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On Neutron Branching Processes

By

Takakazu Morr*, Shinzo WATANABE** and

Toshio Yamapa'

Introduction

A statistical theory of the neutron transport process has been discussed
by Harris [1] and Mullikin [7]. They considered the neutron population
by generation rather than in real time and formulate them as a discrete-
time branching process. In this paper, we will formulate the neutron
transport process as a continuous time branching process and study
asymptotic properties of the neutron population. As a fundamental equa-
tion, we have a non-linear equation like (1.3) and our results may be
regarded, as a problem in analysis, to be concerned with the asymptotic
properties of solutions of such a non-linear equation. In such study, a
linearized Boltzman equation, which is the dual of the evolution equation
for expectation semigroup, plays important role. In this paper, we are
mainly concerned with a monoenergetic and isotropic transport process on
bounded domain in R3, though a more general case can be treated by the
same method. Also, our method can be applied to a general class of
branching processes including branching diffusion processes but we will not

go further into such generalizations.

§ 1. Formulation of the Neutron Branching Process

and the Basic Equations

To apply the theory of branching processes, we will give, as a model
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of neutron transport phenomenon, the following simple one. A neutron,
moving straightly in a bounded homogeneous medium D with unit speed,
will collide with a nucleus at random time 7 which is exponentially
distributed with mean ¢~. If a collision occurs, then n neutrons are
produced with probability p,, n=0, 1, 2,.... Each of new particles, the
direction of which is isotropically distributed, performs a similar motion
as the original one independently each other. On the other hand, a neu-
tron is absorbed (extinct) if it leaves the medium.

Let D be a bounded closed convex domain in the three dimensional
Euclidean space R® with a smooth boundary, and £ be the unit sphere
in R3 Denoting by G the product space DX 2, a neutron can be re-
presented by a point (x, w) in G, x and » being the position and the
direction of a particle, respectively. 0G stands for the set of all points
(%, ») in G such that x belongs to the boundary of D and w is a direc-
tion exiting D; i.e. (n,, w)>>0, where n, is the direction of outernormal
at x.

Let S” be the n-fold symmetric product space of S=G and éz\/S"
n=0

\U {4} be the one point compactification of the topological sum Cj S” where
S%= {0}, (0 is an extra point). In order to formulate the abonvze0 branching
process as a Markov process on g, it is sufficient to specify the non-
branching part X9, which is a Markov process on G, and the branching
system {p.(z), m.(z, dy), z2€G, y€S"}7_o[2]. Intuitively, X? is the
motion of a neutron before collision or before it leaves the domain, and
branching system represents the law of new born neutrons when collision
occurs; p,(z) is the probability that the original particle is replaced by n
new particles when collision occurs at z and 7,(z, dy) is the distribution
of the position of these n particles. They are given as follows; let x;
be a uniform motion process on R3x £, i.e., a particle starting at (x, o),
is at (x+tw, w) in time ¢, and ¢’ be the hitting time of the process x;
for 0G.
Define X? as
{ x5 t<AT=r

0 ; >t
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where T is an exponential time with mean ¢~! independent of the process

x;. Let, for a given probability sequence {p.},

0 if z€0G and n=~0

l'pn if z=(x, ) €G—0G
Pn(z): ]
r
|

1 if z€0G and n=0,
and

_ do N, \/_LZUL>-- L _
7z, dy)_<é‘x><-4;i~>>< x(dw 22) it 5=(x, 0)€6—06

n

where 0, is the unit measure at x and dw is the spherical Lebesgue
measure on £. By [2], we can construct a branching process {X;, Py}
corresponding to (X7, pu, m,) on a suitable probability space, where P,
is the probability law of the process under the condition that there is
initially one particle at (x, o) €G. We will adopt this branching process
as our model of the neutron transport.

For every function f(z) on G, f and f are functions on S defined in

the following way;

1, if 2=0 or 3= 2€0G
) [f(z) if 5=2€6—0G
J@=9
I ﬁf<z1) If Z:(Zl,---, zﬂ)esn7 ngza
i=1
Lo if =4
0 if =0 or z2=z€0G
. f(z) if z=2€6G—0G
f@=43» |
] 2 f(zz') if 2=(21,---, 2,) €S, n=2
i=1
L0 if z=4.

Further, the following notations are introduced;

C(G), (C1(G), C7(G))= the set of all continuous functions on G (with
sup-norm || f||<1, resp. with || fi|<1 and f>0)

B(G), (B1(G), B;(G))= the set of all bounded Borel measurable func-
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tions f on G (with || f||<1 resp. with ||f||<1 and f>>0),
9(G)= the set of all spuare integrable {unctions on G with Lj;-norm
111z
C(D)= the set of all continuous functions on D,
Sy (%, w)=inf {t|x+tw& D},

Flz]= ’g paz”
eps=inf {t; X;=0} (the extinction time)
es=inf {t; X;=4} (the explosion time)

ZE= IE< (Xy), E€B(G) (IE is the indicator function of E; the number
of particles in E at time ¢.)

