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On Imbedding Theorems for Besov Spaces
of Functions Defined in General Regions

By

Tosinobu MURAMATU

§1. Introduction and Main Resulis

This paper is a continuation of the author’s work [ 7] concerning
Besov spaces of functions defined in general regions; here we treat im-
bedding theorems. Our method is the same as that of the author’s previous
papers [ 5] and [7]. That is, we employ an integral representation which
gives us Sobolev type inequalities with the aid of the theory of mean in-
terpolation spaces due to Lions-Peetre [3]. To prove the basic inequalities
we shall make use of the idea due to O’Neil [10] and Peetre [11].

We denote by £ an open set in n-space R”. Let 1<p, §<oo, and
let s be a positive integer such that s<n. For measurable functions

defined in £ we introduce the norm

1/p
1 fllzsnvor=ess. sup [ § |7ty s)1a ]
"eQ” 27(x")

where x=(x', x”), x' €R°, x” € R"™°, 2 (x")={x"; (', x”)€ £} and 2"
is the set of all points x”’ such that £'(x”) is not empty. Also we make

use of the norm

D5 gy=@ss. Su
1Az a) x’eg’[g.@’(x”)

7 dx' 1ip
flx's x ')lpw] >
where |x| denotes the Euclidean norm. For any non-negative integer m
and fe€ C™(2) we define the semi-norm
(1.1) | f W oy= Ileﬂn||D"‘fHM-n-S(:a>»

and the norm
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(1.2) [flwmnoy=1flwea oyt flloin-sca,
where
Da_—_D‘fl...D‘;“n, Dk:_a_, Ial =a1+...+an,
axk

and « stands for a multi-index a=(a;, ---, &,). For any non-negative in-
teger m any positive integer j, any real r with 0<t<j and f&C™(2)

we define the semi-norm

(1.3) |1 Botsd o

- jszﬁfup 7 [”Z( 1) ) flatry) LP(ﬂf,y(x"))]lyl_ Le (re, 250,
and norm
(1.4) | fllBzted woy=| f | Boted woyH L fll o2y

where £; ,= /\(.Q yy).

Definition 1. The space W7, (2) is defined as the completion of
the subset of C=(£2) consisting of functions whose norm given by (1.2) is
finite with respect to this norm. Analogously the space By :il;7 (2) is
defined as the completion with respect to the norm (1.4).

If £ satisfies the cone condition C(T,), W7, (2)=W35(82) coincides
with the usual Sobolev space, and Bj;¢/(2) coincides with the usual
Besov space B} ;'(2) (see [7]); while WZ(R) coincides with the space
2Z™(2) of all bounded continuous functions defined in £ whose all
derivatives of orders < m exist and are continuous and bounded, and
BZi(8), 0<t<1, is the space #""(2) of functions f€ B™(2) such
that for all |a|=m D*f are uniformly Holder continuous with exponent
r. Here the condition C(T,) means that is stated in the beginning of
§3. From the results in [7] it is enough to consider the cases where
0<r<1=j and the case where rv=1, j=2, so that we set for any

positive number u
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Byl(2), if u=m+7,0<r<1,m is an integer,

B;,q;71~s(g)= { . 1
BYy-ViL2(0) if 4 is an integer.

Drain—s

We state now our main results which are proved in §3:

Theorem 1. Assume that 1< p<qg=<oco, 1=s=n.
(i) The imbedding operator

Wi(2)—> W iu-(2)

exists if 8 satisfies the condition C(T,), m—k—21=0, and if either one
of the conditions; (a) m—k—21>0, or (b) 1<p<g<oo, is satisfied,
where A=n/p—s/q.

(i) The imbedding operator
W3(2)— By, pu-(2)

exists if £ satisfies the condition C(T,), m—oc—2=0, and if either one
of the following conditions is satisfied; (a) m—a—2>0, (b) 1<p<g<oo,
=7, (¢) 1<p=y=oo,s<n, (d) p=oo.

More precisely, under the above conditions the inequalities

(1.5) | f 1wt @ =C{T™ | flwewy+ T* filzocay}
(1.6) | flBgrns@=CQA+ T ){T" " flwry+ T fllroy}

hold for every fe W7i(8R) and 0<3T<T,, where r denotes the greatest
integer less than 0 and C is a constant independent of f and T.

