.

(4) 5 does not have an eigenvalue 1.

Proof. Using the notation of Lemma 5.5 of [1], we have

with H = Re(£s®E0£s), ffi = [Reir]®0, ffi= {Re K5©0}A©0 where

E0 is the eigenprojection of II s for an eigenvalue 1/2. (Since ||/©0||5 =

l l / l l s , {^5©0}A is closed.) Since E0KSC{KS®0}^ H^CReKs and hence

we obtain from Lemma 2.2 ^ = Re{(£T
0^5©^5)A©0}

(l)->(3): Assume that (3) does not hold and S/=0 for f£Ks,

f=£Q. Then h(0©/) = 0©/ and hence 775{(0©/)A} -(0©/)A. Further

(0©/5 ^©0)^ = 0 for any geKs. This implies ((0©/)A©0, [rf©0)^

= 0 due to EQ {(0©/)A}=0. Therefore &s(Hi + iHi) is not dense in

nsKs and Qn^ which can be identified with J2^s, is not cyclic due to

Lemma 5.5 (v) of [_l~].

(3)->(l): Let
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(2.10)

(2.11)

If f€(l-E0)Ks is in the domain of (25- 1)'1, we have

(2.12) h(k±(/))=±k±(/).

Hence {k+(/)}Ae E+KS, {k_(/)}Ae£_£S) where E+ and E_ are eigen-

projections of Hs for eigenvalues 1 and 0. By the continuity, this holds

for any f€Ks. Further,

(2.13)

(2.14) k_(51/2/) + k+((l - S)ll2f) = 00(25- 1)/.

Therefore the set of k+(/)A + k_(g)A is dense in (1 — J?0) Ks and hence

k+(/)A and k_(/)A are dense in E+KS and E_K5, respectively.

Since

(2.15) 7

for f€(l-E0*)Ks and since /6^5-+k+(/)A e £5 is continuous, ZT5

©0)A©0}-^s{((l-£foK5©0)A©0}+^5(^0ls®0) is dense in TlsKns

if (3) holds.

(3) ^± (4). This follows from rsSrs = l-S.

(4) ^± (2). By Lemma 5.5 (ii) of [̂ 1], Lemma 2.1 and Lemma 2.2

Furthermore, we have <pns(i: (a)) A*) =(pi_s(A) for A^as^i(K9 Y, O«

Therefore by (3) ^± (1), Qns is cyclic for R's if and only if (4) holds.

Since &ns is separating for Rs if and only if it is cyclic for Rf
s, we have

(4) pi (2). Q. E. D.

Lemma 2.4. The center of Rs is generated by exp i7T/7-s(B(A)),

A 6 Re (J?0£s00)A. /^ particular, Rs is a factor if and only if KQ = Q.

Proof. From the beginning part of the proof of Lemma 2.3, we have

JS"iA^:=(£'o^5©0)A©0 and hence this Lemma follows from Lemma 5.5

of [1].
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Lemma 2.5. ^jjs is separating for the center of RS-

Proof. Since {(Re £0^s©0)A©Op = Re £5©0 and since U

is dense in nsKn^ we obtain the Lemma by Lemma 5.5 (vi) of [\T\.

Q. E. D.

§ 3. KMS Conditions

Lemma 3.1. Suppose that S does not have an eigenvalue 0. Let

(3.1) Hs = \og{S(l-Sr1}.

Then exp iHs is a Bogoliubov transformation on Ks and <ps is r(exp

iHs) invariant.

Proof. Since 0<S<1, we have H% = HS. Since 5 commute with

rs, we have r(eiHsf, eiHsg) = r(f, g). Since rsSFs = l-S, we have

rsffs^s=—ffs. Therefore exp iHs is a Bogoliubov transformation.

Since S(/3 g) is invariant under this transformation due to QS5 HS~]

= 0, (ps is r(exp iHs} invariant. Q. E. D.

Definition 3.2. Suppose that S does not have an eigenvalue 0. Let

&s be an infinitesimal generator defined by

(3.2) exp it&s= ?Xexp itHs\

where Ts(') is defined on $QS by Definition 3.6 of Qlj.

Lemma 3.3. Suppose that S does not have an eigenvalue 0 and

identify §5, 7ts(A) and @s with tQffs, nns(asA) and ®ns. If AeRs then

(3.3) Tn8

Proof. Let f€D(S~112). Then

where we have used
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not only for /€ (l-E0)Ksr\D(S-112) but also for feE0Ks. By using

this result repeatedly, and by using the commutativity of T/7s(ft))wffsLB

((/®0)A)]Tff» with e-^/27rffs[B((^©0)A)]e^'2, we obtain

(3.4) T

If the support of the Fourier transform of elHstf is in [_ — Z, Z], then

e~@s'2 is bounded by e^2 on Tr^B^/SO)^]* J?/^. By the estimate

(5.5) of Ql], we have the convergence of

(3.5) e-^'2Ws(/)5ff,= 2 nl-^'e-^'^
»=0

where / is assumed to be in Re Ks and W5(/) denotes

({(/©0)A©0». Therefore

(3.6) T^>)W5(/)^-e-^
/2W5(-/)^s.

A linear combination of Ws(f} such that elHstf has a Fourier trans-

form with a compact support, is dense in Rs. Therefore

holds for any A€RS and ¥ in the domain of e~®s'2. This implies that

A*tinseD(e-@sl2) and (3.3) holds. Q. E. D.s

Corollary 3.4. (ps is a KMS state of (KSj Ts-> r s} for the auto-

morphism r(exp itHs).

Proof. This follows from the antiunitarity of T/75(o)).J

Corollary 3.5. Let j(A)=TJTs((d)ATTIs(o)} for AeRs. Then (Qns,

§ 4. Bilinear Hamiltonian

Lemma 4.1. Assume that ? is non-degenerate. Let KI be finite di-

mensional subspace of K. Then there exists a F -invariant finite dimensional
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subspace K{ of K such that K'^K^ and the restriction of the hermitian

form T to K{ is nonde generate. Further, there exists a basis projection P

for (K[, r, n.

Proof. Let f \--fn be a linearly independent basis of K\. Let K2=Ki

+ FK\ and fj be a maximal linearly independent subset of fk~\~Ffk^

i(fk-Ffk), 4 = 1, • •-, n. fj is a complete set of linearly independent F

invariant vectors of K2.

