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Semigroups of Linear Operators
in a Banach Space

By

Shinnosuke OHARU*

This paper concerns the construction of the solution of an abstract

Cauchy problem and the generation of semigroups of bounded linear opera-

tors in a Banach space.

Let A be a closed linear operator in a Banach space X and let us

consider a differential equation (d/'dt)u(t) = Au(t) in X. Our first problem

is to find the solution of this equation associated with the given initial

value u(Q) = x, under some additional conditions on A. The additional

conditions on A are stated roughly as follows:

(1) The resolvent set p(A) of A contains a half real line (a>, oo);

and hence for each nonnegative integer n, D(An) .can be regarded as a

Banach space with respect to the graph norm; this is condition (/; o>).

(2) There is a nonnegative integer k such that the operators gnR($;

A)n, g large and n = l, 2, 3, ..., map bounded sets in the Banach space

D(Ak) into bounded sets in X, where R(£\ A) denotes the resolvent of

A at f; this is the idea behind condition (//; K) or (//exp; K) mentioned

later.

Then, under these conditions there is a one-parameter family {[/*;

£^>0} of continuous linear operators from a Banach space D(Am) into X

and the family gives a unique solution operator of the Cauchy problem

for A, where m = 2k+l in general and m = k if A is densely defined.

The proof given in this paper is based on that of the author [171. We

can also apply other methods which are analogous to Kato [9], Feller
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and Crandall-Liggett £2], Hille-Yosida-Miyadera-Phillips3 theorem states

that a linear operator A is the infinitesimal generator of a (Co) -semigroup

if and only if A is a densely defined, closed linear operator satisfying

(/; a)) and (//; 0); the corresponding {[/?; zl>0} becomes the (C0)-semi-

group. In this sense the above result is an extension of the generation

theorem of (C0)-semigroups.

The solution operator {Ut} is closely related to the notion of distribu-

tion semigroup. For instance, a linear operator A is the infinitesimal

generator of an exponential distribution semigroup if and only if A is a

densely defined, closed linear operator satisfying conditions (I; a)) and

(Hexpl K) for some a) and k. Also, {Ut} can be regarded as an R-

semigroup which was studied by Da Prato Q4]. We shall discuss some

relationships among {Ut} and these notions of semigroups. The results

obtained will give some informations on the continuity at the origin £ = 0

and the regularity of exponential distribution semigroups.

The solution operator {Ut} mentioned above can not necessarily be

extended to a semigroup of bounded linear operators. In fact, in order to

extend such a solution operator to a semigroup of bounded linear opera-

tors, it is required that A be densely defined and that the solution of the

Cauchy problem for A depend continuously on initial data. Krein con-

sidered in Ull] the semigroup obtained by extending the solution operator,

under the assumption that the problem be correctly posed. The condition

of correct posedness is discussed by Lax ^13] or [_2\~] and it is in fact

equivalent to a Feller type condition which is suggested by Hille-Phillips

Q8; p. 373], see also Feller JJT]. In view of this, we obtain the following

result :

If A is a densely defined, closed linear operator in a Banach space X

satisfying conditions (/; ft)) and (//; k} for some a) and k (which guarantee

the existence of a solution operator for a Cauchy problem formulated for

A) and a condition of Feller type, then we obtain a semigroup {Tt\

of bounded linear operators such that

(i) Ttx = lim (I-hAYLtl1*x, oc e D(Ak\

where the convergence is uniform with respect to t in every finite inter-
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val;

(ii) for every x£D(Ak+1), Ttx gives the solution of the abstract

Cauchy problem for A associated with the initial value x;

(iii) D(Ak)C2, where 2 is the continuity set which is defined

by 2={x€iX\ lim Ttx = x}.
t-++o

Our second problem is to extend well-known classes stated in Hille-

Phillips Q8; §10.6j and study the fundamental structure of such semigroups.

For this purpose, it is natural to classify the semigroups of bounded linear

operators obtained as above in terms of the continuity set %. That is,

for each nonnegative integer k, we consider a class of semigroups {Tt;

t>0} such that D(Ak)C2, where A is the closure of its infinitesimal

generator. In this paper, such a class will be called class (C(&)). We

shall characterize these classes.

The characterization of the semigroup of class (C(&)) given in this

paper is in substance an extension of that of the semigroup of class (C0).

However, it is another purpose to study the relationships among the classes

(C(fc)), k = Q, 1, 2, 3, • • - , and various well-known notions of semigroups.

First, it can be shown that every (C(&))-semigroup can be extended to an

exponential distribution semigroup. Conversely, every semigroup which

can be extended to a regular distribution semigroup belongs to some class

(£(£))• Class (C(o)) is tne same thing as class (Co); class (0, A) is an

important subclass of class (C(i)); and class (A) is a particular case of

class (C(2)).

Finally, we shall discuss that the theory of semigroups of continuous

linear operators in a locally convex space can be employed to construct

semigroups of classes (C^).

In the present paper we restrict ourselves to the case in which the

infinitesimal generator of the semigroups treated has a non-empty resolvent

set. As for the case in which the resolvent set of the infinitesimal gen-

erator is empty, we shall publish it elsewhere.

Section 1 deals with the basic notions and some of their properties.

Section 2 concerns the abstract Cauchy problem on a finite interval.

Section 3 concerns the construction of the semigroup solution of an
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abstract Cauchy problem in a Frechet space.

Section 4 contains some results on the abstract Cauchy problem on

a real half line.

Section 5 deals with some relations among the results of Section 4

and the notion of distribution semigroup. Also, in that section, we discuss

a characterization of the semigroup of bounded linear operators which can

be extended to a distribution semigroup.

Finally, Section 6 gives a characterization of class (£(£)). Also, in

that section some generation theorems of well-known classes will be obta-

ined.

The author wants to express his deep gratitude to Professor I.

Miyadera, Professor H. Sunouchi, Mr. N. Okazawa and Mr. T. Ushijima

for their many valuable suggestions.

1. Preliminaries

In this section, we introduce some basic notions and notations which

will be used in this paper.

Let X and Y be (complex) Banach spaces. Let A be a linear operator

(or simply an operator} from X into F. We denote by D(A) (C-X") and

R(A) ( C F) the domain and range of A, respectively. We write E(X, F)

for the totality of closed operators A with D(A) C X and R(A) C F. Also,

we write 33 (X, F) for the totality of bounded operators on X into F.

However, for brevity in notation, we write K(JT) and S3(^T) for &(X, X)

and S3(JT, X) respectively. Similarly, when X and F are locally convex

spaces, we write S>(X, F) and S(JT) for the totality of continuous opera-

tors on X into F and that of continuous operators on X into itself,

respectively.

Let A be an operator from X into itself, then we say simply that A

is an operator in X; p(A) denotes the resolvent set of A and for I £ p(A)

we assume that R(A; A) means the resolvent of A at A. Let A be an

operator from X into itself, then we mean by N(A) the null space of A.

If N(i — A)= {0}, then (/I — A)~l is defined as an operator from F into

X; we use the notation /x which stands for (I—/l^)"1, when A is fixed
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and N(l-l-A)={0}.

Let SCX, then S means the closure of S. Accordingly, we denote

by A the closure of a closable operator A. Let S(^X and A be an opera-

tor from X into F, then we write A \ S for the restriction of A to D(A)

f~\S. For any closable operator A such that A = B^ its domain D(A) is

called a core of 5. In other words, a linear manifold D(^D(B}) is a core

of B, if D is dense in D(B) with respect to the graph norm of B.

We use the following abbreviations: Let Xi be a linear manifold in X

and ^4 be an operator from X into Y. When we consider A as an opera-

tor from Xi into F (i.e., A\X{), we say simply that A is an operator

from Xi into F. Accordingly, if X\ is a Banach space with respect to

a certain norm, then A€$$(Xi, F) means that A\Xi€3$(Xi, F).

Now, assume that A 6 E(-X")5 then we may regard D(An) as a Banach

space with respect to the norm ||#|| + ||./4#||H ----- |- | | .^WA;J|; we write ||^||w
for the norm and V_D(An)~^ for the Banach space. We note that if A, A2,

..., An £&(X) then the above-mentioned norm \\x\\n is equivalent to the

graph norm of An.

Let U e2d([D(An)~], Z), then we denote by \\U\\H for the operator

norm of U. We shall abbreviate S3([ZMn)H, Z) b^ 33CD(-4n), X}. Also,
in this paper, we let A° = I" I denotes the identity operator and we

assume that [D(A°^ = X. Let Z7e93(Jf), then U€®(D(An\ Jf); we

shall write \\U\\n for i|t/|D(^Q!U for brevity in notation.

Throughout this paper, we write R = (— oo5 oo)5 R+ = (0, oo), R± =

QO, oo )5 and Z+ for the totality of nonnegative integers.

Let X be a Banach space. We write lim xn = x or xn-^x as rz,—>oo5

if a sequence {xn} C_X converges to some x ZzX strongly. Let {£/»}

(X). We then write 5-lim Un=U, if {£/"„} converges to some

in the sense of the strong operator topology.

Now, we introduce the notion of an (abstract) Cauchy problem, ACP.

Let X be a Banach space and A be an operator in X, and then let us

consider the differential equation

(1.1)

where (d/dt) means the differentiation in the sense of the strong topology.
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In this setting, we formulate the following problem:

ACP. Given a positive number T and an element x £E X, find a func-

tion u(t)^u(t; x) such that

(i) u(f) is strongly absolutely continuous and strongly continuously

differentiable in [0, T~] (or (0, T]);

(ii) for each 1 6 (0, T~], u(t)eD(A) and u(t) satisfies (1.1);

(iii) lim u(t) = x.
f-» + 0

This problem is called the (abstract} Cauchy problem, ACP, formula-

ted for an operator A on QO, T] and the X- valued function u(t; x) satisfy-

ing (i), (ii) and (iii) is called the solution associated with the initial value

x. There are two alternatives in condition (i); the corresponding prob-

lems will be denoted by ACPi and ACP2 respectively. Similarly, we can

formulate ACP^ i = l, 2, for an operator A on L(), oo) (on (0, °°)); the

solution u(t) of ACPi for A on []0, oo) (resp. ACP2 for A on (0, oo)) is

that of ACPi for A on (0, T] (resp. ACP2 for A on (0, TJ) if u(t) is

restricted to a finite interval [0, T~] (resp. (0, T]).

In the following, we state some notions of semigroups of operators in

a Banach space X.

A one-parameter family {Tt\ £>0}C^BC3T) is called a semigroup (of

bounded operators), if it has the following properties:

(1-2) Tt+s=TtTs,

(1.3) s-limTt=Tto,
t-+t0

We define the infinitesimal generator A0 by A0x = lim Ahx, Ah =
h-^ + O

\^Th — /J, whenever the limit exists, and the type o)0 by a)0 = lim

The a)0 is always defined and ft)0< + 00
5 see Hille-Phillips Q8;

Theorem 7.6.1]. Also, according to Feller ^6], we call the set 2 =

im Ttx = x} the continuity set of {Tt}. We define

(1.4) R0Wx = e-xtTtx dt,
Jo

for A € C and x € X, whenever the integral makes sense. It is easily seen
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that D(R0(W52 provided that Re(A)>o)0.
Here, we state some definitions of well-known classes of semigroups.

A semigroup {Tt} is said to be of class (A), if XQ = \jTt [JQ is dense
t>Q

in X and if there exists an a)i>a)0 such that for each A with Re(A)>a>i,

there exists an R(X) € 93(Z) with the properties

(A.I) R(Z)x = RQ(X)x, for *

(A.2) supf l lTOHjReCAXflh} < +

(A.3) 5-li
X-»+00

If furthermore,

(A.4) ||ZV«;||d*< + oo, for *EX or (A.4)' \\ Tt\\ dt < + <*>,
Jo Jo

then such a semigroup {7^} is said to be of class (0, A) or (1, A) respec-

tively. The infinitesimal generator AQ of a semigroup of either class is

densely defined and closable; A = AQ is called the complete infinitesimal

generator. If A is the complete infinitesimal generator of an (A) -semigroup,

then {A;ReU)>o)i}Cp(^) and R(X) = R(l', A) for Re(^)>o>i. If {Tt}

is a (0, A)- or (1, J)-semigroup, then we can take a>i = a)0 and the rela-

tion (A.I) holds for all x£X. Finally, a semigroup {Tt} is said to be of

class (C0), if 2 = X. For details, see Hille-Phillips [8; §10.6].

J. Lions introduced in Q12] the notion of distribution semigroup. Let

D(K) and Z)(R+) be the Schwartz spaces corresponding to R and R+

respectively. Let /?/(§8(Z)) = S(JD(R), 93(Z)) be the class of S3(Z)-valued

distributions and D+(95(Xy) be the subclass of D'Q8(Xy) which consists

of the elements whose supports are contained in R+. A S3(JT)-valued dis-

tribution rEZ>+(33(X)) is called a regular distribution semigroup (R.D.S.G.)

on a Banach space X, if the following conditions are satisfied:

(D.I) 7W) = T(j) T(0) for 0, 0

(D.2) A ^V(r(?5))={0} and $ft = sp[ V7 ^(^))] is dense in X;
*eotR+) *eD(R+)

(D.3) for every x GSt, there is an X- valued function x(t) such that
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a) #(0 = 0 for £<0 and x(fy = x,

b) x(t) is strongly continuous in £>"(),

c) T($)x= <f)(t)x(t)dt for
Jo

If furthermore,

(D.4) there exists a real number o) such that e~xtT is a tempered dis-

tribution (i.e., e-x're@'@3W) for every

then T is called an exponential distribution semigroup (E.D.S.G.).

Let T be an R.D.S.G. For each R- valued distribution F with compact

support contained in R+3 we can define a uniquely determined, densely

defined and closable operator in X, denoted T(F\ by the relation

for *=

see Peetre T19]. T( — df) is called the infinitesimal generator of T.

