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On Neutron Branching Processes

By

Takakazu MORI*, Shinzo WATANABE** and

Toshio YAMADAT

Introduction

A statistical theory of the neutron transport process has been discussed

by Harris [[I] and Mullikin Q7J. They considered the neutron population

by generation rather than in real time and formulate them as a discrete-

time branching process. In this paper, we will formulate the neutron

transport process as a continuous time branching process and study

asymptotic properties of the neutron population. As a fundamental equa-

tion, we have a non-linear equation like (1.3) and our results may be

regarded, as a problem in analysis, to be concerned with the asymptotic

properties of solutions of such a non-linear equation. In such study, a

linearized Boltzman equation, which is the dual of the evolution equation

for expectation semigroup, plays important role. In this paper, we are

mainly concerned with a monoenergetic and isotropic transport process on

bounded domain in R3, though a more general case can be treated by the

same method. Also, our method can be applied to a general class of

branching processes including branching diffusion processes but we will not

go further into such generalizations.

§ 1. Formulation of the Neutron Branching Process

and the Basic Equations

To apply the theory of branching processes, we will give, as a model
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of neutron transport phenomenon, the following simple one. A neutron,

moving straightly in a bounded homogeneous medium D with unit speed,

will collide with a nucleus at random time T which is exponentially

distributed with mean 6~l. If a collision occurs, then n neutrons are

produced with probability pn, n = Q, 1, 2 , - - - . Each of new particles, the

direction of which is isotropically distributed, performs a similar motion

as the original one independently each other. On the other hand, a neu-

tron is absorbed (extinct) if it leaves the medium.

Let D be a bounded closed convex domain in the three dimensional

Euclidean space R3 with a smooth boundary, and & be the unit sphere

in R3. Denoting by G the product space D X J2, a neutron can be re-

presented by a point (#, a)) in G, % and a) being the position and the

direction of a particle, respectively. dG stands for the set of all points

(#, a)) in G such that oc belongs to the boundary of D and a) is a direc-

tion exiting Z); i.e. (nx, to)I>0, where nx is the direction of outernormal

at x.
/\ °°

Let Sn be the 71-fold symmetric product space of S=G and S = \JSH

n=o
00

\J {A} be the one point compactification of the topological sum \J Sn where
72=0

S°={9}, (d is an extra point). In order to formulate the above branching
^

process as a Markov process on S, it is sufficient to specify the non-

branching part X°t, which is a Markov process on G, and the branching

system {/>«(*), xn(z, dj\ zeG, y£SwK=0[2]. Intuitively, X°t is the

motion of a neutron before collision or before it leaves the domain, and

branching system represents the law of new born neutrons when collision

occurs; pn(z) is the probability that the original particle is replaced by n

new particles when collision occurs at z and nn(z, dy) is the distribution

of the position of these n particles. They are given as follows; let xt

be a uniform motion process on R3 X J2, i.e., a particle starting at (x, a)),

is at (x + ta), a)) in time t, and r' be the hitting time of the process xt

for 9G.

Define X°t as

f Xt ;

*HU ;
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where T is an exponential time with mean 6~l independent of the process

Xf Let, for a given probability sequence {/>„},

if ~ = (A;, o)) EG — dG

if z E9G and n=^Q
* " 1

U if z E dG and ra = 0,
and

/ ,1 ..^ \ / J,.^ \

r-dG

where dx is the unit measure at x and do) is the spherical Lebesgue

measure on J2. By Q2], we can construct a branching process {Xt, P(X,^}

corresponding to (X^ pn, fin) on a suitable probability space, where P(*i(B)

is the probability law of the process under the condition that there is

initially one particle at (x, a)) EG. We will adopt this branching process

as our model of the neutron transport.

For every function f(z) on G, / and / are functions on S defined in

the following way;

(1, if z = d or z— 2

/GO if z=^zeG-dG
/(*)= { « .

// f\zU ^ s—\zl)'"i zn,
« = 1

.0 if z=A

'0 if z=d or z = &

f(z) if » = ;

/=1 ^ ' -

S0 if *=J.