Theorem 2. Assume that 1< p<qg<oco, 1<s<n.
(i) The imbedding operator

B;,E(‘g)_’ Wk;n—s('g)

exists if £ satisfies the condition C(Ty), t—k—21=>0 and if either one
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of the following conditions holds: (a) t>k+24, (b) £§Zq<oo, p<gq, or
(c) §=1; where A=n/p—s/q.
(ii) The imbedding operator

B;,f(g)_”Bg,v/;n—S(‘g)

exists if 8 satisfies the condition C(T,), 1<&, y<loo, t>0+1, and if
either (a) t>0+24, or (b) §X% holds.

That is: under the assumptions stated above the inequalities
(1.7) | [l @=C{T"* | fl5.c0t T* 7 fllLacar}
(1.8) | £ B inesi

SCA+ T NI flage+ T flloay}

hold for every f € B} () and 0<3T<T,, where r denotes the greatest

integer less than 0.

In particular, with the aid of Lemma 2.6 which will be proved in §2,

these theorems yield

Theorem 1. Let 1< p<q=<oo, 1<s<n, and let x" be any fixed
point in 2", Set A=n/p—s/q.

(i) Let 2 be an open set satisfying the condition C(T,) and assume
that (@) m—k—2>0, or (b) m—k—21=0, 1<p<g<oo. Then the
imbedding operator

W (2)—> W2 (x")

exists and its norm is estimated by a constant independent of x”.
(ii) Let £ be an open set satisfying the condition C(T,), and assume
that (a) m>0+2, or (b) m=0+2,1<p<n=<co. Then the imbedding

operator
Wi(2)—Bg,,(2'(x"))

exists and its norm is estimated by a constand independent of x’'.
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Theorem 2. Let 1<s<n, and let x" be any fixed point in 2.
Under the assumption stated in Theovem 2, there exist the imbedding

operators

B {(2)>Wi(2'(x")),
and

B}, :(2)—>Bg,,(2/(x"))

with norms not greater than a constant independent of x".

The main parts of Theorem 1 and Theorem 1’ have been essentially
proved already by Il'in [27]. However his conditions imposed on the
region are somewhat complicated, and his proof is too long, in the author’s
opinion.

Here we shall remark on the norm of Besov spaces. Besov [17] in-

troduced the space By ~(R") whose norm is given by

(1.9) llfHLP(R">+,.21Bi~

ig (4D (e tiven)|

¢
t_”f'ldt]
P(R™) ’

where 0;=m;+1;, m;=0, j;>7;>0; m;, j; are integers, and e;= (0,

-, 0). He showed that this space depends only on 01, ---, 0. p, 5, and
independent of the choice of my, -.-, ms; J1, -+, Ju Iin [2] employed
the analogous norm for functions defined in a region £ and proved the
imbedding theorems. The norm of this kind is dependent on the choice
of the coordinate system, furthermore the imbedding theorems are proved
for a region more restricted than that discussed in this paper. On the
other hand, Taibleson [12] showed that

Biy(R") = B.(R"),

where the right hand side is the space defined at the beginning of this
section (an operator theoretical proof of this identity is given in [6]).
From our investigation it seems that for a general region £ the norm
given by (1.4) is more natural than that given by (1.9).
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Recently, by means of an operator theoretical method Yoshikawa
[147], [157] discussed the imbedding theorems for the case where 2=R".

§2. Interpolation Spaces

We shall reproduce here some theorems concerning mean interpolation
spaces which will be applied later on.

First we shall introduce some notations. Let (M, #) be a measure
space and let X be a Banach space. By L?(M, x; X) we denote the

Banach space of all strongly #-measurable X-valued functions u(&) such

that

1/p

@) fullsosn=] | Ju@lgaae " asp<oo
=ess. supl[u(&)llx (p=c°)

is finite. In particular, the space L?(R*, t7'dt; X) is denoted by LA(R™;
X), where R* is the set of all positive numbers, and the space L?(M, u; C)
is denoted by L?(M, u), or L*(M).

Let X, Y be two Banach spaces continuously imbedded in a Hausdorff
linear topological space &. Assume that 1= P qgoo, —oo <& p<oo and
that &:7<0. Then the mean interpolation spaces S(p, & X; g, 7, ¥) is

the space of elements such that
= dit
(2.2) f= SO u(e) 2

for some function u(t) of ¢>0 with tfu(¢)e LIR*; X) and t"u(z)e
Li(R*; Y). The norm of f is given by

(2.3) iT;f {max(Htfu(t)]]Lg(m;X), le"u(@)| L2 ®m+7)}s

where u ranges over all functions satisfying the identity (2.2). It is

known that
S(p, 26, X5 9, 29, Y)=8(p, & X;q,7, Y) (25%0)

(cf. Lions-Peetre [ 3]) with equivalent norms. In the following we shall
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write S(p, 0, X; p, 0—1, Y) by (X, ¥ ), 0<6<1.