Since/; is invariant, rC/5,, /?,)* = r(fi,, /?,) = r(rfif Ffi^-r

(//i> fid and hence r(//i» //,) is purely imaginary. In particular, r(/,',

/5)=o.
If Y restricted to K2 is not identically 0, let /^ and fJ2 be a pair

such that T(fJlt /<2) = 0 and set e,=fh, e2 = O(/yI, fi^f'i* fi=f'i~

iT(e2, f j ) e i + i f ( e i , //)e2. Then ei and 62 are /" invariant, /(ei, 62) =

j and 7"(ei3 f ft = 7(^2, //) — 0- Apply the same procedure to /y. Repeat

this process until we obtain ^2^-162^, k = l - - - l and /j/ + 1)
5 y>2Z, such that

rC/T11, /j''+1)) = r(e,, /F") = 0, r(«y, cyO = 0 unless (y,/) = (2A-l, 2A)

or (2A, 2A: — 1) and 7-(e2^_i, e2k) = i, & — 1, • • - , /.

Next, let gk, k = l - - - s be a maximal linearly independent subset of

/j/+1). Let hi€K such that r(^i, Ai)=^0. Let A( be either one of

and i(hi—Fhi) such that r(#i5 Ai)¥=0- Let e2i+i=h( — i 2 {r

We have r(e2 /+i3 gi) = r(h{, gi)^®- Let
:^r(e2/+ i 5 g'l)""1^! and g£= g^ — ir(e2i+2, gk)e2i-i + ir(e2i+i, gk)e2i+2.

Next apply this procedure to g'k, k = 2, - . - , 5. After repeating this process

s times, we obtain ey, 7 = !, • • • , 21 + 2s such that Fej = e^ ?(e^ e/') — 0

unless (;, /) = (2A-1), or (2A, 24-1) and r(e2^_i9 e2k) = i, k = l, . - - ,

Z + 5. Further, the subspace K( of K generated by ei- -621+25 and the

projection P defined by Pf=iHir(e2k, f)e2k-i — r(e2k-i, f)e2k} have the
&

desired properties. Q. E. D.

Remark. We see from the above proof that if K has a finite dimension,

then dim K is even and there exists a basis projection P for (X", 7, 7").

Lemma 4.2. //" 7 /s non- degenerate, $l(K, 7-, /") /s simple (as a
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* algebra) and has a trivial center.

Proof. Let Q be a non-zero two sided * ideal of 21 (K, 7% /") and A

be a non-zero element of $. A is a polynomial of B(/i), ..., B(/w) for

a finite number of /!•••/„€.£". Let £1 be the subspace of K generated

by /!•••/« and apply the preceding Lemma. A can be written as

(4.1) A= 2 B(Cl)»^,
»-0

where ^w is a polynomial of B(e^), A: = 2, 3, • • - . We may assume that

^W=0 if ,4=^0. Let Al = ̂ Q if JV=0 and ^i = [B(e2)

(the AT fold commutator with B(c2)) if JV>0. Then

JV!«^V^=0, and ^i no longer contains B(ei). Repeating this process, we

see that l e f t and hence % = 3L(K9 r, H- Namely $l(K, r, O is simple

as a * algebra.

Next, let A be a central element of 31 (K, 7, T) and (4.1) holds.

Assume that &N=£Q. If ]V^O, then we have PN= (N\)~liN[B(e2), [ • - •

fJB(e2)5 ^ H - ' - H — 05 which is a contradiction. Hence N=Q. Repeating this

reasoning, we see that A must be a multiple of the identity operator.

Q. E. D.

Definition 4.3. Assume that f is non-degenerate. Let H be a finite

rank operator on K satisfying

(4-2) Hf=-Z
y=i

for any f£K. Then (B, HE) eW(K, r, H is defined by

(4.3) (

Remark. An operator H on K is called a finite rank operator if its

domain is K and its range has a finite dimension. Any finite rank

operator H can be written as Hf= 2 ej(f}fj f°r a^ f^K> where

and e/ is in the algebraic dual of K. The trace of H is then defined by

(4.4) tr H= 2 e,(/y)
y=i

and is independent of the choice of /} and e/ for a given H. If £T is of
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finite rank, then AH is of finite rank for any linear operator A defined

on the whole K, and if H is given by (4.2), then

(4.5) tr AH= £ r(gi, Afi).
j = l

Lemma 4.4. Assume that f is non-degenerate. (B, HB) is indepen-

dent of the choice of // and gj for a given H, is linear in H and satisfies

(4.6) [(B, ff B), B(/)J = E(Hf) -

(4.7) [(B,#'B), (B, #B)>2(B,

(4.8) ?S((

(4.9) (B,

ivhere H1 is defined by

(4.10) r(/, tfg>=r(Hf, g\
which is equivalent to

^/ jy satisfies (4.2),

(4.12)

w/z/c/z satisfies

(4.13) Fa(H^F= -a(H\

(4.14) (B, #B) - (B, a(JI)B) - (l/2)tr ff.

Conversely \ if H satisfies

(4.15)

then

(4.16)

Proof. (4.11) obviously satisfies (4.10) and (4.10) uniquely specifies

-fff by the non -degeneracy of 7*. (4.9) follows immediately from (4.11).

We have
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C4.17) KB, HS), B(/):= f B(/y)r(#, /) + r(/7}, f)B(rgj)

where we have used the equality

(4.18)
y - 1 y = i

Further, we have (4.8) by (3.3) of [1] and (4.3). Suppose that the

same H can be written as in (4.2) in two different ways in terms of /y,

gj and /y, gj. Let KI be the subspace spanned by /}, gy, /y, gy and A^

be as given by Lemma 4.1 Then (B, HB) given by (4.3) can be con-

sidered as an element of 51 (K^ 7% 7"). Since KI has a finite dimension,

(^1)5 = 1̂ 15 Y^1 is bounded and the right hand side of (4.8) can be written

as

(4.19) ?5((B, ^B))=tr{r51(l-5)J5r},

which is independent of the choice of /y and gj. Since the center of 2l(£,

7, F) is trivial, (4.6) implies that (B, #B) is independent of the choice

°f fh gj f°r a given H up to a possible addition of a multiple of an

identity and (4.19) then proves that (B, HE) is independent of the choice

of /}, gj for a given H.

Since

we have (FHT^^rHr and hence (4.13) follows from (4.12). By (4.18),

we have

(4.20) (B, r&rB^- SB(/>,)B(/y)= -(B, #B)-tr F.