Da Prato Q3, 4] extended the notion of semigroup of bounded opera-

tors and introduced the notion of ^-semigroup. A one-parameter family

{Ht\ t^>0} CS3QO is called an R-sernigroup, if

(R.I) HtHs = HsHt = Ht+sH0 for

(R.2) N(HQ)={0} and R(H$ = X for n €Z+ ,

(R.3) jfffA; is strongly continuous in tX) for x € X

If furthermore, there exist numbers M> 0 and a) 6 R such that

(R.4) ||fl*II^Mc"' for

then we say that {Ht} is of exponential growth.

For instance, let T be an E.D.S.G., A the infinitesimal generator, and

be a polynomial of degree w- with nonnegative coefficients such that

^)i|^XUD for Re(A)>o) and some 60GR, then it is proved that

Ht=T(dt)R(Ao'9 A)n+\ ^0, define an ^-semigroup, where Re(/I0)>^ and

8t denotes the point mass concentrated at t. Let Dp— {
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h~l[_Hh — H$~]x}, then the infinitesimal generator A0 of {Ht} is defined by

the relation

(1.5) A0x=HvlH'0x for x e=D(^0) = {oc eD0; Hf
0xeR(H^}.

It is proved F3] that AQ is closable. Da Prato introduced the notion

of generalized resolvent of A and gave in Q4H a characterization of an R-

semigroup in terms of the generalized resolvent.

Finally, we state the notion of a locally equicontinuous semigroup

which was recently studied by T. Komura in Ql(T]. Let Y be a locally

convex linear topological space. Then a one-parameter family {T?; £>

is called a locally equicontinuous semigroup, if

(L.I) TQ = I, TtTs=Tt+s f o r * , s^O,

(L.2) for every yE F, T?y is strongly continuous in £^>0,

(L.3) for every continuous seminorm p on Y and T>0, there exists a

continuous seminorm q on Y such that p(Tty)<^q(y) for ^ G f O , T1] and
jEF.

It is proved that if Y is tonnele, then every semigroup {Tt\ £^>0}

(C&(F)) satisfying (L.2) is a locally equicontinuous semigroup. The

infinitesimal generator is defined by Ax= lim A^x in Y, Ajl = h~l[^Tfl — I~],
h-* + Q

whenever the limit exists in the strong topology. Let {Tt} be a semigroup

of continuous operators on a locally convex, sequentially complete space F

for which conditions (L.I) and (L.2) hold, then the infinitesimal generator

is densely defined in F. Also, the infinitesimal generator of a locally

equicontinuous semigroup in a locally convex space is closed. For details,

see Komura

2. Construction of the Solution of ACP on a Finite Interval

In this section we are concerned with the construction of the solution

of ACP. Let Ae&(X\ ke%+, coER and 7>0, and let us consider the

following conditions:
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(IIT I k) there exists a number M such that

\\gnR(g', A)n\\k<;M for £>o) and n/£ G CO, T].

We then denote by ©1(0), A;, 71) the family of all closed operators in

X satisfying conditions (/;&)) and (IIT I &)• The purpose of this section

is to discuss the construction of the solution of AGP formulated for an

operator belonging to this class ©1(0), k, T).

Proposition 2.1. Let A£.&(X\ &6Z+, o)GR and T>0, then the

following conditions are equivalent'.

(ii) a) for each £>a), g — A is an algebraic isomorphism of D(A)

onto X\

b) for x£D(Ak), {£n(g — A)~nx; <?>o), n/fGCO, T7]} is

bounded in X,

(m) p(A)^0, N(g — A)={Q}, R(£-~A)^)D(Ak} for ?>o) and

condition (ii-b) holds.

Proof. (i)=^(ii) and (i)=>(iii) are evident.

(ii)=»(i): For ?>o), (? — A)'1 is defined as a closed operator defined

on Jf, and so (f — A)~l £53(X) by the closed graph theorem. This means

that (/; a)) holds. Since p(A)^0, it follows (Dunford-Schwartz [J5; Th.

VII 9.7]) that Ane&(X) for n€Z+. Hence, for each raeZ+, D(^) is

a Banach space with respect to the norm || \\n. Thus, for any n£Z+ and

l^k, R(^; A)ne^8(D(Al\ X). Hence, (ii-b) and the resonance theorem

imply that M=sup{\\gnR(£; A)n\\k\ £>o), 7i/^€[0, T]}< + °o.

(iii)=^(i): Let /I0€p(^) and x^X, then J?U0; A)kx€D(Ak). Let

£>o) and -zr = (f — ̂ f)~1-R(/io; A)kx, then z^D(Ak+1} and A; = (A0 — ̂ )*(?

— J),2r = (^ —^)(/l0 — -4)*^ £R(g — A). This means that R(g — A) = X. Since

A is closed, the closed graph theorem yields that g € i p ( A ) provided ?>o).

Thus, (/; CD) is satisfied. Hence, by the same argument as in the proof

of (ii)=Ki), we have that A€®I(O), k, T). Q.E.D.

Lemma 2.2. Let Ae&i(o),k. T), then D(An) is dense in D(A2k+l}

with respect to the norm |{ ||& for n>±
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Proof. Let p^2k-\-l and x^.D(Ap\ then Jhx = (I-hA)~lx

for h sufficiently small and Jhx — x — hJhAx. Thus, \\JhX — x\\<>hM\\Ax\\k

and \\AlJhx — Alx\\<,hM\\Al+lx\\k for Z = l, 2, ..., A. This means that

D(Ap~rl) is dense in D(AP) with respect to the norm || \\k for JD^>2&+1.

Therefore, by induction, we have the assertion. Q.E.D.

Our main theorem of this section is the following:

Theorem 2.3. Let Ae®i(o),k, T) for some o)6R, k€%+ and T>0.

Let 77i = 2A + l. Then there is a one-parameter family {£7?; Z C E ^ O , T]}

(D(Am\ X) such that

(a) /or every xeD(Am) and ^e[0, T],

^/ze convergence is uniform with respect to t€. HO, T];

(b) l l^H^Ml^lU /^ £<E[0, T] and xeD(Am\

(c) /or et;ery integer jo^l, ^c/? £/? m^5 D(Am+p) into D(AP) and

ApUtx=UtA
px for

(d) /or xeD(A2m) and t, 5

(e) for every joGZ+ <2^J ^ED(^4W+1^), there is a number /3*3/,>0

such that \Utx — Usx\\p<LliXtp t — s\ for £, sG HO, T^\, and furthermore, for

every x€D(Am+l) and

Utx — x = \ UsAxds=\ AUsx ds.
Jo Jo

Proof, (a) Let x£D(A2k+2) and *e[0, T]. Let ff'l^h'l>

max{0, to}, and let us denote Jh — (I—hA)~l, A~1>max{05 a)}. Then we

can write

(2.1) W'^x-JF^xll^^

Now, assume that nff^h and Av € QO, T], then we have
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"
*1'*}, and

(=0

'ff2 2? zi1/:/i'+l^2*=/i(v, O+MV, o-
* = 1 « = ?

Taking ff = 2~r, h = 2~r/, n = 2r~r' and v — ̂ t2T'^, we note that | [«/<] — n

\^n and h — nff = Q. Also, using (//?•; A) we see that

2x\\k; ff>o), O^jff^

Hence, we have that ||/i(v, 011=0 and

(2.2)

and so, \\J""x— J"hx\\<,MTN(A2x*)h. Consequently, (2.1) is estimated as

for ff = 2~r and h — 2~r' with rj>r'. This means that

(2.3) Utx= lira. (I-2~r AY^'^x

exists uniformly for t ^^O, J1]. By using (7/r; A) and Lemma 2.2, this

convergence holds for every x £D(A2k+l). Now, we show that the limit

is independent of the sequence chosen. Let x £D(A2k+1). Take any £>0

and let 0^t<iT—e and 0<ff^h<s. Taking, this time, v = [>/&] + !

and n = [£t/ff^/p^ we observe that

(2-4)
I \

In fact, Av =

, and
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Similarly, as above, taking

then letting r-»oo3 we see using (2.2), (2.3) and (2.4) that

+ lim \\J^rx-rk
r-*°o

note that in this case ||/i(v, i)\\<Lv\h — n(J\MN(Ax). Therefore, we see

that lim sup \\Utx— J^lh^x\\ = §, and hence we have the assertion (a).
/z-> + 0 ?eCO,T~£]

(b) follows from (//r; A) and (2.3).

(c) For ££[0, Tl,p€Z+ and x£.D(Am+p\ we have that ApJ%'hlx

= J^'hlApx for A-^max-tO, o>}. Assume p = l, then ^6DG4W). Since

^46E(X), (a) implies that Utx€D(A) and UtAx = AUtx. Assume p = 2,

then A2xeD(Am). Since AJ^x^AUtx and A2Jltlh^x = J^A2x->

UtA
2x, again the closedness of ^4 implies that A2Utx=UtA

zx. Inductively,

we can prove (c) for all p 6Z+.

(d) Let x€D(A2m) and 5, *, 5 + ^e[05 T]. Then (//r; A) yields

that \\J%s+tV^x-JL
h
slhl+Ltlhlx\\^M\\Ax\\k-h. Note that Utx€D(Am) for

all *e[0, T] by (c) and that lim \\J^x- Utx\\k = 0 by (a) and (c).
h-» + Q

Hence, (d) is proved by estimating

(e) Let x£D(Am+l\ then condition (7/r; A) states that J^s'hlAx are

step functions on QO, J1] and are uniformly bounded with respect to 5 E

TO,!1] and &>0 sufficiently small. Since

(2.5)

(2.6)
Jo

In view of this, (a), (c) and the dominated convergence theorem imply that

Utx — x=\ Us Ax ds= \ AUsx ds.
Jo Jo
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Now, let p€l+ and x€D(Am+p+l). Since A*x€D(Am+l) and UtA
px =

ApUtx for *;>0, we see setting 0X p= sup \\UsAx\\p« + oo) that \\Utx
Q^s^T

-U8x\\p<^0x,p\t-s\ for £, se[0, T]. Q.E.D.

Lemma 2.4. Le£ ^G(£CX"). ;lss^m£ £/2<z£ p(A)^0 and that for

some m£%+, there is a one-parameter family {Ut; £G[J)5 TJ} C%5(D(Am),

X) with the properties (a)-(e) stated in Theorem 2.3. Then for X€LD

(Am4~l), Utx becomes a unique solution of ACPi formulated for A on [J),

T] satisfying the initial condition UQx = x.

Proof. In view of the property (e) stated in Theorem 2.3, for each

x£D(Am+l), u(t] x)=Utx becomes a solution of ACPi for A associated

with the initial value x. To prove the uniqueness of the solution, we

employ Phillips' method: Let t, t — s€ TO, T], then it follows from The-

orem 2.3(c) and (e) that

UtAx = AUtx and (d/ds)Ut-sX=-AUt-,x for

Let i^(^) be another solution of ACPi for A associated with the same

initial value x and then put v(f)=Utx — u(t\ t^H®, ^H; note that v(Q)

= 0. Now, let /UepU), then #U0; A)mv(s) €D(A2k+2) and (d/dsWt-sR

(lQ-9 A)mv(s}+Ut^sR(^ A)mAv(s}=-AUt-sR
A)mv(s) = 0 for t, t-se^O, T]. Therefore,

o
Uo; A)mv(t) for ^6[0, T]. This means that v(t)=Q. Q.E.D.

Remark 2.5. The proof mentioned above shows that the family {Ut\

t E []0, 71]} satisfying (a)-(e) of Theorem 2.3 is uniquely determined.

By virtue of Lemma 2.4, we obtain the following result on the ex-

istence of the solution of AC P.

Theorem 2.6. Let Ae®i(co9 k, T) for some (j»eE.,k€Z+ and

Then for x£D(A2k+2) there is a unique solution u(t\ x} of ACPi for-

mulated for A on |J), T~] satisfying &(0; x) = x.

Next, we consider the case in which A is densely defined.

Lemma 2.7. Let A be a densely defined, closed operator in X with

non-empty resolvent set. Then for every pair of integers m and k with
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:>&:>0, D(Am) is dense in [D(Ak^; that is, D(Am) is a core of Ak for

Proof. Fix a fc€Z+. Since the lemma is evident in case of m = k,

we assume that m>k. Let m>nl>k. We first show that D(An+l) is

dense in D(An} with respect to the norm \ \ \ \ k . Let x£.D(An} and

(A), then we can find a y^X such that x = R(/i:> A)ny. Since D(A) = X,

there is a sequence {yp} CD(A) with yp-+y. Hence, it follows that R(ju;

A)nypeD(An+l\ R(fi\ A)n yp-*R(v\ A)ny = x, and also that A1R(#; Af

<[ft. This means that D(An+l} is dense in D(An} in the sense of || ||A-

norm. Now, let x£D(Ak) and £>0, then putting n = k in the above

argument we can find an Xk+i^D(Ak+l} such that \x — Xk+i\\k<£/(m, — A).

Next, letting 7i = A;+l we can find an Xk+2 £D(Ak+2) with ||^^+i — Xk+2\\k

<e/(m — ft). Inductively, a set of points {^w; k<n^m} can be found

such that xn^D(An} and ||#n —#n+i | |a<e/(tfi —ft) for k<.n<m. Hence,

11^ — #,»]];&<£. This means that D(Am) is dense in D(Ak) in the sense of

II • IU- Q.E.D.