Lemma 2.1. (Peetre [117]) Let (M, u) be a measure space. Assume
that 1=p1, p2, g=0, 0<0<1. Then

(LA(M), L"Z(M))g,q :L(i"q)(M)
with equivalent norms, where

(2.4) L 16 , 9

P mp
and L*9 denotes the Lorentz space (cf. [4], [97], [107)).

Lemma 2.2. (Peetre [117]) Let (M, u) be a measure space. Assume
that 1<p, q<oco. Then

L“””(M) C L“”‘”(M) C L“"“")(M)

with continuous injections. And LPP=L? with equivalent norms.

Combining these lemmas with the reiteration theorem (Lions-Peetre
[3]), we obtain

Lemma 2.3. Let (M, n) be a measure space and assume that 1<

P> P2s q15 g2, §=00, 0<0<1. Then

(L(qul)(M), L(I’z;‘lz)(M))g,q =L(1"‘1)(M)
with equivalent norms, where p is given by (2.4).

Lemma 2.4. Let 2 be an open set in R", and assume that 1< p<
o0, 1500, 1<s<n, 0<0<L1. Then

(LP"=2(8), LE"(82))g,e CL D 5(Q),
with continuous injection, where 1/r=(1—0)/p+0/q.

Proof. Let

f(x)= S:u(t, x)t~tde,
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where t°u(t,x) € L&R*; L¥#"5(R)), t° u(t, x) € LL(R*; L¥"°(2)). Then,
for almost every x” in 27, t°u(t, x’, x’")€ LER*; LY(2(x")) and t°~'u
(t, x’y x")€ LE&R*; LY(2'(x")). Hence, we have

Gt = u, o, 5t e L@ (")
and

1A'y ) 20| fllzoin-scay, Lain-scay,, e

This completes the proof of the lemma.
In the next section we shall frequently make use of the following

well known fact:

Lemma 2.5. Let (My, r1), (M3, uz) be two 0-finite measure spaces,
and let K(x, y) be a (41X uz)-measurable function such that

gM | K (%, y)|"1(dx)<C1 for almost all y in My,
SM |K(x, |71 dy)<C} for almost all x in M,
2
(1=r=o0).

Then the integral operator with kernel K(x, y) is a bounded linear opera-
tor from LP(My, ps) into LY(Mi, u1) with norm not greater than C1=77
C3'%, where 1/r+1/p—1/q=1. In particular, if

ess. sup|K(x,y)]|, ess. supSM | K(x, y)|#1(dx), ess. supSM | K(x, v) | #2(dy)
%y y My x 2

are finite, then the integral operator with kernel K(x, ) is bounded from
L*(My) into LU(My), where 1< p<q=<co.

Finally we shall prove the following

Lemma 2.6. For every function f€ By, (2) and for any fixed

point x"" in 2"
(2.5) | f Bz en=|f|B3tas

Proof. Set
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j 0(_ ]_)v(l{)f(x-F vy) 'ilx'.

v=

F(ys y)=|

Qg,y(x”)

Then by Fatou’s lemma we have
F(y, 0)< lim F(y', y"),
370

so that, applying Fatou’s lemma again, we obtain

/ Elp
SF(y,O) dy <

l3/|§r+s

S F( y/, y//)f/p

lim V= ey S byt o

70

Thus the lemma is proved.

§3. Basic Inequalities

We say that an open set £ satisfies the condition C(T,) if there ex-
ists an R”-valued function & (x) such that (a) x+tz+t¥(x)e 2 if x€ 2,
0<t< Ty, |2z| <1, and that (b) ¥(x) is bounded and uniformly continuous
in R”. If @ satisfies the above condition, then, replacing T, by To/%,
¥(x) by 9¥*¢p(x), where 7>1 and Sgo(x)dx=l, ¢ € C3(R™), the support
of ¢ is sufficiently small, we may assume that WE%”(R")=A@“(R").
In the following we always assume that £ satisfies the condi’gi?)ln C(Ty)
with '(x)e #~(R").

In the following of this section we shall discuss some inequalities,
which, combining with the integral representations given in [5] and [7]],
prove the imbedding theorems.

We shall first prove

Lemma 3.1. For fe L) we define
(3.1) U, x)=SB| Flatiz+i¥(x))] de.