Therefore we have (4.14).

By (4.11) we have

By (4.6), we have

C(B, H'B), (B,



132 HUZIHIRO ARAKI

By (4.13), we have a(Hr)r gj= -Fa(H')'gj and hence

[(B, iTB), (B, HB)1 = 2(B, {a(H')H-Ha(H')}B).

By (4.14), this is the same as 2(B, [a(H'\ a(#)]B). Q. E. D.

Remark 4.5. (B, HE) defined by (4.3) and #r defined by (4.11) are

not uniquely determined by H for a general 7.

Lemma 4.6. For any choice of // and gj satisfying (4.2), £/Z£ /or-

ww/00 (4.6), (4.7) and (4.8) foW, #f defined by (4.11) satisfies (4.8) awd

(4.10), flwrf a(#) defined by (4.12) sorts/fes (4.14). // j (/, Hg) = r(Hf, g)

for all f and g in K, then there exists a choice of // and gj such that

H^ defined by (4.11) coincides with H.

Proof. First half follows from the computation in the proof of Lemma

4.4. For the second half, assume that r(/, Hg) = f(Hf, g) for all / and

g in K and H is expressed as Hf= Z r(gj, /)/,'• Let Hl = H-H\
. j — i

where H is defined by (4.11) using fj and gj. From (4.10) and the

assumption, f(H\f, g) = 0 for all / and g. Namely, the range of HI is

in the Null space of 7* (the set of / such that /(/, g) = 0 for all g£Ki).

Then HI has a representation Hif= Zr(g75/)/y where f- is in the Null

space of T- Then Hi defined by (4.11) using f] and g'j is 0 as opera-

tor due to f(/y 5 /) = 0 for all /. Hence we have

^Tr using this representation is H. Q. E. D.

Lemma 4.7. L#£ (pn be a Fock type state. Let EQ be the eigenprojec-

tion of II for an eigenvalue 1/2. Let H be a finite rank operator on Kn

such that EQH=HEQ = 0. Then H can be represented by (4.2) with fj

and gj in (1—E0)K* and (B, HE) defined by (4.3) and H^ defined by

(4.11) do not depend on the choice of such fj and gj. If Yn(f, Hg) =

Tn(Hf, g) for all f and g, then H* = H.

Proof. Since H=(l—EQ)H(l — EQ\ we may restrict our attention to

(l—Eo)K, where f is non-degenerate. Hence the present Lemma follows

from Lemma 4.4. Q. E. D.
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§ 5. Unitarily Implementable Bogoliubov Automorphisms

Lemma 5.1. Let H be a finite rank operator such that ]"(/*, Hg) =

Y(fff, g) and FHF=—H. Fix fj and gj in (4.2) such that H^ = H and

define the corresponding (B, HIS). Let (pn be a Fock type state of (K, f,

F). Then DQ = nJI\^
tSL(K^ Y> F)^\@n is a dense set of analytic vectors for

TT/ztXB, H"B)^\. The unitary operator

(5.1) Qn(H)

satisfies

(5.2) Qn(H) \

for f^ReK and

(5.3) Qn(H)nA

for A€z33.(K, Y> F\ where 7tn(A) denotes the closure of nn(A).

Proof. We shall use Lemma 5.8 of Ql] and identify 7Tj7(/®0) and @n

with 7T/r(/) and &n. By Lemma 5.5 (v) of Ql], it is easily seen that ®n

is cyclic for Kn($L(K, Y, O) and hence we may also identify the whole

space §/f with ^n. It follows that DQ is dense.

From (5.5) of Ql] we obtain

N
for a constant G independent of TV, where W 6 2 (€>/?)»• Since 7r/rQ(B3

HB)^\ increases N at most by 2, we have

(5.5) Ik/rKB, jyB)]wr||^[(JV+270!TV!"1]1/2G1l?r|!.

Therefore, 2 ^^^^^[(B, HB)^n¥\\<oo for small ^>0 and such

W is analytic for ^[(B, HB)~j. Since (B, JfiTB)* = (B, HB) by (4.9), the

closure ft jiJKB, -HB)J is self adjoint and

(5.6) Qn(tH}¥= Z n\-l{(it/2)itn[_(&, #B)]}"F

for sufficiently small ^.

From (5.5) of Ql] and (5.4), we also have the convergence of

(5.7) !>!-
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for small t. Therefore Qn(tH}¥, ¥€DQ is in the domain of

for small t and (5.7) gives 7fn(B(f))Qn(tH).

From the absolute convergence of (5.6) and (5.7) for small t, we

have absolute convergence of

(5.8)

for 0, W €E DQ and small t. By re-ordering the summation, we obtain

(5.9) !>!-'(- ̂ /2)''(5P, 7Tff{[(B, HE), [...

Since (F, nn(g}^ is continuous in g- when ^ is restricted to a finite

dimensional subspace, (5.9) becomes

Therefore we have

(5.10)

for small t and all $ 6 D0. Since a unitary transform of a self ad joint oper-

ator is self adjoint and 7in[E(e~itHf)~] is essentially selfadjoint on D0, we

have

(5.11)

for sufficiently small t. By using (5.11) repeatedly, we obtain (5.3) for a

general t and for a general ^4.

From (5.2) of [1] and (5.3), we obtain (5.2). Q. E. D.

Lemma 5.2. Assume that ? is non- degenerate* Let P be a basis

projection and K=Kp. Then

(5.12) (Op, Qp(tH)$p) = detP(Pe-itHPr112,

where detp is the determinant of PK and the branch of the square root is

determined by the continuity in t.

Proof. Let
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(5.13)

Then

(5.14)

We decompose fj as

(5.15) //=/;+/;,
(5.16) fj = e-itH(Pe-itHP)~iPfh

(5-17) /; = /}-/; 6 (1-P)K

The operator Ct=Pe~ttHP is a bounded operator on PKp, because a

finite rank operator H is bounded on PKP. Since /(/, g) = (f, g)P for

/, g£.PK, we have

(5.18)

where

(5.19) Pf=eitHPe~itH

is another basis projection. Since

(5.20) (/, P(l-P')Pf)P=r(Pf, (1-P')

we have

(5.21) PP'P=P-P(l-P')P^P.

