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On Imbedding Theorems for Besov Spaces

of Functions Defined in General Regions

By

Tosinobu MURAMATU

§1. Introduction and Main Results

This paper is a continuation of the author's work Q7] concerning

Besov spaces of functions defined in general regions; here we treat im-

bedding theorems. Our method is the same as that of the author's previous

papers []5] and £7]. That is, we employ an integral representation which

gives us Sobolev type inequalities with the aid of the theory of mean in-

terpolation spaces due to Lions-Peetre Q3]. To prove the basic inequalities

we shall make use of the idea due to O'Neil CIO] and Peetre pLl].

We denote by Q an open set in n -space Rw. Let l<p, ?^°°, and

let 5 be a positive integer such that s<^n. For measurable functions

defined in @ we introduce the norm

D -\IIP
I/O', *")!*<**' ,Q'(x") J

where x = (xf,X
ff\ocf^W, x"€Rn~s, G'W^ix'; (x', x")€Q} and Q"

is the set of all points x" such that @f(xff) is not empty. Also we make

use of the norm

where | x \ denotes the Euclidean norm. For any non-negative integer in

and /€ Cw(£) we define the semi-norm

(1.1) | f | T7™;n-s(.2)— 2 HE** f\\LP<n-s(Q))
\a\=m

and the norm
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(1.2) li/lkj!ll..w=|/Uy.

where

a\ =

and a stands for a multi-index a = (ai, • • • , an). For any non-negative in

teger m any positive integer /, any real r with 0<r</ and

we define the semi-norm

(1.3) l/l*y.tt/-.w

= ess. sup 2]
x"^Q" \a\=m

and norm

(I-4) ll/llBy,ii^_ -(fl)= l/lB?,i^_,(fl) + | | / IUp'»-«(fl) j

y
where &,• v =

Definition 1. The space W™.,n-s(@) is defined as the completion of

the subset of C°°($) consisting of functions whose norm given by (1.2) is

finite with respect to this norm. Analogously the space B™^LS(Q} is

defined as the completion with respect to the norm (1.4).

If J2 satisfies the cone condition C(TQ\ W™iQ(Q)=W™(ti} coincides

with the usual Sobolev space, and B^T^(S) coincides with the usual

Besov space £^T(J2) (see C7]); while W^(S) coincides with the space

£8m(&) of all bounded continuous functions defined in Q whose all

derivatives of orders <J m exist and are continuous and bounded, and

52+J(fi), 0<r<! 5 is the space @m+\$) of functions /<E^W(£) such

that for all \a\=m Daf are uniformly Holder continuous with exponent

r. Here the condition C(T0) means that is stated in the beginning of

§3. From the results in Q7] it is enough to consider the cases where

0<r<l=y and the case where r = l, y = 2, so that we set for any

positive number IJL
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, if ,« = "* + r, 0<r<l , TO is an integer,

if A is an integer.

We state now our main results which are proved in §3 :

Theorem 1. Assume that l^/><Jg<^°o5 l<Cs<C/&.

(i) 77&e imbedding operator

exists if Q satisfies the condition C(T0\ m — k — X^Q, and if either one

of the conditions ; (a) TTI — & — ̂ >03 or (b) !</><£ <oo3 fs satisfied,

where k = n/p — s/q.

(ii) 77z£ imbedding operator

exists if & satisfies the condition C(T0\ m — <J — /i^O, and if either one

of the following conditions is satisfied; (a) 371 — ff — A>0, (b)

P^^, (c) K/7^^00, 5</i, (d) 97 = 00.

precisely, under the above conditions the inequalities

(1.6)

hold for every /E W™{8?) and 0<3r<r0, ^/z^rg r denotes the greatest

integer less than o~ and C is a constant independent of f and T.

Theorem 2. Assume that l^pSSg^S00, Ks

(i) T/zg imbedding operator

exists if & satisfies the condition C(TQ\ r — k — A^>Q and if either one
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of the following conditions holds', (a) r>/c+/i , (b) f^^<°°3 p<gr, or

(c) ?=1; w/Z£r£ A = n/p — s/q.

(ii) T/z0 imbedding operator

exists if J2 satisfies the condition C(TQ\ 1<S?5 ^^°°3 r^tf + xl, <znd (/"

etfAer (a) r>(T+/l, or (b) £^y holds.

That is: under the assumptions stated above the inequalities

(1-7) I/I ̂ -SW^

(1.8) l / l f l S . , :

hold for every f^Bp^S) and 0<3T r<r05 where r denotes the greatest

integer less than o~.