Let 1<p<q<co and let 1<y<oco. Set A=n/p—s/q. Then:
(i) For every feL*(2) and 0<t< T

(3.2) 1U(2, )| ain-scy=Ct™|| fll z2c2,
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where C is a constant independent of f and t,
(ii) For every feL?(2) and 0< T< T,

< - »
— | fllzocors

GBI RS A

if 1=¢=<q and either one of the conditions (a) 1>2, or (b) 1<p<g<oo,
£<gq, I=2 is satisfied. Here C is a constant independent of f and T.

Also, for every f € L*(2) and 0< T<T,

dt
I3

T ' lig .
(3.4) x”i%g_s[goll[fo(t, 2 )t [ acarcxrryy J <CT" | fllzocay,

if 1=2 and if either one of the conditions (a) 1>2, (b) 1<p<g=<eo,
p=7, (¢) s<n, 1<p=y=oco, or (d) p=oc0 is satisfied.
(ili) For every f<L?(8) and 0K T<T,

HHS:{UO x>h<'_:;|)ktz, y,_a}e de }1,;

SCT" M fllrcay

(3.5) sup

z"ERn-s

Lq(lé’(x”))]l A ¢ O

if 1<6<q, §<7, 0<0<k, l—0—2=0, and if either one of the conditions
(@) 1—0—2>0, (b) 1<p<g=<oco, p<y, (c) 1<p=<p=<oo, s<n, or (d)
y=oco is satisfied. Here C is a constant independent of f and T, and
A(t)=min (¢, 1).
Proof. (i) Defining f to vanish outside £, we have
1 Us(2, x)] gg dz”SbB, | f(x'+22', x'"+t2")| dz/,

bB’’

where b=sup|¥(x)|+1. Thus for any x” in R""*
x

WUty 2"y 2" Lege

144
Z,

g(a/bs>(1—1/p)g

}.[Sw,'f(x—l-tz),pdz,]llp

5B L9(2/(x"))

in virtue of Ho!der’s inequality. Combining this with the inequality

Sb3,|f(x’+t2’, x”F1z")|Pda' =t g (" +12")",
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where g(u”)=||f(u', u”)||Lrce @y, We have

1
SLSbB,If(x’J.-tz’, x'"+ tz")]”dz’—‘q dx’

<[g(x"+ tz'/)bt—s](q—p)lpSSbBJf(x'-l-tz', x'+1z'")|dx'dz’
=a'b* I g (i 1),

which gives

(3.6) HUO(t, x)|iLq(gf(xf/))é(a/bs)1_1/“1/0‘5/4_SIprB,,g(x"-f—tz")dZ".

The desired inequality (3.2) now follows from this and Holder’s inequality.
The cases (a) and (d) in (ii) and in (iii) are immediate consequence
of (i). Therefore it is sufficient to prove the other cases. We may
assume that [=2 or [=21+0.
We shall prove first (3.4). Consider the case (b). Let fe&L®7(Q).

Then there exist functions v(z, x) and w(z, x) such that
f(x)=v(, z)+w(t, x) a.e. t,
*%v(¢, x)€ LE(R*; LY(R)), 1" Pw(t, x) € LY(R"; LU(K)),

where

(p—1)q n
0=——"= k=—n+—— .
(g—1)p "

Clearly by (3.3) we have

I Uo(e, )| zan-scoy Il 27¢co,77)
< C1{|le*%0(2, )|l L1me zrcay 1127 Du(s, 2)l 27 mes Lacan}

which gives

’ T M de M
(3.4 {§, 10 2o 2" <Cl oo

and (3.4) follows from this, since L? CL®™ if p<y.
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Next consider the case (c). It follows from (3.6) that for every
x//E !2//
b

CI U2, x)tIHL«w'(x"»jHLI(R*‘)

éCIHt(rz—s)/bSbB”g(x// + tZ”)dZ””L’L(m)

=C,

S“B”K( l u”]/t){ I u” | (n—s)lpg(x//_|_ u//)} | u’ I —n+s g, 1

Limey
where g(u”)=||f(w’, u”)||1o(e’wy and K(z)=t"")!=1?)  Noting that

o/ pr—s)1-11p)
1-1/p "’

77 1| —n+s " —
[, KClur1/0lu”| 7+ du =

pn=s)1-118)

(n—s)1-1/p)”’