Therefore (Pe~itHP)~l is also bounded on PKP and

(5.22) oo > \detP(Pe-itHP)-1 \ -detP(PP/P)

Therefore /} and fj are well defined and we have

(5.23)

(5.24)

Therefore

(5.25)

(5.26)
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= -tr H(\-P){l-e-itH(Pe-itHPrlP}-

From rff*r=-H, we have

(5.27) tr #(1 - P) = tr HFPF = £ rtgj, rPFfj)

= - Xr(rfj, P/»=tr ((rn*r)P)= -tr HP.
Hence

(5.28) 4(0 = tr #P+tr H(l-P)e-
itH(Pe-itHPylP

= tr He-itH(Pe-itHPylP

-
at

where the trace is taken on PK. Substituting (5.28) into (5.25), we

obtain

(5.29) /(0 = exp-(l/2)tr Plog(Pe-itHP) = AetP(Pe-itHP)-112. Q. E. D.

Corollary 5.3. Let <pn be a Fock type state such that K=Kn. Let

H be a finite rank operator satisfying / (///", g) = Y(f> Hg)> FHr = — H

and E0H=HEQ = Q. Then

(5.30) (Off9 Qn(tH^n)=detE+(E+e-itHE+r112

where E+ is the eigenprojection of II for an eigenvalue 1.

Proof. Immediate from Lemmas 4.7 and 5.2.

Lemma 5.4. Let PI and P2 be basis projections for (K, 7", /*). T is

necessarily non- degenerate. Assume that K is complete with respect to

\\f\\pj = r(f, (2Py — 1)/)1/2, y = l, 2, and that the topologies by these two
norms are the same.

(1) Let 0(Pi, PZ) be a non-negative selfadjoint operator on K satisfying

(5.31) [sinh 0(P15 P2)]
2/= -(P!-P2)

2/.

Such ^(Pi, P2) exists, is bounded and commutes with PI, P2, //>1 = 2Pi — 1,

rp2
:=2P2 — 1 a^rf r. ^(Pi, P2) ^^fi? ^(P2, PI) are the same operator,
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(2) Let t72 = sinh 0CPi, P2), vi = cosh 0(Pl, P2) and uf7(Pi/P2) fe

bounded operators on K satisfying

(5.32)

(5.33)

(5.34)

where l — FiQ is the eigenpr ejection of Q(P\> P%) for an eigenvalue 0.

Such \\.ij(Pi/Pz) is unique and satisfies

(5.35) UyCPi/P^ujKPi/P,) -

(5.36) Uy(P!/P2)* = tlX

(5.37)

(5.38) P2=

(5.39) l-P2 = 4 i

(5.40) r^uy (Pi/P2) = ( - D'-'uyCPi/POttv

(3) L^

(5.41) ff (Pi/P2) = - ^(Pi, P2)(u12(Pi/P2) + «2i(Pi/P2)).

H(Pi/P2)
T = H(P1/P2), H(Pi/P2)*=-Jff(Pi/P2)(* is

(5.42)

/5 « Bogoliubov transformation for (K, 7*, /"),

(5.43) U(P1/P2)
tP1U(P1/P2)-P2.

Proof. (1) Since P2 is bounded with respect to the norm || ||p2, it
is also bounded with respect to the norm || \\PI. Therefore (Pi — PZ) is
bounded. The operator on the right hand side of (5.31) can be rewritten
as

(5.44) -(P1-P2)
2--P1(1-P3)P1-(1-P1)P2(1-P1).

Since (/, P1(l-P2)P1/)p1-r(Pi/, (l-P2)Pj/)^0 for f€K and (1-PO
P2(l-P1) = rP1(l-P2)P1r, we have -(Pi-P2)

2^0. Hence there exists
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a nonnegative selfadjoint operator 0(Pi, P2) satisfying (5.31). (Pi — P2)
2

obviously commutes with F. It commutes with PI due to (5.44). By

symmetry, it commutes with P2.

LetK=max {\\(Pi-P2')
2\\P1, l!(Pi-P2)

2||p2}. Let /„(*) be a sequence

of real polynomials of x such that

lim sup \fn(x) — sinh^VaT =0.
«->«, *eCo,/n

Such /„ exists due to the Weierstrass approximation theorem. Then

0(Pl9 P2)= lim/w(-(P1-P2)2)-^(P25 PO.
n— »oo

(2) We see that (5.33) is partially isometric by the following com-

putation :

{PiP2(l -Pi)}*PiP2(l -Pi) = (1 -POrp^r^PiP.d -Pi)

We also see that U2i(Pi/P2) = Fui2(Pi/Pz)F is also partially isometric and

(5.35) holds. From P^ = Plt Pf-rp^rp,, PiTPl = Pi and (1-PJrp^

-(1-Pi), we have (5.36).

Since P1P2P1 + (l-P1)P2(l-P1) + P1P2(l-P1) + (l-P1)P2Pi = P2 and

P1(l-fio) = P2(l-Pio), we have (5.38) and (5.39). (5.40) follows from

TPlPi = Pi and (l-P1)rpI=-(l-Pi).

(3) From (5.36) and 0(Pls P2)*=0(P1, P2), we have H (Pi/P2)* =

-H(Pj/P2). From (5.40) and [r^, 5(Pi, P2)] = 0, we have H(P!/P2)
T =

rp1H(P1/P2)*rp1 = H(P1/P2). From (5.37) and [fl(Pi/P2), r] = 0, we have

rH(Pl/P2-)r=-U(Pl/P2). Since

F10) = (l-Fio),[Pi, P2](l-Fi0) = 0, and

[Pi, P2], we obtain (5.42).

Finally we have

u(Pi/P2)
t

Hence we have (5.43). Q. E. D.
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Lemma 5.5. Let PI and PI be basis projections for (K, /, /"*). As-

sume that || | ]/, / = !, 2, give the same topology ', with respect to which K

is complete and that 0 (Pi, P2) is in the Hilbert Schmidt class. Then

there exists a unique unitary operator T(Pi, P2) on !QPI such that

(5.45) T(P15 P2)*7Tp1(^)T(P1, P2) - T

(5.46) (SPl, T(Pj, P2)^1) = detPl[sech d(Pl, P,)]1'2.

Proof. Let Fir be the spectral projection of $(Pi, ̂ 2) for the infinite

interval (r, °o) relative to the inner product (/, g)Pl. Then H(Pi/P2)Fir

is of finite rank for r>0. Therefore it is of the form (4.2). Since 0(Pi,

P2) commutes with /", PI and TP^ Fir commutes with them and (H(Pi/P2)

Flr. Let

(5.47)

(5.48)

(5.49)

(5.50) «r - (^, r;%) i

(5.51) Tr=a*T'r.

