Publ. RIMS, Kyoto Univ.
7 (1971/72), 205-260

Semigroups of Linear Operators
in a Banach Space

By

Shinnosuke OHarU*

This paper concerns the construction of the solution of an abstract
Cauchy problem and the generation of semigroups of bounded linear opera-
tors in a Banach space.

Let 4 be a closed linear operator in a Banach space X and let us
consider a differential equation (d/dt)u(¢)=Au(t) in X. Our first problem
is to find the solution of this equation associated with the given initial
value u(0)=x, under some additional conditions on 4. The additional
conditions on A4 are stated roughly as follows:

(1) The resolvent set p(A4) of A contains a half real line (w, o0);
and hence for each nonnegative integer n, D(A") .can be regarded as a
Banach space with respect to the graph norm; this is condition (7; w).

(2) There is a nonnegative integer k& such that the operators §"R(§;
A)*, € large and n=1, 2,3, ..., map bounded sets in the Banach space
D(A*) into bounded sets in X, where R (&; A4) denotes the resolvent of
A at &; this is the idea behind condition (II; k) or (Il.x,; k) mentioned
later.

Then, under these conditions there is a one-parameter family {U;;
t=0} of continuous linear operators from a Banach space D(A4™) into X
and the family gives a unique solution operator of the Cauchy problem
for A, where m=2k+1 in general and m=k if A is densely defined.
The proof given in this paper is based on that of the author [17]. We
can also apply other methods which are analogous to Kato [ 9], Feller [ 6]
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and Crandall-Liggett [2]. Hille-Yosida-Miyadera-Phillips’ theorem states
that a linear operator A is the infinitesimal generator of a (C,)-semigroup
if and only if A4 is a densely defined, closed linear operator satisfying
(I; w) and (II;0); the corresponding {U;; t==0} becomes the (Cy)-semi-
group. In this sense the above result is an extension of the generation
theorem of (C,)-semigroups.

The solution operator {U;} is closely related to the notion of distribu-
tion semigroup. For instance, a linear operator A is the infinitesimal
generator of an exponential distribution semigroup if and only if 4 is a
densely defined, closed linear operator satisfying conditions (I; ) and
(Ilexp; k) for some w and k. Also, {U;} can be regarded as an R-
semigroup which was studied by Da Prato [4]. We shall discuss some
relationships among {U;} and these notions of semigroups. The results
obtained will give some informations on the continuity at the origin =0
and the regularity of exponential distribution semigroups.

The solution operator {U;} mentioned above can not necessarily be
extended to a semigroup of bounded linear operators. In fact, in order to
extend such a solution operator to a semigroup of bounded linear opera-
tors, it is required that A4 be densely defined and that the solution of the
Cauchy problem for A depend continuously on initial data. Krein con-
sidered in [117] the semigroup obtained by extending the solution operator,
under the assumption that the problem be correctly posed. The condition
of correct posedness is discussed by Lax [13] or [217] and it is in fact
equivalent to a Feller type condition which is suggested by Hille-Phillips
[8; p. 3737, see also Feller [6]. In view of this, we obtain the following
result:

If 4 is a densely defined, closed linear operator in a Banach space X
satisfying conditions (I; w) and (II; k) for some o and %k (which guarantee
the existence of a solution operator for a Cauchy problem formulated for
A) and a condition of Feller type, then we obtain a semigroup {7T}; ¢ >0}

of bounded linear operators such that

6)) Tix=1lim (I—hA)~"B"y, x € D(A45),

B~+0
where the convergence is uniform with respect to ¢ in every finite inter-
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val;

(ii) for every x € D(A4*1), T;x gives the solution of the abstract
Cauchy problem for A associated with the initial value x;

(iii) D(4*)C X, where X is the continuity set which is defined
by Z={x €X; lim T;x=x}.

Our secondt;;ooblem is to extend well-known classes stated in Hille-
Phillips [ 8; §10.6 ] and study the fundamental structure of such semigroups.
For this purpose, it is natural to classify the semigroups of bounded linear
operators obtained as above in terms of the continuity set J. That is,
for each nonnegative integer k, we consider a class of semigroups {T%;
t>0} such that D(4*) X, where A is the closure of its infinitesimal
generator. In this paper, such a class will be called class (Cuy). We
shall characterize these classes.

The characterization of the semigroup of class (C() given in this
paper is in substance an extension of that of the semigroup of class (C,).
However, it is another purpose to study the relationships among the classes
(Cuy), k=0,1,2, 3, ..., and various well-known notions of semigroups.
First, it can be shown that every (C(,)-semigroup can be extended to an
exponential distribution semigroup. Conversely, every semigroup which
can be extended to a regular distribution semigroup belongs to some class
(Cwy). Class (Cy) is the same thing as class (Co); class (0, 4) is an
important subclass of class (C); and class (4) is a particular case of
class (Czy).

Finally, we shall discuss that the theory of semigroups of continuous
linear operators in a locally convex space can be employed to construct
semigroups of classes (C)).

In the present paper we restrict ourselves to the case in which the
infinitesimal generator of the semigroups treated has a non-empty resolvent
set. As for the case in which the resolvent set of the infinitesimal gen-
erator is empty, we shall publish it elsewhere.

Section 1 deals with the basic notions and some of their properties.

Section 2 concerns the abstract Cauchy problem on a finite interval.

Section 3 concerns the construction of the semigroup solution of an
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abstract Cauchy problem in a Fréchet space.

Section 4 contains some results on the abstract Cauchy problem on
a real half line.

Section 5 deals with some relations among the results of Section 4
and the notion of distribution semigroup. Also, in that section, we discuss
a characterization of the semigroup of bounded linear operators which can
be extended to a distribution semigroup.

Finally, Section 6 gives a characterization of class (C(). Also, in
that section some generation theorems of well-known classes will be obta-
ined.

The author wants to express his deep gratitude to Professor I.
Miyadera, Professor H. Sunouchi, Mr. N. Okazawa and Mr. T. Ushijima

for their many valuable suggestions.

1. Preliminaries

In this section, we introduce some basic notions and notations which
will be used in this paper.

Let X and Y be (complex) Banach spaces. Let A be a linear operator
(or simply an operator) from X into Y. We denote by D(A4) (CX) and
R(A) (CY) the domain and range of A, respectively. We write €(X, Y)
for the totality of closed operators 4 with D(4) CX and R(A) CY. Also,
we write B(X, Y) for the totality of bounded operators on X into Y.
However, for brevity in notation, we write €(X) and B(X) for (X, X)
and B(X, X) respectively. Similarly, when X and Y are locally convex
spaces, we write &(X, ¥) and &(X) for the totality of continuous opera-
tors on X into Y and that of continuous operators on X into itself,
respectively.

Let A be an operator from X into itself, then we say simply that A
is an operator in X; p(A) denotes the resolvent set of 4 and for 1€ p(A4)
we assume that R(A; A) means the resolvent of 4 at 1. Let A be an
operator from X into itself, then we mean by N(A) the null space of A.
If N(A—A)={0}, then (1—A4)™! is defined as an operator from Y into
X; we use the notation J, which stands for (I—24)7!, when A4 is fixed
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and N(A7'—A)={0}.

Let SCX, then S means the closure of S. Accordingly, we denote
by A the closure of a closable operator 4. Let SCX and 4 be an opera-
tor from X into Y, then we write A|S for the restriction of 4 to D(A)
NS. For any closable operator A such that 4= B, its domain D(A) is
called a core of B. In other words, a linear manifold D(C D(B)) is a core
of B, if D is dense in D(B) with respect to the graph norm of B.

We use the following abbreviations: Let X; be a linear manifold in X
and A4 be an operator from X into Y. When we consider 4 as an opera-
tor from X; into Y (i.e., 4| X;), we say simply that A is an operator
from X; into Y. Accordingly, if X; is a Banach space with respect to
a certain norm, then 4 €B(X;, Y) means that 4| X; €B(X;, V).

Now, assume that 4 €@(X), then we may regard D(A4") as a Banach
space with respect to the norm ||x||+||4x||+ - +||4"%]|; we write ||x]|,
for the norm and [ D(4")] for the Banach space. We note that if 4, A2,
..., A"€@(X) then the above-mentioned norm ||x|l, is equivalent to the
graph norm of A”.

Let UeB(D(A4")], X), then we denote by ||U|l, for the operator
norm of U. We shall abbreviate B( D(4")], X) by B(D(4"), X). Also,
in this paper, we let A°=1I; I denotes the identity operator and we
assume that [D(4°)]=X. Let U€B(X), then UeBD(A"), X); we
shall write ||U||, for ||U|D(A4,)|l,, for brevity in notation.

Throughout this paper, we write R=(—o0, o), R, =(0, =), R, =
[0, =), and Z, for the totality of nonnegative integers.

Let X be a Banach space. We write lim x,=x or x,—>x as n—>co,
if a sequence {x,} CX converges to some x € X strongly. Let {U,} CB
(X). We then write s-lim U,=U, if {U,} converges to some Ue&B(X)
in the sense of the strong operator topology.

Now, we introduce the notion of an (abstract) Cauchy problem, ACP.
Let X be a Banach space and A4 be an operator in X, and then let us

consider the differential equation
(1.1) (d/dt)u(t)= Au(t),

where (d/dt) means the differentiation in the sense of the strong topology.
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In this setting, we formulate the following problem:

ACP. Given a positive number T and an element x € X, find a func-
tion u(¢z)=u(¢; x) such that

(i) u(z) is strongly absolutely continuous and strongly continuously
differentiable in [0, T] (or (0, T7]);

(ii) for each t€(0, T}, u(?) € D(A) and u(z) satisfies (1.1);

(i) lim u(t)==x.

This tp_;)%lem is called the (abstract) Cauchy problem, ACP, formula-
ted for an operator A on [0, T ] and the X-valued function u(¢; x) satisfy-
ing (i), (ii) and (iii) is called the solution associated with the initial value
x. There are two alternatives in condition (i); the corresponding prob-
lems will be denoted by ACP; and ACP. respectively. Similarly, we can
formulate ACP;, i=1, 2, for an operator 4 on [0, o) (on (0, =0)); the
solution u(¢) of ACP; for A on [0, o) (resp. ACP; for A on (0, o)) is
that of ACP; for A on (0, T (resp. ACP; for A on (0, T7]) if u(z) is
restricted to a finite interval [0, T | (resp. (0, T )).

In the following, we state some notions of semigroups of operators in
a Banach space X.
A one-parameter family {T;; t>0} CB(X) is called a semigroup (of

bounded operators), if it has the following properties:

(1'2) T,.s=T:T, iy, s>0,

(1.3) s-im T, =T, £o>0.
t—to

We define the infinitesimal generator A, by Ayx=lim Apx, Ap=h""
[T,—1I7], whenever the limit exists, and the #ype Z)Toby wo=1limzs?
tog | 7.

The w, is always defined and w,<+oo, see Hille-Phillips [8;
Theorem 7.6.17]. Also, according to Feller [6], we call the set =
{xeX ;:l—i»rfo T;x=x} the continuity set of {T;}. We define

(1.4) Ro(l)x=S:e‘“T,x d,

for A€C and x € X, whenever the integral makes sense. It is easily seen
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that D(R,(2)) D> 2 provided that Re(2)> w,.

Here, we state some definitions of well-known classes of semigroups.
A semigroup {T,} is said to be of class (4), if Xo=1\>]OT, [X7] is dense
in X and if there exists an w;>w, such that for each 1 with Re(1)>w;,
there exists an R(1) €B(X) with the properties

(A1) R(A)x=R,(A)x, for x € Xy;
(A.2) sup {l|R(D)[|; Re (1) <o} <+ oo
(A.3) s):lirn AR(A)=1.

If furthermore,
1 1
(A.4) SOI}T,det<+00, for x€X or (A.4) SOHTtIIdt<+00,

then such a semigroup {7} is said to be of class (0, 4) or (1, 4) respec-
tively. The infinitesimal generator A4, of a semigroup of either class is
densely defined and closable; A=A, is called the complete infinitesimal
generator. If A is the complete infinitesimal generator of an (A)-semigroup,
then {1; Re(A)>w;} Co(4) and R(A)=R(A; 4) for Re(A)>w;. If {T:}
is a (0, 4)- or (1, A)-semigroup, then we can take w;=w, and the rela-
tion (A.1) holds for all x € X. Finally, a semigroup {7} is said to be of
class (Cy), if ¥=X. For details, see Hille-Phillips [ 8; §10.6 .

J. Lions introduced in [127] the notion of distribution semigroup. Let
D(R) and D(R.) be the Schwartz spaces corresponding to R and R,
respectively. Let D'(B(X))=2(DR), B(X)) be the class of B(X)-valued
distributions and D{(B(X)) be the subclass of D'(B(X)) which consists
of the elements whose supports are contained in R,. A B(X)-valued dis-
tribution T € D{(B(X)) is called a regular distribution semigroup (R.D.S.G.)

on a Banach space X, if the following conditions are satisfied:

(D.1)  T(pxd)=T() T(¢) for ¢, € D(R,);

(D.2) N\ N(T(@)={0} and R=sp[ \/J R(T(¢))] is dense in X;
¢=D(R,) $€D(R,)

(D.3) for every x €R, there is an X-valued function x(¢) such that
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a) x(¢)=0 for t<0 and x(0)=ux,
b) x(z) is strongly continuous in £=>0,
O T@x= | ¢Ox@d  for g€ DR.).

If furthermore,

(D.4) there exists a real number w such that e ™7 is a tempered dis-
tribution (i.e., e M T €& (B(X)) for every 1> o,

then T is called an expomnential distribution semigroup (E.D.S.G.).
Let T be an R.D.S.G. For each R-valued distribution F with compact
support contained in R,, we can define a uniquely determined, densely

defined and closable operator in X, denoted T(F'), by the relation
n n
T(F)x= Zl T(Fx¢;) y; for x= _Zl T(¢7) y; €R,
ji= i=

see Peetre [197]. T(—0¢") is called the infinitesimal generator of T.
Da Prato [3, 4] extended the notion of semigroup of bounded opera-

tors and introduced the notion of R-semigroup. A one-parameter family
{H;; t=0} CB(X) is called an R-semigroup, if

(R.l) HtHSZHsHt=Ht+SHo for [ ER.H
(R.2) N(Hy)=40} and R(HZ)=X for n€Z,,
(R.3) H;x is strongly continuous in :=>0 for x € X.

If furthermore, there exist numbers M >0 and w €R such that
R.4) | H || < Me* for t€R,,

then we say that {H;} is of exponential growth.