Theorem 2.8. Let A£®i(a), k, T1) for some a)€ER, A;GZ +

r>0. //" A is densely defined, then there is a one-parameter family {Ut\

£<E[0, OCS3CDG4*), Z) 5WC/Z ^^ (a)-(e) of Theorem 2.3 ^o/J for

Proof. Since D(A2k+l} is dense in DD(^*)H by Lemma 2.7, condition

; A;) implies that the convergence (2.3) holds for all x£D(Ak\ uni-

formly for £6 HO, ^H- Hence, it follows from (//r; A) that for every

x^D(Ak} and ^G[0, T], [7^ = lim(/-A^)-i:WA; exists, and so \\Utx\\

<,M\\x\\k for xeD(Ak) and f e[0, T]. This means that Ut e$8(D(Ak), X)

for iE[]0, I7]. Therefore, we may replace m — 2k + 1 in the proofs of

(c)-(e) of Theorem 2.3. Q.E.D.

Corollary 2.9. If A is a densely defined operator belonging to ©i

(a), A, r) /or sow0 o>eR, keZ+ and T>0, ^Ae« /or every x£D(Ak+1)

there is a unique solution u(t\ %) of ACPi formulated for A on [0, Tj

such that w(0; x) = x.

The proof follows from Theorem 2.8 and Lemma 2.4.
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Corollary 2.10. Let A be a densely defined, closed operator in X

for which there exist an toER and k^Z+ such that N(£ — A)={Q} and

R(g-A)^D(Ak) for £>co. If p(A)^0 and the set {?R(£ ; A)nx\ £>a,

n / f £ z l j ) , T~]} is bounded for every x£.D(Ak\ then for every x£D(Ak+l),

there exists a unique solution u(t\ x) of AC PI for A on Q), T~^\ satisfying

the initial condition w(0; x) = x.

The proof follows from Proposition 2.1 and Corollary 2.9.

3. Construction of the Solution in a Freeht Space

In the preceding section we treated classes @i(o), k, T), &6Z+. In

this section we introduce another class @i(o), °°3 I7) of closed operators

and discuss the construction of the solution of ACP on a finite interval.

For given o)ER and jT>0, we denote by @i(o), °o? T) the class of

all closed operators A satisfying conditions (J; a)) and

(!!T\ °°) Let Y=YA = f\D(An); then there exist a k = kA€%+ and
»^i

an M=MA>Q such that

\\£*R(S', A)*y\\<>M\\y\\k for ye Y, $>a) and n/£ €[Q, T].

Note that ®i(co, oo, r)^®i(o), A, T) for every A € Z + . Now, let A G

($1(0)5 co, T) and we introduce to F(= F^) a locally convex topology

defined in the following lemma; we denote the space by the same symbol

F

Lemma 3.1. Let ^£©1(0), oo3 T). Then we have:

(a) Y=/r\D(An) is a Frechet space with respect to the seminorm
n^l

system {pn(x) = \\Anx\\; ne%+}',

(b) ^|Fe8(F) and R(£-9 A)\ Y=(£-A\ F)'1 e«(F) for £>(*-,

(c) £*R(£'9 A)n\ FES(F) for g>a) and n eZ+ and the family {^R

(£; A)n\ F; ^>o), n/£€ CO, T]} w equicontinuous on F.

Proo/. (a) F is a locally convex space with respect to the countable

system of seminorms, pn, n-€Z+ , and hence F is an invariant metric

space. Also, it is easily seen from the closedness of A that F is complete

with respect to the metric.
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(b) The first part is evident from the definition of the topology. To

prove the second part, we note that £ — A maps Y onto itself in a one-

to-one manner for each f >o).

(c) The first part is clear from (b). For every pm, condition

(//T;oo) states that pm(fR(S ; A)"y)=\\S"R(f ; A}nAmy\\<,M\\Amy\\k^

M\\y\\k+wf This implies that for every continuous seminorm p on Y there
exists a continuous seminorm q on Y such that p(£nR(£i A)ny)<^q(y)

for y e F, f>f l> , 7 i€Z+ and n,/?6[0, T]. Q.E.D.

Remark 3.2. (a) In view of Lemma 3.1(b), we can regard R(g ; ̂ 4)

as an element of 8(F) when we treat it in the space Y.

(b) Condition (I IT I °°) is equivalent to

(J/r; oo/forevery yeF,sup{||r«(fM)<ly||;f>fl), Vf^LO, O < + <*>•
In fact, if (//r; °°)/ holds, then, in view of Lemma 3.1(a), we see apply-

ing the principle of uniform boundedness that (c) of Lemma 3.1 holds.

But, by virtue of the definition of the topology of F, this means that

condition (//r5 °°) is satisfied.

Theorem 3.3. Let A€®i(ti), oo, T\ then there exist a keZ+ and

a one-parameter family {Ut\ i ^ H O , TJ}CS(F) such that

(a) for every y € F, Uty=lim(I—hA)~Ltlhly holds uniformly for
/i-» + 0

t £ HO, T] with respect to the topology of F;

(b) the family {Ut\ £E[J), I7]} is equicontinuous on F;

(c) for every ZeZ^ , J G T O , TJ awd j6 F, AlUty=UtA
ly;

(d) /or gwery y€ F and t,

(e) for every pm, pm(Uty~Usy)<^\t-s\M\\y\\k+m+l for y^Y and

t, s€p), T1]; and furthermore, for every j6 F

— y=*\UsAy ds=*\ AUsy ds.
Jo J Jo J

Proof. First, by the same way as in the proof of Theorem 2.3(a), we

obtain

(3.1) Uty
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where the convergence holds uniformly for t E Q), T]. Thus we can

define a one-parameter family {Ut\ t G [J), T]} of operators from F into

X. We demonstrate that this family has the properties (a)-(e) mentioned

above. Since A* G(£(X) and An(Y)CY for ra<EZ+, it follows that Uty

€D(An) and UtA
ny=AnUty for y<E F, 7iGZ+ and *6[0, T]. Hence,

t/f maps F into itself and (c) holds. Therefore, we see using (3.1) that

for every pm and j€ F, pm(Uty-J^y} = \\UtA
my-J^Amy\\^ as

A— >> + 0, uniformly for £G|J), T]. This means that (a) holds. Also, con-

dition (7/r; oo) states that ||^j||^M|| y\\k for ye Y and *e[0, T].

Hence, for every pm and y^Y, pm(Uty} = \\UtA
m y\\<,M\\y\\k+m, which

yields the property (b). (d) follows from (3.1) and (b), in a similar way

to the proof of Theorem 2.3 (d). Finally, we show (e). Let Q<^s<t<,T,

0</i<£ — 5, and j6 F. Then, as mentioned in the proof of Theorem 2.3

(e), W1y-Jt»siny=^Ll&n+JiAy and A][«A]-[SA:|^f-S + A; and

hence for every pm and j6 F,

Passing to the limit as h— > + 0, we obtain the first assertion of (e).

Hence, for every jE F, t//y is continuous on QO, T] with respect to the

topology of F. Therefore, £/?y is integrable over any interval QO, r]C

QO, T] in the sense of Riemann. On the other hand, relation (2.6) and

the Lebesgue convergence theorem imply that for every y* 6 F*,

ds, y*>.

Hence, we have the last assertion of (e). Q.E.D.

Remark 3.4. In view of Theorem 3.3 (e) and Lemma 3.1, we see

that Uty is infinitely differentiate (with respect to both topologies of X

and F) and (d/dtyU1y = AnUty=UtA
nyfor £<E[0, T].

Corollary 3.5. Let A€®I(O), oo, T) for some ft)€R, & G Z + and

r>0. Then for every y£Y, there is a unique solution u(t\ y) of ACPi

on |J), T] for A\Y in the Frechet space Y such that &(0; y) = y. Fur-
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thermore, this u(t\ y) is also a unique solution of AC PI on £0, T] for

A in X with the initial value y.

Proof. By virtue of Theorem 3.3, w(z; y)—Uty is the solution of

AC PI formulated for A | Y in Y. Since the topology of Y is stronger

than that of X, u(t; y) is also the solution of ACPi for A in X. The

unicity of the solution of each AC PI can be proved in a quite similar

way to the proof of Lemma 2.4. Q.E.D.

Next, we consider the case in which Y=X.

Lemma 3.6. Let A be a closed operator with non-empty resolvent set.

If Y=X, then Y is dense in [_D(An)~^ for each ra£EZ+. Therefore, Y is

a core of An, n €Z+.

Proof. For every n €Z+ , x £D(An) and /l0EpG4), we can find a

y^X with x = R(Aoi A)ny. Since Y=X, there is a sequence {yp} C Y

such that yp-+y in X. Hence, 1Z(A0; A)nyp<aY and R(^i Af yp-*

R(JL0'9 A?y=x. Also, A1R(^\ A)n yp = [AR(^ A)JR(10', A)n~lyP-+LAR

OU; A)JR(^ A)n~ly=Alx for l<,l<^n. This means that \\R(A0; A)nyp

— x\\H-+0. Therefore, Y is dense in [_D(An)~^. Q.E.D.

Theorem 3.7. Let Ae®i(a), oo, T) ^J {Ut\t€[Q, T~]} be the

corresponding one-parameter family obtained by Theorem 3.3. Assume that

Y=X and that there exist a k€Z+ and M>0 such that ||C//y||^Af||y\\k

for j€ Y. Then {Ut} can be extended to a one-parameter family {Ut\

t e[0, T]} C^&(D(Ak\ JT) such that (b)-(e) of Theorem 2.3 hold for m = k.

Proof. Let x£.D(Ak}. Since F is dense in [_D(Ak}~] by Lemma 3.6,

there is a sequence {ĵ ,} C Y such that |]# — j/,|U~^0. Hence, ||^j/,— ^J/»'||

^M||yp— yp> |jfe->0. This means that Utx = \im Utyp exists uniformly for
/>->+«>

^ G [^0, T], note that the limit is independent of the sequence chosen.

Hence, for each t G ̂ 0, 2T], we can define an operator Ut on D(Ak) in

such a way that ||^A;||^M||^||A for x<aD(Ak}. We then show that (c)-

(e) of Theorem 2.3 hold for m = k. First, let Z e Z + and x^D(Ak+l),

then we can find a sequence {yp} C ^ such that ||yp — x\\k+i—>§ as p—>oo.

Since H^y^ —^'A;||*->O, we have that &^* = lim UtA
lyp = \im UtA

lyp
~ P P

= lim AlUtyp. Since Utyp-»Utx, the closedness of ^4 yields that UtA
lx =

$L
AlUtx. This implies (c). Next, let x^D(A2k\ then there exists a sequence
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{ yp} C Y such that || yp — x\\2k-^>§ as JD->OO. Hence,

^^

x-yp\\2k for all p.

This estimate yields (d). Finally, we prove (e). Let x^D(Ak+l). Then

a sequence {yp} C Y can be found such that \\x — j/,|U+i— »0. Hence,

\\Ax- A y/,|U->0, and so AUtx = UtAx = \im UtAyp = \im AUtyp and the
/> p

convergence holds uniformly for 1 6 [0, J1]. The strong continuity of each

AUtyp with respect to £ implies that of AUtx. Since Utyp— yp=\ AUsyp ds

for each p, passing to the limit as p— >oo3 we have that Utx — x =

( AUsxds for *e[0, T~]. This shows that (e) holds for m = k. Q.E.D.
Jo

Finally, we consider the relationship between ®i(a), oo, T) and

Lemma 3.8. Let A<=,&(X\ D(A) = X and Y=f\D(An). Let DT be
n^l

the set of all elements x 6 D(A) such that for each x G DT there is an

X- valued function u(t\ x) satisfying

(i) u(t\ x) E D(A) for £6 HO, T] <2^ Au(t\ x) is strongly continuous

in CO, r];
r?

(ii) u(t\ x} — x = \ Au(s\ x)ds for t € [0, T].

, DT = X implies Y=X.

Proof. Let us denote by Z>(0, T) the space of R-valued C'-functions

whose supports are contained in (0, I7) and let S j ^ l <f>(t)u(t\ x)dt;

06 #(0, T), x€DT\. We demonstrate that ®rC F and Sr = Z. Take 06

$
r

<t>(t)u(t; x)dt. Then ^eD(Q, T)

for raeZ^. Hence, we see using the closedness of A that

o o

for rceZ+\{0>. This implies that y£D(An) and ^y=(-l)B\
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(t\ x)dt for neZ+. Hence, ®r C Y. Next, assume that ®r^X, then

there exists an *$€Z*\{0} such that *$C®rH={0}. Thus, we obtain

rT cT

\ 0(0 <H(*;*), x^>dt=<\ <f>(t)u(t; x)dt,x%>=0
Jo Jo

for 06l>(0, T) and x^Dx- But <&(z; x\ x*> is continuous on |J), T]

and lim &(£; x) = x for x^D?', and hence it follows that <#, #*>== 0-
f-» + 0

Consequently, we obtain ^oC^rH— {0}, contrary to the way in which x%

was chosen. Q.E.D.

Theorem 3.9. Let A be a densely defined, closed operator belonging

to ®i(0, oo, r) and let Y=f\D(An). Then Ae®i(o),k, Z1) /or some
n^l

k € Z+ &/ a^J 0^/3^ e/ F= X.

Proof. Assume that Y=X. Then condition (I IT I °°) states that

there exist a &eZ + and an M>0 such that \\$*R(£'9 4)"y\\<:M\\y\\k for

yE F, f >60 and »/f e[0, T]. On the other hand, F is dense in \J)(Ak)~}

by Lemma 3.6. Since gnR(g ; A)ne^8(X) for f>o) and 7^eZ+ , we can

extend the inequality for jG Y to that for x €. D(Ak), in a similar way

to the proof of Theorem 3.7. Therefore, (I IT I k) is satisfied. Conversely,

suppose that A€®I((D, k, T), then by Theorem 2.8 we can take DT = D

(Ak+l) in Lemma 3.8. Since D(Ak+l) = X by Lemma 2.7, Lemma 3.8

yields that Y=X. Q.E.D.