From (5.12) and (5.22), we have

(5.52) (3Pl

In particular, it does not vanish and hence ar is well denned.

If 0(Pi, P2) is in the Hilbert Schmidt class, then 1-sech 6(Pl, P2) is

in the trace class and

(5.53) Hm(%, r*^1) = detPl[sech Q(Plt P2)]1/2>0.
r-»o

Further

(5.54) | ( T*.QP» T*QP) \ = \ (QPl, Q(H(P1/P2)[JFlr, -

= det,Oech{0(P1,
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as r, r'— >0.

Setting artr, = (T*.Qpt T^QP^\(T^QP^ T*QP^, we see from (5.54)

that T*>SPl—a*tr'T*GPl-+0 as r, r'-»0. Substituting this to (5.53), we see

that a* ,'->! as r, r'->0 and hence Tf@Pl is a Cauchy sequence as r-»0.

Let

(5.55) &'P = lim T*0P.
r-* + Q

We now have

(5.56) (£P

Since {WPl(/)} is irreducible, J2p2 is cyclic and the vector state of

W(K, r, T)) by J2^2 is (pP2.

Let T(Pi, P2) be a closed linear operator satisfying

(5.57) T(P15 P2)

Since the mapping defined by (5.57) is isometric and the range is total,

such T(Pi, P2) exists as a unitary operator.

We have (5.45) from (5.57) and (5.46) from (5.53). Q. E. D.

Corollary 5.6. Let U be a Bogoliubov transformation on K and P

be a basis projection. Then r(£7) is unitarily implementable on $QP if PU

(1— P)Z7tP is in the trace class on Kp.

Proof. Let UPU^ =Pf, U1=U(P/Pf'), U2=U(P/P'}U. Then U=

U\Uz. Since Uz commutes with P, <pp is invariant under Uz and r(f72)

is implementable by a unitary operator TP(Uz) on §P:

(5.58) TP(U2)np(A)TP(U2)* = nP(r(U2)A).

Because PU(l-P)U^P= -(sinh 0(P, F))2P is in the trace class,

rP£/(l-P)£/tPr=-(sinh 0(P, F))2(1-P) is also in the trace class and

hence 0(P, F) is in the H. S. class. Then T(P, P') implements r(Z7 f)

and T(P, P^TX^) implements r(tT). Q. E. D.

Lemma 5.7. Let (/, g)i «^^ (/*, g)2 te positive definite inner products
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on K such that K is complete with respect to both \\f\\\ = (/5 /)i/2

||y||2 = (y? f)l
12 and the two norms give the same topology on K.

(1) There exists a bounded linear operator a on K with a bounded

inverse a~l such that

(5.59) (f, g)2 = (af,ag\.

(2) A bounded linear operator Q on K is in the Hilbert Schmidt

(resp. trace) class relative to (/, g)2 if and only if Q is in the H.S. (resp.

trace) class relative to (/, g\.

(3) If Q is in the trace class ̂  the trace of Q relative to (/, g)i and

(/, g)2 are the same.

Proof. (1) If there is no positive a such that ||/|!2^a||/||i for all

f£K, then there exists a sequence /„ such that ||/»||i = l and \\fn\\2^n.

Then ||/»/ra||i— >8 while \\fn/n\\2 = l does not tend to 0. Hence, under

our assumption that the two norms induce the same topology on K, there

exists a>0 such that \\f\\2^a\\f\\i for all f^K. Similarly there exists

a'>0 such that \\ f\\i<,a \ \ f \ \ 2 for all f€K.

Since !(/, ̂ )2|^i|/ll2!l^||2^a2!l/||i||^l|iJ there exists by the Riesz

theorem a bounded linear operator aQ such that

Since (/, ^2 is hermitian and positive, aQ is hermitian and positive rela-

tive to (/, g)i. Setting <2 = (a0)
1/2, where the positive square root is

taken relative to (/, g)i we obtain (5.59) and a = a*>Q relative to (/,

From (/, a2/)i-||/||i^(aO~2!l/ll!5 we obtain a2^(aO'2 and

(a')~l relative to (/, g)i and hence ll^"1!!!^^'. Namely a has a bounded

inverse.

(2) Assume that {e^} is an orthonormal basis of K relative to (/,

g)i. Let e$=a~le/3. Since a~l has a bounded inverse and {e@} is total,

{e@} is also total in K. Hence {e'p} is an orthonormal basis of K relative

to (/, g)2.

Let Q* denote the adjoint of Q relative to (/, g)i and \ Q \ j denote
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the absolute value of Q relative to (/, g)j. We have \Q \2 = Q*Q- From

(f>Qg)* = (f,oPQg)i = (Q*a*f, g)l = (a-2Q^a2f, g^ we obtain \Q\* =

a~2Q*a2Q.

Assume that Q is in the H.S. class relative to (/, g)i. Then t r i |@ |?

lifX0 0- It is then known that aOa~l is also in the H.S. class
/3

relative to (/, g)i. Hence

(5.60)

and Q is in the H.S. class relative to (/, g)2.

Next assume that Q is in the trace class relative to (/, g)i. Let Q =

Wj\Q\j be the polar decomposition of Q relative to (/, g)j. Let Wj be

the adjoint of Wj relative to (/, g)j. Then WjQ=\Q\j. Wj and Wj are

bounded. Hence \Q\z= W2Wi\Q\i is in the trace class relative to (/, g)i

and so is a\Q\2OTl. We now have

(5.61) tr2 |0|2=L(el9, 1C 1 2^)2
0

= E(e/3,a\Q\2a-le/3)i
13

=trla\Q\2a-l<°o.

Therefore Q is in the trace class relative to (/, g)2>

(3) The computation of (5.61) shows tr2Q=triQ for any Q.

Lemma 5.8. In Lemma 5.5, 0(Pi, P2) ^ m the H. S. class if and

only if Pi — P2 is in the H. S, class.

Proof. If Pi-P2 is in the H.S. class, -(Pi-P2)
2 = sinh20 (Pi, P2)

is in the trace class and hence 0(Pi, P2) is in the H. S. class. If 0(Pi, P2)

is in the H.S. class, then PI— P2 is in the H.S. class, as is obvious

from (5.38). Q. E. D.