S”[ K(lu"| /o de=
ulIII

K(|u”| /1)< )X1-1D) when u'' € btB”,

we have (3.4) with the help of Lemma 2.5.
Proof of (3.3). Let 1<p<g<eo. Setting u(¢, x)={*Uy(t, »)}*
for 0<t<T, u(¢, x)=0 otherwise, the left hand side of (3.3) is equal to

= ds It
”gou(t’ x)T‘l Lasein-s(g)’

Take, 0, g1, g2 and £ so that

1<p<q:1<g<gs< 00, §<q;1, 0<0<1,

bl

q q1 qz 91 g2

1_1—0+0 s s

Then we have from (3.4)
=% w(e, %) 18/¢r+; Laresn-scayy,
2@~ D u(t, x)|| 124 R+ Lazsein-scayy

<{Cll fllzocey}®.
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Since (LO/5"5(2), LU/6m=5(2)),, 01 CLUE=%(2), we obtain
“Sou(t’ o —dt_t

which is the desired inequalities (3.3).

Proof of part (iii). By Lemma 2.5 we can easily see that the in-
tegral operator with the kernel

(OISl

is bounded and linear from LI*(R*) into LZ%" S(R"), where 0<0<k,

<(Cll fllzecey,

Lajéin-s(g)

€<7%. Thus (3.5) is a consequence of (3.4) and Jessen’s inequality (gen-
eralized Minkowski inequality). This completes the lemma.

Next consider the analogous inequalities for functions belonging to a
Besov space:

Lemma 3.2. Let 2 be an open set in R”, and assume that ¥(x) is
bounded and continuous. For every function f€ Byi(R), 0<t<j, 0<(2j
—1Di< Ty, we define

5

v=0

@D U=

(— 1)"({;>f<x +t(j;”2jzi@

(2j-1)B

+ mrf(x)) dzdw.

Let 1< p<q<oo, 1<¢, <00, 0<0<k. Set A=n/p—s/q. Then:
(i) For any f€ Byi(R) and 0<(2j—1)t< T,

(3.8) 10t Dllzensia=Cu ™ Fia)dz,

=Ct"7| f B30y

where C is a constant independent of f and t, and

F=| £ (s

j
..Qj,y——_— QO(.Q—vy).

b
L2(2,,,)
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(ii) Assume that 1+7v—1=0. For every fEB;;g'(.Q) and 0<
@j—1DT<T,

T ' I dt Ln I+7—2
(3.9) {SODIUJ'(% x)tliLM-S(ﬂ)]”T} <CT"" | flayica

where C is a constant independent of f and T, if 1—2A+t>0 or if 7.
And

=CT""| fls5icer

La.m-s(Q)

o0 |l o 2]

where C is a constant independent of f and T, if r<q and if either one
of the conditions (a) l+t>2, (b) €<q<oo, p<q, r<q, or (c) €Xr is
satisfied.

(iii) For any fe Byi(2) and 0<(2j—1)T< T,

. 7 dt 1/r
Pll-oe} 4]

<CT'mH flB3icey,

| ¥l
t

@) [ 106 oo

LY (R™)

where C is a constant independent of f and T, if r<n, [+t=0+2, £y

or if I+t>04A.
Proof. Denoting the characteristic function of £ by e(x), we find

that the function U;(¢, x) is not greater than

dzdw,

7,5 AL e tistow}| £ (D)1 fGe +iztoow)
=j”SZBdeij,tw(x+tz)dz,
where
Gj,w(u)=[v1:10 €(u+vw):]’ éo(_ly(lj)')f(uﬂw)',

and hence we get

1T, )] zasmsior< j"S ZBdw”SbBGj,tw(x‘l' t2)dz

L'I:n—x(_g)'
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From (3.2) it follows that

<Cit MG, 10(w)l| ooy

L2:m=5(Q)

“ SbBc,-,,w(x Fi2)ds

= Cyt™F(tw).

Therefore we obtain the first inequality in (3.8), which implies the second
inequality in virtue of Hélder’s inequality.