Remark 3.10. By virtue of Theorem 3.9, we see that for every

^4E@i(ft), oo3 jT) such that Y=X, the assumption of Theorem 3.7 is

always satisfied for some & G Z + . Hence, we have the following conclusion:

Theorem 3.7'. Let A€®I(O), °o, T). If Y=X, then there exist a

&eZ + and a one-parameter family {Ut\ t£ [0, T]} (^%$(D(Ak), X) such

that (b)-(e) of Theorem 2.3 hold for m = k.

Remark 3.11. If Ae®i(co, k, T) and if D(A) = X9 then F is a core

of An for each 7iGZ+ . This follows from Theorem 2.8, Lemma 3.8 and

Lemma 3.6.

4. Cauchy Problems on £09 oo)

In this section, we introduce some classes of closed operators and
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discuss the construction of the solution of ACP formulated on [J)5 oo) for

such an operator.

Let A€&(X\ coeR and A E Z + . For this operator A let us consider

conditions (/; a)) and

(//; A) for every T>0, there is a number M(T) such that

\\?R(£\ A)n\\k^M(T) for £><*> and O^n/S^T.

We denote by ®i(o>, A;) the collection of all closed operators in X

satisfying (/; a)) and (//; A) mentioned above. In view of proposition 2.1,

condition (//; A) is equivalent to the following condition:

(//; A)' for every T> 0 and x € £(-4*), {£"£(£ ; A)"x ; f > o>, 0<^/£<; T}

is bounded in JT.

Remark 4.1. Later, we shall treat other two classes of closed opera-

tors: One of them is the class of closed operators A in X satisfying

conditions (I; ft)) and

(//cxp; K) there exist numbers M>0 and a)i^>(j) such that

(olr
H for f >o>i.

We denote such a class by ®2(ft), A). Clearly, ©1(0), A:) D ©2(^)5 A).

Another one is the class of closed operators A in X such that

oi; A) there exists a number M>0 such that

We denote this class by ©3(0), A). Note that condition (7/poi; A) is

equivalent to

(//poi; A)' there is a polynomial p(£) of the degree &^>0 with non-

negative coefficients such that ||JRU; ^)| 1^(1^1) for Re(/t)>o).

First, as a direct consequence of Theorem 2.3, Lemma 2.4 and

Theorem 2.8, we obtain the following:

Theorem 4.2. Let -4e®i(o>, A). TAew /or 77i = 2A+l fAere is a

uniquely determined one-parameter family {Ut; t~^>Q} C,^&(D(Am\ X) such
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that

(a) for every x^D(Am) and J^O, Utx = \im (I—hAYLtlh^x exists and
/z-» + 0

the convergence is uniform with respect to t in every finite interval',

(b) for every T>0, \\Utx\\^M(T)\\x\\k for £€[0, T~] and xeD(Am),

where M(T) is the number given in condition (//; &);

(c) for every integer ZI>1, each Ut maps D(Am+l} into D(A1} and

AlUtx=UtA
lx for t^O and x £ D(Am+l);

(d) for every xeD(A2m) and t, s^>0, Ut+sx=UtUsx;

(e) for every T>Q, Z e Z + and xeD(Am+1+l), there exists a positive

number ^XJ}T such that \\Utx — Usx\\i<z@xjfT\ t — s\ provided t , s £ . [ _ § i T~]\

S
t

Us Ax ds for £^>0 and x£D(Am+l).
o

7/"3 in addition, A is densely defined, then the assertions mentioned

above hold for m = k.

Theorem 4.3. Let ^€©2(^3^)- Then for m = 2k+l there exists

a uniquely determined one-parameter family {Ut\ £^>0} C^(D(Am}, X)

with the properties (a)-(e) stated in Theorem 4.2 and furthermore

(b)' \\Utx\\<,Me^\\x\\k for t^Q and x£D(Am};

(f) £(A; A)x = (~e-"Utxdt for t€p(A) with ReOO>^i and
Jo

If, in addition, D(A) = X, then the assertions mentioned above hold for

Proof. In view of (IIcxp', &), Theorem 4.2 yields a unique one-

parameter family {Ut', t^Q} C^&(D(Am), Z) with the properties (a)-(e)

stated in Theorem 4.2. Hence, (b)7 follows from (//exp; K) and the con-

vergence (a). We then show (f). Let /16 p(A), Re(A)>o)i and x£.D(Am\

then we can put y=R(l\ A)x^D(Am+l). So that (e) implies that (d/dt)

Uty=AUty=UtAy, and also (d/dt}[_e~™Uty~]= — Ae~xtUty+e~xtAUty=

' Jo *=o
e~ Uxy—R(^', A)x. Therefore, we have

(4.1)
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Consequently, using (by we have that

e~Re^T\ UT y||^Me-
(Re(x)-"l)r|! y\\k.

Hence, we have the assertion (f). The unicity of such a family {£/?; zX

follows from (f). In fact, if there is another family {F,; ^0} d^&(D(Am\ X}

$
00 /"OO

e'^Utxdt=\ e~^Vtxdt
o Jo

for f>ti)i and x£.D(Am}. Thus, it follows that Utx=Vtx for *>0 and

x<aD(Am}. The last assertion follows from Lemma 2.7. Q.E.D.

Remark 4.4. Let A be a densely defined operator belonging to ©i(<#, K)

and {Ut} C%3(D(Ak\ X} be the one-parameter family obtained by Theorem

4.2. Let A 0 > f t > and then set Ht=UtR(l0'9 Afk for ^0. Then Ht

s = HsHt = Ht+sH$ for £, s^O, and J?^ is strongly continuous in

for x€X. Also, since Z)(^(W) = Z for each n by Lemma 2.7, R(Hn
Q) = X

for each 7zGZ + . Thus, {Ht\ ^^0} forms an J?-semigroup in the sense

of Da Prato [_4T\. If A is a densely defined operator belonging to ©2(X &)

and {?7?} is the corresponding one-parameter family obtained by Theorem

4.3, then ||fl,*|| = | UtR(^; A^xl^Me^llR^A^xlik^M^^llxll for

some Afi>0 and cOi^o); and hence {Ht} becomes an jR-semigroup of ex-

ponential growth.

In each case, A is the infinitesimal generator of the corresponding R-

semigroup. In fact, if & = 0, then Ht=Ut, zSjO, form a (Co) -semigroup

and A is the infinitesimal generator. If A£>1, then 2&^>A;+1, and so it

follows from Theorem 4.2 (e) that UtR(A0; A)2kx is strongly continuously

differentiate in t^O for every x€X. Thus, H'0x = AR(A09 A)2kx for all

x€X. But, noting that jffo1 = Wo-^)2*, we see that

and HQIH'OX = AX for

Lemma 4.5. lef ^e©2(^, A). If D(A) = X and if (//exp; A) fs

satisfied for some M>0 «^J ^i^^)3 ^^» (/c; ft>i) *'s satisfied.

Proof. Let {t/,; ^0} CS3(D(-4*), JT) be the one-parameter family

obtained by Theorem 4.3. Let x^D(Ak+l) and Re(/l)>a>i, then we have

that ()i-A)Utx=Vt(l-A)x and - (d/rfOCc"x'^] = e"x '(A-A) U,x.

Hence,
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Since D(Ak+l) is dense in X, it follows that R(A — A) = X. Now, let Re(A)

>SQ>o)i and i; = U-^)^(ei?(^*)), then

l=Q

Therefore,

; A)k\\\\v\\dt
o

<Jconst(?o, A, 0)1,

Since x was arbitrary in D(Ak) and since D(Ak) is a core of A by

Lemma 2.7, we have that ||^|i^const. ||(A — -4)#|| for x£D(A). This

means that (^ —^4)~1 is defined as a closed operator with domain R(A — A)

and 11 (A — ̂ f)~1^||^const. ||^|| for x£R(A — A). But, since

it follows that (l-A}~1 eS3(JC), that is, Aep(^). Therefore, {/ieC; Re(/i)

>fl)i}Cp(^)- Q.E.D.
Consequently, we obtain the following result which is an extension of

the generation theorem of (C0) -semigroups in the sense that {?*/?(£ \A)n}

is equicontinuous from a Banach space \^D(Ak)^j into X\ the result for

k = 0 gives the generation theorem of (C0) -semigroups.

Theorem 4.6. Let A be a densely defined operator belonging to ©2

(co, &). Then (/c; 0)1) z's satisfied for some cDi^o) and there is a uniquely

determined one-parameter family {Ut; t^>0} C_%5(D(Ak\ X) with the proper-

ties (a)-(f) stated in Theorem 4.3 for m = k and furthermore

for Re(A)>fl>1 and
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(g) \\Rtt; AyX\\^(Re(X)-ad-nM\\x\\k for ReU)>fl>i

Proof. Assume that A satisfies (//exp; k) for some M>0 and coi^to,

then from Lemma 4.5 it follows that A satisfies (Jc; 0)1). Therefore, (f)'

is obtained from Theorem 4.3 (f). (g) is proved as follows: Since the

resolvent equation yields that

for ReU)>o>i,

o

Q.E.D.

Next, for an o) 6 R and a & G Z + , let us consider class ©3(0), k\ the

class of closed operators A in X satisfying (7C; o>) and (//poi; A) stated

in Remark 4.1.

The relations among classes ©2(0), K) and ©3(0), A) can be stated as

follows :

Theorem 4.7. Let o)€ER and & £ E Z + .

(a) Let r>max{0, a)}. TAew ©3(co, /b)C®2(r5 A + 2).

(b) Conversely, let A^®2(o), k). If A satisfies condition (/c; a)),

0), 2&+1). // ^4 /s densely defined, then A 6 ©sG^i, A) /or some

. (a) Let Ae®3(a), K). If %eD(Ak+2\ then we have

(4.2) R(l; A)x = ̂ -l
x + k-2Ax + "- + l-k-2Ak+l

X + ̂ k-2R(^ A)Ak+2x.

Let max{0, co}<7/<r, then by the calculation of residues and (//poi;A;),

k + 2
— £J (

(4.3) { '~l

= if r-^ i

By (//poi; A;), the integrand of the above right side is estimated by
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M/e7't\\x\\k+2 for A sufficiently large and some Tkf >0. Hence, it follows

that there is a sufficiently large positive number M such that \\y(t\ x)\\

<:Me'Y't\\x\\k+2' Also, by the contour integration argument we see that

the integral of the right side is 0 in case 2 = 0, and so y(0; x) = x.

S
oo

e~X j fy(z; x}dt is absolutely convergent for /I with Re(^)>f / and

y=i

7 /+i°o
2xjU-k-2dju = R(A; A)x.

Therefore, the resolvent equation yields that

But, since sup{|je J/ty(t\ x)\\\ t^$}<^M \\x\\k+2, we have

\\R(2- /nwTll<T Mi l i - l k of?? — I V " 1 \ tn~lP~^k~^tflt<l(2—rf^nM\\'v\\1.M j t X ^ A , ./i) JU | _^lK£ ^v \\k+2\''/ •*-/• \ v & U/U _^^\ A / ) ±VL \\J(/ | / f e + 2
Jo

for /l>^ /. This means that (/; 7) and (//exp; k + 2) are satisfied. There-

fore, Ae®2(r, &+2).

(b) First, we assume that ^4 satisfies conditions (/c; co) and (//exP; A)

for some 0)1^0) and M>0. Let m = 2k+l, l£p(A) and /10 be a fixed

number with Re(A0)>co. Then by the resolvent equation we can write as

On the other hand, we see from Theorem 4.3 that i?(A; A)x = \ e~xtUtxdt
Jo

for A with ReU)>o>i and x£D(Am). Thus,

, for Re(/0>«h and
o

Also, we have using Theorem 4.3 (b) that

y=o

Therefore, letting e>0,

sup
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m-l
Hence, \\R(l; A)\\^Z U-^oI' | | /Z(A0 ; ^)m | |+U-A0 TC^o). This means

* = 1

that (//poi; 2i+l) is satisfied.
Next, assume that A is a densely defined, closed operator satisfying

(/; a)) and (//cxp; A;) for some a)i^>a) and M>0. Then, in view of Lemma

4.5, (7C; 0i) is satisfied. Hence, letting m = k and repeating the same

argument as above, we see that ^G©3(a>i; A). Q.E.D.

Remark 4.8. The complete infinitesimal generator of an (^4)-semigroup

of the type o)Q belongs to ©3(0)1; 0) for some ft>i><#0- The complete in-

finitesimal generator of either (0, A)- or (1, ^-semigroup of the type a)0

belongs to ©2(^0; 1). Furthermore, the infinitesimal generator of a (C0)-

semigroup of the type a)Q belongs to ©2(^09 0).

Proof. Assume that A is the complete infinitesimal generator of an

(A)-semigroup {Tt} of type o)0i then by condition (A.2) stated in Section

1 there is an a)i>a)Q such that p(A)~^> {& 6 C; Re(/0>&>i} and such that

sup{||jR(^; A)\\\ Re(A)>o>i} < + <*>. This means that A€®3(tOi, 0). Next,

let A be the complete infinitesimal generator of a (0, A)- or (1, A)-

semigroup {Tt} of type u)Q, then JV(#)=sup{||e~w°'r,#||; ^>0}<+^ for each

xeD(A) and fi(^;^> = ( e~™Ttxdt for ReGO>ft>0 and ^6X Hence,
Jo

sup||e~0>0/71f||i = Af<+ °° and hence by the same way as in the estimate
?>o
of Theorem 4.7 (a), we see that \\Rfa A)nx\\<,M\\x\\i/(l-(j»Q)n. There-

fore, A G ©2(^0, 1). Finally, it is well-known that a closed operator A is

the infinitesimal generator of a (C0)-semigroup if and only if A 6 ©2(^03 0)

by Hille-Yosida-Miyadera-Phillips5 theorem.