§ 6. Quasi -equivalence for Non -degenerate Case

In this section, we shall be concerned with S and S' which do not
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have an eigenvalue 1/2. Since the corresponding Us and JIS' give Fock

states, we shall denote Ps and PS' instead of IIs and H$'•

Definition 6.1. Two quasifree representations ns and nS' are quasi-

equivalent if there exists a (homeomorphic) * isomorphism p from RS =

{Ws(/);/eRe£}" onto #s'={W5</); /GRe K}" such that PWs(f)

= WS,(/) for all feReK.

Lemma 6.2. Let (ps and cps> be quasifree states of SICK, 7, 7") such

that S and S' do not have an eigenvalue 1/2. Assume that the following

3 conditions hold:

(i) NS=NS>.
(2) The topologies induced by \ \ f \ \ s and \\f\\s* on K are equivalent.

Identify Ks, Ys, ^s with KS', Ys'<> FS' by the closure of the identi-

fication map f€Ks-*feKs> for f€K. Identify K's, YS, Tf
s with K's>,

r'S' rr
s> through definitions (6.1)~(6.3) of [1]. Identify Ks, ?s, PS with

-^5'j Ys', f1s' due to Lemma 6.1 (6) of Q].

(3) PS—PS' is in the Hilbert-Schmidt class on KS = KS>.

Then ns and 71$' are quasi-equivalent.

If S and Sf do not have an eigenvalue 0 in addition, cps and (p$f

are unitarily equivalent.

Proof. (1)^(3) imply the unitary equivalence of (§ps3 7Tps, Qp^) and

(&V, ftps') @PS) due to Lemma 6.1 (6) of Ql], Lemmas 5.5 and 5.8.

The vector &PS and &PS, are separating for the center of Rs and RS' by

Lemma 2.5. Therefore ns and 7r5/5 which are restrictions of nps and

7tps, to a subalgebra, are quasi-equivalent.

If 5 and Sf do not have an eigenvalue 0, then @ps and @ps, are

cyclic for Rs and RS'. Hence ns and TZV are unitarily equivalent.

Q. E. D.

Lemma 6.3. Let @o be the set of positive semidefinite hermitian

forms S on K satisfying (3.4) of Ql] and such that the associated operator

S does not have an eigenvalue 1/2. Define the quasi-equivalence S~~S' by
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the requirements (1)^(3) of Lemma 6.2. Then this is an equivalence

relation.

This is obvious from the form of requirements (1)^^(3).

If NS = NS', S and S' do not have an eigenvalue 1/2 and dim (K/

^Vs)<°°3 then we have a representation of canonical commutation relations

for a finite degree of freedom and hence all representations are quasi -

equivalent, a well known result of von Neumann. Hence we have a com-

mon W* algebra Rs = Rs' generated by W5(/), /G Re K, and cps can be

viewed as the unique state of RS = RS' satisfying ^s(W5(/)) = (,fis, Ws

(/)J2s). This makes it meaningful to speak of the norm ||^5 — <ps'\\ f°r

such S and S'.

Lemma 6.4. Let (ps and (p$f be quasifree states of 2l(-K"5 7*, F) such

that NS = NS' and S and Sr do not have an eigenvalue 1/2 nor 1. Assume

that dim (K/NS) < °o. Then

(6.1) ||^s-^s,||>2{l-detFs(P5P5,P5)-
1/4}.

Proof. Let o) be as in Lemma 2.1. (2.3) and (2.4) imply [jo, Ts^] = Q

and hence Qa), P5] = 0. Since a) is the same for S and Sf in the present

case, we also have [to, Ps/] = 0. This implies o)H(Ps/PsO= -H(P5/P5/)o)

and r(o>)(B, H(PS/PSOB) = - (B, H(PS/P5OB). Hence we obtain

(6.2) [Tps(^)5 QPs{H(P5/P50}] = 0.

Therefore, tiPS and ^/=(?ps{H(PlS/P50}*^ps are invariant under TPs(o))

and vector states of the representation 7r(B(/)) = 7rPs[B(/00)], feK of

§l(Jf, r, 7") by .Gp^ and Q1 are ^?5 and 0>5/.

By Lemma 6.5 of []2], Lemma 3.3 and Corollary 3.5, we obtain

(6.3) |^-^||^2(1-|(%,50I).

By (5.46), we obtain \(QPs, ti')\=detPs(PsPS'Ps)-
11* and hence (6.1).

Q. E. D.

Lemma 6.5. Let S and S' be hermitian forms belonging to @0 such

that NS = NS' and r5 = rS'. Let
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(6.4) %(S)^Tanh-12S1/2(l-S)1/2, <r(S)= |2S-1 1

(6.5) %(5/)^Tanh-12(501/2(l-5/)1/2
3^(5/)=|25/

Then e~
x(S^ex(S^ and e~

x(s'^ex(s^ are bounded and the following condi-

tions are equivalent'.

(1) PS — PS' is in the Hilbert Schmidt class.

(2) l-ff(S)e-x(s)e*(S">ff(S') is in the Hilbert Schmidt class.

(3) l-<7(SOe~*(5'V(S)(7(S) is in the Hilbert Schmidt class.

Proof. For each feKs, let

(6.6) H/lll^supJC/,^^ =II(2S-1)/||S

and K*s be the completion of Ks relative to (6.6). Let (/, #)!==(/, (25

— l)2g)s. Consider K'S=KSQ)K*S equipped with an inner product (/i©#i,

/2©#2)£'^(/i,/2)s + (#i, #2)|. If rs = t>, Ks is identified with Ks*.

Since (/, Tsg)s = (f, Tsfg)s', K*s can be identified with K^ and hence

Kf
s with K's>.

The mapping from f£zKs to (2S— 1)/€K5 is isometric as a mapping

from K*s into Ks. Since | 25-1 1 = sech %(S), e%(5) | 25-1 1 =2 [1 +

e-2x(5)~j-i ^s bounded above and below by 2 and 1 both on K5 and on Jf|.

Hence the closure of e~% ( 5 ) is a bounded mapping from K^s onto Ks and

its inverse is a bounded mapping from Ks onto K^. We shall denote the

closure and its inverse again by e~%(5) and e%(S). A similar statement

holds for S'. Hence e-^
5)e*

(S/) and e-
%(5/)ex(5) are bounded on Ks.

Due to

(6.7)

and VlT;>S1/2 + (l-S)1/2;>l, the mapping vs from f(&g£Ks to

0(/— g") 6 X^ and its inverse are bounded, where f and g are in .K^

Let vs be the closure of v$, which is a bounded mapping from K$ onto

£5 with a bounded inverse. Obviously vs — vs'.