Further, the following notations are introduced;

C(G), (Ci(G), Ci(G))= the set of all continuous functions on G (with

sup-norm ||/||<1, resp. with ||/!|<1 and />0)

B(G), (Bi(G), Bi(G))= the set of all bounded Borel measurable func-
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tions f on G (with ||/||<1 resp. with ||/i|<l and />0),

the set of all spuare integrable functions on G with L2-norm

*,
C(D)= the set of all continuous functions on Z),

Sb(x, o>) = inf {t x + ta)^D},

f[» E/^
» = 0

ea = inf {^;^ = 9} (the extinction time)

ej = inf {z; JTf=J} (the explosion time)
V V

ZE
t = lE((Xt\ £"€B(G) (./£• is the indicator function of £; the number

of particles in E at time t.)

zt=z<*.
S/,(x, at) is a bounded continuous function on G by the assumption on

the domain D. We shall always assume that,

(I) p0+pi<l

(II) *"[!> i>p,,< + °o.
» = 0

From Q2], the following relations hold. For every /€EBi(G)5 we define

(i.i) W(^3 ^, o))
Then M satisfies

/•/
\ e~°" rF[w(^— r,

if t>Sb(x,

where, u(t, x) = -—\ u(t, x, a)}da).
47T JQ

Further, if /6Ci(G), then u satisfies

du(t, x, o))__ :

I u(t, x, 0)^ = 1 if (A;, o))G9G

I w(0 + , x, a))=f(x, to).

On the other hand, if /EB(G), then
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(1.4)

satisfies

(1.5) v(t,X,a) = f ,^,.,0 r °if *<S»C*,«>)

Jo
if ^>56(^, 0))

where, £(£, 5;)= \ ?;(£, ̂ ;, cD)dco.
4;r Jj?

Further, if /eC(G), then

0£ ' ' ' ' '

Assumption (II) guarantees that the explosion does not occur in finite

time, i.e. P(X)0>^ed= + oo]— 1? Q2]. If f—XE^ then /(Xf) is the number

of neutrons in £* at time £, so equation (1.5) or (1.6), which is the dual

of the so-called linearlized Boltzmann transport equation, determines com-

pletely the expected number of neutrons.

§ 2. The Extinction Probability and the Asymptotic

Behaviour or Expected Number

If we define q(t, x, o))= TtO(x, CD), then it is the extinction probability

A*,«)He9<M at time £, starting initially at (#, CD). Obviously q(t, x, CD) is

increasing in t, continuous in (x, CD) and 0<g(z, x9 o))<l. Hence, there

exists a limit q(x, CD) as £->oo. Letting t-*°° in (1.2), q(x, CD) is a

solution of
/*S6(*,o>)

(2.1) u(x, cD) = e-"s»(x^ + ff \ e-*TF[u
Jo

or

{ Au(x, o)) = 0,

u(x, o)) = l if



158 T. MORI, S. WATANABE AND T. YAMADA

Furthermore, it can be proved easily, as in CIO], that q is the smallest

solution among all solutions of (2.1) satisfying 0<^u(x, <0)<O.

We can prove also the following lemma as in [[10],

Lemma 2.1. jP(*>QJ)[^— >0 or Z?->co when £— >oo]=l for every

(x, o

Let £(*, j; ^) be the function (Te-^^1*^1/^ | *-- y| 2 on DxD for

each A and c* be the largest positive eigenvalue of the integral operator

on C(Z)) induced by the kernel E(x, j; 0). Equation (2.2) has always

the trivial solution u(x, a))=l. Therefore, the extinction problem is

equivalent to that of the uniqueness of the solution for equation (2.2).

Lemma 2.2 (Pazy-Rabinowitz [8]). // F[l]^c*, then (1.6) has no

non-trivial solution and hence q(x, 60) = 1. On the other hand if F']~l~\>c*

then it has the unique non trivial solution which is, therefore, equal to

q(x, o)). Furthermore, q(x, o))<l if (x, a))£G — dG and inf q(x, o))>0.
(*,<»)

We shall say that the process is subcritical, critical, or supercritical

according as F'[l~]<.c*, F' [_l~^ = c*, or F'[l]]>c*, respectively.

If we set

(2.3) Mtf(x, ^ = E(x,^f(Xtn

then the following lemma holds.