(i)  Proof of (3.9). We may consider only the case where £<7 and
l+7=2. From (3.8) it follows that

10, el zanseary =€ Fie)ds,
=cf Clul/orjul " F@luldu.
2tB

Applying Lemma 2.5 to the last integral transformation, we obtain (3.9).
Assume that p<g<eo and [+7=41. Note the

T nr dt ® -1
gCo={ (U, 2y L= ute, oy,

where u(t, x) is the function which is equal to {t'U;(z, x)}" for 0<t<T
and vanishes otherwise. Set §=1—rp/q and £=—s/p, where ro=max

(p, ). From (3.9) we obtain

1N Du(e, 2l 2=y ll2imn=A{CI f | s32)} "
where r{=max(§, r), and

N u(e, 2l on-sJil L =AC1 f | B32car}

Hence g& (L™ (R), L=(2))s,r CLY"D"=5(R), in view of Lemma 2.4,

and we can conclude that

@10 ] w2y ]

=CT"" | fls3n0):

Llg:e).n-s(Q)

If £<gq, this implies (3.10), since L(*® L.
When £<r, (3.10) is verified by (3.9) and Jessen’s inequality.
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(iii) We may assume that [4+t=0+4,r<7. From the fact stated
in the proof of Lemma 3.1 (iii) it follows that

H[S 10, x>||msm)h<lyl>| e 4T

gc[g 10t 29~ anney 2]

LI 5(R™)

This combined with (3.9) gives (3.11), and the lemma is established.
By #’~(2) we denote the space of all functions which have bounded
and uniformly Lipschitz continuous derivatives up to order j—1.

From the preceding lemmas we obtain

Lemma 3.3. Let 2 be an open set in R”, and let K(x, z)€ B (R"
xR"), supp KCR"X B. Assume that 1< p<qg<oo, 1§, 7=00,0<7<j,
0<0<i. Set A=n/p—s/q.

For any function fe C'(2) and 0<:< T, we define

(3.12) 40 x)=SK(t, %) f(x+ tz+ ¥ (x))dz.

Then:
(A) (i) For any fe L (2)NCY(R) and 0<:< To

(3.13) 1V (2, )l Lan-sy=Ct 7| fll ooy,
(3.14) [V (25 %) Bgbin-sy=C( "+t fllzocar

where C is a constant independent of f and t.
(ii) There is a constant C such that for any f € L*(&)NC'(L2) and
0<T<L T

(3.15) “S:V(t, x)t' " tde

< -
romniay SCT M f o

if either ome of the condition (a) 1>2, or (b) I=2, 1<p<qg<oo is
satisfied.

(i) There is a constant C such that for any f € L*(2)NCY(2) and
0<T<LT,
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(3.16) lS:V(t, x)t' "t de =CA+THT" " fllzrcay

B;:%;n—s(!?)
if 0+2=1, and if either one of the conditons (a) 0+21<l, (b) 1<p<gq
oo, p=n, (©) 1<p=y=oe, s<n, or (&) =0 is satisfied.

(B) Under the additional assumption that

K(xs z)—_- Z D:Ha(x: Z)a

lal=j-1

where DEH, (%, z)€ B~ (R"XR") for any a with |a|=j—1 and any 8
with |81 <j—1, and that

supp H, CR"x B, SHa(x, 2)dz=0

for any |a|=j—1, there is a constant C such that for every f¢& B3i(2)
NC(82) and 0<t< T (or 0K T< T)

(i)
(3.17) (17 (ty 2)||Lain-sy<Ct™ | £ B3cars
(3.18) |V (¢, 2)| B2t qy=C " *+1")| f | B340
(i)
T
(8.19) “SOV(t’ Wede Lqm-s(ﬂ)gcTHT_Nlle?,"e(-@)s

if I+7=2 and if either one of the conditions (a) I+7>2, (b) £<g< oo,
p<q, or (c) é€=1 is satisfied; and

(iii)

(3.20) ‘S:V(t, X)e1dy

< o l+7—0o—\ . .
Bézi:nnsm):C(l_}- T | f 155409

if either (@) I+7v—0—2>0, or (b) I4+7v—0—2=0, EX7 is satisfied.
Proof. Note that

£, s+vp|=alw(2 Y a y1) B UG, v+

(see proof of [7] Lemma 2.6), then the assertions follow from Lemma
3.1 and Lemma 3.2,
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Proof of Theorem 1 and Theorem 2. To prove Theorem 1 it is
enough to show that the inequalities (1.5) and (1.6) hold for every fe&
Wi(2)NC=(2). From Lemma 2.1 in [5] it follows that for any fe&
C™2) and |B|<m

DAf(x)= X STtm—Jﬂi-ldtSwa_ﬁ(x, 2D f(x+ tz+ ¥ (x))dz

lal=m,azB.)0
n T—'ﬁfgwm,ﬁ(x, 2)f(x+ Tz+ T¥(x))dz,

which gives the desired inequalities with the aid of Lemma 3.3 (A).
In the same way Theorem 2 is verified by Lemma 3.3 (B) and the
integral representation (2.17) in [7].