For instance, let T be an E.D.S.G., 4 the infinitesimal generator, and
p(€) be a polynomial of degree n with nonnegative coefficients such that
|R(Z; A)|<p(|2]) for Re(A)>w and some w €R, then it is proved that
H,=T(0)R(A,; A)"*?, t=0, define an R-semigroup, where Re(1o)>w and

0; denotes the point mass concentrated at :. Let Dy={x € X; I Hyx=lim
h—+0
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h Y[ H,—H, |x}, then the infinitesimal generator A, of {H;} is defined by

the relation
(1.5) Apx=H7'H{x for x € D(Ay)=4{x€Dy; H{x € R(H,)}.

It is proved [ 3] that 4, is closable. Da Prato introduced the notion
of generalized resolvent of A and gave in [4 ] a characterization of an R-
semigroup in terms of the generalized resolvent.

Finally, we state the notion of a locally equicontinuous semigroup
which was recently studied by T. Komura in [10]. Let Y be a locally
convex linear topological space. Then a one-parameter family {7}; =0}

C(Y) is called a locally equicontinuous semigroup, if
(L.l) TOZI, Tth:TH.S for i, 320,
(L.2) for every y€Y, T;y is strongly continuous in :=>0,

(L.3) for every continuous seminorm p on Y and 7>0, there exists a
continuous seminorm g on Y such that p(T;y)<q(y) for t€[0, T] and
ye Y.

It is proved that if Y is tonnelé, then every semigroup {7;; t==0}
(C&(Y)) satisfying (L.2) is a locally equicontinuous semigroup. The
infinitesimal generator is defined by Ax= lim Ax in Y, A,=~h [ Tp— 1],
whenever the limit exists in the strong toggfoogy. Let {7;} be a semigroup
of continuous operators on a locally convex, sequentially complete space Y
for which conditions (L.1) and (L.2) hold, then the infinitesimal generator
is densely defined in Y. Also, the infinitesimal generator of a locally
equicontinuous semigroup in a locally convex space is closed. For details,

see Komura [10].

2. Construction of the Soluticn of ACP on a Finile Imterval

In this section we are concerned with the construction of the solution
of ACP. Let A€@(X),k€Z ,w<R and T>0, and let us consider the
following conditions:
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(I; 0)  {&; €€R, £>0} Co(4),
(IIr; k) there exists a number M such that
l|E"R(E; A<M for §>w and n/é€[0, T .

We then denote by &;(w, k, T') the family of all closed operators in
X satisfying conditions (I; w) and (IIr; k). The purpose of this section
is to discuss the construction of the solution of ACP formulated for an

operator belonging to this class &(w, &k, T).
Proposition 2.1. Let A€@(X), k€Z,, o€R and T>0, then the

following conditions are equivalent:
1) 4€6(w, k, T),
(i) a) for each £>w, E—A is an algebraic isomorphism of D(A)
onto X,
b) for x€D(AY), {€"(6—A)"x; €>w, n/E€[0, T} is
bounded in X,

(i) o(A)>x0, NE—A)={0}, R(E—A)DD(4") for &>v and
condition (ii-b) holds.

Proof. (i)=(ii) and (i)=(iii) are evident.

(ii)=({): For €>w, (§—A)~' is defined as a closed operator defined
on X, and so (§—A) ' €B(X) by the closed graph theorem. This means
that (I; ®) holds. Since 0(4)=x0@, it follows (Dunford-Schwartz [5; Th.
VII 9.7]) that A" €@(X) for n€Z,.. Hence, for each n€Z,, D(4") is
a Banach space with respect to the norm |[||j,. Thus, for any n €Z, and
Ik, R(¢; A)"eB(D(A4Y, X). Hence, (ii-b) and the resonance theorem
imply that M=sup{||"R(§; 4)"[lx; §>0, n/§ €[0, T} <+ oo,

Gii)=(@): Let 1,€p0(4) and x €X, then R(1o; A)*x€D(A*). Let
g>w and z=(£—A)"R(%,; A)*x, then z€D(A*) and x=(A,— A)*(€
—A)z=(E—A)(Ag— A)*z € R(6— A). This means that R(é¢— A)=X. Since
A is closed, the closed graph theorem yields that & € p(A4) provided &> w.
Thus, (I; ) is satisfied. Hence, by the same argument as in the proof

of (ii)=(i), we have that 4€®;(w, &k, T). Q.E.D.

Lemma 2.2. Let Ac®y(w, k. T), then D(A") is dense in D(A***)
with respect to the norm ||||; for n=2k+1.
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Proof. Let p==2k+1 and x € D(A?), then Jyx=(I—hA)'x € D(A"*")
for A sufficiently small and J,x —x=hJpdx. Thus, ||Jix —x||<hM||Ax||x
and || A" Jpx — A'x||<hM|| A"+ x|, for 1=1, 2, ..., k. This means that
D(A?"") is dense in D(A”) with respect to the norm |||z for p=>2k+1.
Therefore, by induction, we have the assertion. Q.E.D.

Our main theorem of this section is the following:

Theorem 2.3. Let Ac®(w,k, T) for some w €R, k€Z, and T>0.
Let m=2k-+1. Then there is a one-parameter family {U;; t€[0, T} CB
(D(A™), X) such that

@) for every x € D(A™) and t€[0, T,
Uix=lim(I—hA)~ Pty
h>+0
and the convergence is uniform with respect to t€[0, T |;
B Ul =M%l for t€[0, T] and x€D(A™),
(c) for every integer p=1, each U, maps D(A™*?) into D(A?) and
A Ux=U A% for t€[0, T] and x € D(A™*?);

@) for x€D(A*™) and t, s€[0, T] with t+s€[0, T, Upsx
=Utst;

(e) for every p€Z,. and x€D(A™?), there is a number Byp>0
such that ||Upx — Usx||,=ZBrplt—s| fort, s€0, T, and furthermore, for
every x € D(A™Y) and t€[0, T,

t t
U,x—ng UsAxdszg AU.x ds.
0 0

Proof. (a) Let x€D(A***?) and t€[0, T]. Let ¢ '=ha'>
max {0, o}, and let us denote J,=(I—hA)™', A" >max{0, w}. Then we
can write

2.1) e —=J M| SITEx — T2 x| + 1T % — Tyl + 1T 5 — TP

Now, assume that nd<<h and Ay €[ 0, T ], then we have
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v-1 A i1 ii1
sx—Jiw=— % YT Fx =Ty 2% Dx}, and
i=
I»;—i Zl_ix_];—-i—lJZ(iJrl)xZhJ;—iJZ(Hl)Ax_J;—i{]ﬁ(i+1)x_Jgix}

= (h—n@)J LT g 4 i g T2 g g 37T T A}
p=1

PR . o nzlnzl .
=(h=nO) TV A+ T30 B T T A =1, i)+ B, ).
2 £

Taking 0=2"", h=2"", n=2"""" and vy=[12""], we note that |[¢/0]—n
[t/h]]|<n and h—no=0. Also, using (IIr; k) we see that

N(Ax)=sup{||Jidx|[x; 0>0, 0= jO=T} <+ eco,
N2y =sup{|JL4°% 43 7> 0, 0= jO< T} < +oo.
Hence, we have that ||I;(v, i)||=0 and

. n—1n—1 .
22) L0, DT (o P ZPHJZ‘”“AZxHéMhZN(AZx),
=1 g=

and so, ||[J®x—Jix||<MTN(A%x)h. Consequently, (2.1) is estimated as
[|[JE A x— JE M x| <noN(Ax)+ M TN(A*x)h<const(x)-h
for =277 and h=2""" with r=>r. This means that

(2.3) Uix= lim (I—277A4)"W 1y

7300

exists uniformly for ¢t €[ 0, T]. By using (IIr; k) and Lemma 2.2, this
convergence holds for every x &€ D(A42%**'). Now, we show that the limit
is independent of the sequence chosen. Let x € D(A%***'). Take any ¢>0
and let 0<t<<T—e¢ and 0<0<h<e. Taking, this time, v=[z/A]+1
and n=[[t/0]/v], we observe that

hv<t+h, nc<h, |t—noy|<20+ Tc/h,
(2.4)
|[[t/6]—ny|c<o+ T6/h, v|no—h|<h+20+ To/h.

In fact, hv=Ct/h]+Dr<t+h, no<[t/clo/v<[t/0Joh/t=<h, ny=[[t/
ol/vv=[t/c], 0<[t/0]—nv<[t/0]—(t/0]/v—1)v=[t/h]+1, and



LiNEAR OPERATORS 217

0<vh—yno=vh—t+t—nvo<h+20+ To/h. Similarly, as above, taking
0=2"", then letting r—>oco, we see using (2.2), (2.3) and (2.4) that

U =T M) | < T |17 52877 — T 2|
+ Hm ||J 52 — T hx )|+ 1T e — J §1" 2 || <const(x)-h,

note that in this case ||I1(v, i)||<v|h—no| MN(Ax). Therefore, we see
that lim  sup ||U;x —J '™ x||=0, and hence we have the assertion (a).
h~+0 te[0,T7€]

(b) follows from (IIr; k) and (2.3).

() For te€[0, T],p€Z, and x € D(4™*?), we have that A?J[/"x
=J#MA%x for A~'>max{0, w}. Assume p=1, then Ax €D(4™). Since
A€@(X), (a) implies that Ux € D(4) and U;Ax=AU;x. Assume p=2,
then A’x € D(A™). Since AJF'"™x—>AUix and A JPMx=J0H"M 425
U;A*x, again the closedness of A implies that A>U,x= U, A%*x. Inductively,
we can prove (c) for all p €Z,.

(d) Let x€D(A*™) and s, t, s+t€[0, T]. Then (IIr; k) yields
that ||J§C/M g — JEIFFLIR | <M || Ax||4*h. Note that U,x € D(A™) for
all t€[0, T by (c) and that lim [|J}'™x—U,x|,=0 by (a) and (c).
Hence, (d) is proved by estimati;;?o

| Uss e = Us Uy | <[ Us o — J 50| |+ M| A || o+h
+MJ " x— Uy s+ 1T 5 Urre — Us Uy

(e) Let x € D(A™*?), then condition (IIr; k) states that J;*/"Ax are
step functions on [0, 7] and are uniformly bounded with respect to s€&
[0,T] and h>0 sufficiently small. Since

[¢lr]—-1
(2.5) h "Z Tidw=TM g — x4+ hAx—hJ M Az,

£=0
t t
(2.6) ],E”h]x—ng J,ES/hJAxds—S TE1) A ds—h A+ BT B A,
0 [t/hJR
In view of this, (a), (c) and the dominated convergence theorem imply that

t t
U,x—-x=SoUsAx dS:SOAst ds.
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Now, let p€Z, and x € D(A™***"). Since A’xe€D(A™') and Ud’x=
A?U,x for t=0, we see setting B, ,= sup ||U;4x|/,(<+o0) that ||U;x
0Ss=T

=s=

—Usx||,=<PBxplt—s| for t,s€[0, T]. Q.E.D.

Lemma 24. Lot Ac@(X). Assume that 0(A)>0 and that for
some mEZL,, there is a one-parameter family {U;; t €[0, T} CB(D(A™),
X) with the properties (a)-(e) stated in Theorem 2.3. Then for x €D
(A™YY, U;x becomes a unique solution of ACP, formulated for A on [0,
T satisfying the initial condition Uyx=x.

Proof. In view of the property (e) stated in Theorem 2.3, for each
x €D(A™), u(t; x)=U,x becomes a solution of ACP; for A associated
with the initial value x. To prove the uniqueness of the solution, we
employ Phillips’ method: Let ¢, t—s€&[0, T ], then it follows from The-
orem 2.3(c) and (e) that

Udx=AUzx and (0/0s)U;_yx=—AU,_,x for x € D(A™Y).

Let u(z) be another solution of ACP; for A associated with the same
initial value x and then put v(z)=U;x —u(z), t €[ 0, T]; note that v(0)
=0. Now, let 1,€p(4), then R(1y; A)™v(s) € D(A***%) and (0/0s)U;_sR
(Zo; A)"v(s) =— AU;-sR(Zo; A)"v(s) + U;—sR(Zo; A)"Av(s)=—AU;_sR
(Ro; A)"™v(s)+ AU;_sR(Ay; A)"v(s)=0 for ¢, t—s€[0, T]. Therefore,
0={' 0/09)U,-.R(2o; A)"o(5)ds=UsR (o3 4)"o(5)—U,R (o3 AY"(0)=R
(Z0; A)™v(¢) for t€[0, T]. This means that v(z)=0. Q.E.D.

Remark 2.5. The proof mentioned above shows that the family {U;;
t€[0, T]} satisfying (a)-(e) of Theorem 2.3 is uniquely determined.

By virtue of Lemma 2.4, we obtain the following result on the ex-
istence of the solution of ACP.

Theorem 2.6. Let A€®(w, k, T) for some w €ER, k€Z, and T>0.
Then for x € D(A***%) there is a unique solution u(t; x) of ACP; for-
mulated for A on [0, T ] satisfying u(0; x)==x.

Next, we consider the case in which 4 is densely defined.

Lemma 2.7. Let A be a densely defined, closed operator in X with

non-empty resolvent set. Then for every pair of integers m and k with
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m=>k=>0, D(A™) is dense in [ D(A*)]; that is, D(A™) is a core of A* for
m=k—>0.

Proof. Fix a k€Z,. Since the lemma is evident in case of m=k,
we assume that m>k. Let m>n_k. We first show that D(4"*!) is
dense in D(A,) with respect to the norm |'|l,. Let x € D(4") and #€p
(A4), then we can find a y€X such that x=R(x; A)"y. Since D(A)=X,
there is a sequence {y,} CD(A) with y,—y. Hence, it follows that R(x;
A"y, € D(A™), R(u; A" yp—>R(u; A)"y==x, and also that A'R(u; A)
ys=[AR(u; A)TR(u; A" yy—>[AR(u; AV R(u; A" y=A'x for 1<
<k. This means that D(A"*') is dense in D(4") in the sense of |||/,
norm. Now, let x €D(4*) and &>0, then putting n=Fk in the above
argument we can find an x,,1 € D(A**!) such that |lx —xp.1 ][z <e/(m—E).
Next, letting n=Zk-+1 we can find an x4,z € D(A**?) with ||x4,1— %42k
<g/(m—k). Inductively, a set of points {x,; k<n<m} can be found
such that x,€D(A") and ||x,— %n.1]le<e/(m—£k) for k<n<m. Hence,
|| —%m]ls<e. This means that D(A™) is dense in D(A*) in the sense of
I 1l QE.D.