Z;=175.

Sy(x, w) is a bounded continuous function on G by the assumption on
the domain D. We shall always assume that,

(I) pot+p:< l

I Fr1]= an,,<+0°
From [27], the followmg relations hold. For every f €B;(G), we define

(11) u(ty Xy (D): th(xs w):E(x,m)[f(Xt)]S (xs Ll)) EG

Then u satisfies

e ' f (2 + 1o, w)+aS;e'”F[ﬂ(t—r, % +rw)1dr,
. if 1< Sy(x, ),
eAUSD(x,w)_*_O-S be‘”F[ﬁ(t—Ta x +rw)]dr,
’ if t>8;(%, w),

1.2)  u(t, x, w)=

where, (t, x):%&qu(t, x, 0)do.
Further, if f€C.(G), then u satisfies
(Mé—tx’—mzw-Vu(t, x, w)—ou(t, x, w)+0oF[u(t, x)]
! = Au(t, x, ®)
u(t, x, w)=1 if (x, w)€0G
u(0+, x, w)=f(x, v).

On the other hand, if f€B(G), then
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(1.4) v(t, x, 0)= th(xao)):E(x,m)[f(Xi)]

satisfies

t
e " f(x+tw, 0)+0F [1]S0e*”ﬁ(z—r x +rw)dr,
(1.5) (¢, x, )= Sy if 1< 8S(x, w)
GF’D]S e ""o(t—r, x+ro)dr,
0
it 1>8,(x, o)

where, ¥ (t, x)— -4}7_[—&0110, x, 0)do.

Further, if f€C(G), then

ov(t, x, w)
ot
v(t, x, w)=0 if (x, w) €0G

=w-gv(t, x, ) —0v(t, x, w) +OF[1]5(¢, x)=Bv(¢, x, w)
(1.6)

v(0+, x, )= f (x, 0).

Assumption (II) guarantees that the explosion does not occur in finite
time, i.e. Py, es=+oc0 =1, [2]. If f=Xg, then f(X;) is the number
of neutrons in E at time t, so equation (1.5) or (1.6), which is the dual
of the so-called linearlized Boltzmann transport equation, determines com-

pletely the expected number of neutrons.

§ 2. The Extinction Probability and the Asymptotic

Behaviour or Expected Number

If we define ¢ (¢, x, w)=T 0(x, »), then it is the extinction probability
P, o) €2t at time ¢, starting initially at (x, w). Obviously ¢(¢, x, ) is
increasing in ¢, continuous in (x, w) and 0<gq(¢, x, ») <1. Hence, there
exists a limit ¢(x, ») as t—>oco. Letting t—>o0 in (1.2), ¢(x, w) is a
solution of

Sy(x,@

)
2.1) u(x, w)=e "Su=) g So e ""Flu(x+rw)]dr

or
Au(x, w)=0,
(2.2) {

u(x, w)=1 if (%, w) €0G.
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Furthermore, it can be proved easily, as in [10], that ¢ is the smallest
solution among all solutions of (2.1) satisfying 0<u(x, w)<1.

We can prove also the following lemma as in [10].

Lemma 2.1. P [ Z;—0 or Z—>co when t—oco =1 for every
(x, w) €G.

Let E(x, y; A) be the function ge ""™*=9/4x|x— y|* on Dx D for
each 4 and c* be the largest positive eigenvalue of the integral operator
on C(D) induced by the kernel E(x, y; 0). Equation (2.2) has always
the trivial solution u(x, w)=1. Therefore, the extinction problem is

equivalent to that of the uniqueness of the solution for equation (2.2).

Lemma 2.2 (Pazy-Rabinowitz [ 87]). If F[1]<c*, then (1.6) has no
non-trivial solution and hence q(x, w)=1. On the other hand if F'[[1]>c*
then it has the unmique monm trivial solution which is, therefore, equal to
g(x, 0). Furthermore, q(x, 0)<1 if (x, ») €EG—0G and (ixr’lf) g(x, 0)>0.

We shall say that the process is subcritical, critical, or supercritical
according as F'[1]<c*, F'[1]=c*, or F/[1]>c*, respectively.

If we set
(2.3) Mtf(x, w)=E(x,m)[f<Xt)]s

then the following lemma holds.

Lemma 2.3. There exist positive constants T, and 0 such that for
every t>>To, and for every f&C(G)

2.9) 1M f (x, @) —e*'(f, $*)¢(x, 0)l|<e“"0(e|| £1])

where o is the eigenvalue of B with the maximal real part and (P*) is
the corresponding eigenfunction of B (resp. B*). When f is in O(G), then
the same estimate holds if we replace only || f|| in the right hand side by
£ 2.