By a direct computation, we have

(6.8)
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Hence the condition (1) is equivalent to the following two conditions:

(a)(T(5)e-%(S)-e-%(S')(T(5/) is in the H.S. class as a mapping from ^|-

K*s, into KS = KS'. G3)<T(S)e*(5)-e%(5%(S') is in the H.S. class as a map-

ping from Ks into K^. Here a mapping Q from a Hilbert space HI into

another Hilbert space is in the H.S. class if 2 lK?ea!li< °° where e\
a

is a complete orthonormal set on HI and the norm is in H2.

Since ||(?/il!/||e~%(5)@/||5 is bounded below and above uniformly, (/?)
is equivalent to the condition (2). The condition (2) implies that e~x(S / )

(T(5/)-e-%(S)(T(5)-(l-(T(5)e-x(5)e%(5/)(r(5/))e-x(5%(5A) is in the H.S.

class as a mapping from K^ into £5 (cf. Lemma 5.7), and hence (a).

Namely (1) and (2) are equivalent.

By symmetry, (1) and (3) are equivalent. Q. E. D.

Remark 6.6. From the above calculation, we have

(6.9) 4i|Ps-Ps,i|Ls.

where the H.S. norm is relative to (/, g)^ on the left hand side, relative

to (/, g)s on the right hand side and

satisfies l<[j3<J\/ 2 . As a consequence

(6.10) l|P5-^!IL

Lemma 6.7. Assume that K is separable. Let S and S' be in @0-

Assume that S and S' do not have an eigenvalue 1, NS = NS', r.s = r5/

and PS — PS' is not in the H.S. class. Then there exists a sequence of F

invariant finite dimensional subspaces Kn of Ks such that hermitian forms

W, #) = (/, Sg)s and Si(/, #) = (/, S'g)s,, /, g€KH9 satisfy lim\\<pSn

-^;ll=2.
Proof. Let E+ and En be the spectral projection of 5 for intervals

[1/2, 1] and [1/2 + 1/Ti, 1], 71 = 3, 4, ..., respectively. Let fa be a com-

plete orthonormal basis of E+KS relative to (/, g)$ such that Enfa=fa
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or 0 for all n and a. For any subset A of a, let K(A) be the subspace

of KS = KS' spanned by fa and Ffa, a€A and E(A) be the orthogonal

projection on K(A) relative to (/, g)s- Let /„ be the set of a such that

Enfa
=fa and / denote any finite set of a.

Let f(/, g) = (f, rsg)s( = (f, Ts-gM. Let S(^) and S'U) be the

hermitian forms on K(^4)5 defined by S(A)(f, g) = (f, Sg)s, S/(^4)(/, g) =

(f, S'g)s'- The restriction of f and Fs = rs' to K(^) are denoted by

the same letters.

By constructicn of Ks, N$w= -Ws'(A) = 0. Since ?(/«, rsfa)=Q,

f(2cafa, Icafa)>Q for ^ca/a^0 and f (2caFfa, Icarfa)< 0 for

Zcarfa^Q, we see that S(^) and S(^') belong to eo for (K(^), f, T5).

We have S(^)E(^) = E(^)SE(^() and §'(A)E(A) = E(AY$f(A)E(A\ where

E(^4)* is the adjoint of E(A) relative to (/, g)s'- Since 'Cs — ̂ s't there

exists an operator a with a bounded inverse such that (/, gr)s/ = (/5
 ag)s

and a is hermitian and positive relative to (f,g)s- Then E(y4)* =

a~lE(A)a.

We have lim £(/) = £(/„) and lim £(/„) = 1. Hence lim lim S(/)E
7 T 7 B » » 7 t / n

(I) = 5 and lim lim S/(/)E(/) = 5/ (as strong limits of operators). Since
« IMn

[£(/„), S] = 0 and %(S)E(/W) is bounded, we have lim {ff(S(I)) exp %
/ T / «

(5(/))}E(/) = ((7(5)exp %(5))E(/W). (If /(^) is piecewise continuous and

its jump points are not eigenvalues of @3 then lim Qi=Q implies lim /

- C8]) We also have lim {(T(S/(/))exp-%(S/(/))}E(/)= {(T(S?/W))

exp -xCS'C/O} £(/„)) and lim {(T(S'CQ) exp - x(S'(/,,))} E(/B) =(T(S/)exp

Since lla^H-^C^J^EC^aEU)^ ||a||E(^), sech x(S'U)) cosh

QE(J)aE(J)]~1 (on K(^4)) and its inverse are uniformly bounded.

Hence e-
%(S/(/))e%(S(/)) and its inverse e-x(S(/))ex(S'(/» are unifOrmly

bounded due to l/2<^e~*cosh x<^l and hence

(6.11) lim lim (T(S/(/))e-%(S/(/))ex(S(/%(S(/))

Since jc"1 is continuous for x^Ll^ i rS ll^"1!!! we also obtain as an in-

verse of (6.11)

(6.12) lim lim
» / T / n
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We now have

(6.13) lim lim \\(l-
n I\In

where the H.S. norm is relative to (/, g)s(i)( = (f, g)s for /,

By Remark 6.6, we have lim lim ||Ps(/) — PS'(I)\\H s. = °° where the H.S.
n IMn

norm is relative to (/, g)s(i)- Since det Q^l + tr(Q — 1) for @J>1, we

obtain

(6.14) lim lim det^(/)(Ps(/)Psv)pS(o)~1/4 = 0-
m IMn

Hence we can find a finite set I(n) such that \\(ps(i(n^ — <P$'(i(n}}\\ ^>2[~1~

(l/n)] due to Lemma 6.4. Q. E. D.

Lemma 6.8. Assume that K is separable. Let S and Sr be in @0-

Assume that NS = NS^ rs = fs' find tr(P5— Ps')2— ~~°°- Then TZS and

7CS' are not quasi-equivalent.

Proof. First assume that 5 and 5' do not have an eigenvalue 1.

Then &ps and @ps, are cyclic and separating by Lemma 2.3. Hence, if

7T5 and nS' are quasi-equivalent, they are unitarily equivalent and there

exists a unitary mapping W§ from §p5 to !QPS, such that W<yN s ( f } W~§ l =

for all f^ReK. By continuity, we have

for all

Since the set of W QPS with isometric W in (Rs)' is total, there

exists such W satisfying b = (W'QPs, W^lQPs^)^. The vector states of

Rs by J2ps and QPs, are denoted by cps and (pS
f (cf. Lemma 6.4). Then

(6.15) 11^-^11^2(1- 16|2)^2^2-^.