Theorem 2.8. Let Ac®(w, k, T) for some w€ER, E€Z, and
T>0. If A is densely defined, then there is a one-parameter family {U,;
te[0, T CB(D(A*), X) such that (a)-(e) of Theorem 2.3 hold for
m=k.

Proof. Since D(A**1) is dense in [D(4*)] by Lemma 2.7, condition
(II7; k) implies that the convergence (2.3) holds for all x € D(4*), uni-
formly for t€[0, T]. Hence, it follows from (IIr; k) that for every
x €D(A*) and t€[0, T, Ux=lm(I—hA4) "% exists, and so ||U;x]|
<M||x|| for x € D(A*) and t €[0, T]. This means that U, € B(D(4*), X)
for t€[0, T_. Therefore, we may replace m=2k-+1 in the proofs of
(c)-(e) of Theorem 2.3. Q.E.D.

Corollary 2.9. If A is a densely defined operator belonging to &
(0, k, T) for some weR, k€Z,. and T >0, then for every x&D(A**)
there is a unique solution u(t; x) of ACP; formulated for A on [0, T ]
such that u(0; x)=x.

The proof follows from Theorem 2.8 and Lemma 2.4.
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Corollary 2.10. Let A be a densely defined, closed operator in X
for which there exist an w €R and k€Z, such that N(E—A)={0} and
R(e—A)DD(A*) for £>w. If p(A)>D and the set {E"R(E; A)"x; E> o,
n/€€[0, T} is bounded for every x € D(A*), then for every x € D(A**Y),
there exists a unique solution u(t; x) of ACP; for A on [0, T satisfying
the initial condition u(0; x)=x

The proof follows from Proposition 2.1 and Corollary 2.9.

3. Construction of the Solution in a Frécht Space

In the preceding section we treated classes & (w, &k, T), k€Z,. In
this section we introduce another class &;(w, oo, T') of closed operators
and discuss the construction of the solution of ACP on a finite interval.

For given w €R and T>0, we denote by &;(w, oo, T') the class of

all closed operators A satisfying conditions (I; ) and

(II7; o) Let Y=Y 4=/ \D(A"); then there exist a k=ksE€Z, and
7zl
an M=M,>0 such that

Ie"R(&; AP y|<Mlyls  for yE¥,£>0 and n/E€l0, T,

Note that &(w, oo, T)DG(w, k, T) for every k€Z,. Now, let A€
®&1(w, o0, T) and we introduce to Y(=1Y,4) a locally convex topology

defined in the following lemma; we denote the space by the same symbol
Y.

Lemma 3.1. Let A€®(w, oo, T). Then we have:

(a) Y—/\D(A”) is a Fréchet space with respect to the seminorm
system {pa(x) = | A"x]|; n € 2.}

(b) A|YeQ(Y) and R(€; A)|Y=(—A4|Y) 1 €&(Y) for £>w;

() E&"R(&; A" YeR(Y) for £>w and n €Z, and the family {€"R
(&; A" Y; é€>w,n/EE[0, T} is equicontinuous on Y.

Proof. (a) Y is a locally convex space with respect to the countable
system of seminorms, p,, n€Z,, and hence Y is an invariant metric
space. Also, it is easily seen from the closedness of 4 that Y is complete

with respect to the metric.
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(b) The first part is evident from the definition of the topology. To
prove the second part, we note that £— A maps Y onto itself in a one-
to-one manner for each &> .

(c) The first part is clear from (b). For every p,, condition
(Ir; o) states that pn(&"R(&; A y)=[I€"R(&; A) A y|| <M A™ ylls<
M|l y|lgsm- This implies that for every continuous seminorm p on Y there
exists a continuous seminorm ¢ on Y such that p(§"R(&; A)"y)<q(y)
for y€Y,é>w,n€Z, and n/6€[0, T Q.E.D.

Remark 3.2. (a) In view of Lemma 3.1(b), we can regard R(§; A)
as an element of 8(Y) when we treat it in the space Y.

(b) Condition (IIr; o) is equivalent to
(II7; oo) for every y€ Y,supi||§"R(&; A)"yll; é>w,n/6€[0, T} < +oo.
In fact, if (Ir; o)’ holds, then, in view of Lemma 3.1(a), we see apply-
ing the principle of uniform boundedness that (¢) of Lemma 3.1 holds.
But, by virtue of the definition of the topology of Y, this means that
condition ([I7; o0) is satisfied.

Theorem 3.3. Let A€®,(w, oo, T), then there exist a k€Z, and
a one-parameter family {U;; t€[0, Tt CQ(Y) such that

(a) for every y€Y, U,y:hl_i’rfxo(l—hA)‘[”"] y holds uniformly for
t €[0, T7] with respect to the topology of Y;

(b) the family {U;; t€[0, T} is equicontinuous on Y;

(c) for every I€EZ, €0, T] and y€ Y, AU;y=U,Ad'y;

(d) for every y€Y and t, s€[0, T] with t+s€[0, T], Uy,y
=U,Usy;

(e) for every Pms Pm(Ut_')’— Usy)élt_s|M||y“k+m+l Sfor yE& Y and
t,s€[0, T]; and furthermore, for every y€Y and t€[0, T,

t 4
Upy— y=SOUSAy ds=| AUy ds

Proof. First, by the same way as in the proof of Theorem 2.3(a), we
obtain

(3.1) U,y =lim(I—hd) "0y,

h—+0
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where the convergence holds uniformly for ¢t € [0, T ]. Thus we can
define a one-parameter family {U;; t€[0, T |} of operators from Y into
X. We demonstrate that this family has the properties (a)-(e) mentioned
above. Since A" €@(X) and A*(Y)CY for n€Z,, it follows that U,y
€D(A") and U,A"y=A"U,y for y€Y, n€Z, and t€[0, T]. Hence,
U; maps Y into itself and (c) holds. Therefore, we see using (3.1) that
for every p, and y€Y, pu(Uy—JF " y)=|UA" y—J M A™ y|| >0 as
h—+0, uniformly for t [0, T ]. This means that (a) holds. Also, con-
dition (IIr; oo) states that [|U;y||<M]| yl|ls for y€Y and :€[0, T].
Hence, for every pm and y€Y, pu(Ury)=|U:A" y||<M| y|lt+m, which
yields the property (b). (d) follows from (3.1) and (b), in a similar way
to the proof of Theorem 2.3 (d). Finally, we show (e). Let 0<s<t<T,
0<h<t—s, and y€ Y. Then, as mentioned in the proof of Theorem 2.3
(€ J5My—J5 y— S5 Tidy and hICe/R]—Ls/R]| <t —s-+h; and
hence for every p, and y€Y,

T FM Ty =T =@ —s+m)MI| 4™ y|ls.

Passing to the limit as A—>-+0, we obtain the first assertion of (e).
Hence, for every y€ Y, U,y is continuous on [0, 7] with respect to the
topology of Y. Therefore, U,y is integrable over any interval [0, :]C
[0, T7] in the sense of Riemann. On the other hand, relation (2.6) and
the Lebesgue convergence theorem imply that for every y*e& Y*,

i t
<Uiy—y, y*>=SO<UsAy, y*>ds=<SOUsAyds yE>
t
=<S0AUsyds, yE>.

Hence, we have the last assertion of (e). Q.E.D.

Remark 3.4. In view of Theorem 3.3 (e¢) and Lemma 3.1, we see
that U,y is infinitely differentiable (with respect to both topologies of X
and Y) and (d/dt)"U,y=A"U,y=U, A"y for t€[0, T].

Corollary 3.5. Let A€®(w, oo, T) for some w€ER, k€Z, and
T>0. Then for every y€Y, there is a unique solution u(t; y) of ACP,
on [0, T] for A|Y in the Fréchet space Y such that u(0; y)=y. Fur-
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thermore, this u(t; y) is also a unique solution of ACPy on [0, T for
A in X with the initial value Yy.

Proof. By virtue of Theorem 3.3, u(¢; y)=U;y is the solution of
ACP; formulated for A|Y in Y. Since the topology of Y is stronger
than that of X, u(¢; y) is also the solution of 4CP; for A4 in X. The
unicity of the solution of each ACP; can be proved in a quite similar
way to the proof of Lemma 2.4. Q.E.D.

Next, we consider the case in which Y=2X.

Lemma 3.6. Let A be a closed operator with non-empty resolvent set.
If Y=X, then Y is dense in [ D(A")] for each n€Z,. Therefore, Y is
a core of A", n€Z..

Proof. For every n€Z,, x €D(A") and A,€p(4), we can find a
y€X with x=R(¢; 4)"y. Since Y=X, there is a sequence {y,} CY
such that y,—>y in X. Hence, R(o; A)"y,€Y and R(Zo; A)"y,—
R(Z¢; A" y=x%. Also, A'R(A¢; A)"yy=[AR(Zo; A)JR(Ae; A)" 'y, AR
(2o; A)TFRAo; A)"'y=A'x for 1<I<n. This means that ||[R(¢; 4)"y,
— x||,—0. Therefore, Y is dense in [ D(A")]. Q.E.D.

Theorem 3.7. Let A€S (v, o0, T) and {U;; t€[0, T} be the
corresponding one-parameter family obtained by Theorem 3.3. Assume that
Y=2X and that there exist a k€Z, and M>0 such that ||U,y||<M| y|l
for y€Y. Then {U;} can be extended to a one-parameter family {U,;
t€[0, T} CBWD(AY), X) such that (b)-(e) of Theorem 2.3 hold for m=k.

Proof. Let x€D(A*). Since Y is dense in [D(4*)] by Lemma 3.6,
there is a sequence {y,} C Y such that ||x— y,|l,—0. Hence, ||U;y,— U, yy
<M]||y,— yyllz—0. This means that U,x=lim Uy, exists uniformly for
t€[0, T], note that the limit is independe_r'lzmof the sequence chosen.
Hence, for each t€[0, T, we can define an operator U, on D(4*) in
such a way that ||U,x||<M]||x||; for x €D(A¥). We then show that (c)-
(e) of Theorem 2.3 hold for m=k. First, let [€Z, and x € D(A**),
then we can find a sequence {y,} CY such that ||y,— x|l —0 as p—oo.
Since [[4'y,—A'x|[z—0, we have that U;A'x=lim U,4'y,=lim U,A'y,
=lim A'U, ¥y Since Upy,— U,x, the closedness of 1.7/1 yields that U,4'x=

3
A'U,x. This implies (c). Next, let x € D(A?¥), then there exists a sequence
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{ys} CY such that |[y,—x||2s—>0 as p—>oo. Hence,
10152~ 0 Osx| SN Ty s — Tris yoll 11U s yp— Ur Us 5|
T Us yp— 0,0 x| <M|| % — )l + M| U yp— Uil
SMQAHEM)||x— vyl 2 for all p.

This estimate yields (d). Finally, we prove (e). Let x € D(4**'). Then
a sequence {y,} CY can be found such that |[x— y,|lz+1—>0. Hence,
| 4% — A y5|ls—0, and so AUx=UAx=lim U,Ay,=lim AU,y, and the
convergence holds uniformly for &[0, T ]. The strong continuify of each
AU, y, with respect to ¢ implies that of 4T;x. Since U,y,— yl,zg AUy, ds
for each p, passing to the limit as p-—»>co, we have that Ux—x=
S AUxds for t€[0, T. This shows that (e) holds for m=*k. Q.E.D.

Finally, we consider the relationship between &;(w, oo, T) and
Si(w, k, T).
Lemma 3.8. Let AcG(X), D(A)=X and Y= [\D(A") Let Dy be

the set of all elements x & D(A) such that for each xGDT there is an
X-valued function u(t; x) satisfying

G) u(; x)eD(A) for t€[0, T] and Au(t; x) is strongly continuous
in [0, T];

(i) u(z; x)—x::S;Au(s; x)ds for t€[0, T .
Then, Dr=X implies Y=2X.

Proof. Let us denote by D(0, T) the space of R- valued C=-functions
whose supports are contained in (0, T') and let @T={S d(Du(t; x)dt;

¢e D, T), x EDT}. We demonstrate that D7 C Y and Dy=X. Take ¢ &<
T

D(0, T) and x € Dy and then put y=go¢(t)u(t; x)dt. Then ¢™ e D(0, T)

for n€Z,. Hence, we see using the closedness of A that

T T
(—0rf #us wae=(=1r 0w s xde

== g0 dutes w)de= A1y g Outes s
for n€Z,\{0}. This implies that y & D(4") and A”y=(~1)”S:¢(”’(t)u
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(t; x)dt for n€Z,.. Hence, DrC Y. Next, assume that Dr<X, then
there exists an x¥€ X*\{0} such that x¥[Dr |={0}. Thus, we obtain

Sj¢(t)<u(t; x), x5 >dt= <Sj¢(t)u(t; x)dt, x5>=0

for € D(0, T) and x € Dr. But <u(¢; x), x§> is continuous on [0, 7]

and lim u(t; x)=x for x € Dr; and hence it follows that <x, x%>=0.

t—+0
Consequently, we obtain x}[ Dz |= {0}, contrary to the way in which x¥
was chosen. Q.E.D.

Theorem 3.9. Let A be a densely defined, closed operator belonging
to & (w, o0, T) and let Y=/\D(A"). Then Ac®(w, k, T) for some
keZ, if and only if Y=2X. =

Proof. Assume that Y=X. Then condition (IIr; oo) states that
there exist a k€ Z, and an M >0 such that [[§"R(¢&; 4A)"y||<M||yllx for
y€Y, §>w and n/6€[0, T. On the other hand, Y is dense in [D(4*)]
by Lemma 3.6. Since &"R(§; A)"eB(X) for £>w and neZ,, we can
extend the inequality for y€ Y to that for x € D(4Y), in a similar way
to the proof of Theorem 3.7. Therefore, (IIr; k) is satisfied. Conversely,
suppose that A€ ®,(w, k, T), then by Theorem 2.8 we can take Dr=D
(4**Y) in Lemma 3.8. Since D(4*')=X by Lemma 2.7, Lemma 3.8
yields that Y=2X. Q.E.D.

Remark 3.10. By virtue of Theorem 3.9, we see that for every
A€®i(w, 00, T) such that Y=JX, the assumption of Theorem 3.7 is

always satisfied for some k€ Z.. Hence, we have the following conclusion:

Theorem 3.7. Let Ac®(w, o0, T). If Y=2X, then there exist a
keZ, and a one-parameter family {U;;tc[0, T} CBD(A4Y), X) such
that (b)-(e) of Theorem 2.3 hold for m=Ek.