In addition, « is real and simple. The process is subcritical, critical

or supercritical according as <0, =0 or >0, cf. [6]. ¢ is obtained



NEUTRON BRANCHING PROCESSES 159

by the following equation from the eigenfunction ¢ € C(D) corresponding

to the largest eigenvalue of the operator induced by E(x, y; ),

Sp(%,w)

(2.5) ¢ (x, w) :68 e " "p(x+rw)dr.

0

By the theorem of Krein and Rutman [5], ¢ is uniformly positive,
therefore ¢ is positive on G—0G and zero on 0G. Also ¢*(x, w)=

¢(x) _w)'

§ 3. The Asymptotic Behaviour of T,5(x, »), 1:
Suberitical Case, i.e. (<0, or F[1]<c*)

In this case, g(x, w)=1, ie. Py, (es<+o0)=Ilimq(s, x, w)=1. If

t—o0
we define u(¢, x, w)=1—T,8(x, w) for each g&Ci(G), then it tends to 0
as t—oo, since q(¢, x, w)<T:8(x, ). We shall discuss the rate of con-

vergence assuming F"[1]< + oo.

Theorem 3.1. For every ge<Ci(G),
(3.1) 1—-T.8(x, 0)=I(g)e*(x, w)+e*0(e™")

where I'(g) is a positive constant depending on g, and 0 is a positive
constant

Proof. From the definition and the simple calculation u(z, x, )
=1—T,4(x, w) satisfies

ou(t, x, )
0t

(3.2) —%ﬁ(t, x)2F'TE(s, x)]

=w-Fu(t, x, w)—ou(t, x, 0)+0cF 1]z, x)

u(0+, x, 0)=1—g(x, v)

u(t, x, w)=0 if (x, w) €0G
where
1—a(e, 2)<<E@, x)<1.

Using Duhamel’s principle, we obtain
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t
(3:3) u(t, %, )= M(1— )z, 0~ M AFTE()Ta()} (3, w)ds.

Combining this with (2.4)

(3.4) lL(t, X, w):eat(]_ - & ¢,*)¢(x, ‘0)+ e“’O(g“P’)
— O M AFTE)T6)) (v, 0)ds

for every t>T,. Since the third term of (3.4) is non-positive, there

exists a positive constant K such that
(3.5) u(t, x, 0)<K-e* for every t>>0, and therefore
(3.6) i(t, x)<K:e*  for every t>0.

Now, let

@D M APTE TR (0 (x, w)ds= g‘”" +f =n+n

0 (1-é&)t

where ¢ is a constant satisfying 0 <e <%. Then from Lemma 2.3, if

182 To,

(1-é)t

@8 L= o) dsesr{[ FTeG, )76, 1'% mdydnf

0

(1-8)
+f, e 00 s, s

Noting ||u(s, +)?||<<Ke** and assuming a-+0<0,
L=y (x, 0) Soe"“ds {XGF”[S(s, W Jats, y)26*(y, )d ydu

—etg(x, o) eds{{ PTG, 9)Ta0s, 926 1) dydul

(1-é&)

et ogem s s, ) ds

0
—eg(x, 0) | "emas{{_FTeGs, 1700, 9)0%( mdyan
6z, 0)O(e =)+ £%1(e),

and
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IZ:S; )tM:_s{F”itf(s)]ﬁ(S)z}(x, a))ds_<_S E)tF/’[leth—s(BZ“‘)(x,w)d.s

t
a-
¢

SF”[]-]KZCS ea(t—s)eZast:eatO(ea(l—e)t)

(1-é&)t

where ¢ is a positive constant. Therefore,

(3.9)  ult, v, 0)=e*G(x, w)SG(/J*(y, W{1— g(y, m)— %g:w[e(s, ]

X (s, y)e “*dsydydu+e*0(e™?)
(=I'(g)e“P(x, 0)+e*'0(e™*))

for some positive constant ¢, and the theorem is proved if we show that
I'(g) is positive. Since the left hand side of (3.9) is non negative, /'(g)
>0, and it is sufficient to check that /'(g)#0. We can prove the
following Lemma in a similar method as above using the inequality

1—e < f/t.

Lemma 3.1. For every f€Ci(G)

1= T )z, 0)=9(x, 0)(f; 99 +e<0( ).