Lemma 2.3. There exist positive constants TQ and p such that for

every t>TQ, and for every

(2.4) \\M,f(x, a>)-eat(f, <&*),&(*,

where a, is the eigenvalue of B with the maximal real part and 0(0*) is

the corresponding eigenf unction of B (resp. 5*). When f is in $d(G), then

the same estimate holds if we replace only \ \ f \ \ in the right hand side by

11/112.

In addition, a is real and simple. The process is subcritical, critical

or supercritical according as a<0, a = Q or a>0, cf. [^6]. 0 ^s obtained
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by the following equation from the eigenf unction <p £ C (If) corresponding

to the largest eigenvalue of the operator induced by E(x, j; a),

(2.5) 0O, (D)=

By the theorem of Krein and Rutman Q5], (p is uniformly positive,

therefore 0 is positive on G — dG and zero on dG. Also 0*(%, o>) =

§3. The Asymptotic Behaviour of Ttg(x, ft)), li

Subcritical Case, i.e. (<2<0, or F'[l]<c*)

In this case, q(x, ft)) = l, i.e. P(*f0>)(e9< + °°) = lim g(£, #, to) =1. If

we define u(t, x, ft)) = l— Ttg(x, a)) for each ^6Ci(G), then it tends to 0

as £— »°o5 since ^(^, x, a))<^Ttg(x, a)). We shall discuss the rate of con-

vergence assuming

Theorem 3.1. For every

(3.1) l~Ttg(x, a)) =

where F (g) is a positive constant depending on g, and S is a positive

constant

Proof. From the definition and the simple calculation u(t, x, a))

= l—Ttg(x,a)) satisfies

du(t oc,a}=

dt

(3.2)

where

Using Duhamel's principle, we obtain
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(3.3) u(t, x, <^ = Mt(l-g)(x, a)—

Combining this with (2.4)

(3.4) u(t9x,co) = eat(l-g,<t>*

for every t^>_T§. Since the third term of (3.4) is non-positive, there

exists a positive constant K such that

(3.5) u(t, x, U))<iK<eat for every £>(), and therefore

(3.6) u(t, x)<K-eat for every t>0.

Now, let

rt r( i-f)* ct

(3.7) M(_s{F'[f(s):«(5)2>U, a>)d s=\ + =/i + /z
JO JO J(l-£)f

where £ is a constant satisfying 0 <£<-—. Then from Lemma 2.3, if
LI

t£>T0,

r(i-e)t
(3.8)

/•(!-£)'

\
o

Noting \\u(s, 02||^^a* and assuming a + p<0,

/•(

\
Jo

$ (1

0

and
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(i-£)t

where c is a positive constant. Therefore,

(3.9) u(t, x, a>) = e«lt(X,
G

for some positive constant <J, and the theorem is proved if we show that

r(g) is positive. Since the left hand side of (3.9) is non negative, F(g)

>0, and it is sufficient to check that F(g)=^Q. We can prove the

following Lemma in a similar method as above using the inequality

Lemma 3.1. For every

New let / be a function in Ci(G) not identically zero. Then, for

every g-6Cj"(G), if t is sufficiently large,

Therefore it is impossible to have F(g) = Q and the proof is complete.

§4. The Asymptotic Behaviour of Tt(e~gli):

Critical Case (a = 0, or

In this case, the extinction probability q(x, a)) is also identical to 1

as in the sub-critical case. But Lemma 2.3 shows that the expected

number of neutrons does not tend to zero as t— >oo. We shall study the

asymptotic behaviour of Tt(e~glt) as £— >°o? assuming that Fff/ []l]< + °°.
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Theorem 4.1. There exists a positive constant a>0 such that for

every gGCJ"(G) satisfying \\g\\<^a,

(4.1) Hm 1- r,(

where (p(x} = ([j(x).

Proof. For #6Cjf(G), let M(J, 5; #, o>) be

(4.2) u(f, * : *, fi>) = 1 - r.C^X*,

Then

(4.3) ii(M:*,a>) = MXl-e-*'0(*,fl>)-^

where u (£, z;: A;)= — — \ u(t, t; : A;, a)) do) and 1
47T Jfi

Since l — e~glt<^g/t, we have

(4.4) w(£, 5 : x, a))^Ms(l - e~g!t) (x, co)

where ki is some positive constant independent of g.