We now have a contradiction because there exists a F invariant

subspace KQ of Ks such that the restriction of (ps~<Psf to the subalgebra

generated by JFjps(/©0), f£KQ has a norm larger than 2 — <J, due to

Lemma 6.7.

For the general case, let E\ be the eigenprojection of 5 for an
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eigenvalue 1 (relative to (/, g)s) and % be a positive Hilbert Schmidt

class operator on EiKs. Let

(6.16) S10 = £+(-! + cosh2 %)£*! + rs(smh2xEi)rs,

(6.17) Stf, g) = (f, Slog)s,

Then 5i is in @0 for (K, r, O- We have NSi =

(6.18) (/, g)Sl = (f, {l + (cosh 2x-

for /, g€Ks, rSl = rs and

(6.19) Si^S+(-l + cos

(6.20) %(SO -

Note that x(S) = 0 on EiKs^F^Ks. Hence we have

(6.21) ||l

By Lemma 6.2, ns and TT^ are quasi-equivalent. By (6.19), Si does

not have an eigenvalue 1. By Lemma 6.5, SqSi. Similarly, there exists

Si€E@o such that Si does not have an eigenvalue 1, 7Ts( and 7T5/ are

quasi-equivalent and S^S[. Since PSl-Ps( = Ps-Ps'-(Ps-Ps^ + (Ps'

— PsO is not in the H.S. class, nSl and ns{ are not quasi-equivalent by

preceding conclusion. Hence ns and 7r5/ are not quasi-equivalent. Q.E. D.

Lemma 6.9. If S and Sr are in ^0 and quasi free representations

71 s and nS' are quasi-equivalent , ^/z^r^ exists an operator E on KS = KS'

such that E commutes with S, S' and F, is an orthogonal projection rela

tive both (/, g)s and (/, g)s., Sf=S'f and (g, f)s = (g,f)s, far f€

to (1— E) K and EKS is separable.

Proof. Since T:S = ?S' due to the quasi-equivalence of TCS and ns^

there exists an operator a, with a bounded inverse such that (/, g)sf==

(a/, ccg)s for all /, g^Ks = Ksf and a is hermitian and positive relative

to (/, g)s.

We can construct inductively a separable subspace K^ of Ks for each

ordinal /i</ts in such a way that X"^ is mutually orthogonal relative to
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both (/, g)s and (/, g)S', invariant under S, S', F and a and Ks =

The construction of such K^ proceeds as follows : Assume that K^,

be given. If the orthogonal complement, relative to (/, g)s, of the union

of Kp', #'<#, is 0, then set /JL = {JLS- Otherwise take a vector /^ from

there and let K^ be the subspace of Ks spanned by Qfp where Q runs

over arbitrary polynomials of a, 5, S', P and 1. The required properties

are satisfied inductively.

Let Ep be an orthogonal projection onto K^ relative to (/, g)s. (I —

E^Ks is spanned by the union of K^, /JL'^JUL^ and hence E^ is hermitian

relative to (/, g)s
/ due to the a invariance of each K^.

Corresponding to the decomposition KS = @K^ we have the decomposi-

tion Ks = Q)K/Jj. Let EH be the orthogonal projection onto K^ relative to

(/j 8^' ^y similar reason as before, E^ is hermitian also relative to (/,

g)s' and commutes with Ps, PS' and Fs. Let P^ 7^, F ' ̂  be the restric-

tions of P5, 7*5, PS to KS- Let ^j TC^ Qp be the Fock representation of

31(^4, Tp> P id corresponding to the basis projection P^ Then $QpS) @ps is

(unitarily equivalent to) the incomplete infinite tensor product (g)^, Q,d

and Wps(f) = ®Vrp,(fJ for /=®/^

Any normal state q> of Rs = {Ws(f)i f£Ks} is a countable sum of

vector states. Each vector in tQsC.fQps is a countable linear combination

of product vectors. Each product vector has a form 0^^ where all W ̂

except a countable number is Q^ Therefore there exists a countable set

A of p. for each normal state <p such that ^(W5(/)) = (fls/W5((l —

E)f)Qs)(p(Ws(Efy) for /G^5 where E=EE^.
P-^A

If 7T5 and TZV is quasi-equivalent, then (£S', WS'(f}@s'} has an ex-

tension to a normal state of Rs and hence

This implies that

(6.22) S'(/, ^)

and hence £ has the required properties. Q. E. D.

Theorem. Two primary quasifree representations TCs and its' are

quasi-equivalent if and only if the following 3 conditions hold:
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(1) Coincidence of the kernel: NS = NS'. (Ns is the set of

such that S(/,/) + S(/y, r/) = 0.)

(2) Coincidence of the induced topology : ts — ̂ s'- (?s is the topology

induced on K/NS by ||/||S = LS(/, /) + W, Ty)]1'2.)

(3) 1 — e~
x(S}e%(S^ is in the Hilbert Schmidt class, where x(S) =

tanh-^S^Cl-S)1'2, Sis defined by S(/, g) = S(f, Sg) + S(Ff, FSg) and

the positive square root is relative to (/, g)s = S(f, g) + S(Ff, Fg).

The condition (3) is equivalent to the condition that Ps~Ps' is in

the H.S. class.

Proof. By Lemma 2.4, a quasifree state (p$ is primary (i.e. Rs is

a factor) if and only if S does not have an eigenvalue 1/2 (i.e. SE^o)-

Since W5(/) = l if and only if f£Ns, the condition (1) is obviously

necessary. By Lemma 6.4 of Ql] and due to the equivalence of topologies

induced by quasi-equivalent representations, the condition (2) is necessary.

The equivalence of (3) and an alternative condition is in Lemma 6.5. By

Lemmas 6.9 and 6.8, the condition (3) is necessary. By Lemma 6.2, the

three conditions are sufficient. Q. E. D.

Corollary. A Bogoliubov transformation U is unitarily implementable

on a Fock representation nP if and only if P— UPU^ is in the H.S. class.

Remark. In general, the condition (3) is not equivalent to the condi-

tion that 51/2 — (S')1/2 is in the Hilbert Schmidt class. They become

equivalent if %(5) is bounded.
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