In particular, with the aid of Lemma 2.6 which will be proved in §23

these theorems yield

Theorem I/. Let l^p^g^00, l<zS<n, and let x" be any fixed

point in Q" . Set A = n/p — s/q.

(i) Let & be an open set satisfying the condition C( TO) and assume

that (a) wi-A-AX), or (b) m-A-A2>0, l< jp<^<oo.

imbedding operator

exists and its norm is estimated by a constant independent of x".

(ii) Let & be an open set satisfying the condition C( T0), and assume

that (a) wx>(T+/l3 or (b) TTi^J + ^l, 1 <J£>2S ̂ ^°°. TA^^ ^g imbedding

operator

exists and its norm is estimated by a const and independent of x",
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Theorem 2'. Let !<^<ra, and let x" be any fixed point in Q" .

Under the assumption stated in Theorem 2, there exist the imbedding

operators

and

with norms not greater than a constant independent of x".

The main parts of Theorem 1 and Theorem V have been essentially

proved already by Il'in Q2]. However his conditions imposed on the

region are somewhat complicated, and his proof is too long, in the author's

opinion.

Here we shall remark on the norm of Besov spaces. Besov £l] in-

troduced the space 5^^"")Cr7l)(Rw) whose norm is given by

(1.9)

where tf/ = 77i,- + r/, 77i/I>0, y,->r,->0; m^ // are integers, and ef= (0, • • - , 1,

..., 0). He showed that this space depends only on (Ti, • • - , o~n\ p, £, and

independent of the choice of m^ • • - , mn\ y"i, . . - 3 jn. Il'in f2] employed

the analogous norm for functions defined in a region Q and proved the

imbedding theorems. The norm of this kind is dependent on the choice

of the coordinate system, furthermore the imbedding theorems are proved

for a region more restricted than that discussed in this paper. On the

other hand, Taibleson Hi 2] showed that

where the right hand side is the space defined at the beginning of this

section (an operator theoretical proof of this identity is given in [JT]).

From our investigation it seems that for a general region Q the norm

given by (1.4) is more natural than that given by (1.9).
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Recently, by means of an operator theoretical method Yoshikawa

E14], E15H discussed the imbedding theorems for the case where @ = Wl.

§2. Interpolation Spaces

We shall reproduce here some theorems concerning mean interpolation

spaces which will be applied later on.

First we shall introduce some notations. Let (M, JUL) be a measure

space and let X be a Banach space. By LP(M, JJL\ X) we denote the

Banach space of all strongly /^-measurable X-valued functions u($) such

that

\IIP
(2.1)

Cp=°°)

is finite. In particular, the space Z^(R+, t 1dt; X} is denoted by Z4(R+;

X\ where R+ is the set of all positive numbers, and the space LP(M, ju; C)

is denoted by LP(M, fi\ or LP(M).

Let X, Y be two Banach spaces continuously imbedded in a Hausdorff

linear topological space S*. Assume that l^/?, g^S00, — °°<ft 97<oo and

that f-?7<0. Then the mean interpolation spaces S(p, f, X\ q, 77, F) is

the space of elements such that

(2.2) f- (~-'^ dt

for some function u(t) of ^>0 with f fM(0€i*(R+; X) and

jL|(R+ ; F). The norm of / is given by

(2.3) inf {maxdl^uCOIUlcH*^), ll*^(OIUi(H-y))},
u

where u ranges over all functions satisfying the identity (2.2). It is

known that

S(p, Aft X; q, ty, Y) = S(p, ft X; q, y, Y)

(cf. Lions-Peetre E^H) with equivalent norms. In the following we shall
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write S(p, 6, X\ p, 6-1, F) by (X, Y)e,p, 0 <(?<!.

Lemma 2.1. (Peetre pLl]) Let (M, #) be a measure space. Assume

that I<*pi,p29 ?^°°3 0<0<1. Then

with equivalent norms, where

(2.4) _L = _in*L+JL
p pi p*

and L(p>^ denotes the Lorentz space (cf. [4], [9], [10]).

Lemma 2.2. (Peetre EllH) Let (Af, /*) te a measure space. Assume

that l<Sp, q^°°- Then

L(p>

^^Y/z continuous injections. And L(-P>P^ = LP with equivalent norms.

Combining these lemmas with the reiteration theorem (Lions-Peetre

, we obtain

Lemma 2.3. Let (M, /O be a measure space and assume that 1<J

with equivalent norms , where p is given by (2.4).