Remark 3.11. If Ac®,(w, k, T) and if D(4)=2X, then Y is a core
of A" for each n€Z,. This follows from Theorem 2.8, Lemma 3.8 and

Lemma 3.6.

4. Cauchy Problems on [0, <o)

In this section, we introduce some classes of closed operators and
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discuss the construction of the solution of ACP formulated on [0, o) for
such an operator.
Let Ac€(X),weR and k€ Z,. For this operator A let us consider
conditions (I; w) and
(II; k) for every T>0, there is a number M(T) such that

[|6"R(&; A)"||,<M(T) for €>w and 0<n/e<XT.

We denote by &;(w, k) the collection of all closed operators in X
satisfying (I; w) and (II; k) mentioned above. In view of proposition 2.1,
condition (II; k) is equivalent to the following condition:

(II;k) forevery T>>0and x € D(A*), {€"R(&; A)"x;E>w,0<n/e<XT}
is bounded in X.

Remark 4.1. Later, we shall treat other two classes of closed opera-
tors: One of them 1is the class of closed operators A4 in X satisfying
conditions (/; w) and

(IIexp; k) there exist numbers M >0 and w;=>w such that

[|R(&; A"y =M(§—w1)™" for &> .

We denote such a class by (o, k). Clearly, &;(o, k) D G0, k).
Another one is the class of closed operators A4 in X such that

(I w) {4€ C; Re()>w} Co(4);

(Il,01; k) there exists a number M >0 such that

IR(; D<M+ |2])* for Re(2)>w.

We denote this class by &3(w, k). Note that condition (I1,q; k) is
equivalent to

(IIyo1; k)" there is a polynomial p(¢) of the degree k=0 with non-
negative coefficients such that |[R(2; A4)[|<p(]|Z]) for Re(2)>w.

First, as a direct consequence of Theorem 2.3, Lemma 2.4 and

Theorem 2.8, we obtain the following:

Theorem 4.2. Let A€ ®(w, k). Then for m=2k+1 there is a
uniquely determined one-parameter family {U;; t=>0} CB(D(A™), X) such
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that

(@) for every x € D(A™) and t=0, U;x=1lim (I—hA)""'""x exists and

h—>+0
the convergence is uniform with respect to t in every finite interval;

(b) for every T>O0, ||Ux||<M(T)|x||s for t €[ 0, T] and x € D(A™),
where M(T) is the number given in condition (I11; k);

(c) for every integer 1>1, each U, maps D(A™") into D(A") and
A'Uix=UA'x for t=0 and x & D(A™*");

(d) for every x € D(A*™) and t, s=>0, U, ;2= UU,x;

(e) for every T>0,1€Z,. and x € D(A™ "), there exists a positive
number ;11 such that ||Ux —Usx||;<Bsir|t—s| provided t,s€[0, T];
and furthermore, U,x—x=S:)UsAxds for t=0 and x € D(A™?).

If, in addition, A is densely defined, then the assertions mentioned
above hold for m=k.

Theorem 4.3. Let A€ 8,(w, k). Then for m=2k+1 there exists
a uniquely determined one-parameter family {U;; t==0} CBD(A™), X)
with the properties (a)-(e) stated in Theorem 4.2 and furthermore

)" NUix||=Me*"||x[x for t=0 and x € D(A™);
@ RQ; A)ngze‘”U,xdt for A€ 0(A) with Re(2)> w1 and
x € D(A™).

If, in addition, D(A)=2X, then the assertions mentioned above hold for
m=k.

Proof. In view of (Ilexp; k), Theorem 4.2 yields a unique one-
parameter family {U;; :=0} CB(D(A™), X) with the properties (a)-(e)
stated in Theorem 4.2. Hence, (b)’ follows from (Il.x,; k) and the con-
vergence (a). We then show (f). Let 1€ p(4), Re(A)>w; and x € D(4A™),
then we can put y=R(4; 4)x € D(A™*"). So that (e) implies that (d/d¢)
U y=AU,y=UAy, and also (d/de) e ™MUyl=—2e™MUy+e MAU, y=
—e MU, (A—A)y=—e MU;x. But, S:(d/dt)e‘“U,y di=e MU,y ::Z:
e Ury—R(4; A)x. Therefore, we have

T
(4.1) R(Z; A)x—goe‘”Utxdt=e_>‘TUTy.
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Consequently, using (b)’ we have that
T
|RGs a—{ e Vimdi]| = e e Uy S Mo T2y

Hence, we have the assertion (f). The unicity of such a family {U;; t=0}
follows from (f). In fact, if there is another family {V;; t==0} CB(D(4™), X)
with the properties (a)-(f), then, R(E, A)x=S:e‘E‘U,xdt=S:e‘§’V,xdt
for £>w; and x € D(A™). Thus, it follows that Uyx=V;x for t>0 and
x € D(A™). The last assertion follows from Lemma 2.7. Q.E.D.

Remark 4.4. Let A be a densely defined operator belonging to &;(w, k)
and {U;} CB(D(A4"), X) be the one-parameter family obtained by Theorem
4.2. Let 2,>w and then set H,=U,R(%,; A)?* for :1=0. Then H,€ B(X),
HH=HH=H,, H, for t,s==0, and H,x is strongly continuous in (=0
for x€X. Also, since D(A")=X for each n by Lemma 2.7, M=X
for each n€Z,. Thus, {H;; t=0} forms an R-semigroup in the sense
of Da Prato [4]. If A is a densely defined operator belonging to &(w, k)
and {U;} is the corresponding one-parameter family obtained by Theorem
4.3, then [|Hx||=|U:R(Zo; A)**x||<Me*||R(2054)* x|s=Mye*"||x]| for
some M;>0 and w,=>w; and hence {H,} becomes an R-semigroup of ex-
ponential growth.

In each case, 4 is the infinitesimal generator of the corresponding R-
semigroup. In fact, if £=0, then H,=U;, t==0, form a (C,)-semigroup
and A4 is the infinitesimal generator. If k=1, then 2k=k+1, and so it
follows frem Theorem 4.2 (e) that U,R(1,; A)**x is strongly continuously
differentiable in :=>0 for every x € X. Thus, Hjx=AR(A,; A)*x for all
x € X. But, noting that Hy'=(1,—A4)?*, we see that D(Hy'H})=D(A)
and Hy'H{x=Ax for x¢& D(A).

Lemma 4.5. Let A€Gy(w, k). If D(A)=X and if (Ilexp; k) is
satisfied for some M>0 and w,=>w, then (I.; w,) is satisfied.

Proof. Let {U;; 1=>0} CB(D(A*), X) be the one-parameter family
obtained by Theorem 4.3. Let x € D(A**!) and Re(1)>w;, then we have
that A—ADUx=U(A—A)x and —(d/dt)[e™Uix]=e(2—4) Ux.

Hence,
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x= —S:(d/dt)[e‘”Utx]dtz g:e'”(/l—~A)U,x ds
—Q —A)S:e""U,xdt € R(A— A).

Since D(A**!) is dense in X, it follows that R(1— A4)=2X. Now, let Re(2)
>&>w; and v=(1—4)x(€ D(4")), then

={ et~ DM/ de) e U (o~ ) Fuds
= : (Eo—D)'R(§0; Ao+ (50— /I)kg:e'“U,R(&o; Atvds.
Therefore,

k-1 .
Izl 2 160—21I1RCEo; 410l
180 a|H| eRO e e TR ) o]l de
0

gCOHSt(SO, l; W1, k: M)H(Z—A)xﬂ

Since x was arbitrary in D(A4*) and since D(4*) is a core of A4 by
Lemma 2.7, we have that [|x|<const.|[(A—A)x|| for x& D(4). This
means that (A—A)~! is defined as a closed operator with domain R(A— A)
and ||(A—A4) 'x|i<const.||x|| for x € R(A—A). But, since R(A—A)=2X,
it follows that (1—A4)~' € B(X), that is, 1€ p(4). Therefore, {1 € C; Re(1)
> o1} Co(4). QE.D.

Consequently, we obtain the following result which is an extension of
the generation theorem of (C,)-semigroups in the sense that {&"R(&;A4)"}
is equicontinuous from a Banach space [D(A4*)] into X; the result for

k=0 gives the generation theorem of (C,)-semigroups.

Theorem 4.6. Let A be a densely defined operator belonging to &,
(w, k). Then (I.; wy) is satisfied for some w1=>w and there is a uniquely
determined one-parameter family {U;; t=>0} CB(D(A"), X) with the proper-
ties (a)—-(f) stated in Theorem 4.3 for m=k and furthermore

& RQ; A)x= S:e_“Uix dt  for Re()>w1 and x € D(AY);
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(@ [IR(A; 4)'x]|<(Re(2)—w1)"M||x||; for Re(A)>w: and x € D(A4*).

Proof. Assume that 4 satisfies ({/exp; k) for some M>0 and 010,
then from Lemma 4.5 it follows that A satisfies (I.; w;). Therefore, (f)’
is obtained from Theorem 4.3 (f). (g) is proved as follows: Since the

resolvent equation yields that
R(; A)Yx=(n—1)I- 1S e MU,k d, for Re(d)> o,

1R Ayl =D Ml ot Re0re0t de < (Re(1) — 1) "M .

Q.E.D.

Next, for an w€R and a k€Z,, let us consider class &;(w, k), the

class of closed operators A4 in X satisfying (I,; w) and (Il,o; k) stated
in Remark 4.1.

The relations among classes ®&;(w, £) and &3(w, k) can be stated as

follows:

Theorem 4.7. Let w€R and k€ Z,. Then we have:

(a) Let v>max{0, w}. Then Oz(w, k) CT&y(y, k+2).

(b) Conversely, let A€ &y(w, k). If A satisfies condition (I,; ), then
A€ ®y(w, 2k+1). If A is densely defined, then A€ ®&z(wi, k) for some
w10,

Proof. (a) Let A€ ®3(w, k). If x€D(A4**?), then we have

(4.2) RQA; A)x=2""0+2"2Ax+ -+ 27 * 24" x4 27 *2R(1; A) A" 2x.
Let max {0, o} <7'<7, then by the calculation of residues and (II,a1;k),
e x)lim(27ri)‘1g7 TMR(A; A)xdi

T 4o v/ —ir

k+2 v’ +ieo ) .
=5 (zm)—lg M dAA
i=1 ¥’ —ioo

(4'3) ] ¥’ +ioa
+@riy[|"MRG; a2
k+2 t] 1 v’ +ico
= Oy A e+ Gy S “MR(A; A) A2
J

By (Il,; k), the integrand of the above right side is estimated by
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Me™
that there is a sufficiently large positive number M such that || y(¢; )|l

|%||s.2 for A sufficiently large and some M’'>0. Hence, it follows

<Me""||%||z42. Also, by the contour integration argument we see that

the integral of the right side is 0 in case ¢=0, and so y(0; x)=x.

Hence,g e ™y(t; x)de is absolutely convergent for 2 with Re(2)>7" and
0

rag

w kr2 < -
Soe“”y(t; w)de= ) A7 45+ (2m')‘15 e‘“&ﬂ/ ' R(p; A) APy
=1 0 e

dudt

kt2 . 7 +ico

= A7 (2ni)‘1S (A=) 'R(u; A)A T Pxp 2 du=R(A; A) .
i=1 vi-ie

Therefore, the resolvent equation yields that

R(; A)"x=(n—1)!“18:t"‘le““y(t; x)dt.

But, since sup{|ie™""y(¢; x)||; t=0} <M||x||s+2, we have
LRG; A4l Mo — D20 a1 Ml

for 2>7’. This means that (I; v) and (Ilcy,; k+2) are satisfied. There-
fore, A€ ®y(r, k+2).

(b) First, we assume that 4 satisfies conditions (I;; ») and (Jlexp; k)
for some w;==w and M>0. Let m=2k+1, A€ 0(4) and 2, be a fixed

number with Re(4g)>w. Then by the resolvent equation we can write as
m—1 . .
R(; &)= X (20— 2YR(Zo; A)Y** 4+ (Ao—)"R(A; A)R(Ao; A)™.
i=0

On the other hand, we see from Theorem 4.3 that R(4; A)x=S:e‘” Uix dt
for 2 with Re(1)>w; and x € D(4A™). Thus,
R(2; DR A)’”x=§:e‘”U,R(lo; A)"xde, for Re(2)>w1 and x € X,
Also, we have using Theorem 4.3 (b) that
|URGlos A" 5| <M\ R(ho; A" lnMe (5| 4 RCGos AV} ]

Therefore, letting >0,

sup S: le™MU,R(10; AY"||dt=C(2)< + oo

ReM > +&
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Hence, [[R(; A% 12— ol R(o; 4)[|+ | 2—25|"C(2;). This means
that (11,015 2k+1) i’s_lsatisﬁed.

Next, assume that A is a densely defined, closed operator satisfying
(I; w) and (IIexp; k) for some w,=w and M>0. Then, in view of Lemma
4.5, (I;; w1) is satisfied. Hence, letting m=k and repeating the same
argument as above, we see that A€ &s;(w;; k). Q.E.D.

Remark 4.8. The complete infinitesimal generator of an (A)-semigroup
of the type w, belongs to G3(w;; 0) for some w;>w,. The complete in-
finitesimal generator of either (0, A)- or (1, A)-semigroup of the type wq
belongs to ®&3(wo; 1). Furthermore, the infinitesimal generator of a (Co)-
semigroup of the type w, belongs to &(wg, 0).

Proof. Assume that A is the complete infinitesimal generator of an
(A)-semigroup {7;} of type wo; then by condition (A.2) stated in Section
1 there is an w;>w, such that o(4)D {A€C; Re(A)>w;} and such that
sup{||R(4; A)||; Re(A)>w;} < +co. This means that 4¢& &;(w;, 0). Next,
let A be the complete infinitesimal generator of a (0, 4)- or (1, 4)-
semigroup {7} of type wo, then N(x)=sup{|le " T;x||; t>0} <+oo for each
x€D(A) and R(Z; A)x=S:e‘“T¢xdt for Re(1)>w, and x €X. Hence,
sup|le ™ Ty||i =M< + oo and hence by the same way as in the estimate
(;f>oTheorem 4.7 (a), we see that ||R(A; A)"x||<M||x||1/(A—wo)*. There-
fore, A €®;z(wo, 1). Finally, it is well-known that a closed operator 4 is
the infinitesimal generator of a (C,)-semigroup if and only if A4 € ®y(w,, 0)
by Hille-Yosida-Miyadera-Phillips’ theorem.

Remark 4.9. The following are well-known (see for example Krein
[11]):

(a) If a closed operator A satisfies (I,; ») and (Il,o1; k) for some
w and k= —1, then 4 generates a holomorphic semigroup of class (Cy);
so A€ &y(wy, 0).