Remark 4.9. The following are well-known (see for example Krein

[11]):

(a) If a closed operator A satisfies (Ic; co) and (//poi; &) for some

a) and k= — 1, then y4 generates a holomorphic semigroup of class (C0);

so ^4 6 ©2(^03 0).

(b) If a closed operator A satisfies (/c; co) and (//poi; A;) for some a)

and & with — !<&<l/2, then ^4 generates a (1, .^-semigroup {Tf; 00}

such that for each x€zX> Ttx is of C°° for £>0.

Finally, we consider some examples. Let us consider the system of

partial differential equations
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(4.4) (Q/di)u(t, s) = P(p)u(t, s), (*, s)<ER+ xR,

where P(£) is an m X m-matrix of polynomials />*/(?) of ? with complex

constant coefficients and P(D) is defined by substituting D = id/ds into ?,

and u(t, s) represents an /^-vector of numerical functions ufa, s) of two

variables (£, s). The Cauchy problem for the equation (4.4) is the problem

to find the solution u(t, s) of (4.4) associated with the given initial con-

dition

(4.5) u(0, s) = uQ(s)9

Now, we consider this problem over the space

2 = LZ(K) xL 2 (R)- - - xL2(R) with the inner product

Then, applying the Fourier transform, (4.4) is reduced to the following

Cauchy problem for a system of ordinary differential equations with £ as

a parameter:

(4.6)

(4.7)

where P(?) is the same matrix of polynomials and M0(f) is the Fourier

transform of MO(S). P(f)? f ^R5 define an unbounded operator P of mul-

tiplication in L2 by the relation

(4.8) ™(£)=P(£)0(£), f ^ R ,

where CP0U(f ) means a representative function of P(j> 6 Z^- The domain

D(P) of P is regarded as the class of elements 061/2 such that P0GZ,2.

It is well-known that P(D) can be regarded as a closed operator in L2

and C"£ can be regarded as a core of P(D) in a natural way. We con-

sider A = P(D) as an example of the closed operator treated in this paper.

Hence, in view of the Fourier-Plancherel theorem, it is sufficient to esti-
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mate the iterations of the resolvent of P(<f), in order to estimate those

of PCD).

The solution of the system (4.6) with the initial condition (4.7) is

given by

(4.9) u ( t ; f ) = c'«»fi0(f), f S R ;

we denote by C^^oUCs) the inverse Fourier transform of etP^uQ(S) if it

makes sense.

When we consider examples in this paper, we consider unbounded

operators P of multiplication, defined in L2 by (4.8), such that

(4.10) P(e)=pE+qF,p=p(e\ q = q(?\

where E denotes an m X m-unit matrix and F denotes an m X /n-nilpotent

matrix such that only upper off -diagonal elements are 1, and p and q are

polynomials of f with complex coefficients; hence each P(?) is an upper

bi-diagonal complex m X m-matrix. For each f , the eigen-values of P(f )

are same and equal to /?(£), and so p(P) is contained in the complement

of (T(P)={p(f); £ ER}. By simple calculations, we have

j — o

where FQ=E. Hence, if

(4.12) m deg(p)^(m-l)deg(q)

and l£ff(P), (/l-P(f))-1, f €R, define a bounded operator (/l-P)'1 on

Z/2 by the relation

(4.13) :a - p)- v:(f ) - u - ̂  »- vcf >, 0 ̂  L2,
where H(A — P)~VH(£) means a representative function of (2. — P)~l<f>€L2.

It is easy to see that (^ — P)"1 is the resolvent of P at ^. Also, we have

(4.14)
J=o

For each £>0, e*p(f), £€R, define an operator e*F in Z2 by the relation
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(4.15) [>"£](£) =

Now, we consider an example. As is seen from the definition, a

sequence of classes ©2(0)5 &)5 & G Z + , is monotone increasing in the sense

of inclusion. By the way, given a k we can find an operator P, defined

by (4.8), such that P€ ®2(o>, k+ l)\®i(o>, k\ Hence, each class ®2(o>, A)

is properly contained in class ©2(0), A+l). This also suggests that it

will be necessary to consider classes ©/(to, A), & large and y = l, 2, 3, as

the number of equations in a system increases.

Example 4.10. Let & be a positive integer and let us consider an
_ k + l _ ^

unbounded operator P of multiplication, defined in L2 = L2(R) x • • • X L2(R)

by (4.8), such that P(f) is a (k+l) X (A+l)-matrix of the form (4.10) with

=(S = ifd and = (f = f £GR

where d and r are positive integers. The eigenvalue of P(f) is i f d .

Hence, if d(k+l}^rk and Re(A)>0, then in view of (4.11), (4.12) and

(4.13) the matrices (A — P(f))"1, £eR, define a bounded operator (A — P)-1

on Z2 which is the resolvent of P at /L We then assume that

(4.16) d<r^k~l(k+l)d9

note that r—d<=k~ld.

First we show that under condition (4.16) the matrices etp^\

define a bounded operator etp from [_D(Pk+lJ^ into L2. Let $ =

(P*+1). Then, in view of (4.14) for m = k + l, we see that etP$eL2 if

we can prove that qfa q2$j, • • - , qJ~l<f>j£L2(R) for IrSj/^A+l. For the

proof, it suffices to prove that (1+ f | )*% e i2CR) for l^/^*+l; if so,

we see that q'-lfa€L2(K) for 1^/^ft+l, since deg(gry~1) = Ar + r(y — 1 — A)

by (4.16). Since

(4.17) P(f )m = L mC,pm-lqlFl,
1=0

the 7n-th element of PW0, 1^77i^A+l5 can be written as

wo
(4.17)' [Pm5GOT=

t — 1
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where mQ = mm{k+l — m,m}. First, since [_Pk+l<t>^k+i=pk+l<t>k+i 6 L2(R),

we have that (1+ |£|)rf(*+1ty*+i 6Z2(^). Also,

eL2CR) and deg(/>*-1g)=d(A-l) + r=dA + r

hence pk~lq^k+i^L2(K). This implies that pk(f>k£L2(R), Thus, it follows

that (l+|?|)dV*€£2CR). Assume now that (1+ |f|)d^m €Z2(^) for

/+l<j77i<J£+l. Then, in view of (4.17)/ for m=j and the relation deg

(p^q^=d(j-l) + rl^d(j + l) = deg(pj+l) for l^Z^o, we have that

pj~lql(l)j+leL2(R\ which means that pj<f>j <E L2(R) or (l+\§\yi<t>jeL2(R).

In this manner, we obtain, by induction, that q*~l<j>j€.L2(R) for l<j<^.

Also, it is now clear that ql$j€L2(K) for l<:l<^k— 1 and l<J/<;& + l.

Consequently, etP<f>€L2 for <fieD(Pk+l).

By the way, we can show that e*pe9$(D(Pk+l), L2} for t>0 as

follows: Let *>0, 0 (y)GD(P&+1), 0(v)->^ in [D(PA+1)]3 and let e^(y)->0

in I2. Then, since (y-i)"1 €£_(/?) and (?-0"(*+1"y)C^(y)Il/ =

^(?-0-(*+1"% m £2(1Z). But,

V^' in ^(^R) for O^Z^b+l-/; hence

it follows that 0/ = [e^]y, l^y^A + 1. This means that e'p£(£(£(P*+1),

L2) for *>0. So, the closed graph theorem implies that etPe^8(D(Pk+l\

i2) for
k+i-J

Also, noting that |l[e'%y|| = ||^ Z (/!)-Vgr'^+/||^
1 = 0 I

and employing the resonance theorem, a large number M can be found

such that ||e~Vp0||^M||0||&+i for £>0. On the other hand, for every

and

(4.18) W

Hence, by Fubini's theorem

Therefore, from the Fourier-Plancherel theorem it follows that

Next, we demonstrate that P(D) treated above does not belong to

o), k) if c? is sufficiently large. Under condition (4.16), assume that

r—
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where a and b are positive integers, note that 2<^a+b<^k~ld<^d. Let

I $1 = $2=...=fa_1 = Q9

&=(i+ m)*-%-?r

Then, in view of (4.17), we see that

for !<;/<;A;+l and m = &, 4+1. If m, = A: and 2<j<ji+l, then

deg(y?*-'(ir-<l+l)) = deg(y-V+1-y) = rA + (d-r)(/-l)^rA-6-o,

so, it follows that [Pk<fT\j € L2(K) for 2<^;<^+l. On the other hand,

and

note here that deg(p2qk~1) = rk+ d+(d-r} = rk-b + d~a^(rk-b)+b.

Consequently, we see that <j>€D(Pk)\D(Ph+l).

Now, in view of (4.14), we have

(4.20) [e'%! = (A - 1)!- V[V -y - V* + k~ltkqk^ J.

Hence,
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where we used the relation \\x + j||2^2~1||^|(2 — 1| j||2. Now,

for every r>0,

and

*-

Since (1— p/X)-*-k-+ept as ,*-> + <*> and ra/;i-»*>0, uniformly for

C~~r3 rHj we see that

/-r

for every r>0. This implies that PCD)$®i(l, k).

Remark 4.11. Let P(Z)) be the differential operator mentioned above.

We have observed in Example 4.10 that P(D)£®2(1, A+l). Hence, the

solution operator {Ut} of AC PI for P(D) can be constructed so well as

{Ut} C^&(D(Pk+l\ £2). Since Ut9 t>0, can not be extended to any

bounded operators Tt on Z»2j {£//} may be called the unbounded solution

operator, so far as the problem is treated in the original L2. By the way,

as will be seen in the next section, a densely defined, closed operator A

in a Banach space X is the infinitesimal generator of an E.D.S.G. T if

and only if A belongs to class ©2(^5 K) for some a) E R and k E Z+ and,

in this case, the corresponding solution operator {Ut} is related to the

E.D.S.G. T in the sense of the relation (5.1). Hence, the P(D) is the

infinitesimal generator of an E.D.S.G. Also, examples treated in the theory

of distribution semigroup can be regarded as the examples for our argu-

ment. In this manner, the results in this section will be sometimes

applicable, when we consider the system of partial differential equations or
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the partial differential equation of higher order.

Finally, to illustrate the treatment of higher order equations, let us

consider the 1-dimentional wave equation utt = uss, s€ER, with the initial

condition u(Q, 5) = UQ(S) and 1^(0, S) = MI(S). As is well-known, the theory

of (C0) -semigroup can be applied to this equation, by introducing an

appropriate function space (see Yosida C27]). Here, we consider the prob-

lem over the space L2 = L2(R) x L2(K). Putting H = VI and ut = v2, we

can write the equation as

Applying the Fourier transform, the problem is reduced to the following:

(4.21) (d/dt)v(t, $) = P(£)v(t, £), HO, £) =

where

and v denotes the Fourier transform of v. For each /l>0 we have that

(lE-P(ey)-l = (l2 + £2nJLE+P(fi'l for $ ER, and so, the operator P

has the resolvent set containing {A>0}. The solution of (4.21) is obtained by

By the Fourier-Plancherel theorem we have that

+ *liPO||} = ||w|| + *||^t;||^(l + Olkl!i for v€D(A\ Also, by using the

relation (4.18), we see that \\ kn (I -A)-nv\\<,(l + 11/1)1^ for A>0 and

n. This implies that A G ©2(1, 1). This means that for each v £ D(A2)

(A = P(D)\ the inverse Fourier transform of etP(^v(g) gives a solution

Utv of the ACPi for A associated with the initial value v. Finally, we

note that the equation (4.21) is correctly posed in the sense of Petrowsky,

since the eigenvalues of P(f) are

5. Distribution Semigroups

In this section we discuss some relationships among the notion of



240 SHINNOSUKE OHARU

distribution semigroup and the results obtained in the preceding sections.

In Section 4 we treated classes ©1(0), k, T\ i = l, 2, and 3. We first

consider other classes ©1(0), oo) and ©2(0), °°) and discuss the construc-

tion of the semigroup solution of ACP in a Frechet space.

Let A 6 &C5Q and a) G R and then let us consider condition (/; a)*)

and the following condition:

(//; oo) let Y=f\D(An); then for every T>Q there exist a k =
n^l

k(T)€Z+ and M=M(T)>0 such that

llf^Gr; A}ny\\<,M\\y\\k for y 6 F, f>a> and */£<=[<), T].

We denote by ©1(0), oo) the class of all closed operators in X satisfy-

ing (/; &)) and (//; oo). We also consider another class of operators A

in X satisfying (/; o>) and

(Uexpl °°) let Y=f\D(An}\ then there exist a & E Z + and numbers
w^l

M>0 and ah^co such that

\\R(S\ A)ny\\<*(S-<»iY*M\\y\\k for je F, nZZ+ and

instead of (//; oo). We denote such a class by ©2(to, °°).

Remark 5.1. Condition (//; oo) states that A£®I(U), oo3 J7) for

every T>0. Also, we observed in Section 3 that Y become a Frechet

space. Hence, in view of the principle of uniform boundedness, we see

that (//expS °°) is equivalent to

(//exp; °°y there is an 0)1^0) such that sup {||?w^(f ; A — o)i)ny\\i

Therefore, ©!<>, oo)^®^, A) and @2(o), oo)^©2(o)3 A) for all AeZ+ .

First, as a direct consequence of Theorem 3.3, we obtain the following;

Theorem 5.2. Let A 6 ©1(0), oo)3 then A\Y is the infinitesimal gen-

erator of a locally equicontinuous semigroup {Tt\ ^^0} on Y such that

Tty is infinitely differentiate in R+ for jG F.