For the proof of theorem, it is sufficient to show the existence of

the constants a and 6, 0<6<1, such that, for g GC^ and ||g|l<Ca, then

for each n (n = l, 2,.-.,),

(4.5) u(t, s: x, a)) = J[n

n

(4.5.2) \J?>(

(4.5.3) lim [>up

where ^=

For the convenience of the proof, we introduce the notation f(t, 5;

X, ft)):=os(l)(^>5, (x, o))GG) which means that lim { sup | /(£, 5; ^c, co)|}
«->« ?U^s,(^,oi)

= 0. Using this notation, (4.5.3) is written as t*J(
3
n}(s) = os(l).

We shall prove (4.5) by mathematical induction. For n = l, by (4.4)
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and the assumption that F//'Ql]< + °°,

(4.6) u(t, s : x, o>) = M8(l -

Since l-e~glt = g/t + o(-2-\ we have

(4.7) u(t,s: x, a)) = 0U, o)) '̂-

Let

and

Then,

where

(4.8) kz= sup Ms -F"(

Taking A;3 such that k\ki<^k\^ /fc3>max (&2,1), the case n- = l is true

if we take a, b such that afSl/A;! and b — k^1.

Now, assume that (4.5) holds for n. From (4.7),

(4.9) u(t, s: x, o>) = 0(*, to)- (g> /^

and
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s-" {f^

where, J f ( v ) = -^-( J(?\v)d(a. By the definition

and J(2n\v}(J(sn\v}} satisfies (4.5.2) (resp. (4.5.3)). {J[n\v}}2 can be

written as

(4.11) {/iw)(tO}2 —<K^)2{ fl (~i)i~lQi~lvi~1(g, </>*)*/t{}2-

where

i=2

and

A— y (-J-2 — Z_J V

If we can prove

(4.12)

then, we have



(4.13)
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* '

To prove (4.12), let £ be an arbitrary small positive number. Then,

there exists a positive constant T such that, for every £> T",

(4.14) (?•<&(*, a))

Therefore,

' rft;=a*-1
0, (1)

)s-T (2 ) ~ Js-T

where

/c4 = sup M8\—.

and

S~ vk~2dv.
o

If we set

then

and the estimate (4.12) is proved.

Since,
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we have

Of^V-v.}

For the second term of (4.10), since \J[n}(v)\<,

X-—— -j—- we have

For the third term, we have

For the fourth term, we have

And, for the last term, we have
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o.(l)

If we set

then

(4 is)(4.15)

Now take o>0 such that the bracket in the right hand side of (4.15)

is less than b and \Q(g, 0*)|<1 for every ||g||<Ja. (We can determine
such a independent of n.)

Then, for every g, \\g\\<^a, we have \J(
2
n+l]\<, b"^ . So (4.5) is

t
completely proved.

§ 5. The Asymptotic Behaviour of Ttg(x, a)) As £->°Oj H-

Critical Case

In this section we shall study the asymptotic behaviour of Ttg(x, a))
assuming that F'"[

Theorem 5.1. For every g E CJ" (G) and ||g"|i<l5 u(t^ x, a)) =
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1 — Ttg(x, a)) satisfies

(5.1) u(t, x, o)) = -

for every e>0r every e .

Proof. Let £ be a fixed arbitrarily small positive number., and f(t)

,be

(5.2)
J G

We shall first show that there exist positive constants &i, £2, TI and

such that, for every

(5.3)

and for every

(5.4) M(«

By the definition, /(O satisfies

(5.5)

where 1 — u(t, x}<i£(t) A;)<1. Since u(t, oc) is a continuous function of

x and u(t, x) 4 0 as ^->00
3 by Dini's theorem, there exist positive con-

stants jT3 and ^<1, such that, for every t^>T

From the definition of 0*, it follows that

<p(x) = -A — \ 0(^, a))do) = - — \ 0*(^,
47T Jfi 47T J^

Then

^ c f i N d/(0 ^ ^"Mcif , N2 ,
(5.6) - ~ ~ = ~ - ^ (*' ̂  '

where, ci is a positive constant such that ci<J #?(:*;). Using the Holder's

inequality, we have for any s'X),
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where m(D) is the Lebesgue measure of the domain D. Therefore,

(5.7) f ( t ) l J > * ' < ^ m ( D ) * ' ( rf*{-M u(t, x, ti>)<f>*(x, co)do)\1+6'
JD ( 4;r ja )

<m(D)6'( dx\}—( lift, x,coy-**'
JD 147T JS

^c3 \ u(t , x)dx<^
JD \JD

3

for some positive constant c^ since Q^u(t, x, o))^l. Hence, we have

and

(5.8)

where c6 is some positive constant. Integrating (5.8), we get, for some

positive constant c7,

and (5.3) is proved. (5.4) is obvious from the following:

^ (Mtu(t}}(x, a))

u(t, y,
G

We need, further, the following two lemmas.