(b) If a closed operator 4 satisfies (I,; w) and ([I,1; k) for some o
and k with —1<k<1/2, then 4 generates a (1, 4)-semigroup {T}; t>0}
such that for each x € X, Tyx is of C™ for ¢t>0.

Finally, we consider some examples. Let us consider the system of

partial differential equations
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(4.4) 0/0t)u(t, s)=P(D)u(t, s), (t, s) ER, xR,

where P(§) is an m X m-matrix of polynomials p;;(§) of & with complex
constant coefficients and P(D) is defined by substituting D=1i0/0s into &,
and u(z, s) represents an m-vector of numerical functions u;(z, s) of two
variables (¢, s). The Cauchy problem for the equation (4.4) is the problem
to find the solution u(z, s) of (4.4) associated with the given initial con-
dition

(4.5) u(0, s)=1wuy(s), seR.

Now, we consider this problem over the space

m

Ly=L;(R) x Ly(R)--- x Ly(R) with the inner product

o

—oo j=

<4, 9>={ INAOTZOL 4, € L.

Then, applying the Fourier transform, (4.4) is reduced to the following
Cauchy problem for a system of ordinary differential equations with & as

a parameter:
(4.6) (d/dv)a(t, £)=P(&)a(t, ), teR,,

where P(£) is the same matrix of polynomials and #,(£) is the Fourier
transform of uo(s). P(&), E€R, define an unbounded operator P of mul-

tiplication in L, by the relation
(4.8) [Pg1(&)=P(£)s(£), ¢€R,

where [ Pg |(§) means a representative function of P& L,. The domain
D(P) of P is regarded as the class of elements ¢ € L, such that P@& L,.
It is well-known that P(D) can be regarded as a closed operator in L,
and Cj can be regarded as a core of P(D) in a natural way. We con-
sider A=P(D) as an example of the closed operator treated in this paper.

Hence, in view of the Fourier-Plancherel theorem, it is sufficient to esti-
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mate the iterations of the resolvent of P(£), in order to estimate those
of P(D).

The solution of the system (4.6) with the initial condition (4.7) is
given by

(4.9 u(t; &)=e"®q4(8), EER;

we denote by [[Uu, |(s) the inverse Fourier transform of e"®i,(g) if it
makes sense.
When we consider examples in this paper, we consider unbounded

operators P of multiplication, defined in L, by (4.8), such that

(4.10) P(&)=pE+qF, p=p(&), g=q(&),

where E denotes an m X m-unit matrix and F denotes an m X m-nilpotent
matrix such that only upper off-diagonal elements are 1, and p and g are
polynomials of & with complex coefficients; hence each P(§) is an upper
bi-diagonal complex m X m-matrix. For each &, the eigen-values of P(§)
are same and equal to p(£), and so p(P) is contained in the complement

of o(P)={p(¢§); £ R}. By simple calculations, we have
(4.11) (A—P(S)rl:':g:(x —p) g,
where F°=E. Hence, if

(4.12) m deg(p)=(m—1)deg(q)

and 21¢0(P), (A—P(€))", €E€R, define a bounded operator (1—P)~! on
L, by the relation

(4.13) LA—=P)'¢J(&)=@—P(&)'¢($), ¢ € Lo,

where [(A—P) ¢ (&) means a representative function of (A—P)~'¢ € L.
It is easy to see that (1—P)7! is the resolvent of P at 1. Also, we have

m—1 s
(4.14) e!PE) — ot Zo(j!)—lthlFJ_
j=

For each t>0, e®, £cR, define an operator e'” in L, by the relation
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(4.15) LeTg1(&)=e""Op(8), g€ D(e'").

Now, we consider an example. As is seen from the definition, a
sequence of classes &y(w, k), k€ Z,, is monotone increasing in the sense
of inclusion. By the way, given a k& we can find an operator P, defined
by (4.8), such that P& ®y(w, k+1)\®;(w, k). Hence, each class &;(w, k)
is properly contained in class &y(w, k+1). This also suggests that it
will be necessary to consider classes &;(w, k), &k large and j=1, 2, 3, as
the number of equations in a system increases.

Example 4.10. Let k be a positive integer and let us consider an
B+l

unbounded operator P of multiplication, defined in Ly=Ly(R) X - - x Ly(R)
by (4.8), such that P(£) is a (k+1) X (k+ 1)-matrix of the form (4.10) with

p=p(&§)=i&? and g=q(&)=¢", £€ER,

where d and r are positive integers. The eigenvalue of P(§&) is i&%
Hence, if d(k+1)=rk and Re(2)>0, then in view of (4.11), (4.12) and
(4.13) the matrices (1—P(€))7}, €€R, define a bounded operator (A —P)~?
on L, which is the resolvent of P at 1. We then assume that

(4.16) d<r<k '(k+1)d,

note that r—d<<k~ld.

First we show that under condition (4.16) the matrices e'™®), ¢cR,
define a bounded operator e'” from [D(P**1)7] into L;. Let ¢=(¢;)ED
(P**Y).,  Then, in view of (4.14) for m=k-+1, we see that e’’gc L, if
we can prove that gd;, ¢°¢;, -, q’'¢;€ Lo(R) for 1<j<k+1. For the
proof, it suffices to prove that (14 |&|)¥g; € Ly(R) for 1<j<k+1; if so,
we see that g7~ '¢; € Ly(R) for 1< j<<k+1, since deg(q’ ) =kr+r(j—1—k)
<d(k+1)+d(j—1—k)=deg(p’) by (4.16). Since

(4.17) PE)™ =3 ,Cp" ' F', 1<m<k+1,
izo
the m-th element of P"¢, 1<m=<_k+1, can be written as

417 [P"6Tu=p"n+ 5 nCip™ ' bn, 1=m<k+1,
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where mo=min{k+1—m, m}. First, since [P**'¢Js,1=p"* g1 € L2(R),
we have that (1+ |£])¥**Vg,. 1 € Ly(R). Also, [P*¢Jv=p*dr+kp* 'qbss1
€Ly(R) and deg(p*'q)=d(k—1)+r=dk+r—d<d(k+1)=deg(p**");
hence p*~'q¢s.1 € Ly(R). This implies that p*@s € Lo(R), Thus, it follows
that (14 |&|)%* ¢, € Lz(R). Assume now that (14 |&|)?"@n,€ Lz(R) for
j+1<m=<k+1. Then, in view of (4.17)" for m=j and the relation deg
(P lgH=d(j—D)+ri<d(j +1)=deg(p’*) for 1<I<mo, we have that
p’7'q'd;s1 € La(R), which means that p’g;€ Ly(R) or (1+|€|)¥¢;€ Lao(R).
In this manner, we obtain, by induction, that q’~'¢;€ Ly(R) for 1<j<k.
Also, it is now clear that g'¢;€ Ly(R) for 1<I<k—1 and 1<j<k+1.
Consequently, e'’¢ & Ly, for g€ D(P**1).

By the way, we can show that efeB(D(P**1), L,) for t>0 as
follows: Let t>0, ¢ € D(P**1), ¢)—>¢ in [D(P**')], and let e —¢
in L, Then, since (¢g—i)'€L.(R) and (q—i) * 1 [eFp], =
eptk+i:_l(ll)—1tl(q_i)_(k+1_j)ql¢_(fy‘21—>(q'_i)_(k+1_j)¢j in Lz(R). But,
(q—1) * 1 Dgig) (g — i) *1Dgig.  in Ly(R) for 0<<I<k-+1—; hence
it follows that ¢;=[e""¢];, 1<j<k+1. This means that e'"€C(D(P**'),
L) for t>0. So, the closed graph theorem implies that e'feB(D(P**!),
Ly) for t>0. _

Also, noting that |Ces il =lle?" > (1) 'q': || < ¢ max||g'dyu |
and employing the resonance 1:heorem,l:10 large number M caln be found
such that ||e"*e’f¢|| < M||@||lz~1 for £>0. On the other hand, for every
£€R, n=>1 and ¢ € D(P**Y),

(4.18) A—=P(&))"¢(&)=(n— 1)!‘1$:e"”t”‘1emf)¢($)dt.

Hence, by Fubini’s theorem

=Py gl (e =11 | e e b
Therefore, from the Fourier-Plancherel theorem it follows that P(D)e&
S(1, k+1).
Next, we demonstrate that P(D) treated above does not belong to
®&1(w, k) if d is sufficiently large. Under condition (4.16), assume that

r—d=a-1b
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where a and b are positive integers, note that 2<<a+b<k 'd<d. Let

$r=@2="=¢r_1=0,
Ge=(14|&])"7* i€+ 1), dp1=k(1+|&|)P "%

(4.19)

Then, in view of (4.17), we see that
[P );i=mChosp™ * D" B4+ wCrir—ip™ F 1 Dg 10y 1,

for 1=j<k+1 and m=k, k+1. If m=k and 2<j<k+1, then
deg (p'q"(i¢" "+ 1))=deg(p’'¢* "' V) =rk+(d—r)(j—1)=rk—b—a, and
so, it follows that [P*¢ ;€ Ly(R) for 2<<j<k+1. On the other hand,

CP* 1 =kpq*'be+ ¢ *Bre1=kg* (14 | &])** &G+ 1)+ ¢€7)
=kpg* (14 |£])'" € Ly(R),
and
[P** ¢, =272k + 1)kp?q* g+ (k+ L)pg dass
=(k+Dpg* "1+ [£])* " (1 —27k)g+ 2 kp) § Lo(R),

note here that deg(p’¢* " )=rk+d+(d—r)=rk—b+d—a=(rk—b)+b.
Consequently, we see that ¢ D(P¥)\D(P*+1).

Now, in view of (4.14), we have
(4200 [eh=(k— DI P g* et ke g

Hence,

I(A—P)"g||*=(n—1)I"*

o 2
So e—xttn—letP¢ dt H

>(n—1)1"2

S:e—xttn—l[etP¢] Ldt ” 2

g(k—1)1-2{<n—1)1—22—1k-2

o 2
S e—Mepttn+k—1dtqk¢k+1
0

1

—(n—1)7?

S e—xtemtr+k—2dtqk—1¢k‘
0

=k—DI2{27 k20— T2},
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where we used the relation ||x+ y|[*=>2"}||%||*—| y|[*>. Now,
Ji=((n+E=DY/(n—1DY[[A—p) "*Pg*gs.. |
>2"2"(n/2)%|(1 —‘P//I)_(“k)qk%u”z
=22/ |L=p/D P2 g by,a] e for every 70,

and

oo

J2§(n . 1) !—ZSjm<SO e xttn+k—2dt)2 ] gk—1¢k l 2d$
= ((n+ k=2l (n— DI ++-1)7|g4=1g 2
27 ((n+k)/ D" Vllg gl

Since (1—p/2) " *—e? as A—>+co and n/A1—t>0, uniformly for &€
[—7, 7], we see that

Gim 22— PPz — D {2 T g P de— i 2lg
—+o0 -7

n/x—1

for every y>0. This implies that P(D) & &:(1, k).

Remark 4.11. Let P(D) be the differential operator mentioned above.
We have observed in Example 4.10 that P(D) € &,(1, k+1). Hence, the
solution operator {U;} of ACP; for P(D) can be constructed so well as
{U} CB(D(P**Y), L;). Since U, t>0, can not be extended to any
bounded operators T; on L,, {U;} may be called the unbounded solution
operator, so far as the problem is treated in the original L,. By the way,
as will be seen in the next section, a densely defined, closed operator A
in a Banach space X is the infinitesimal generator of an E.D.S.G. T if
and only if A belongs to class ®:(w, k) for some w&ER and k€ Z, and,
in this case, the corresponding solution operator {U;} is related to the
E.DS.G. T in the sense of the relation (5.1). Hence, the P(D) is the
infinitesimal generator of an E.D.S.G. Also, examples treated in the theory
of distribution semigroup can be regarded as the examples for our argu-
ment. In this manner, the results in this section will be sometimes

applicable, when we consider the system of partial differential equations or
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the partial differential equation of higher order.

Finally, to illustrate the treatment of higher order equations, let us
consider the l1-dimentional wave equation u;=u;, s€ R, with the initial
condition u(0, s)=uq(s) and u(0, s)=u1(s). As is well-known, the theory
of (Cy)-semigroup can be applied to this equation, by introducing an
appropriate function space (see Yosida [ 277]). Here, we consider the prob-
lem over the space L;=L;(R) X Ly(R). Putting u=wv; and u;=v,;, we

can write the equation as
(0/08)v1=wv2,  (8/01)v2=(0/0s)?v1,
v1(0, s)=uo(s), v2(0, s)=u(s), seR.

Applying the Fourier transform, the problem is reduced to the following:
(20 (d/dp, O=P@G o), 20, =2,

where
P(S)Z <_2—2 %) ’

and ? denotes the Fourier transform of v. For each 4>0 we have that
(AE—P(&) '=(2+&*)[AE+ P(&)] for €¢€R, and so, the operator P
has the resolvent set containing {4>0}. The solution of (4.21) is obtained by

oo [ cos &t &7lsin EE\, " sinét X
etP(E)v(f)—(_f sinét cos &t >1}($)-—cos St Ev(&)+t & P(&)d().

By the Fourier-Plancherel theorem we have that ||Uuw|l=||e’%||<{||d|]
+t||Po||} =]lo|| + | 40| QA +0)||v|ly for ve D(A4). Also, by using the
relation (4.18), we see that [|A"(A—A) ™||<(1+n/A)|v|l; for >0 and
n. This implies that 4 € ®,(1, 1). This means that for each v& D(4?)
(A=P(D)), the inverse Fourier transform of e'"®y(£) gives a solution
Uy of the ACP; for A associated with the initial value v». Finally, we

note that the equation (4.21) is correctly posed in the sense of Petrowsky,

since the eigenvalues of P(§) are +i€.

5. Distribution Semigroups

In this section we discuss some relationships among the notion of
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distribution semigroup and the results obtained in the preceding sections.

In Section 4 we treated classes ®&,(w, &, T), i=1, 2, and 3. We first
consider other classes &;(w, ) and ®z(w, o) and discuss the construc-
tion of the semigroup solution of ACP in a Fréchet space.

Let A€@(X) and w€R and then let us consider condition (I; w)
and the following condition:

(II; o0) let Y—[\D(A”), then for every 7>0 there exist a k=
KT)eZ, and M= M(T)>0 such that

lle"R(¢; A" yll<M||ylle  for y€Y, >0 and n/¢€[0, T].