Also, by employing the theory of equicontinuous semigroups in a

sequentially complete, locally convex space, we obtain

Theorem 5.3. Let A£z&(X) satisfy condition (/; o>) and let Y
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= f\D(An). Then A\ Y—o)i is the infinitesimal generator of an equicon-

tinuous semigroup {e~~WltTt\ £^>0} on Y for some a>i2>a>, if and only if

A satisfies (//exP; °°)-

Proof. Assume that A G ®2(a)3 °°X then Theorem 5.2 yields that A\ Y

is the infinitesimal generator of a semigroup { Tt\ t^O} in the Frechet

space Y. Also, by Theorem 3.3 (a), there exist a & G Z + and an M>0

such that \\Tty\\<,Me^\\y\\k for ye Y. This means that {e'mitTt\ t^Q}

is equicontinuous on Y. Hence, A\ Y—a)i is the infinitesimal generator of

the equicontinuous semigroup {e"0*1*^; £^>0} on Y. Conversely, if A\ Y—o)i

is the infinitesimal generator of an equicontinuous semigroup for some 0)1,

then {$*R($'9 A — a>i)n\Y'9 ?>0, neZ+} is equicontinuous on Y. Hence,

there exist a fceZ+ and an M>0 such that \\gnR(g + ah; ^)wj||^M|l y||*

for f >0 and y<E Y, that is, IKf-^O"^ ; ^)^j||^M]| j|U for e>a>i and

y£ F. Therefore, ^6 ©2(0), oo ). Q.E.D.

Next, we consider the case in which Y=X. In such a case we can

apply important results on the characterizations of regular and exponential

distribution semigroups which were given by Chazarain Ql], Fujiwara [7^

Lions £12] and Ushijima £24] and we can consider some relationships

among the notion of distribution semigroup and the classes of operators,

®f<ft), k\ i = l, 2, 3; 4 = 0, 1, - • - , oo.

Theorem 5.4. Let a) € R, A a densely defined closed operator in X>

and Y=f\D(An). Then A is the infinitesimal generator of an R.D.S.G.
n^l

T on X if it satisfies any one of the following:

(i) Ae®i(co9 oo) and Y=X,

(ii) for every T>Q there exists a k(T)eZ+ such that Ae&^.k

(T\ T). Furthermore, in this case, T(fyy=\ <t>(i)Tty dt for ye Y and

$€E.D(R+), where {Tt\ tl>Q} is the locally equicontinuous semigroup con-

structed in Y by Theorem 5.2.

Proof. Assume condition (i), then by Theorem 5.2, A \ Y is the in-

finitesimal generator of a locally equicontinuous semigroup {T?; zSjO} on

the Frechet space Y. Since Y=X, Lemma 3.6 yields that A\ Y=A.

Therefore, by using Ushijima L24; Theorem 2] we see that A is the

infinitesimal generator of an R,D.S,G. T such that



242 SHINNOSUKE OHARU

(5.1) T($)y=<Kf)Tty dt,

for ye Fand 06D(R+). Next, suppose that (ii) holds. Then, Ae®i(a), °o)

by definition and Theorem 3.9 yields that Y=X. Hence, (i) holds.

Q.E.D.

Theorem 5.5. An operator A in X is the infinitesimal generator of

an E.D.S.G. T, if and only if A is a densely defined, closed operator

satisfying either of the following conditions:

(i) A £ ©2(0), &) for some o)€R and &6R+,

(ii) A £ ©2(0), °°) for some o)GR and also Y=X,

(Hi) p(A)^0, Y=X, and for some o^GR, A\Y—o)i is the infini-

tesimal generator of an equicontinuous semigroup {Tt; t^>0} on Y which

is a Frechet space in the sense of Lemma 3.1.

(iv) A€®3(r, I) for some r^R and l€l+.

Proof. Let A be a densely defined, closed operator satisfying (i).

Then A£®2(tf, °o) by definition and Theorem 3.9 states that F=X; and

hence (ii) is satisfied. Next, suppose (ii). Then by Theorem 5.3, A\ Y—o)i

is the infinitesimal generator of an equicontinuous semigroup {Tt; zj>

on the Frechet space F. Since Y=X, Lemma 3.6 yields that A = A\Y,

Hence, (iii) holds. Now, let us assume that (iii) holds. Then by Fujiwara

[_7 \ Theorem 3], A is the infinitesimal generator of an E.D.S.G. Let A

be the infinitesimal generator of an E.D.S.G. T. Then by Lions [112;

Theorem 6.1], we see that ^€©3(7*, Z) for some 7"6R and Z E Z + . Thus,

(iv) is satisfied. Finally, let (iv) be satisfied. Then from Theorem 4.7 (a)

it follows that ^€©2(^3 £ + 2) for an dO>max{0, 7*}, which means that

(i) holds. Q.E.D.

Remark 5.6. Theorem 5.5 is a combination of Lions' result and

Fujiwara's one. Combining the results obtained in Section 4, we see that

Theorem 5.5 gives some informations on the continuity of E.D.S.G. at the

origin t = Q and the regularity in the sense of the norm topology of X.

Now, in the remainder of this section, we discuss the semigroup of

bounded operators which can be extended to an R.D.S.G. By treating such

semigroups, the Feller-type condition is naturally introduced.
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Definition 5.7. A semigroup {Tt; £>0} of bounded operators is

said to be extended to an R.D.S.G. if there exists an R.D.S.G. T such

that for any x^X and 0

2X0)*= <Kt)Ttx dt.

Recently, Ushijima Q25; Theorem 1] characterized such a semigroup

{Tt} in terms of strong infinitesimal generator As which is defined

through the relations:

D(As')={xeX'9 3lim7}-l[_T?]-I~lx = ye2} and Asx = y f o r x£.D(As\
?->+o

Theorem 5.8. (Ushijima) Let \Tt\ £>0} be a semigroup of bounded

operators and As be its strong infinitesimal generator. Then {Tt} can be

extended to an R.D.S.G. T if and only if D(AS) = X, As is closable, p(A)

^r0, and there exists a & G Z + such that D(^)C^? where 2 is the

continuity set and A = AS. Furthermore, in this case, the extension T is

unique, A is its infinitesimal generator and A satisfies (I; co).

We then study some basic properties of the semigroup which can be

extended to an R.D.S.G. Throughout the remainder of this section, let {Tt}

be a semigroup of bounded operators with the type a)0, A0(resp. As} be

the (resp. strong) infinitesimal generator, and 2 be the continuity set.

Lemma 5.9. Assume that there is an A£ (£(JT) with non-empty

resolvent set and that D(Ak)C2 for some & G Z + . Let ft)i>a)0, then there

is a number M>0 such that

(5.2) \\Tt\\k^Me^\ 00.

Proof. We observe that Tte^(D(Ak\ X} for t>0. Let o)i>co0. Then

the resonance theorem yields that sup|| e'^Tt || k = M< + oo5 from which
t>Q

(5.2) follows. Q.E.D.

For A with Re(/0>a)i>a)05 we define an operator RQ(&) by the relation

(5.3) RQ(X)x = (~e-"Ttx dt,
o

whenever the right integral makes sense. We note that D(RQ(W^> 2 for
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ReU)>fi>i.

The following is important for our arguments in the sequel; the cen-

tral part of the proof is based on that of the characterization of

semigroups, refer to Hille-Phillips Q8; Theorem 12.5.1].

Theorem 5.10. Let ^eE(X) satisfy (/; a)) and D(Ak)(^2 for some

ndk€Z+.IfR($; A)\D(Ak} = R^}\D(Ak} for f >601>max{o)3 a)Q},

then ^€©2(^5^) and the following condition of Feller type is satisfied'.

(F\ K) for every e>0, there is a positive number M6 and for every x

(Ak\ there is a positive number ?0 = £o(s> #)(>o)i) such that

x\\ for S>$0 and

A.

Proof. First, we show that A satisfies (F; A). Let Tt = e~c°1 Tt,

and A=A — col9 then R($-9 A) = R(f-cOi'9 A} for f>o>i and

e-U-*&ft for t>0. Hence, we have

dt for f>0 and *
o

Using the resolvent equation we have

(5.4) j?(£; Ayx = (n-iy-l(~e-*'t*-lftx dt,

for c>0, x£D(Ak) and 7i€Z+ . Also, since {Tt} is of negative type, 0(0

=sup He""10"^!! is finite at each £>0, nonnegative, nonincreasing and of
(T>t

negative type. Let 0<5 /<5 and q = d'/d(<l) and let us decompose the

right side of (5.4) into two parts;

then for x€D(Ak\ \\Ji\\^(n-iy-lM\\x\\kr*(*'*e-'s*-lds and ||/2
Jo

^""^(^Oll^ll- If ?>0 and ^^f<?5 then by the same argument as in

(12.5.6), p. 374] we have that
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Consequently, we have that \\£"R(£', A}n x\\<,<])(d'} \\x\\ + M\\x\\kq/n(I-q)2

for f>0 and n^£8. This means that for x <E D(Ak\ 8' and d with 0<

d' <d, and ^>0, there exists a /IQ = JUQ(X, 77, 8', (?) such that

(5.5) \\SHR(S;

for ?>/*o and n^>gd. In fact, to obtain the estimate Af ||^|Ugr/7i(l

^ H ^ l l , we must take n^>M\ x\\kq/^'\\x\\(l — q)2. But, it is possible if

?^M\\x\\kq/7]d\\x\\(l — g)2; this guarantees the existence of such a number

Ao. Now, for x€D(Ak) and e>0, we take ^, 5 with 0<8'<8<e and ^0

i, then we can find a positive number Me such that

sup

Therefore, ||fnlZ(£; ^)nA;||^Me||^|| for f > A 0 and e<>n/$<>l/e', this is

condition (F; ft). Next, we show that (/Iexp; ft) holds for oh and the

number M implied by Lemma 5.9. By (5.2) and (5.4), we have

o

Hence, by replacing f by f — o>i in the above estimate, we obtain

Q.E.D.

Lemma 5.11. Let a)i>a)0 and U0(^) be defined for Re(/0>o)i by

(5.3). Then for every x G 2 and Re(J)>fl>i, jR0(A)a; e i>(^) and (l-As}

Proof. Let A^tr^T^ — I^ for 97 >0, then ^^^(Z). Let x E

and Re(/0>ah, then we have

(5-6) > — ̂ - i f^—.-nV O-MT ^rj+ — ̂ ~l \'Mn-t)TtX fit

as

This means that RQ(^)x ED(^4o)C^ and (A — ̂ 40)-^o(^)^ — ̂ 3 where AQ is

the infinitesimal generator of {Tt}. Since lim T8R0(r)x = RQ(&)x, we

have that rs^0^o(^)^= Ti(ARQ(Z)x-x) -^RQ(^x -x = AQRQ(^x.
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Therefore, RQ(X)x€D(As) and AQRQ(X)x = AsRQ(X)x. Consequently,

(l-A8)R0(X)x = x. Q.E.D.

In view of the results mentioned above, we see that a semigroup

which can be extended to an R.D.S.G. has the following property.

Theorem 5.12. Assume that {Tt\ £>0} can be extended to an

R.D.S.G. T. Let A = AS. Then A£®2(ti>,k) and condition (F; k) holds

for some toGR and k^Z+.

Proof. Since A is the infinitesimal generator of an R.D.S.G. T by

Theorem 5.8, A satisfies (/; a)) for some ft)6R. Let a)i> max{&), a)0},

then by Lemma 5.9 there is an M>0 such that (5.2) holds. Also, Lemma

5.11 states that x = (A — As°)R0(^x = (;( — A)RQ(X)x for x£2 and Re(/l)

>a>i. Hence, by applying the resolvent of A at f>o>i on both sides of

this equality for A = f5 we see that RQ(£)X = R($:) A)x for ?>o>i and

x^Z. On the other hand, it follows from Theorem 5.8 that D(Ak)C2

for some k£%+. Therefore, Theorem 5.10 implies that A satisfies (//CxP; k)

and (F; A). Q.E.D.

Remark 5.13. By virtue of Theorem 5.5, we see that the semigroup

\Tt} of bounded operators which can be extended to an R.D.S.G. is

necessarily extended to an E.D.S.G.

Remark 5.14. In the next section we shall introduce certain classes

(£*(&)), & = 0, 1, 2, • - . , oo 3 of semigroups of bounded operators. The semigroup

of class (C(jfe)) has the property that D(^)C^5 where AQ denotes the

infinitesimal generator and 2 denotes the continuity set. It will then be

shown that a densely defined, closed operator A in X satisfying (J; a)),

(l/exp; &) and (F; &) for some co^R and & E Z + is the closure of the

infinitesimal generator A0 of a unique semigroup {T?; £>0} of class (C(&)).

Therefore, if a semigroup {Tt; £>0} can be extended to an R.D.S.G. T,

then A = AS is the closure of the infinitesimal generator AQ of a semigroup

{Tt} (of some class (C^)). But, Tt=Tt by the unicity of the semigroup;

and hence it follows that A = AS = AQ. Conversely, as will be shown in

the next section, the infinitesimal generator AQ of a semigroup {Tt} of

class (C(fc)) is closable and A = A0 satisfies (/; a>\ (//; k\ (F; k} and

Y=X. Since A\ YCASCA0CA by Theorem 4.6 and since F is a core of



LINEAR OPERATORS 247

A by Lemma 3.6, we see that A\ Y=AS = A0=^A. Hence, As in Theorem

5.8 can be replaced by AQ as follows:

Theorem 5.8'. A semigroup {Tt} of bounded operators can be ex-

tended to an R.D.S.G. T if and only if the infinitesimal generator AQ is

densely defined, closable and A = AQ satisfies that p(A)^0 and D(Ak)d£

for some k G Z+.

According to Ushijima Q25], a semigroup of bounded operators {Tt}

is called a strongly continuous semigroup (C.D.S.G.) if it admits a regular

distributional extension T. In view of Remark 5.14 mentioned above, we

obtain the following type of characterization of C.D.S.G.:

Theorem 5.15. An operator A is the closure of the infinitesimal

generator of a C.D.S.G. if and only if A € ©2(o), k) and (F; k) is satisfied

for some a) G R and & G Z + .