Lemma 5.1. For every sj>0, L^l and p>0,

\ G
 9_f ds = 0(t~2+€\

JL s*
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Lemma 5.2. For every £>0, if

(5.9)

then

(5.10)

Proof. Set v(t) = k g(s)2ds, then

and

dt

or

( i ^ -
V v(t) ) ~

If we fix T sufficiently large,

1

and the lemma is proved.

Now let us return to the proof of the theorem. In the sequel, every

&i(or TI) is some positive constant.

By the definition,

(5.11) u(t, x, a>) = Mt(l-g)(x, co)- oM (_ s -F"[f( 5 ) ]«(S ) 2^, co)ds.

From Lemma 2.3, for every t^> rQ,

(5.12)
G

For fixed T^ which is larger than T0 and TI,

(5.13) M-s*T^)]2(s)2(*, al)ds
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~ '

t — T ̂

Let I and / be the second term and the third term respectively,

then,

L S

It follows from Lemma 5.1 that 7=0(«2£~2). On the other hand,

. 5

Since u(t, x> a)) j 0 as £-»oo3 we have from (5.11) and (5.12)

(5.14) 0(*, c

)o

where h(s) is the function in the bracket { }. Therefore,

5 Jo Jo l 2 J

= 0(a;, a))\
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t-Ti

Since

we have, the second term of (5.15)1 <,k6('Jo

/ 0 J L, S

where L > 1 is a fixed sufficiently large number. Furthermore,

the third term of (5.15) \<k^\
Jt — T^

and

(the last term of (5.15)|^*i0 (' ^ =0(t2e~2}.
Jt—T^ S

Hence,

(5.16) u(t, x, a)) = </>(x, a))(°°h(s)ds + 0(t2s-2).

If we denote G(0= ( ^(5)^5, then G(t) = 0(t2£-1} and

(5.17)

Then,

(5.18)

< / r

Let a>0 be as in Theorem 4.1. Then, there exists a positive con-

stant T5 such that, if £^>r5, e~X>||#||. According to Theorem 4.1, there
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exist positive constants ku and TQ such that, for every t>T§,

u(t, x, a)) = I-(Ttg)(X, 0)^1- lXe-T-)(*, o>)^^(*, a)).
t

Therefore,

Since \ — .FTl]<K#)20*(#? a)) G?#c?ft) is positive,
JG 2

G

From Lemma 5.2, we have

r-= - -
\ ^.F'[lXfl;)Z0*(*,
«/ G ^J

Consequently,

-JG 2

as desired.

§6. The Asymptotic Behaviour of Ttg(x, ft)) As ^->co5 III:

Super-critical Case (i.e. FTl]>c*, or a>l)

In this case, the extinction probability q(x, a)) satisfies 0<g(#, co)<

1, (^5 o))^9G and g(^, o))~ 1, (A;, a))€E9G. We shall investigate the rate

of convergence of g(^, x, ft)) to ^(A;, ft)), under the assumption that

Let g€Ci such that g(x, ($)<iq(X) ft)). Then3 by (1.3), u(t, x, ft))

=q(x, ft))— Ttg(x, ft)) satisfies,

r

(6.1) (

-g(x, ft))
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In this case, we shall consider the following equation instead of (1.6),

' 9t?(^*' ^ = a-rv(t, x, <o)

= Bv(t, x, a))
(6.2)

0(0 + , x, fl))=/

V(t9 #, o>) = 0 if

Since there exists a positive constant a such that q(x)^>a9 we can

obtain as Lemma 2.3, the following estimate; if we denote the semigroup

corresponding to (6.2) by Mt, then for every /6C(£)(or £>(£))