We denote by &;(w, o0) the class of all closed operators in X satisfy-
ing (I; w) and (II; o). We also consider another class of operators A
in X satisfying (I; ) and

(Iexp; o) let ¥ = /\D(A”), then there exist a k€ Z, and numbers
M>0 and w;=w such that

IR(; A" ylI=(E—w) ' Mlylle  for y€Y, n€Z, and >0,

instead of (II; o0). We denote such a class by &(w, o).

Remark 5.1. Condition (II; oo) states that A€ & (w, oo, T) for
every I'>0. Also, we observed in Section 3 that Y become a Fréchet
space. Hence, in view of the principle of uniform boundedness, we see

that (Ilexp; o) is equivalent to

(IIexp; o) there is an w;—=w such that sup{||§"R(§; A—w1)"yll;
E>wi, neZ.}< oo,
Therefore, &;(w, 00) D& (w, k) and G,(w, )D&y (w, k) for all ke Z,.

First, as a direct consequence of Theorem 3.3, we obtain the following:

Theorem 5.2. Let A€ S (w, ), then A|Y is the infinitesimal gen-
erator of a locally equicontinuous semigroup {T,; t=0} on Y such that
Ty is infinitely differentiable in R, for ye Y.

Also, by employing the theory of equicontinuous semigroups in a

sequentially complete, locally convex space, we obtain

Theorem 5.3. Let A€@(X) satisfy condition (I; ) and let Y
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=/N\D(A"). Then A|Y—w; is the infinitesimal generator of an equicon-
ti;i;us semigroup {e “V"'T;; t=0} on Y for some wi=>w, if and only if
A satisfies (Iexp; o).

Proof. Assume that A€ ®&z(w, ), then Theorem 5.2 yields that 4|Y
is the infinitesimal generator of a semigroup {7;; :==0} in the Fréchet
space Y. Also, by Theorem 3.3 (a), there exist a k€Z, and an M>0
such that || T;y||<Me®"||y||; for y€ Y. This means that {e *"T;; =0}
is equicontinuous on Y. Hence, 4| Y—w; is the infinitesimal generator of
the equicontinuous semigroup {e “*T;; t==0} on Y. Conversely, if 4| Y—w;
is the infinitesimal generator of an equicontinuous semigroup for some i,
then {&"R(&; A—w1)"|Y; €>0,n€Z.} is equicontinuous on Y. Hence,
there exist a k€Z. and an M>0 such that [[§"R(é+w1; 4)" y||<M| y|ls
for §>0 and y€Y, that is, ||(§—w1)"R(§; A)"y[|[=<M||ylls for £€>w; and
y€ Y. Therefore, 4€ ®;(w, o). Q.E.D.

Next, we consider the case in which Y=X. In such a case we can
apply important results on the characterizations of regular and exponential
distribution semigroups which were given by Chazarain [ 1], Fujiwara [7],
Lions [127] and Ushijima [24] and we can consider some relationships
among the notion of distribution semigroup and the classes of operators,
Oiw, k), i=1,2,3; k=0,1, ..., oo,

Theorem 5.4. Let we€R, A a densely defined closed operator in X,
and Y=/\D(A"). Then A is the infinitesimal generator of an R.D.S.G.
T on an;'f1 it satisfies any ome of the following:

(i) A4e€e®(v, ) and Y=2X,

(ii) for every T>O0 there exists a k(T)EZ, such that Ac®y(w,k
(T), T). Furthermore, in this case, T(¢)y=S:¢(t) Tiy dt for ye€Y and
<€ D(R,), where {T;; t=0} is the locally equicontinuous semigroup con-
structed in Y by Theorem 5.2.

Proof. Assume condition (i), then by Theorem 5.2, 4|Y is the in-
finitesimal generator of a locally equicontinuous semigroup {7%; :==0} on
the Fréchet space Y. Since Y=X, Lemma 3.6 yields that A|Y=A4.
Therefore, by using Ushijima [ 24; Theorem 2] we see that A is the
infinitesimal generator of an R,D.S,G. T such that
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(5.1) @)y=( 4Ty du,

for y€ Y and ¢ € D(R,). Next, suppose that (ii) holds. Then, 4 € ®;(w, o)
by definition and Theorem 3.9 yields that Y=X. Hence, (i) holds.
Q.E.D.

Theorem 5.5. An operator A in X is the infinitesimal generator of
an EDS.G. T, if and only if A is a densely defined, closed operator
satisfying either of the following conditions:

1) AeByw, k) for some weR and EER,,

(ii)) A€®y(w, ) for some w R and also Y=X,

(i) o(4)xQ, Y=X, and for some v, R, A|Y—w; is the infini-
tesimal gemerator of an equicontinuous semigroup {T;; t==0} on Y which
is a Fréchet space in the semse of Lemma 3.1.

(iv) Ae@3(y, 1) for some TeR and l€Z,.

Proof. Let A be a densely defined, closed operator satisfying (i).
Then A€ ®;(w, oo) by definition and Theorem 3.9 states that ¥=X; and
hence (ii) is satisfied. Next, suppose (ii). Then by Theorem 5.3, 4| Y—wo;
is the infinitesimal generator of an equicontinuous semigroup {7;; =0}
on the Fréchet space Y. Since Y=2X, Lemma 3.6 yields that A=m’.
Hence, (iii) holds. Now, let us assume that (iii) holds. Then by Fujiwara
[7; Theorem 37, 4 is the infinitesimal generator of an E.D.S.G. Let 4
be the infinitesimal generator of an E.D.S.G. 7. Then by Lions [12;
Theorem 6.1, we see that A€ &;3(7, I) for some 7y€R and [€Z,. Thus,
(iv) is satisfied. Finally, let (iv) be satisfied. Then from Theorem 4.7 (a)
it follows that 4€ ®y(w, [+2) for an w>max{0, v}, which means that
(i) holds. Q.E.D.

Remark 5.6. Theorem 5.5 is a combination of Lions’ result and
Fujiwara’s one. Combining the results obtained in Section 4, we see that
Theorem 5.5 gives some informations on the continuity of E.D.S.G. at the
origin t=0 and the regularity in the sense of the norm topology of X.

Now, in the remainder of this section, we discuss the semigroup of
bounded operators which can be extended to an R.D.S.G. By treating such
semigroups, the Feller-type condition is naturally introduced.
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Definition 5.7. A semigroup {7y; ¢t>0} of bounded operators is
said to be extended to an R.D.S.G. if there exists an R.D.S.G. T such
that for any x € X and ¢<€ D(R,),

T($)x = §:¢(t)T,x de.

Recently, Ushijima [ 25; Theorem 17| characterized such a semigroup
{T;} in terms of strong infinitesimal generator As; which is defined

through the relations:
D(4)={x€X; limy '[T,—I[]Jx=y€ I} and 4d,x=1y for x € D(4,).
7-+0

Theorem 5.8. (Ushijima) Let {T:; t>0} be a semigroup of bounded
operators and A, be its strong infinitesimal generator. Then {T;} can be
extended to an R.D.S.G. T if and only if D(A)=2X, A, is closable, p(A)
20, and there exists a k€ Z, such that D(A®)C 3, where X is the
continuity set and A= A,. Furthermore, in this case, the extension T is
unique, A is its infinitesimal generator and A satisfies (I; w).

We then study some basic properties of the semigroup which can be
extended to an R.D.S.G. Throughout the remainder of this section, let {7}
be a semigroup of bounded operators with the type wq, A¢(resp. 4;) be

the (resp. strong) infinitesimal generator, and X be the continuity set.

Lemma 5.9. Assume that there is an A€C(X) with non-empty

resolvent set and that D(A*) 3 for some k€ Z,. Let w,>w,, then there
is a number M>0 such that

(5.2) [| Tl . < Me"", :>0.

Proof. We observe that T, € B(D(A%), X) for ¢t>0. Let w;>w,. Then
the resonance theorem yields that sup|le " T;!|,=M< + oo, from which
>0

(5.2) follows. QE.D.
For 1 with Re(2)>w;>w,, we define an operator Ry(4) by the relation

(5.3) Ro(z)ng:e—*f T,x dt,

whenever the right integral makes sense. We note that D(Ry(1))D 23 for
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Re()>w;.

The following is important for our arguments in the sequel; the cen-
tral part of the proof is based on that of the characterization of (A4)-
semigroups, refer to Hille-Phillips [8; Theorem 12.5.17.

Theorem 5.10. Let A€ C(X) satisfy (I; w) and D(A*) X for some
wER and k€Z,. If R(&; A)|D(A*)=R(&)|D(A*) for &> w,>max{w, w,},
then A€ ®y(w, k) and the following condition of Feller type is satisfied:
(F; k) for every €>0, there is a positive number M: and for every x€D
(A®), there is a positive number &y==E(e, x)(>w1) such that

le"R(s; AY'x||SMellxll  for £€>&0 and e<n/¢é<1/e.

Proof. First, we show that A satisfies (F; k). Let f',Ee““”’T,, t>0,
and A=A—w;, then R(¢&; A)=R(é—w1; A) for &€>w; and e ¥ T;=
e~¢-oD' T, for t>0. Hence, we have

R(&; AA)x=S:e‘5’f,x ds for £>0 and x € D(4").
Using the resolvent equation we have
(5.4) R(E; Ara=(n—D e i T e,
for €>0, x € D(A*) and n€Z,. Also, since {T,} is of negative type, ¢(¢)
=sup |le=1"T,|| is finite at each ¢#>>0, nonnegative, nonincreasing and of

negative type. Let 0<0'<0 and ¢=0"/0(<1) and let us decompose the
right side of (5.4) into two parts;
5 -
J1=(n—1)!‘1go , Jz=(n—1)!‘1gs,

'€
then for x € D(A4*), ||]1H§(n—1)!‘1MHkaE'”S e *s"lds and |||

0
E7"P(0")||x]]. If €>0 and n=£0, then by the same argument as in [8;
(12.5.6), p. 374] we have that

’

8¢
(n—l)!‘lgo e~*s"1ds<q/n(1—q)",
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Consequently, we have that ||§"R(§; AA)”xllggb(@’)HxH+M|Exi!kq/n(1—q)2
for £>0 and n>&0. This means that for x € D(4*), 60" and & with 0<
0’<0, and >0, there exists a uo=u(x, 7, 0’y 0) such that

(5.5) lle"R(&; Ay x| <{p(0")+7}|=l

for €> 4, and n=>£0. In fact, to obtain the estimate M||x||xg/n(1—g)*<
7llxl|, we must take n=>M||xllzq/7+||lx|l(1—¢)®. But, it is possible if
§=M||x||xq/70]|x|l(1—g)?; this guarantees the existence of such a number
Zo. Now, for x € D(A*) and ¢>0, we take 0, 0 with 0<0'<0<e and 4o
=uo(x, 5, 0’ 0)+w;, then we can find a positive number M, such that

sup {(1+ (§—01) w1)"{Y(0") +7}; §> Ao, e=n/E= 1/e} <M.

Therefore, ||[€"R(&; A)"x||<M,||x|| for §>2p and eXn/E<1/e; this is
condition (F; k). Next, we show that (Ilcs,; k) holds for w; and the
number M implied by Lemma 5.9. By (5.2) and (5.4), we have

IR(&; Ayal <D Mllxlas (e ds<e "Ml
Hence, by replacing § by é—w; in the above estimate, we obtain
|R(&; AY x| =(§—w1) "M ||x|s. Q.E.D.

Lemma 5.11. Let w;>w, and Ry (1) be defined for Re(1)>w; by
(5.3). Then for every x € 2 and Re(1)>w:, Ro(A)x € D(A,) and (A1—A4;)
Ry(D)x=2x.

Proof. Let A,=7"'[T,—I] for >0, then A4,€B(X). Let x€ X
and Re(1)>w;, then we have

[ A,Ro(X)x =77“1S:e‘”[T,+,,x —Tyx)dt

(5.6) 1 =y (M — 1)S:e—xt Tywdt—p? Szeh(u—t) T,x dt

1 — ARy(A)x —x, as 7—+0.

This means that Ry(A)x € D(A4,)C 3 and (A—A4¢)Ro(A)x=2x, where 4, is
the infinitesimal generator of {7;}. Since llm TsRo()x=Ry(A)x, we
have that Tg oRo(l)x— Ts(lRo(l)x—‘x)_)lRo(l)x — X = ORo(l)x.
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Therefore, Ro(AD)xe€D(A;) and AyRy(A)x=A,R,()x. Consequently,
(A—AHRy()x=2x. Q.E.D.
In view of the results mentioned above, we see that a semigroup

which can be extended to an R.D.S.G. has the following property.

Theorem 5.12. Assume that {T:; t>0} can be extended to an
RDS.G. T. Let A=A, Then Ac®y(w, k) and condition (F; k) holds
for some wER and k€ Z,.

Proof. Since A is the infinitesimal generator of an R.D.S.G. T by
Theorem 5.8, A satisfies (I; w) for some we€R. Let w;> max{w, w,},
then by Lemma 5.9 there is an M>0 such that (5.2) holds. Also, Lemma
5.11 states that x=(1—A;)Ro(A)x=(A—A)Ry(A)x for x€ 3 and Re(q)
>w;. Hence, by applying the resolvent of 4 at £>w; on both sides of
this equality for A=¢, we see that Ry(&)x=R(&; A)x for £€>w; and
x€2X. On the other hand, it follows from Theorem 5.8 that D(4*)C X
for some k€ Z,. Therefore, Theorem 5.10 implies that A satisfies ([lexp; k)
and (F; k). Q.E.D.

Remark 5.13. By virtue of Theorem 5.5, we see that the semigroup
{T;} of bounded operators which can be extended to an R.D.S.G. is
necessarily extended to an E.D.S.G.

Remark 5.14. In the next section we shall introduce certain classes
(Cy), k=0,1,2, ..., oo, of semigroups of bounded operators. The semigroup
of class (C() has the property that D(A%)C S, where A, denotes the
infinitesimal generator and 2 denotes the continuity set. It will then be
shown that a densely defined, closed operator A4 in X satisfying (I; w),
(Ilexp; k) and (F; k) for some w€R and k€Z, is the closure of the
infinitesimal generator A, of a unique semigroup {7%; >0} of class (Cy).
Therefore, if a semigroup {7;; >0} can be extended to an R.D.S.G. T,
then A=A, is the closure of the infinitesimal generator 4, of a semigroup
{T;} (of some class (C(y)). But, T;=T, by the unicity of the semigroup;
and hence it follows that A=4,=A4, Conversely, as will be shown in
the next section, the infinitesimal generator A, of a semigroup {T;} of
class (Cpy) is closable and A=A, satisfies (I; ), (II; k), (F; k) and
Y=2X. Since 4| YC A;CAyC A by Theorem 4.6 and since Y is a core of
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A by Lemma 3.6, we see that A]| Y=A,=A,=A. Hence, A, in Theorem
5.8 can be replaced by A, as follows:

Theorem 5.8. A semigroup {T;} of bounded operators can be ex-
tended to an R.D.S.G.T if and only if the infinitesimal generator A, is
densely defined, closable and A= A, satisfies that o(A)>x@ and D(A")CZ
for some k€ Z,.