The above theorem states that every C.D.S.G. belongs to some class

(C(j,)) and conversely. Hence, the basic structure and the regularity of a

C.D.S.G. will be seen by considering the characterization of (C(£))-semigroups.

Finally, we consider condition of Feller type (F; k). Let A be a

densely defined, closed operator in X belonging to ©1(0), fc) and {Ut\ t^>Q}

C83(D(^), X) be the one-parameter family obtained by Theorem 4.2.

Then for kr G Z+ with kf^>k we can consider the following condition :

(C; A/) for every £>0 there exists a number M#>0 such that

\\Utx\\<,Mt\\oc\\ for

This condition is called the condition of correct posedness of ACP for

A G ©i (a), k\ We discuss some relations between conditions (F; k) and

(C; A).

Lemma 5.16. Let Ae&(X) and D(A) = X. Let Ae®i(a), k) and

{Ut\ £^>0} C.%5(D(Ak\ X) be the corresponding one-parameter family obtain-

ed by Theorem 4.2. If condition (C; k'} is satisfied for some k'^>k, then

there exists a semigroup of bounded operators {T^; £>0} such that Tt\D

(Ah)=Ut for £>0. Furthermore,

Proof. Since D(A^) = X by Lemma 2.7, each of Ut\D(Ak'\
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admits a unique continuous extension Tt^^8(X\ Theorem 4.2 (d) and

Lemma 2.7 implies that { Tt} has the semigroup property. Since Ttx is

strongly measurable with respect to t in R+ for x^X, \\Tt\\ is measurable.

Also, \\Tt\\ is a submultiplicative function of t. Therefore, for every £>0

there is a number M£>0 such that sup{||T?!|; e<^t<zl/£}<:M£j see

Hille-Phillips Q8; p. 242]. Hence, {Tt} forms a semigroup of bounded

operators. By the way, D(Ak') is dense in \^D(Ak)^] by Lemma 2.7; and

hence it follows that Tt\D(Ak)=Ut for £>0. Since Utx was strongly

continuous in ^0 for x£.D(Ak\ we see that D(Ak)C2. Q.E.D.

Theorem 5.17. Let A e £(Z) <wd D(A) = X. Then the following

conditions are equivalent:

(i) A e ®i(o>, A) fl«d CF; A') AoWs /or some A'I>A,

(ii) ^ e ®2<X A) 0»d (F; A) holds,

(iii) ^e@2O, A) tf«rf (C; A) A0/Js,

(iv) -4 €E ©1(0), A) «nJ (C; A') /xo/^5 for some A'^>A.

Proo/. Assume that (i) is satisfied for A X >A. Then (a) of Theorem

4.2 implies that sup{||Z7,#||; te[e, l/£~]}<,Me\\x\\ for £>0 and xeD(Ak'}.

Hence, by Lemma 5.16 we obtain a semigroup of bounded operators {Tt;

t>0} such that Tt\D(Ak)=Ut for t>Q. Let a)Q be the type and oh>

max{a), o)Q}. Then, by Lemma 5.9, a sufficiently large M>0 can be found

in such a way that ||Utx\\<,Me^\x\\k for ^0 and %eD(Ak). Hence,

by the same way as in the proof of Theorem 4.3 (f), we see that -R(£; A)x

= R^)x=( e'^Ttxdt for f>a)1 and x£D(Ak). Therefore, Theorem
Jo

5.10 yields that (ii) holds. Assume that (ii) is satisfied. Then Theorem

4.2 (a) implies that sup {|!E/,a||; e^^l/e}^Affi||^|| for s>0 and x G D

(Ak). This is nothing but condition (C; A). Hence, (iii) follows. (iii)=^(iv)

is evident. Finally, suppose (iv). Then Lemma 5.16 states that there is

a semigroup {Tt} such that Tt\D(Ak)=Ut for £>0. Hence, by the same

way as in the proof of the implication (i)=^(ii) mentioned above, we see

that (ii) holds. Q.E.D.

6e Class (Qft))

In this section we introduce some classes of semigroups of bounded
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operators and discuss their characterizations in terms of resolvents of the

infinitesimal generators.

Let {Tt\ £>0} be a semigroup of bounded operators, -Xo —
t>o

a)Q be the type, and 2={x€iX:) lim Ttx = x} be the continuity set. We

define RQ(ty, the Laplace transform of Tt, by (5.3) for /I G C and x 6 X.

We noted that D(RQ(W^) 2 provided that Re(/0>a)0. Also, let us denote

by AQ the infinitesimal generator and let Y0=/r\D(AQ.)
n^l

Now, we consider a semigroup {Tt\ £>0} with the properties

(C.I) X0=X,

(C.2) there is an a)i>a)0 such that for ^ with Re(/l)><^i there is an

R(^e^&(X) and R(V\X0 = R0(X)\XQ,

(C.3) if R(Z)x = Q for *>o>i, then x = Q.

Remark 6.1. Since lim T7]RQ(^x= lim RQ(^T7lx = R0(t)x for x

and ReU)>£Oi, it follows that R(X)\ 2 = Rd(K)\ £ for

In the sequel we discuss some properties of this kind of semigroup.

Lemma 6.2. Let AQ be the infinitesimal generator of a semigroup

{Tt} satisfying (C.l)-(C.S), then YQ = X and AQ is closable. Let A = AQ,

then R(X) = R(l\ A) for Re(A)>o)i. Furthermore, Y=f\D(AH) is a core
n^l

of Ak.

Proof. It is proved in Hille-Phillips [8; Theorem 10.3.4] that F0 is

dense in XQ. Hence, YQ^XQ = Xby (C.I). Let A^y-1^- Ij for 7?>0,

Re(2)>60i and ^6^, then by using the relation (5.6) we see that

= RQ(^xeD(A0) and (A-A0)Ro(A)x = x. Since A^x E 2, we have

= RQ(A)A7)x = A7]RQ(A)x = A7]R(l)x, and hence AQR(^x = R(A)AQx provided

that x € D(AQ). Consequently, we obtain

(6.1) (l-AQ)R(X)x = R(Wl-4Q)x = x,

for X^D(AQ) and Re(/l)>^i- Now, assume that xtl€D(AQ\ xn-+Q and

AQxn-*yQ, then by (6.1) we see that AR(X)xn — R(X)AQxn = xn for ^>o)i

and 7i. Hence, letting ^->oo we have that J?(/i)jo — 0 for /l>a)i. It then

follows from (C.3) that jo — 0- This means that AQ is closable. Let A

= AQ, then for x^D(A) there is a sequence {xn}CD(Ao) with ^w->^r

and ^0^w->^^. Thus, if Re(^)>o>i, then (6.1) yields that
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= x. Also, since D(AQ) = X, for each x £E X we can find a sequence {xn}

CD(Ao) with xn-*x. Since R(tyxneD(A0) and ^(/0^->J?(A)3;, again

(6.1) implies that ^o^W^^-^U)^ — xn-^^R(X)x — x. So that

= HR(JC)x — x. Therefore, it follows that R($ = R(]i\ ^4). Since

{/IGR; A>o)i}, the last assertion follows from Lemma 3.6. Q.E.D.

Definition 6.3. A = AQ is called the complete infinitesimal generator.

Definition 6.4. Let {Tt} be a semigroup of bounded operators

satisfying (C.l)-(C.S) and A be its complete infinitesimal generator. Then

{Tt} is said to be of class (C^)), if there is a & E Z + such that D(Ak)C<%-

Remark 6.5. The above definition is equivalent to the following: A

semigroup {Tt} is said to be of class (£(*)), if it has the properties (C.I)

-(C.3) and

(C.4) R(R(l^k}d for some /U>^i-

Lemma 6.6. L^ {Tt} be a semigroup of class (C^y) with the type

o)Q and A be the complete infinitesimal generator. Then A 6 ©2(^13 &) for

some ft)i>o)0 and condition (F; k) holds.

Proof. Since RQ($)x = R(g; A)x for f>o>i and x E 2 by Lemma 6.2,

the assertion follows from Theorem 5.10. Q.E.D.

Lemma 6.7. Lg/ & E Z + . Then an operator A£&(X) is the complete

infinitesimal generator of at most one semigroup {Tt\ £>0} of class (Q^)).

Proof. Suppose that {Tt} and {Tt} satisfy (C.1)-(C.4) for k and that

A be the complete infinitesimal generator of both semigroups. If x 6 D(Ak),

then by Lemma 6.2, lf(f; .4)# = \ e~^ Ttx dt=\ e~^Ttxdt for f suffi-
Jo Jo

ciently large. But, both Ttx and Ttx are strongly continuous in ^>0,

and hence it follows from the unicity of Laplace transform that Ttx = Ttx

for t>Q. On the other hand, Lemma 6.2 yields that D(Ak) = X, and so,

Tt=Tt for £>0. Q.E.D.
The next result gives a generation theorem of semigroups of class

Theorem 6.8. Let A be a densely defined, closed operator belonging

to ©1(0)5 k} for some a) E R and k£%+ and satisfying (F; k') for some

k/^.Il+. Then A is the complete infinitesimal generator of a unique semi-

group {Tt} of class (£(*)) such that
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(a) for xeD(Ak) and t^>0, Ttx = lim (I-hA^'^x, and the con-
/z-> + 0

vergence is uniform with respect to t in every finite interval',

(b) for every £>0 there is an M£>Q such that sup{l|r^||; £<^<;i/e}

(c) for every I e Z+, A1 Ttx = TtA
lx for x e D(Al}\

(d) for every x 6 X, Ttx is strongly continuous in £>0 ; D(Ak)(^2\ for

xeD(Ak+l\ Ttx-x = ( TsAx ds=( ATsxds for t^>Q; and hence D(AQ)
Jo Jo

(e) if in particular, &^>1, then for every x^D(A) and £>0, (d/dt)

= ATtx=TtAx.

Proof. Let {Ut\ t^O} C^&(D(Ak\ -X") be the one-parameter family

obtained by Theorem 4.2. Then by Theorem 5.17 and Lemma 5.16, we

obtain a semigroup of bounded operators {Tt} having the properties (a)

and (b). In order to show (c), we first prove that each R(/JL', A) commutes

with Tt, *>0. For xeD(Ak) and JOo)^ R(ju; A')J^tl^x = J^MR(Ju:> A)x.

Hence, by (a) we have that R({JL\ A)Utx=UtR(ju; A)x. But, since Ut =

and D(Ak) = X, we see that R(fjL\ A)Tt= TtR(fi\ A) for t>0.

Assume that x^D(Al\ then x = R(ju:)A }ly for some y£X. Hence, Ttx

= TtR(#; A)ly=R(ju; A)lTtyeD(Al) and TtA
lx= Tt^AR(^; A)Jy=

AlTtx. Property (d) is the restated form of Theorem 4.2 (e). Next, we

show (e). Let £>0 and £<s<O<l/e. Then H jTff||<:.Me for e^ff<*l/e.

Since D(Ak+l) is a core of A, it follows that for each x£:D(A) there is

a sequence {xn} C.D(Ak+l) with xn-*x and Axn-*Ax. Hence, UaAxn-+

TrAx boundedly for £<^T<Jl/£. Since Ttxn—Tsxn=\ Ta.Axndo', we obtain
J s

Now, we demonstrate that the semigroup {Tt} constructed belongs to

class (£(*)). First, D(Ak)C2 by (d); and so X0 = X. Let 60i>max{^, o)0}

and jRo(^) be the operator defined by the formula (5.3) for this semigroup.

Then D(JR0(^))^^ for Re(A)>fth. Also, from Theorem 4.6 it follows that

R(/L; A)x = RoWx for x^D(Ak} and Re(/l)>^1. Now, for every x e XQ

there are £ 0>0 and jE X such that x= Ttoy. Since D(Ak) = X, there exists

a sequence {yn}CD(Ak} with y=lim yn and TtQyn^D(Ak}. Therefore, we

have
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note that RQ(^Ttoe^(X) for Re(A)>o>i and tQ>Q. This means that {Tt}

satisfies (C.2). (C.3) is clear, since R(A', A) is one-to-one. Finally, the

uniqueness of the semigroup follows from Lemma 6.7. Q.E.D.

In view of this theorem we obtain a criterion for the existence of

the solution of ACP2.

Corollary 6.9. Let Ae®i(a), K) for some coeR and k€Z+\{0}. If

A satisfies either of (jF; A;') and (C; A/) for some k'^>k, then for every

\ there is a unique solution u(t\ x) of ACP2 for A with lim

Proof. In view of the properties (d) and (e) of Theorem 6.8, for each

x£.D(Ak\ u(t\x)=Ttx becomes a solution of ACP2 for A with lim
t-> + Q

u(t\ x) = x. To prove the uniqueness, we let u(t} be another solution of

ACP2 satisfying lim u(t) = x and then put #(£)— Ttx — u(t\ i>0, note
f-» + 0

that lim v(t) = Q. Let ^ep(A\ then R(AQ; A) kv(s) eD(Ak+l); and
t-+ + Q

hence by a similar way to the proof of Lemma 2.4 we have that (d/ds)

T^SR(^; A)kv(s) = 0 for 0<s<O. Therefore, 0 = f (9/9s)T,_J?U0; A)kv

(s)ds= lim [r^_sJ?(^0; A)kv(s}Je~
6 = R(^\ A)kv(t} for t>0. This means

f-^+o
that u(0 = 0 for t>Q. Q.E.D.

Remark 6.10. Let {T/} be the semigroup constructed in Theorem 6.8.

Then { Tt\D(Ak)(= [/*); i>0} forms a semigroup of bounded operators on

the linear manifold D(Ak). This semigroup is strongly continuous at £>0.

Also, Corollary 6.9 states that Tt\D(Ak) is a solution operator of ACP2

for A.