New let f be a function in Cj(G) not identically zero. Then, for
every g€Ci(G), if ¢ is sufficiently large, [
at
1= Ty, 0)=1— Tile™)(x, )=, )£ < +e0( L),

Therefore it is impossible to have I'(g)=0 and the proof is complete.

o~
§4. The Asymptotic Behaviour of Ty(e ¢"):
Critical Case (=0, or F[1]=c*)

In this case, the extinction probability g(x, ») is also identical to 1
as in the sub-critical case. But Lemma 2.3 shows that the expected
number of neutrons does not tend to zero as t—>oo. We shall study the

P _
asymptotic behaviour of T;(e ¢") as t—> oo, assuming that F""' [1]< + o,
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Theorem 4.1. There exists a positive constant a>0 such that for
every g€ Ci(G) satisfying |lgll<a,

(4.1) lim 1= T'(e/_’h)(x’ ®) _ ¢(x, 0)(g, )
o v 142 P10 ) (g )

where ¢(x)=J(x).
Proof. For ge€Ci(G), let u(t,s; x, w) be

T
(4.2) u(t, s: z, 0)=1—T (e #)(x, v) s<t.
Then

(4.3) u(t,s:x,w>=Ms<1—e-g"xx,w)—g:MH{gF"[e<v>]a<t,v>2<x,w)dv}

where @ (¢, v: x)—zl—g u(t,v: x, w)do and 1—a(t, v, HZE@W)ZL.

Since 1—e #"<g/t, we have
4 wlt, 51 %, ) <M,(1— 09 (5, ) < B

where k; is some positive constant independent of g.

For the proof of theorem, it is sufficient to show the existence of
the constants @ and b, 0<b<1, such that, for g€C{ and ||g||<la, then
for each n (n=1, 2,...,),

(4.5) u(t, s: 2, 0)=J{" () +J" () + J§ (),
(4.5.1) J () =¢(x, v) Z( 1 (g, 1) /1
(4.5.2) |J§(s)| <b"*1/1
(4.5.3) hm [sup t | JP(s)| 1=0

sk

where Q= %F"[ljwz,sb*)-

For the convenience of the proof, we introduce the notation f(z, s;
x, w)=0,(1)(t=>s, (x, ) €EG) which means that lim { sup ]f(t s; %, 0)|}

=0. Using this notation, (4.5.3) is written as t- J""(s)—o (1)
We shall prove (4.5) by mathematical induction. For n=1, by (4.4)
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and the assumption that F'"'[1]< + oo,

(4.6) u(t,s: 2, w)=M,(1—e ) (x, w)

—SM {5 F T8 (140G, ), 0)do}.
Since l—e_g”zg/t-i-O(—tlz—), we have
@D ul stz o) =g, 0 po( L)

T e aG o oL
SOMS_V{Z F" 1 a(t, v) }(x, w)dv +50(t3 >

Let
B(9)=(x, w)(g, $¥)/1
and
1= M f T PTG, 0, 0 o,
Then,
2 2

6| < kksl gl el
where
(4.8) k= sup M, (L F"(1) )(x, 0)< + 0.

Taking k; such that k2k,<<k%, ks >max (ks,1), the case n=1 is true
if we take a, b such that a<<1/k% and b=Fk;".
Now, assume that (4.5) holds for n. From (4.7),

(49) G, 51 %, 0)=¢(x, o) B ("u,_ L P10 07, )
n osgl) ,
and

(4.10) goM {%F”[l]ﬁ(t, v)Z}(x, ) dv
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Il

[ M S FTOUr @+ 79 )+ T @) (x, 0)do
= M ZFTIUR 00 (3, w)do
+2S:M { F”[l]]‘”’(v)]‘”’(v)}(x, ©)dv

2 PV (x, w)dv

(" m, { O P17 (0) (T (v) +i;m(v))}(x, 0)dy

0
1

h 7 (m —
where, J " (v)= P

J#(v)dw. By the definition
2

+{ e

+SO {_F"D]ﬂm(v)a(t, v)}(x, w)dv
)
|

f‘"’(v) o(x) » Z( 1); 1Q: 1,i-1 (g, ¢’ )’

and JP(v)(J§(v)) satisfies (4.5.2) (resp. (4.5.3)). {/{"(»)}? can be

written as

(4.11) {0} =e(x)* {Z( 1101 (g, ¢*)/ 1} 2= (I + I)e(%)"

where
1=z (i—1) (—1)Q (g, $*)v /i

and

I,= Skz:lsn( 1)k+le+l Z(g ¢*)k+l k+1- Z/tk+l 2
+i1>n+1

If we can prove

(4.12) SOM{ FT ¢ 2}(x ) dv= Q (%, 0)+s+0,(1)

then, we have
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1) (", T PTIIRe e, 0)do=p(e,0) B (— 10 (g, 9%

+ os,(1)
1

To prove (4.12), let € be an arbitrary small positive number. Then,

there exists a positive constant T such that, for every =T,

(414)  Q(x, )—e= M, {F 10 (x, 0)SQ-(x, 0)+e.