According to Ushijima [ 25], a semigroup of bounded operators {7}
is called a strongly continuous semigroup (C.D.S.G.) if it admits a regular
distributional extension 7. In view of Remark 5.14 mentioned above, we

obtain the following type of characterization of C.D.S.G.:

Theorem 5.15. An operator A is the closure of the infinitesimal
generator of a C.D.S.G. if and only if 4€ &y(w, k) and (F; k) is satisfied
for some wER and k€ Z,.

The above theorem states that every C.D.S.G. belongs to some class
(C(xy) and conversely. Hence, the basic structure and the regularity of a
C.D.S.G. will be seen by considering the characterization of (C(,)-semigroups.

Finally, we consider condition of Feller type (F; k). Let 4 be a
densely defined, closed operator in X belonging to &;(w, k) and {U;; t=0}
CB(D(A"), X) be the one-parameter family obtained by Theorem 4.2.

Then for k'€ Z, with K’=k we can consider the following condition:

(C; k") for every t>0 there exists a number M;>0 such that
U || < My %] for x € D(4Y).

This condition is called the condition of correct posedness of ACP for

A€ S, (w, k). We discuss some relations between conditions (F; k) and

(C; k).

Lemma 5.16. Let Ac®(X) and D(A)=X. Let Ac® (v, k) and
{U;; t=0} CB(D(A*), X) be the corresponding one-parameter family obtain-
ed by Theorem 4.2. If condition (C; k") is satisfied for some k'=k, then
there exists a semigroup of bounded operators {Ty; t>0} such that T;|D
(A®=U, for t>0. Furthermore, D(A*)C 3.

Proof. Since D(A*)=X by Lemma 2.7, each of U;|D(AY), >0,
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admits a unique continuous extension 7T;€B(X). Theorem 4.2 (d) and
Lemma 2.7 implies that {7} has the semigroup property. Since T;x is
strongly measurable with respect to ¢ in R, for x € X, ||T]| is measurable.
Also, ||Ty|| is a submultiplicative function of ¢. Therefore, for every ¢>0
there is a number M.>0 such that sup{||T:l|; e<t<1/e} <M., see
Hille-Phillips [8; p. 242]. Hence, {T;} forms a semigroup of bounded
operators. By the way, D(4*) is dense in [D(A4*)] by Lemma 2.7; and
hence it follows that T;|D(A*)=U, for t>0. Since U;x was strongly
continuous in :=>0 for x € D(A*), we see that D(A*)C 2. Q.E.D.

Theorem 5.17. Let AcC(X) and D(A)=X. Then the following
conditions are equivalent:

G) Ae®(w, k) and (F; k") holds for some k'=k,

() Ae€Bxw, k) and (F; k) holds,

(iii) A€ ®yw, k) and (C; k) holds,

(iv) Ae@(w, k) and (C; k') holds for some k'k.

Proof. Assume that (i) is satisfied for k'>k. Then (a) of Theorem
4.2 implies that sup{||U;x||; t € [e, 1/e ]} <M,!|x|| for e>0 and x & D(A4*).
Hence, by Lemma 5.16 we obtain a semigroup of bounded operators {7%;
t>0} such that T;|D(A*)=U; for t>0. Let w, be the type and w,>
max{w, wo}. Then, by Lemma 5.9, a sufficiently large M>0 can be found
in such a way that ||Uux||<Me*¥||x||, for 120 and x € D(A4*). Hence,
by the same way as in the proof of Theorem 4.3 (f), we see that R(§; A)x
=R0($)x=5:e"5‘T1xdt for £>w; and x € D(A®). Therefore, Theorem
5.10 yields that (ii) holds. Assume that (ii) is satisfied. Then Theorem
4.2 (a) implies that sup {||U;x||; e<t=1/e} <M,||x|| for €>0 and x €D
(A*). This is nothing but condition (C; k). Hence, (iii) follows. (iii)=>(iv)
is evident. Finally, suppose (iv). Then Lemma 5.16 states that there is
a semigroup {7T;} such that T;|D(A4*)=U,; for ¢t>0. Hence, by the same
way as in the proof of the implication (i)=>(ii) mentioned above, we see
that (ii) holds. Q.E.D.

6. Class (Cx))

In this section we introduce some classes of semigroups of bounded
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operators and discuss their characterizations in terms of resolvents of the
infinitesimal generators.

Let {T;; t>0} be a semigroup of bounded operators, XOEUT L X,
wy be the type, and X ={x € X; l1m T:ix=x} be the contmulty set We
define Ry(1), the Laplace transform Oof T:, by (5.3) for 2€C and x€ X.
We noted that D(Ry(1))D> 2 provided that Re(1)>w,. Also, let us denote
by A, the infinitesimal generator and let Yo_/\D(A”

Now, we consider a semigroup {7T%; t>0} Wlth the properties

(C1) X,=X,

(C.2) there is an w;>wy such that for 2 with Re(1)>w; there is an
R(2)€B(X) and R(2)|Xo=R(2)| X0,

(C.3) if R(A)x=0 for 1>w;, then x=0.

Remark 6.1. Since 11m T,Ro(D)x= hm Ry(A)T,x=R¢()x for x€ X
and Re(2)>w,, it follows that RN 2= Ro(l)IZ' for Re(1)>w;.

In the sequel we discuss some properties of this kind of semigroup.

Lemma 6.2. Let A, be the infinitesimal generator of a semigroup
{T} satisfying (C.1)-(C.3), then Yo=X and Ay is closable. Let A=A,,
then R(A)=R(1; A) for Re(A)>w1. Furthermore, Y=\D(A") is a core
of 4. nzl

Proof. 1t is proved in Hille-Phillips [ 8; Theorem 10.3.4] that Y, is
dense in X,. Hence, YoN\X,=X by (C.1). Let 4,=7"'[T,— I for >0,
Re()>w; and x € X, then by using the relation (5.6) we see that R(A)x
=Ry(2)x € D(A4y) and (A—Ao)Ro(A)x=x. Since 4,x € 2, we have R(1)A4,x
=Ry(2)A,x=A,Ro(2)x =A,R(A)x, and hence A;R(2)x = R(1)A,x provided
that x € D(A4,). Consequently, we obtain

(6.1) (A—A40)R(A)x=R(A)N2A—Ag)x =x,

for x € D(A4y) and Re(1)>w;. Now, assume that x,€ D(4,), x,—0 and
Aoxa— 0, then by (6.1) we see that AR(A)x,— R(A)Aox,=x, for 21>w,
and n. Hence, letting n—oco we have that R(1)y,=0 for 1>w;. It then
follows from (C.3) that yo=0. This means that A4, is closable. Let A
=A,, then for x& D(A) there is a sequence {x,} CD(A4,) with x,—>x
and Aox,—>Ax. Thus, if Re(1)>w;, then (6.1) yields that R(1)(1—A)x
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=x. Also, since D(A,)=2X, for each x € X we can find a sequence {x,}
CD(A,) with x,—>x. Since R()x,€ D(A,) and R(D)x,—>R(1)x, again
(6.1) implies that A¢R(A)x,=AR(A)x,— x,—>AR()x—x. So that AR(A)x
=2R(2)x—x. Therefore, it follows that R(1)=R(1; 4). Since p(4)D
{A€R; 1>w;}, the last assertion follows from Lemma 3.6. Q.E.D.

Definition 6.3. A=A, is called the complete infinitesimal generator.

Definition 6.4. Let {7;} be a semigroup of bounded operators
satisfying (C.1)-(C.3) and A4 be its complete infinitesimal generator. Then
{T;} is said to be of class (C), if there is a k€ Z, such that D(4*)C 2.

Remark 6.5. The above definition is equivalent to the following: A
semigroup {73} is said to be of class (C(z), if it has the properties (C.1)
—-(C.3) and

(C4) R(R(H)HCZ for some o> w;.

Lemma 6.6. Let {T;} be a semigroup of class (Ciy) with the type
wo and A be the complete infinitesimal generator. Then A& Sy(w,, k) for
some w1>wy and condition (F; k) holds.

Proof. Since Ry(§)x=R(E; A)x for €>w; and x € X by Lemma 6.2,
the assertion follows from Theorem 5.10. Q.E.D.

Lemma 6.7. Let k€ Z,. Then an operator A€ C(X) is the complete
infinitesimal generator of at most one semigroup {T:; >0} of class (Cy).

Proof. Suppose that {T;} and {7;} satisfy (C.1)-(C.4) for %k and that
A be the complete infinitesimal generator of both semigroups. If x € D(A4%),
then by Lemma 6.2, R(§; A)ngz e ¥ Tyx dt:S:e‘f’T,xdt for & suffi-
ciently large. But, both Ty;x and 7T;x are strongly continuous in >0,
and hence it follows from the unicity of Laplace transform that Tyx= T\x
for £>0. On the other hand, Lemma 6.2 yields that D(4*)=X, and so,
T,=T; for t>0. Q.E.D.

The next result gives a generation theorem of semigroups of class (C(z)).

Theorem 6.8. Let A be a densely defined, closed operator belonging
to &(w, k) for some w€R and k€ Z, and satisfying (F; k') for some
KeZ,. Then A is the complete infinitesimal generator of a unique semi-
group {T;} of class (Cuy) such that
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(@) for x€D(A*) and t=0, Tix= lim (I—hA)""'"Mx, and the con-
vergence is uniform with respect to t in Z;eory finite interval;

(b) for every e>0 there is an M.>0 such that sup{||Ty||; e<t=1/¢c}
=M.;

(c) for every I€Z,, A Tix= T A'x for x€ D(A");

(d) for every x € X, Tix is stmngly continuous in t>0; D(A*)X; for
x € D(4), T;x—x—g T, Ax ds—g AT.xds for 10; and hence D(Ao)
> D(4*Y), 0

(e) if in particular, k=1, then for every x € D(A) and t>0, (d/dt)
Tix=ATix= T;Ax.

Proof. Let {U;; t==0} CB(D(A*), X) be the one-parameter family
obtained by Theorem 4.2. Then by Theorem 5.17 and Lemma 5.16, we
obtain a semigroup of bounded operators {7;} having the properties (a)
and (b). In order to show (c), we first prove that each R(#; A) commutes
with T, t>0. For x € D(A*) and 2>w;, R(u; A)JPMx=JUMR(u; A)x.
Hence, by (a) we have that R(x; A)U;x=U,R(u; A)x. But, since U,=
T, B(X) and D(4*)=X, we see that R(u; A)T,= T:R(u; A) for t>0.
Assume that x € D(4'), then x=R(u;4 )y for some y€ X. Hence, Tix
=T,R(u; AYy=R(u; A)T;yeD(A") and T:A'x=T,[ AR(y; A)]y=
A'T;x. Property (d) is the restated form of Theorem 4.2 (e). Next, we
show (e). Let e>0 and e<s<t<1l/e. Then ||T,]|<M, for e<o<1/e.
Since D(A**') is a core of A, it follows that for each x & D(A) there is
a sequence {x,} CD(A4*') with x,—x and Ax,—>Ax. Hence, U, Ax,—>
T,Ax boundedly for e<<o<1/e. Since T;x,— Tsx,lzgtsT,Axndo‘, we obtain

Tox—Tov={ T.dxdo.

Now, we sdemonstralte that the semigroup {T;} constructed belongs to
class (C(zy). First, D(A*)C 2 by (d); and so Xo=X. Let w;>max{w, we}
and Ry(2) be the operator defined by the formula (5.3) for this semigroup.
Then D(R((1))D 2 for Re(A)>w;. Also, from Theorem 4.6 it follows that
R(2; A)x=Ry()x for x € D(A*) and Re(1)>w;. Now, for every x € X,
there are £0>0 and y€ X such that x= T}, y. Since D(A*)= X, there exists
a sequence {y,} CD(4*) with y=lim y, and T:,y» € D(A*). Therefore, we
have
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R(2; A)x=R(1; A)T;,y=UmR(1; A)T;,y,=lmRo(2)Ts, v
=Ro(2) T, y=Ro(4)x,

note that Ro(2)T;, € B(X) for Re(A)>w; and #,>0. This means that {7}
satisfies (C.2). (C.3) is clear, since R(A; 4) is one-to-one. Finally, the
uniqueness of the semigroup follows from Lemma 6.7. Q.E.D.

In view of this theorem we obtain a criterion for the existence of

the solution of ACP,.

Corollary 6.9. Let A€ ®y(v, k) for some w €R and k€ Z \{0}. If
A satisfies either of (F; k') and (C; k') for some k'=k, then for every
x € D(A*), there is a unique solution u(t; x) of ACP, for A with lim
u(t; x)==x. e

Proof. In view of the properties (d) and (e) of Theorem 6.8, for each
x € D(A"), u(t; x)=Tix becomes a solution of ACP, for A with lim
u(t; x)=x. To prove the uniqueness, we let u(£) be another SOlutiOItl—H(‘)(f)
ACP, satisfying lim u(¢)=x and then put v(¢)=Tyx—u(¢), t>0, note

i

that lim v(t)=0.+o Let A,€0(A4), then R(Zo; A)v(s) € D(A**'); and
hencet—l;;roa similar way to the proof of Lemma 2.4 we have that (8/0s)
Ti_sR(4o; A)*v(s)=0 for 0<s<t. Therefore, 0=S;(0/63)Tt_sR(lo; A)rv
(s)ds= 31_1,111;10 [T,_R(Zo; A)*v(s)]i*=R(A¢; A)*v(t) for t>0. This means
that v(¢)=0 for £>0. Q.E.D.

Remark 6.10. Let {T;} be the semigroup constructed in Theorem 6.8.
Then {T;|D(A*)(=U,); t>0} forms a semigroup of bounded operators on
the linear manifold D(A*). This semigroup is strongly continuous at ¢>>0.
Also, Corollary 6.9 states that T;|D(A*) is a solution operator of ACP,
for A.