Remark 6.11. Let {Tt} be the semigroup obtained by Theorem 6.8

for an A€®I(CO, k\ k^>l. Take an x£D(Ak\ then by Theorem 6.8 (e),

(d/dt)e-™Ttx=-e-xtTt(/t-A)x for t>0 and AeC. Let o)0 be the type

of {Tt} and o)i>max{ft), a)Q}. Then for every A 6 C with

e-xs Ts x =

Since e~xsTsx— >x as ^-> + 0 by Theorem 6.8 (d), the improper integral
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/-OO /-OO

\ e~™Tt(h — A)xdt= lim \ e~~™Tt(A — A)xdt converges and is equal to x.
Jo 8-+ + Q JS

Consequently, we obtain the following relation:

(6.2)
Jo

Now, we state a characterization of semigroups of class

Theorem 6.12. An operator A in X is the complete infinitesimal

generator of a semigroup {Tt} of class (Q*)) if and only if D(A)=X,

A 6 ®i(o>, k) and (F; k) is satisfied.

Proof. The necessity is verified in Lemma 6.6 and the sufficiency

follows from Theorem 6.8. Q.E.D.

Next, we consider an example which shows that class (C^y) is

properly contained in class (C(^^i)).

Example 6.13. In a similar way to Example 4.10, let us consider an

unbounded operator P of multiplication, defined in L2 = L2(K) X • • • X L2(R)

by (4.8), such that P(f) is a (A + l)x(A+l)-matrix of the form (4.10)

with

(6.3) />=X£)=-£2y + tf* and ? = g(£) = f, f eR,

where v, c? and r are positive integers. H. Sunouchi treated in C22] this

example for the case in which A = l, v = l, d = 4 and 0^r^4 and he

proved that if r<[2 then the resultant semigroup is of class (C0) and that

if r = 3 or 4 then the resultant semigroup is of class (0, A).

Since the eigen-values of each matrix P(f) are equal to — ?2y + i?d,

operator P has the (thin) spectrum (7(P)= { — ?2 " + ££*; ?6R}. In view of

(4.11), (4.12) and (4.13), if d(k + l^rk and Re(A)>0, (A-PCf))"1, ^^R 5

define a bounded operator (A — P)"1 on L% which is the resolvent of P at

L Thus, in this case, we assume that

(6.4) 2v<d<r<Jt-\k+l)d.

First, we show that for each £>0, etp^\ f € R , define a bounded

operator etp on Z*2. Let 0 = ($/)£ £2- Then, as stated in Example 4.10,

the ;-th element of etp$ was Cc'f>O=c^*+lTJ
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On the other hand, for every £>0 there is a positive constant Ns such

that supefj?^(^|g(f)|^supexp(-£f2y)|f|r/^^ for 0^/^i and
I f

Hence,

Since He'^ll2 = IM|[e<%- 1|2^ (A+l)7Vie2/||0||2, it follows that for
y = 0

every s>0 there exists a positive number M£ such that

\\etP<t>\\<,M6\\(f>\\ for *e[s, 1/e] and 0eL2.

Thus e*p defines a bounded operator on L2 for each £>0. It is easy to see

that etPesP= e(t+s)p for £, 5>0 and also that e'p0 is weakly measurable

with respect to £>0 for 06 £2- Since L2 is a separable Hilbert space,

{etpi £>0} is strongly measurable and hence it forms a semigroup of

bounded operators on L2.

We can show that etp(f> is strongly continuous in £^>0 for every 06

D(Pk+l\ In fact, we observed in Example 4.10 that if 0eU(P*+1) then

ql(f>J+l€L2(R) for 1^/^+1 and O^Z^fc+1-/, and so, \\eptqlfa+i\\^

||. Also, it is easy to see that lim \\ept4j — 4j\\ = Q. Hence, \\[_etp<t^j
k + l-J

%-0y||+ L (Z!)-V||5'(6y+/||->0 as *-> + 0 for 1^/^4+1. This

means that e*F0 is strongly continuous in £>Q for every 06Z)(P*+1).

Therefore, if 21 denotes the continuity set of {etp}, then D(Pk+l) C ^.

This also implies that XQ = \JetP^L2^ is dense in X. Now, let ft)0 be the
*>o

type of the semigroup {e } and let ft>i>max{0, o)0}. If 06^ and Re(/l)
/*oo

>cOi, then \ e~™etp<j>dt makes sense. Hence, we see applying Fubini's
Jo

theorem that

This means that (A-P)~V=( e~xtetp<f>dt for 0e^ and ReU)>o>i.

Consequently, we can say that {e*F} is a semigroup of class (C^+i)).

Let {T^; J>0} be the one-parameter family of bounded operators on L2

which are defined by the inverse Fourier transforms of e*F0, £>0. The

above-mentioned states that {Tt} forms a semigroup of class (C(;fe+1)).

Next, we demonstrate that the semigroup {Tt} defined above is not
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of class (C(&)); this fact proves that (C(£))i=(C(£+i)). Since it is well-known

that (C(0)) = (Co)^(0, ^)C(C(i)X let us assume that AI>1.

Let $ be the element of Z,2 of the form (4.19). Then, under the

restriction (6.4), we can proceed with the same argument as in Example

4.10 and can prove that 0eD(Pk)\D(Pk+1) provided that

— 2v = b + c, and a, 6, c^>l.

Indeed, what is needed is the degree of p(£}( = d under (6.4)) and v does

not exert any influence upon the proof as long as (6.4) and the restrictions

on r— d and d — 2v are assumed. (Note that, in this case,

and that deg(qk-li$2v+r~d) = rk — b — c.) We then show that if furthermore

then etp<f> is discontinuous at £ = 0. (Hence, c?]>2y(A;+l) + c.)

By virtue of the relation (4.20), we obtain

where Q = qk-(q + i)k. Since deg(^) = deg(?*-1), Qfa+i€ L2(K). Hence,

(1+

Since a positive number C can be found such that (1+ |f |)~Z r*|? r

J>C, the first term of the right hand side is greater than

Now, setting 2f 2 w t = tT2% we have that f2 = (20"1/l'^2 and d£ =

and hence the integral is equal to
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;o

This means that etp(f> blows up at t = Q9 if 6^2Av. Therefore, the {Tt} is

not of class (C^y)-

In (6.4) we assumed that 2v<J. If d(k + l)^>rk and 2v^>G?, then

the spectrum (T(P) is contained in a sector and the semigroup {etp} can

be extended to a holomorphic semigroup. In this case, Z)(P*) is contained

in the continuity set JF. In fact, in this case,

&

1=0

/=o y=o

=«*' L C*L (/!)-¥(
j=0 l=Q

k-J
Since 2v^>d, we see that max sup \ept E GO"3^ — pO* I = N< + 00; hence,

y s,t I=Q
for each 06D(P ), we obtain

/=o

Hence, it follows that lim ||e^-0|| = 0 for <f>eD(Pk).
t-+ + Q

Finally, we discuss some generation theorems (of Feller type) for

(^4)-, (0, A)-) (1, A)- and (C0)-semigroups.

First, the following type of characterization of (^4)-semigroups is

stated in Hille-Phillips [8; Theorem 12.5.1].

Theorem 6.14. An operator A in X is the complete infinitesimal

generator of an ( A)- semi group {Tt} if and only if A£®3(a), 0) for some

0)6^, 5-lim ?/?(£; A) = I, and condition (F; k) is satisfied for some keZ+.
f_ + oa

Furthermore^ in this case, {Tt} is of class (C(2)).

Proof. Assume that ^G©3(">, 0), s-lim£R(f; A) = I, and that (F; k)

holds. Then by Theorems 4.7 and 5.17 and then by Theorem 6.8, A is the

complete infinitesimal generator of a semigroup {Tt} of class (C(2)). Since

JR(A; A)x = \ e~xtTtxdt for Re(/0>o)i and ^6X0 and for some o)i>
Jo

max{o), o)0} by Lemma 6.2 and since sup {||-R(^; A)\\\ Re(A)>60i}< + CXD and

5-lim £R($; A) = I, it follows that {Tt} is an (^-semigroup. Conversely,
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assume that A is the complete infinitesimal generator of an (^-semigroup

{Tt} with the type o)0. Then ^€©3(^1, 0) for some cOi>o)0 by Remark

4.8. Hence, it follows from Theorem 4.7 and 4.6 that D(A2)(iZ. This

means that {Tt} is of class (C(2>); and hence (F; 2) is satisfied. Let

jR(A), Re(/l)>a)i, be the operators given in condition (A.I) which is stated

in Section 1, then .R(A) = JR(A; A) for Re(A)>o)i by Lemma 6.2, and so

s-lim fR(f ;^) = 7. Q.E.D.

Theorem 6.15. ^Lw operator A m X zs £/z# complete infinitesimal

generator of a (0, A)-semigroup if and only if A 6 ©1(0), 1), s-limf.R(£; ^4)

(F)0 /or e^rjy # G -X, //2#r£ zs <z measurable and locally summable

function f(t, x) on (0, c>o) swc^ ^«^

(a) llm f(tn, x)<^f(t, x} and lim /(^, x)<^f(t, x\
tntt t n i t

(b) /or eac/z £>0, each pair /? awJ 7* with 0</?<r, ^r^ w a number

SQ = So(x'9 0, r, e) with

and

Furthermore^ in this case., \\ Ttx\\<^f(t, x) for i>0 cwc? {T^} is 0/

Proo/. Assume that A 6 ©1(0), 1) and that (F)0 is satisfied. Let x €

X, e>0, and 0</?<7". Since every function satisfying (F)0-(a) is upper

bounded on every compact interval, N(x; /9, 7P)=sup{/(s, jc); /9^5^r} <

+ 00. Hence, by (F)0-(b) there is a f0 = fo(^; /5, r, e) such that ||^^

(f 5 A)nx\\^N(x'9 0, r) + £ for @<,n/g<r and f >f 0 - On the other hand,

let o)i>max{0, a)}, then by the assumption there exists a positive number

K such that \\£R(£; A)\\<^K for f >a>i. Hence, H^-RCf ; ^)^||^K[^+1

Ik II ^ P^=n/^r and fl)i<£<f0. Consequently, it follows that {f#(f ;

A)nx\ @<:n/g<;Y, ?>ft)i} is bounded for each x £ X. Thus, by the res-

onance theorem a positive number M^.-y can be found such that

(6.5) irR(£; ^)1|^M^.7 for 0^n/£<*r and

Since (6.5) is nothing but condition (F; 0), it follows from Theorem 6.8
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(a) that

(6.6) Tt= s-lim (I-hA)-Ltlh\ t>0,

exist uniformly with respect to t in each compact interval of (0, °o); the

family {Tt} forms a semigroup of class (Qi)). Now, fix an x€.X and a

£>0. Then, for any £>0 and any pair /? and f with 0</2<£<r 5 there

is an h0 sufficiently small such that 0^[t/h^h^t<^lj/fi]h + h^r and

x} + B provided Ae(0,A0] . Since [t/hji*\t

or \j/h~]h + h^t, (F)o-(a) yields that \\Ttx\\<, lim /([>/A>, x} + e<,f(t, x)
_ klo

+ e or ||r,*||<; lim/([*/AjA + A, *) + £<;/(£, *) + e. Hence, by virtue of
hlO f°°

Remark 6.11 and (F\ 0), R()i\ A)x = \ e~™Ttxdt for x 6 X and Re(A)>
Jo r°°

ft)i>max{0, ^, o)0}, where o)0 is the type of {Tt}. Therefore, f\ e~f Ttxdt
Jo

->^ as f-> + cx33 and so {Tt} is of class (0,^4) and A is its complete

infinitesimal generator. Conversely, let A be the complete infinitesimal

generator of a (0, ^-semigroup with the type o)Q. Then A£ (§2(^03 1)

by Remark 4.8. We then show that (F)0 holds. By Hille-Phillips [8; The-

orem 11.6.6, p. 352], we have the representation (6.6). Thus it is easy to

see using the resonance theorem that sup{\\$nR(f; A)n\\\ f >ft)0, £<^/?<I

l/e}< + oo for each e>0. So, it follows that for any convergent sequence

such that fy->+oo and ?&//£;—»£ >0,

(6.7) Tt= s-lim (I-
y-+oo

We can now obtain (F)0 by setting f(t, x}= \Ttx\\ for £>0 and x 6 X

and by employing the convergence (6.7). Q.E.D.

Also, by a similar way to the proof of Theorem 6.15, we obtain

Theorem 6.16. An operator A in X is the complete infinitesimal

generator of a (1, A)-semigroup if and only if A£@I(O), 1), s-lim £R(£; A)
f-» + 00

= /, and

(F)i there is a measurable and locally summable function f ( t ) on

(0, oo ) such that

(a) Ihn f(tn)^f(t} and lim /(O^/(0,
tnM t n l t J

(b) for each e>Q,each pair /9 and ? with 0</9<r? there is a number
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, r, e) with

l l + e for P^n

Furthermore, in this case, \\Tt\\^f(t) for £>0 and {Tt} is of class (C(i)).

Finally, we state the Hille-Yosida-Miyadara-Phillips theorem in the

following form:

Theorem 6.17. An operator A in X is the infinitesimal generator

of a (C0)- semi group if and only if A € ©2(^5 0) for some a) £ R.
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Notes added in proof: 1. Mr. Konishi has called the attention of

the author to a paper by M. Sova, "Probleme de Cauchy pour equations

hyperboliques operationnelles a coefficients constants non-bornes", Ann.

Scuola Norm. Sup. Pisa, 22 (1968), 67-100, which contains, among others,

similar results to Lemmas 2.4 and 2.7 and Theorem 4.3.

2. In Theorem 5.4 we gave two sufficient conditions for a linear

operator in X to be the infinitesimal generator of an R.D.S.G. But, it

can be proved that those are also necessary conditions. Hence, two kinds

of characterizations of R.D.S.G. are obtained and the result gives a

straightforward generalization of Theorem 5.5.