Therefore,

SS TMS_” {%F"Elj¢zvk‘z}dv ghgs v  2dv =5 "to, (1)

s— s-T

where

ki=sup M,{ T FT110%}(z, 0)< +o0

S§s%,®

and

Q0 o= <" M, TP G, 0)d

s— s—
0 0

<{Q-¢(x, w)+s}g:_ o2 dy.
If we set
I(s)= S:_TMS_D {%F”[l](ozv"‘z}(x, w)dv,
then
Q-¢d(x, w)—e .. I(s) w—  I(s) Q-¢(x, w)+e
k—1 élsl-{?o (s—T)’a”lé lsl_ri (s—T)k‘lé k—1

and the estimate (4.12) is proved.

Since,

vn+1

|| < —1)Q"(8, §%)" Lo+ (n—2)0" (g, 445

2n-2 *\27 p? 2
*~"'*_(? (83 ¢ ) _‘;EZ__:
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we have

1 S:M‘“'” {%F”[ljlwz}(x, w)dv

gon(g’ ¢*)n+2k4{(";;21) g: U,ldv+(nt;_32) Q_(g’ ¢)*)S:U”+1d’l]

7—2 x\7—2 s
+ 4+ Q (5;;”(/) ) S vz:;-2dv}

0

P 9 ks
= [=0(g, ¢

. *
For the second term of (4.10), since |J{(v)|< -M—)

1
x 1 _Q(g> ¢*):

we have

'S:Ms‘” {%F”D]jim(”)fé’”(v)} (%, w)dv
Sm%%ﬂzm-v L9 Pt (s, w)ao

(g 636"k,
=0 00gd™)

For the third term, we have

g: M- {%F"[l](jé")(v))z} (x, ®)dv

S
S tz bZ(n«—l).kz.

For the fourth term, we have

Mo {2 PTIR , 0)} a,0)d

kil gll (¢ 0 zwr171) 7o
é—t*goMs—u {71? [1]]/§ (U)I}(xa w)dv

< fakilgl [ ou1ydo= o)
0

And, for the last term, we have
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[ M TP UP @)+ TP o) 0) dv

0

M AT TR O] e, 0)dv

<5

+ | M AT TP @1 700 |, 0)do

kag(x)(g, 0*) (¢ 0,(1) Eob™ 1 (5 0,(1) ,  0,(1)
= t(1—Q(g, ™)) So t dv + t So t dv = t
If we set

1o)== MG T 0)do
=2 M f LTI TP 0) H, w)do

—S:Ms‘” {%F"D](]é")(v))z}(x, 0)dv

then

2'k4(g9 ¢*)

bn 4—1{ k4'Q"(g, ¢*)n+2

1= Qlg, §%) |

415) T 0(s)| < +bi"+1}.

1
Now take a>0 such that the bracket in the right hand side of (4.15)

is less than & and |Q(g, ¢*)| <1 for every ||g||[<a. (We can determine

such e independent of n.)

bn+2

P So (4.5) is

Then, for every g, |lg|l|<a, we have [JF*V|<
completely proved.
§ 5. The Asymptotic Behaviour of 7;3(x, w) As t—oo, II:
Critical Case

In this section we shall study the asymptotic behaviour of T;3(x, »)
assuming that F"/T1]< 4 co.

Theorem 5.1. For every g€ Ci(G) and | g|[<1, u(t, x, 0)=
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1—-T,3(x, w) satisfies

(5.1) u(t, x, 0)= 5 ¢(x, 0) -—2—+0(z“)
SG—Z-F”[quong*dx do

for every €>0.
Proof. Let ¢ be a fixed arbitrarily small positive number, and f(z)
be,

(5.2) )= Scu(t, %, 0)P*(x, 0) dxdo.

We shall first show that there exist positive constants ki, k2, 77 and T,

such that, for every t>T,

(5.3) fO=Zktc!
and for every i>T5,

(5.4) u(t, 2, 0)<kyt° L

By the definition, f(¢) satisfies

(5.5) YW — 2 e, 9730, 9794, 0)dedo

where 1—@(¢, x)<&(t, x)<1. Since #(¢, ) is a continuous function of
x and % (¢, x) | 0 as t—>oo, by Dini’s theorem, there exist positive con-
stants T3 and <1, such that, for every t= T3, 1—u(s, ¥) < E(L, x)
<l1.