Remark 6.11. Let {T;} be the semigroup obtained by Theorem 6.8
for an A€ ®,(w, k), k==1. Take an x & D(A*), then by Theorem 6.8 (e),
(d/dt)e ™ Tix=—e ™MT(A—A)x for t>0 and 1€ C. Let w, be the type
of {T;} and w;>max{w, wo}. Then for every A€ C with Re(1)>w;,

e M Tsx =S:e_“ Ty(A— A)xdz.

Since e ™™ Tsx—>x as 0—-+0 by Theorem 6.8 (d), the improper integral
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Swe_“ T{(A—A)xdt= lim gwe““ Ty{(A— A)xdt converges and is equal to x.
0 5

340
Consequently, we obtain the following relation:

(6.2) R(A; A)z= S”e—” T,zdt, z€ D(A* D),
0
Now, we state a characterization of semigroups of class (C)).

Theorem 6.12. An operator A in X is the complete infinitesimal
generator of a semigroup {T:} of class (Cuy) if and omly if D(A)=2X,
AeS(w, k) and (F; k) is satisfied.

Proof. The necessity is verified in Lemma 6.6 and the sufficiency
follows from Theorem 6.8. Q.E.D.

Next, we consider an example which shows that class (Cyy) is
properly contained in class (C-1y).

Example 6.13. In a similar way to Example 4.10, let us consider an
B+l

unbounded operator P of multiplication, defined in Ly= Ly(R) X --- X Ly(R)

by (4.8), such that P(€) is a (k+1)%X(k+1)-matrix of the form (4.10)
with

(6.3) p=p(&)=—¢€*+ig? and ¢q=gq(&)=¢", £€R,

where v, d and r are positive integers. H. Sunouchi treated in [ 227] this
example for the case in which k=1, vy=1, d=4 and 0<r<4 and he
proved that if r<<2 then the resultant semigroup is of class (C,) and that
if r=3 or 4 then the resultant semigroup is of class (0, A4).

Since the eigen-values of each matrix P(£&) are equal to —&2*4i&9,
operator P has the (thin) spectrum o(P)={—¢&%**+i&?; £¢cR}. In view of
(4.11), (4.12) and (4.13), if d(k+1)=rk and Re(2)>0, (A—P(§))7, €€R,
define a bounded operator (A—P)~! on L, which is the resolvent of P at

A. Thus, in this case, we assume that
(6.4) < d<r<k ' (k+1)d.

First, we show that for each t>0, e, £cR, define a bounded

operator e'’f on L. Let ¢=(¢;) € L. Tfien, as stated in Example 4.10,
+1-7

the j-th element of e'’¢ was [efg];=e? 3. (1) ''q'd.s.

!

=0
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On the other hand, for every ¢>0 there is a positive constant NN such
that sup e RN | g(£)|'<sup e>§p(—:-:é‘2")|5[”§Né for 0<I<k and t=e.
Hence, .

LB 2 g’y | SNeemax gy | SNee' 1.

k1
Since ||e'fg||> = Z+; ICefo]; |I°< (k+1)N2e||¢]||%, it follows that for
&

every €>0 there éxists a positive number M, such that
lle*Tgl| < M|l for t€[e, 1/e] and ¢ € Lo.

Thus e’F defines a bounded operator on Ly for each ¢>0. It is easy to see
that e'Fesf=e®+9P for ¢, s>0 and also that e¢ is weakly measurable
with respect to >0 for ¢& L,. Since L, is a separable Hilbert space,
{e'’; t>0} is strongly measurable and hence it forms a semigroup of
bounded operators on Ls,.

We can show that ef@ is strongly continuous in >0 for every ¢&
D(P*1). In fact, we observed in Example 4.10 that if g€ D(P**') then
q'¢i1€ Lay(R) for 1<j<k+1 and 0<I<k+1—j, and so, |leq'¢;.||<
llg’;sill. Also, it is easy to see that hm |le?'¢;—@;||=0. Hence, ||[e'"¢];

— 1< |e?"¢p; — ¢,H—I— Z (l‘) 1t’||q’¢,+;||—>0 as t—+0 for 1<j<k-+1. This
means that e'fg is strongly continuous in t=>0 for every @& D(P*+).
Therefore, if X denotes the continuity set of {e’’}, then D(P**!) C 3.
This also implies that Xo=\Je'*[L;] is dense in X. Now, let w, be the
type of the semigroup {e’P}t>gnd let w;>max{0, wo}. If €3 and Re(d)
>w1,then§ e Me'*ddt makes sense. Hence, we see applying Fubini’s

theorem that
<g:e_”eﬂ:¢dts ¢>:g:e—kt<etl’¢’ ¢>dt= <(Z_P)_1¢) o>

This means that (1—P)~ 1¢—SO Me'Pgdr for g€ and Re(l)> w;.
Consequently, we can say that {e’’} is a semigroup of class (Cias1y)-
Let {T:; :>0} be the one-parameter family of bounded operators on L,
which are defined by the inverse Fourier transforms of e'’g, :>0. The
above-mentioned states that {7} forms a semigroup of class (Cp,1)).

Next, we demonstrate that the semigroup {7} defined above is not
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of class (Cy); this fact proves that (Cuy)<(Cs1y). Since it is well-known
that (C(0))=(Co)=(0, 4) C(C1y), let us assume that k=1,

Let ¢ be the element of L, of the form (4.19). Then, under the
restriction (6.4), we can proceed with the same argument as in Example
4.10 and can prove that ¢ € D(P*)\D(P**') provided that

r—d=a+b,d—2vy=b+c,and a, b, c>1.

Indeed, what is needed is the degree of p(§)(=d under (6.4)) and v does
not exert any influence upon the proof as long as (6.4) and the restrictions
on r—d and d—2y are assumed. (Note that, in this case,

[P ¢ =kpg* '¢e+q*du1=kq" (1 + |€]) "4 (p(i &+ 1)+¢)
:qu_1(1+ |§|)b_rk(P+i$2v+r_d)

and that deg(q* 'ig***"~?)=rk—b—c.) We then show that if furthermore
b=>2vk then e'f$ is discontinuous at t=0. (Hence, d=>2y(k+1)+c.)
By virtue of the relation (4.20), we obtain

Lo i =R""t*e? (g + ) dur+ (B + DI e {g" ' p 4+ £ 101}
where Q=¢*—(g+i)*. Since deg(Q)=deg(¢*™"), Qpr:1€ Lo(R). Hence,
lle8l1>=Ce g ll2
=21/ (L 18P 6| Pexp( — 26700 de
— (@ (=Dl g" -+ k™ 1Qr 1.

Since a positive number C can be found such that (1+ |&|)727%|&"+i|2*
=C, the first term of the right hand side is greater than

C(* k) Sj £2exp(—2621) de.

Now, setting 26%*t=0?%", we have that &2=(2t)"'"¢% and d&=(2t)"'**do,

and hence the integral is equal to
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2Ck—zt2k—b/u—1/zuS”O.Zbe—ﬁdd_
0

This means that e’’¢ blows up at t=0, if 5=>2ky. Therefore, the {T;} is
not of class (Cyy).

In (6.4) we assumed that 2v<d. If d(k+1)=>rk and 2v>d, then
the spectrum 0(P) is contained in a sector and the semigroup {e’’} can
be extended to a holomorphic semigroup. In this case, D(P¥) is contained

in the continuity set 2. In fact, in this case,

etP= eptet(P—pl)=eptlzi:o(l!)—ltl(P_P)l

2 glo(l __j)!—ltl—i( __p)l-j(j!)—ltipi
—en 3 [gZ(l!)‘lt’(—p)’]( -P

Since 2v=>d, we see that max sup | e? Z (I (—pt)'| =N< +co; hence,
t
for each ¢ & D(P*), we obtain

k . .
He”’¢|IéjgoN(j!)"lt’llP’¢H§Ne’H¢IIk.
Hence, it follows that lim |le¢—g||=0 for ¢ D(P*).
t—>+0

Finally, we discuss some generation theorems (of Feller type) for
(4)-, (0, 4)-, (1, A)- and (Cy)-semigroups.

First, the following type of characterization of (A)-semigroups is
stated in Hille-Phillips [ 8; Theorem 12.5.17].

Theorem 6.14. An operator A in X is the complete infinitesimal
generator of an (A)-semigroup {T:} if and only if A€ ®s(w, 0) for some
wE R, s;ljﬂéR(S; A)=1, and condition (F; k) is satisfied for some k€ Z,.
Furthermore, in this case, {T;} is of class (C ).

Proof. Assume that A& 3w, 0), s-iméR(E; A)=1, and that (F; k)
holds. Then by Theorems 4.7 and 5.17 and then by Theorem 6.8, A is the
complete infinitesimal generator of a semigroup {7} of class (C()). Since
R(l;A)x=S:e“”T,xdt for Re(A)>w; and x€ X, and for some w;>
max{w, wo} by Lemma 6.2 and since sup {||R(1; 4)||; Re(2)> w1} < + o0 and
s-lim §R(&; A)=1, it follows that {T} is an (A4)-semigroup. Conversely,
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assume that A is the complete infinitesimal generator of an (A)-semigroup
{T;} with the type wo. Then 4¢&®;3(w;, 0) for some w;>w, by Remark
4.8. Hence, it follows from Theorem 4.7 and 4.6 that D(A*)CX. This
means that {7;} is of class (Cs); and hence (F; 2) is satisfied. Let
R(2), Re(A)>w;, be the operators given in condition (A.l) which is stated
in Section 1, then R(1)=R(1; 4) for Re(1)>w; by Lemma 6.2, and so
slim ER(¢; A)=1. QE.D.

Theorem 6.15. An operator A in X is the complete infinitesimal
generator of a (0, A)-semigroup if and only if A€ ®&(w, 1), s-lim&R(E; A)
=1, and

(F)o for every x€ X, there is a measurable and locally summable
Sfunction f(¢, x) on (0, o) such that

(@ Lm f(tn )< f(t, ) and hm S (uy ) f(2, %),

(b) foTr each €0, each pair 8 and 1 with 0<B<r, there is a number
§o=E&o(x; B, 1, &) with

l6"R(§; AV xll=f(n/§, x)+e, for B=n/EXy and §>&,.

Furthermore, in this case, || Tix||< f (¢, x) for t>0 and {T;} is of class
(Cay)-

Proof. Assume that A€ ®(w, 1) and that (F), is satisfied. Let x €
X, e>0, and 0<PB<7. Since every function satisfying (F),—(a) is upper
bounded on every compact interval, N(x; 8, r)=sup{f(s, x); F=s=7}<
+ oo, Hence, by (F)o-(b) there is a &=&(x; 8, 7, &) such that ||"R
(&; AY'x||<N(x; B, 7)+e for f<n/é<y and €>¢&, On the other hand,
let w;>max{0, w}, then by the assumption there exists a positive number
K such that ||ER(&; A)||<K for &€>w,. Hence, ||6"R(&; A)"x||<Ko7i+!
llx]] for B<n/é<r and w;<&E<&,. Consequently, it follows that {§”R(§;
AY'%; f<n/E<r, §>w,} is bounded for each x € X. Thus, by the res-

onance theorem a positive number Mg , can be found such that
(6.5) i§"R(&; A)|<Mp. for B=n/é<r and £>o0..

Since (6.5) is nothing but condition (F; 0), it follows from Theorem 6.8
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(a) that

(6.6) Ti= s-lim (I—hA)"T", >0,

B0
exist uniformly with respect to ¢ in each compact interval of (0, o0); the
family {7;} forms a semigroup of class (C(1y). Now, fix an x€X and a
t>0. Then, for any €¢>0 and any pair 8 and 7y with 0</8<t<y, there
is an h, sufficiently small such that B<<[t/h]h<t<"[t/hh+h<r and
[(I—hA) UM x| < f(C¢/hIh; x)+e provided he (0, ho]. Since [t/hJh{t
or [t/hh+hlt, (F)—(a) yields that || Tix||< hm F(Ct/B]hy x)+e< f(2, x)
+e or || Tix||< hm f([t/h_;h—l—h x)—l-e<f(t, x)-i—a Hence, by virtue of
Remark 6.11 and (F 0), R(Z; A)x*S “MTxdt for x€ X and Re(1)>
w1 >max{0, w, wo}, where w, is the typoe of {T;}. Therefore, é‘S:e_EtT,xdt
—x as §é—>+4oo, and so {T;} is of class (0, 4) and A is its complete
infinitesimal generator. Conversely, let 4 be the complete infinitesimal
generator of a (0, A)-semigroup with the type wo. Then A& ®y(w,, 1)
by Remark 4.8. We then show that (F), holds. By Hille-Phillips [ 8; The-
orem 11.6.6, p. 3527, we have the representation (6.6). Thus it is easy to
see using the resonance theorem that sup{||&”R(&; A)*||; €>we, e<n/EX
1/e} <+ oo for each e>0. So, it follows that for any convergent sequence
{n;/&} such that &—>+ oo and n;/&—>t>0,

(6.7) T;= s-lim (I—&;14)™™.

ke

We can now obtain (F), by setting f(¢, x)=||Tix|| for t>0 and x € X
and by employing the convergence (6.7). Q.E.D.
Also, by a similar way to the proof of Theorem 6.15, we obtain

Theorem 6.16. An operator A in X is the complete infinitesimal
generator of a (1, A)-semigroup if and only if A€ & (w, 1), S;HEL ER(E; A)
=1, and

(F)1 theve is a measurable and locally summable function f(t) on
(0, o) such that

@ Lm ft)<f@) end im f(e) S0,
talt talt
(b) for each €>0, each pair B and 7 with 0K B <y, there is a number
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Eo=E¢(x; B, 7, &) with

l§"R(§; A2l < f(n/Ollxll+e  for B=n/éxr and §>&.

Furthermore, in this case, || T}||< f(2) for t>0 and {T}} is of class (Cuy).

Finally, we state the Hille-Yosida-Miyadara-Phillips theorem in the

following form:

Theorem 6.17. An operator A in X is the infinitesimal generator

of a (Cy)-semigroup if and only if A€ ®y(w, 0) for some w<R.
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Notes added in proof: 1. Mr. Konishi has called the attention of
the author to a paper by M. Sova, “Probléme de Cauchy pour équations
hyperboliques opérationnelles 4 coefficients constants non-bornes”, Ann.
Scuola Norm. Sup. Pisa, 22 (1968), 67-100, which contains, among others,
similar results to Lemmas 2.4 and 2.7 and Theorem 4.3.

2. In Theorem 5.4 we gave two sufficient conditions for a linear
operator in X to be the infinitesimal generator of an R.D.S.G. But, it
can be proved that those are also necessary conditions. Hence, two kinds
of characterizations of R.D.S.G. are obtained and the result gives a

straightforward generalization of Theorem 5.5.