(6.3)

where S is a positive constant, 7" is the eigenvalue of B with maximal

real part and ^0?*) is the eigenfunction of 5 (resp. B*) corresponding

to T- The precise meaning of the above estimate is same as Lemma 2.3e

Moreover, we can prove 7<0, in the following way.

av
Let E(A', x, y) be the function - Ly/;j - ^ - , and £(/Q be

47T ./ •

the integral operator on C(D) induced by this kernel. Then

if and only if
= 0, (x, o

If we denote by #i(/9) the largest eigenvalue of the operator
1, then as in ^6], ^9], //i(^) is continuous, strictly decreasing, tends

to zero as /?— >oo and tends to infinity as /?-> — oo. Furthermore, 1 is the

largest eigenvalue of E(X), i.e. /h(/l) = l. Since gf(#) satisfies q(x)<J) by

some constant 6<1, there exists a positive constant £ such that

' (l-e)(l-§00)^(0)(l -?)(*).

Then it follows from the following lemma that /*i(0)<l, and therefore

r<o.

Lemma 6.1. (Karlin Q5]) Suppose that E is completely continuous

and strictly positive operator on a Banach lattice, then the largest eigenvalue

T of E is given by,
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Now, we can prove the following theorem in the same way as the

proof of Theorem 3.1.

Theorem 6.1. If we set inf q(x, o)) = c>0, then for every
(x,n)

such that

g(x, CD)-

where d is positive constant and F(g) is positive constant depending on g.

§ 7. Some Limit Theorems for Number of Particles

First, we consider the supercritical case. Then, the extinction probability

is non-trivial, that is, there is a positive probability that neutrons do

not vanish and the number of them tends to infinity.

We shall discuss the asymptotic behaviour of the distribution of the

neutrons under the assumption that F"Ql]<co.

By the general theory of branching Markov processes (C2])3 we have,

(7.1) E

where,

(7.2) Msf(x) =

Therefore,

(7.3) E(x,^f(Xi)^=M1f\x, aO+ffFTO Mt-,{a.f}\x, ai)du

On the other hand, for every sSjO, it follows from the Markov and

the branching property of the process Xt, that

By the definition of the
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(7.5) ttu-Ms = liitt+s.

Hence, we have,

(7.6) El,.

Now, let us define

(7.7)

and

where, 0* is the eigenf unction of B* corresponding to a. If g is an in-

dicator function of a set E, we write A(g) as A(E) and W(g) as W(E).

Then

(7.8) £(,..,

For R1}

2, 0*)

where, JQ and p are the constants determined by Lemma 2.3 and we

may assume that

Therefore3

For /?2? we set,
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rt-TQ f trj'o ft-TQ rt
=\ + \ +\ —Jo Jr0 Jt-TQ

Since,

Mvh _ e«v(h^*"

there exists a constant &i, such that, for every h in some bounded set,

Mvh
A(h}eav

Then, it follows,

^M/_,{4Af}(^, a>)du=0(e-at).

Furthermore, we have

(g> 0' ^a U Y ' -\- J \2(
— /> {X,___(

t—T

Tn

o

where, A:2 is some constant.

Similarly, we have

t-Ta

f=\
)t-

(g,
~

where A;3= sup
O<«<TO

(*,«»)

Consequently, we have proved the following lemma.
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Lemma 7.1. For every /, g

uniformly in s.

Using this lemma, we can prove the following results as in Harris

[1], and [10].

Theorem 7.1. There exists a non-trivial random variable W such

that J^t(E) converges in the mean to W for every E. And if we take a

sequence {tn}, so that J^e~2ptn<. +°o5 then

Lemma 7.2.

oo} a.s. P(*,u), for every (x,

Theorem 7.2. For a sequence {tn} as in Theorem 7.1 and for

ECG,

for every (x, a)) E G.

Next, we consider the critical case. Then we can derive the following

theorem from Theorems 4.1 and 5.1.

Theorem 7.3. For every E^ E2,-.-EnCG, such that (IE%, 1) > 0

(f = 1, 2,- . . , /O, the joint distribution of

Zfn), under the condition Zf =^=0, converges to that of ((/El5 0*), (/j?2, 0*),

• ••(/EB, 0*))' JF" w/^^w ^->oo. w;^r^ ?F 25 exponentially distributed with

mean 1.
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