From the definition of ¢*, it follows that

o)== 9 D do=-{ ¥, 0)do.
Then
d n
(5.6) {lE‘) g—JF [zﬂclgna(t, x)*dx,

where, c¢; is a positive constant such that ¢;<"¢(x). Using the Holder’s

inequality, we have for any &' >0,

f(t)gm(D)‘s'/“é/BDdx{ZIESgu(t, %, 0)$*(x, w)dw}“é']l—iﬁ,
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where m(D) is the Lebesgue measure of the domain D. Therefore,

(5.7) f([)“é'ém(D)é'ngx{%Sgu(t, %, )P*(x, a))dw}”é'

gln(D)‘E'ngx{fn—ggu(t, x, o)t é’da)}{gg(/)*(x, a))l—;’i,da)}el

<eaf 1Ct, v = 22, dx )

for some positive constant cy, since 0 u(t, », )< 1. Hence, we have

d .
N O

and
(5.8) W) zes,

where cg is some positive constant. Integrating (5.8), we get, for some

positive constant cq,

1

chﬂ

and (5.3) is proved. (5.4) is obvious from the following:
u(2t, x, 0)=(Mu(t))(x, w)—S;Mt-s{%F"E(sﬁ-t)]ﬁ(s-i-t)z}(x, w)ds
= (Mu(®)(x, v)
— 0ty o) _ut, 5, 9*(y, dydu+0(e)
=¢(x, 0)f(¢)+0(e™").

We need, further, the following two lemmas.

Lemma 5.1. For erery €0, L=1 and p>0,

t ,—p(t—s)
e —2+¢&
Z——ds=0(t"%%%).
SL s2¢ ( )



170 T. Mori, S. WATANABE AND T. Yamapa

Lemma 5.2. For cvery ¢>0, if

(5.9) g(t)ZkS: g(s)?ds(1+0(t5 ).
then
(5.10) g(t)=%(l+0(té“1)).

Proof. Set v(t)=k Sjg(s)z ds, then

v(1)=g(H)(A+001)
and

W) kg (1= — k("1 +0GT).

or

d;‘i (ﬁ) — k(1+ 0@ 1Y).

If we fix T sufficiently large,

. ( . 1
—kST(l FOE N dst L

_1
v(t)
= k{1 +0<~}1—>+%g;0(56‘1)ds}
=kt{1+0@* 1},

and the lemma is proved.

Now let us return to the proof of the theorem. In the sequel, every
k;(or T;) is some positive constant.

By the definition,

t
(5.11) u(t, %, )= M- 0) = M {LFTe]a0)} (v, 0)ds.
From Lemma 2.3, for every t=T,,

(5.12)  M(1—g)(x, 0)=9(x, 0){_{1—g(y, W}$*(3 Wdydn+O0(e).

For fixed T,, which is larger than T, and T%,,

(5.13) [ M- Freea6r e, 0ds
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=, o dsl( GG, p)11C 2% (s wdydsd

(s o 02 P T a0 )

+ S:_T4M"S{%F"[E(S)]ﬁ@)z}'(x, w)ds.

Let I and J be the second term and the third term respectively,
then,

L
1= 10(ere 2 T FTeE) Ta6 ) ds

+S:T,l 0<e‘f’(’_s)%l1F”[$(s)]ﬁ(s)z H)ds

> g=pt=s)

S hse P e ds.
It follows from Lemma 5.1 that /=0(t2°"2). On the other hand,
| T =ks S:_TAM,_(?}_ZE—)(% 0)ds=0(t¢"?),
Since u(t, %, ») | 0 as t—>oo, we have from (5.11) and (5.12)
(510 9Cx o) 11— g(y, W1y, Wdydn
— o=, o) as{| SFTeCs, y00Cs, 9?6y, m dydn
— (s, o) hCs)ds,
where h(s) is the function in the bracket { }. Therefore,
(5.15) u(t, %, 0)= g[)(x,w)S:h(s)ds— S:M,_s{%F”[}(s)]a(s)z}(x, 0)ds
+0(e")

= ¢(x, w)gjh(s) ds

] 9, b6 M { S P T 106 (3, 0) |
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+], o 90 o ds— [ AP T80, 0)ds

+0(e™ ).
Since

My {5 FLE T | (5, 0)=9 (5, ()
+0(e 2w,

t
we have, |the second term of (5.15)] gkeg e P =90(||u(s)?|) ds
0

t g=pli=9)

L
<k7 So llu(s)? He"'(t‘s)ds-{—ksSL— $22E ds=0(t**7?),

where L>1 is a fixed sufficiently large number. Furthermore,

t
|the third term of (5.15) nggg T%MZOQZ*&—?)
=T, §
and
t
|the last term of (5.15)]§k105 ; Schszé =0(t%¢72).
t=T,
Hence,
(5.16) u(t, %, 0)=¢(x, w)gmh(s)ds—i—O(t“‘z).
1

If we denote G(¢)= S”h(s)ds, then G(¢)=0(t%¢"1) and
t

(5.17) u(t, %, ©)=G)P(x, 0)+0(t272).