Appendix A

Let @(¢), t€R*, be a convex non-decreasing, positive function such
that @(¢)/t—0 as t—>0 and that @(z)/t—>+oco as t—>+oco. By L?%(2) we

write the space of measurable functions f(x) such that there is >0 with
focal rmnaz=t.
With respect to the norm
Iflo=int{2; {02l f() 1) dx1 ]

L?(2) is a Banach space, and is called a Orlicz space.
As a supplement to the imbedding theorem, we have the following

theorem concerning the limiting case.

Theorem A. The imbedding operator
B; .(2)—>L%(2)

exists if t=n/p, where

tj
Oy(t)= 2 e
izp J-

Proof. Let g=p. It follows from our proof of Theorem 2 that
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1 fllze@y=CigT™ | f |8y u@+ CoT | fllLrcay,

where A=n/p—n/q, 0< T<Ty/3, and where C;, C, are constant in-
dependent of f, T, and q. Take a fixed T1< To/3, and put

A=C1| f 85,2 B=0Gy| fllzoc2
k=max(p, BA™'T,™"?).
Then we have,
| fllzeay=2B?"%(g4)'~* it g=k,
(take T=(B/qA)"™)
fllzoey=2T7*BT{""? if p=q<k,
(take T=T,).

Consequently we obtain

i 7
IEAIVOTEES s 2y
iz J! B>izp j!

BY 5 Qi)
(% Zogr

. 4 .
<77 3 (ZXBT;”"”)’+<£> 5 (2e14)".
E>izp AJ iz

Therefore
[0.21 @Dz,
if
4e AZ<X1 and 4(e+ T7™?)2B
This implies that

I fllo,<4ed+4(e+ T7"")B
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which is the desired inequality.

Appendix B

In this appendix we prove a theorem, half of which is contained in

Theorem 1.4 in [7].

Theorem B. Let uo, #1>0, 1= po, p1, o, 1= and let 0<6<1.

Set
1 1-6 0 1 1—-6 0

+-L, = +— u=1—0)ue+ 0,
P Po g 9o 9

Bo=B,¢(82), B1=Bj,,(2).
Then, (i) if r=p and r=g,
(Bos B1)0,» D B, o(2).
(i) If r<p and r<gq,
(B0, B1)e,r CBY,o(82).

All injections above are continuous.

The theorem is proved in virtue of the following lemmas.

Lemma B.1.
(@) W3(2)C(Bp(2), Byl @))s,0s if ¢=p.
(b) W(2)C[B,-(2), B},(£2)]s.

Proof. Set k=n"-+1. Define the linear operator
L:{L*(2)}*—> B} ..(2) by

L{fa} =IalZim(—l)"’mSZtm‘ldtSKa(x, )fuloo+ t2+ ¥ (x)) dz
+Sa)m+z(x, Dfolx+ Tz+ T¥(x))dz,

where

_ 2 a+71\pr
K, (=, z)———-—m(m—l—l) WIZ=:2< ’ )Dzwaﬂ(x, z).
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It follows from Lemma 3.3 that L is bounded. Also with the aid of

Lemma 2.1 corollary in [7] we have

L({f(a)}|a|=m or 0)=f
for every fe W3(2)NC=(Q).

Applying the interpolation theorem, we see
L:({L2(}, {L"(D)})e,e—>(Br(2); BY, (2,4
is bounded. Combining this with
(LPO, Lﬁ;)qu___L(p,q)DLp,
and that
{F % ai-mo€ LX(2))*

for every fe€ W5(2), we have part (a). Part (b) can be proved similarly.

Let (M, #) be a measure space, and let o(x) be a non-negative meas-
urable function. By L?*(M; X) we denote the Banach space of functions
f such that of € L?(M; X).

Lemma B.2. Let X,, X1 be two Banach spaces contained in a

Hausdorff linear topological space, and let 1=q,, q1, p=o0, 0<0<1. Set

izi_;_ %, Xo,p=(Xo, X1)a,p,

q 90
o(x)=00(x)'%01(x)’,

where 0g, 01 be non-negative measurable functions,
() If p=q, then

(Lo Ps (M5 Xo), e X0))s,p C LM Xo,p)

with continuous injection.
(i) If (M, p) is 0-finite and if ¢<p, g< + oo, then

L%*(M; X,,,) C(L2P(M; Xo), L*(M; X1))s,»

with continuous injection.