Then,
618 60={{] @2rn+oey
X (G()P(x)+0(s* ) *(x, w)dxdo} ds
={"as{ 15 T1066 e+ 06 )
+ 5 FTLICE0(0( ) +0G* O} g*(x, @)dwdo.

Let a>0 be as in Theorem 4.1. Then, there exists a positive con-
stant Ts5 such that, if :¢=7T5, e“égll gll. According to Theorem 4.1, there
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exist positive constants k;; and T such that, for every ¢=Ts,
. e k
u(t, % 0)=1=(Ti@) (%, 0)Z1— Ti(e™ )(x, 0)="1L4(x, o).

Therefore,
G '(5)=0(s), s—>oo.

Since SG%F”[quo(x)ng*(x, w) dxdw is positive,

G(t)=SG%F”|:1:](p(x)2¢*(x, w)dxdw-SjG(s)zds(l +0(s2)),

From Lemma 5.2, we have

G(t): 1 o i.(l +0(t25_1)).
SG%F"[ljfﬂ(x)ng*(x, w)dxdo
Consequently,
u(t, x, 0)= - ¢(x, 0) . ~—1—+0(t25‘2)
{2 P19, 0)dxdo
as desired.

§ 6. The Asymptotic Behaviour of T;3(x, w) As t—>oo, III:
Super-critical Case (i.e. F'[1]>c*, or a>1)

In this case, the extinction probability g(x, w) satisfies 0<q(x, )<
1, (%, ) §0G and q(x, w)=1, (x, w) €0G. We shall investigate the rate
of convergence of ¢(¢, x, ») to ¢(x, w), under the assumption that
F'[1]< 00,

Let g€Cf such that g(x, w) <<g(x, w). Then, by (1.3), u(t, x, ®)
=q(x, 0)— T:8(x, 0) satisfies,

_a”_(‘étx_’“’) =0T u(t, %, 0)—0u(t, x, 0)+0{F[§(x)]

(6.1) —F[g(x)—a(e, )T}
u(0+3 X, w)ZQ(xs w)—g(x’ w)
u(t, x, ®)=0 if (x, w) €0G.
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In this case, we shall consider the following equation instead of (1.6),

( 0v(t, x, w)

ot =w-Fv(t, x, 0)—0v(t, x, ) +0F'[§(x)]o(s, x)

=Bu(t, x, »)
(6.2)
'”(0'1"9 Xy a))=f(x, w)

v(t, x, 0)=0 if (x, »)€IG.

Since there exists a positive constant e such that §(x)>>a, we can
obtain as Lemma 2.3, the following estimate; if we denote the semigroup
corresponding to (6.2) by M, then for every f€C(G)(or (G))

(6.3) M f (2, 0)=e"(f, 7%)(x, 0)+e"0e™*| fID),

where 0 is a positive constant, 7 is the eigenvalue of B with maximal
real part and 7(7*) is the eigenfunction of B (resp. B*) corresponding
to y. The precise meaning of the above estimate is same as Lemma 2.3.
Moreover, we can prove 7<0, in the following way.

sy —(e+N)1z=y)| .
aF[iSr}")ie_ S , and E(1) be

Let E(Z; %, ) be the function
the integral operator on C(D) induced by this kernel. Then
Bf=if
f(x, 0)=0, (x, w) €0G

if and only if E(2)f=F.

If we denote by x;(8) the largest eigenvalue of the operator E(3),
B ERY, then as in [6], [97], #:(B) is continuous, strictly decreasing, tends
to zero as §—co and tends to infinity as §— —oo. Furthermore, 1 is the
largest eigenvalue of E(), i.e. #,(A)=1. Since G(x) satisfies §(x)<<b by

some constant 5<1, there exists a positive constant & such that
(1—e)(1—g(x)=E(0)(1 —§) ().

Then it follows from the following lemma that #;(0)<1, and therefore
r<0.

Lemma 6.1. (Karlin [ 5]) Suppose that E is completely continuous
and strictly positive operator on a Banach lattice, then the largest eigenvalue

v of E is given by,
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y=inf{l; Ix=~0, x>0, Ex <Ax}.

Now, we can prove the following theorem in the same way as the
proof of Theorem 3.1.

Theorem 6.1. If we set inf q(x, w)=c>0, then for every gecCi(G)
(x,0)
such that g<lc,

g (%, 0)— T: (%, 0)=T"(g)e" P(x,w)+e"0(e™*)

where 0 is positive constant and 1'(g) is positive constant depending on g.

§ 7. Some Limit Theorems for Number of Particles

First, we consider the supercritical case. Then, the extinction probability
is non-trivial, that is, there is a positive probability that neutrons do
not vanish and the number of them tends to infinity.

We shall discuss the asymptotic behaviour of the distribution of the
neutrons under the assumption that F"[1]<eo.

By the general theory of branching Markov processes ([ 2]), we have,
(7)) Eo(f(X)g(X)
t ~ ~
=M f ), 0)+0F T11{ Moo AL f- Mg} 5, @) du,
where,
N 1
(7.2) i, f(x)—Z{Sng f(x, 0)do.
Therefore,

(1.3) Bl fOO 1= Mf*(w, 0)+0FT1] || M u{i, £}, 0)du

=0(e“‘)+0‘F”[1]S:M,_,,{M,, FY(x, w)du.

On the other hand, for every s=>0, it follows from the Markov and
the branching property of the process X;, that

(7.4) Eo f(X) §(X145) 1= Ex,o f (X)Ex (§(X:))]

. ~——
:E(x,m)[f(Xt)'Msg(Xt)]a
By the definition of the A,
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(7.5) M, M,=M,,,.
Hence, we have,
(7.6) Ex o f (X)) §(Xer)]= M f - M: g} (%, )
OB TN M A M8} (o, @)
Now, let us define

(7.7) A(g)=(g, ™)/, ¢*),

and
Wi(g)=g(Xy)/e* A(g),

where, ¢* is the eigenfunction of B* corresponding to «. If g is an in-
dicator function of a set E, we write A(g) as A(E) and W(g) as W(E).
Then

(7.8) Exo)[((Wi(f)— Wt+s(g))2]=S:Mws—u{ﬂug}z(x, w)du/A(g)*e?*¢+)

o+ Mol /4P ye % M (@) A, )

+0(e™*)=R,+ Ry +0(e™*).

For R,,

s

s - Tu

T,

=0(e“ )+ (| My (@) e (g, §%)+ >0} (5, 0)du

<OCe )+ [ entrem feen(g, (e, %)

+ ea(t+s—-u)+2au0(e—p(t+s))} du
=0(ea(t+2s))

where, T, and p are the constants determined by Lemma 2.3 and we
may assume that 2p<a.
Therefore,

R,= (Oe“’“).

For R;, we set,
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To t-T, t
R2=S +S +S =R+ Raz+ Ras.

0 T, t-T,
Since,
M,h _ e®*(h, ¢,*)¢+ea00(e'f’"“h||) _ OCe—*?
A(h)eav (h, ¢*)eav ¢+ (e ”hH)

there exists a constant ki, such that, for every h in some bounded set,

} M,h

e | <k

Then, it follows,

R <

2 (T,
W (" oMy 443 (v, 0)du=0(e .

Furthermore, we have

(fs 9M)e o +0(e'“~")
A(f)'eat

_ (g, ¢*)ea(u+S)¢+0(e(a—p)(u+S))
A(g>.eat

1T,
Rzz=§ M,
TO

»f}z(x, 0)du

<, 99, Mo e D0 (e, w)du
<ha | {4 0e (1401 du = 0(e )

where, k; is some constant,

Similarly, we have

_{ (f9¥)e““p+ e *0(e")
Rga— St—T"Mt—”{ A(f)eat
( ] ¢*)¢ea(u¢s)+ea(u+s)0(e—p(u+s))
—& A(g>ea(i+s) }Z(x’ w)du

t
g(la ¢*)Ze—2at St r k362(a_f’)"du :0(6‘2/7')’

where k3= sup M,(1)(x, w)< + oo.
0%#%)7‘0

x>
Consequently, we have proved the following lemma.
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Lemma 7.1. For every f, g
Ee (Wi )= Wi () =0(e | fIl VgD,

uniformly in s.

Using this lemma, we can prove the following results as in Harris
[1], and [10].

Theorem 7.1. There exists a non-trivial random variable W such
that Wi(E) converges in the mean to W for every E. And if we take a
sequence {t,}, so that Y e '»< + oo, then

Pio) (W (E)—>W)=1.

Lemma 7.2.

{W >0 ={es< + o0} a.s. Py, for every (x, w)€G.

Theorem 7.2. For a sequence {t,t as in Theorem 7.1 and for
ECG,

Pi.yiZE /Z; > A(E), n—oo|e;< +oo}=1,
Jor every (x, ) €G.

Next, we consider the critical case. Then we can derive the following

theorem from Theorems 4.1 and 5.1.

Theorem 7.3. For every Ei, Es,...E,CG, such that (Ig, 1)>0
(i=1, 2,..., n), the joint distribution of [Tto‘F”[lj(J]z, gb*)}l(Zfl, ZE ...,
ZEn), under the condition Z§0, converges to that of ((Ig, ¢*), (Ig, ¢*),

-Ip, ™)) W when t—>oo, where W is exponentially distributed with
mean 1.
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