282 TosinoBu MuURAMATU
Proof. First we note that
(Yo, Y1)o,5="S(po, 0, Yo; p1, 0—1, Y1)
where 1/p=(1—0)/po+0/p1 (Peetre [127]).
(i) Since p<\g, we can choose po=gqo, p1==g1. Let

Fe={ utt, 0%

where
u(t, x) € L °(R*; Lr(M; Xo)) NLE T (R™; L4*(M; X1))
(LE2“(R*; X)=LP*(R*, ¢~ ds; X) ).
By a lemma due to Lions-Peetre [ 3]
| fllx,, , =%, 222 e xplle®ulty 2)l|Loime;x,-
So that, in view of Holder’s inequality and Jessen’s inequality,
lo() f (@)l zeqa; x,, )
<lloo(2)?ult, 2)|| 128 ar; 20m+; x
X [l01(x)e° " ult, ®)[4 2200 221w x,)
<Ieu %)l 228 e L2 P01, x )
X [[¢° ult, 2)| Lm0 nan 2,

which implies part (i).
Proof of part (ii). It is sufficient to show that for any simple X, ,-

valued function f there exists u(z, x) such that
ll2°00(2)u(t, 2)|| L20re; 290001 %),

122 01(a0)ult, )|l 221w 29200 x ) =C| [l L2000, x4, 25
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Let

f)= a2,

where a, € Xp ;, and {¢,} are characteristic functions of measurable, dis-

joint sets. By definition for any ¢>1 we can find u,(¢) such that
av:S uu(t)_d_t_
0 t
with
le%u, | ovmexg, 1677wl 2omes xp=clla,llx,,,-
Then
u(t, )= Tu. ().,
where @(x)={]| f(lx, 0~ oulm)oip:(x) 0,

go—4g

0= vo( M- =
Wf 1 oo x,, 05 4 700

9

has the required property.

Lemma B.3. (a generalization of the commutativity theorem due to
Grisvard). Let Xy, X1, Yy, Y1 CZ be Banach spaces.

(i) Assume that there exists a linear opervator E from % into
L}, R*; &) such that E is continuous from S; into W; (i=0, 1) and
PEf=f for every fe& So+ S1, where

Si=(Xi, Yoy,

Wi=LE (R X)NLEMDRY; Yy,  (i=0,1)
Pu= Smu(t) jt—
0 t

Set Xg,pz(Xo, Xl)g,p, Yg,p:‘(Yo, Y]_)g,p. If Péq, then

(So, Sl)a,p C (Xa,p, Ye,p)a,qz So,
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where 1=(1—0)2g+ 041, 20=(1—0)A0¢+02:01.

(ii)  Assume that there exists a linear operator J from Lo+ L1 into
& such that J is continuous from &L; into S; (i=0, 1), and Ju=f if u(z)
=f ae.t. Here

gi:Lg‘!,xioi(R+; Xi)_|_Lii,>~i(¢ri—1)(R+; Y;)

If p=gq, then SgC(So, S1)o,p-
Proof. (i) From the interpolation theorem it follows that E is con-
tinuous from (8o, S1)s,, into (Wo, W1)s,s. In view of Lemma B.2.(i) we

see
(Woy, W1)o,s CLEM(RY; Xg ) NLEM"D(R™; Yy, p).

Therefore, PE is a continuous injection from (S, S1)s,» into S,.
(ii) By interpolation we see that J maps continuously (%o, Z1)s,»
into (Sg, S1)s,5- It follows from Lemma B.2.(ii) that J is a bounded

linear operator from
LE(R*; Ko )+ LI (R ¥o,p)

into (Sg, S1)s,5, S0 that we have (ii). This completes the lemma.
Proof of the theorem. Part (i). Combining Lemma B.1, Lemma B.3.(ii)
and Lemma 4.3 in [[7] (this lemma is still valid if we replace W by Bj...),

we have
(%0, #1)0,-
D ((L*% LYo, (Bpg,ms Bpy)o,r)ona
DA W3)e,a=Bhq
where y;=0;m (i=0, 1), u=0om.
Part (ii).
In view of Lemma B.3.(i), Lemma 4.2 in [ 7] and the fact that

(W W3er CW3
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(apply the interpolation theorem to the operator f—D*f), we see that

[1]

[2]

[3]

f4]
[51]

[6]
(7]
(8l
[9]
(10]
(1]
[12]
[13]

[14]

[15]

(g% gl)e,r C ((Lﬂo, Lﬁx)e'” ( W;‘o, ZZ)G,T)W,Q

C@L?, W)e.a=Bj,o.
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