Lemma 2.4. Let J2 be an open set in R% and assume that

1. Then

with continuous injection^ where l/r = (l —

Proof. Let

$
00
Qu(t, x}t~ldt,
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where teu(t,x) € L|(R+ ; L^n~s(^\ te~lu(t, x} £ L|(R+ ; Lq>n's( £)). Then,

for almost every x" in 0", teu(t, x', *")e££(R+; L>(,0'(*")) and te'lu
(t, x', *")€i£(R+; L'(Q'(x"y). Hence, we have

and

This completes the proof of the lemma.

In the next section we shall frequently make use of the following

well known fact:

Lemma 2,3. Let (Mi, ^i), (M^ #2) be two 6-finite measure spaces,

and let K(x, y) be a (jUi X ̂ -measurable function such that

\ \K(x, y)\r{ti(dx)<:Cr
l for almost all y in M2,

JM1

\ \K(x, y)\r/£2(dy)<:Cr2 for almost all x in MI,
J M2

Then the integral operator with kernel K(x, y) is a bounded linear opera-

tor from LP(M2, #2) into Lq(Mi, #1) with norm not greater than C\~rlq

CT
2

lq, where l/r+l/p — l/q = l. In particular', if

ess. sup|K(x,y) \, ess. sup\ |K(x , y) \ jUi(dx\ ess. sup\ |K(x , y) \ jU2(dy)
x,y y JMl x JM2

are finite, then the integral operator with kernel K(x, y) is bounded from

Z/(M2) into Lq(Mi\ where l^joSSgSS00.
Finally we shall prove the following

Lemma 2.6. For every function /6^;|;w_s(^) and for any fixed

point x" in &ff

(2.5)

Proof. Set
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,,
Sj,v(x"

Then by Fatou's lemma we have

Hm F(/, /'),

so that, applying Fatou's lemma again, we obtain

Thus the lemma is proved.

§3. Basic Inequalities

We say that an open set J? satisfies the condition C( TO) if there ex-

ists an Revalued function W(x) such that (a) x + tz + tW(x)€O if x^Q,

0<£<r0 , \z |<^1, and that (b) ¥(x) is bounded and uniformly continuous

in Rw. If J? satisfies the above condition, then, replacing TQ by TQ/y,

¥(x} by y¥*(p(x\ where 7?>1 and \^(A;)^ = I, <p e C o(Rw), the support
J 00

of <^ is sufficiently small, we may assume that ¥e J'00(RW)= f\&m(R*).
m=l

In the following we always assume that J2 satisfies the condition C( TO)

with r(^)G^°°(Rw).
In the following of this section we shall discuss some inequalities,

which, combining with the integral representations given in £5] and

prove the imbedding theorems.

We shall first prove

Lemma 3.1. For f£Lp(@) we define

(3.1) UQ(t,x)

Let l^p<J#<Jcx3 and let l<I?7<Joo. Set A = n/p — s/q. Then:

(i) For every feLp(Q) and 0<t<TQ

(3.2) ||Z70(*, *)|U.:.-



270 TOSINOBU MURAMATU

where C is a constant independent of f and t,

(ii) For every feLp(Q) and 0<T<TQ

(3.3)

tf l£S?£S<7 and either one of the conditions (a) Z>^ 3 or (b)

73 ZSrr/l is satisfied. Here C is a constant independent of f and T.

Also, for every feLp(®} and 0<T<TQ

rcT Jt i1

(3.4) sup \ ||£/ofo^'lll.<«'(orT-^//eRn-s L _ J O t J

if ZSj/l. and if either one of the conditions (a) Z > ^ ? (b)

jD<^5 (c) 5<7X, Kp^^^00, or (d) 97=00 /s satisfied.

(Hi) For every f€Lp(S) and 0<T<TQ

(3.5) sup

//" l^S^q, f^^3 0<(J<A;5 Z — (T — /iS^O, a»J (/" ef^er owe of the conditions

(a) Z-ff — J>0, (b) Kp<q<,°°, p<,y, (c) K^^oo, 5<7i, or (d)

97 = 00 is satisfied. Here C is a constant independent of f and T, and

= min(j, 1).

Proof, (i) Defining f to vanish outside J2, we have

bB" JbB'

where b = sup\¥(x)\ +1. Thus for any ^/x in Rn

X

\\UQ(t, x', 3/

bB' J
in virtue of Holder's inequality. Combining this with the inequality

\f(x'+tzf, x" + tz"}\pdz'^t-sg(x" + tz")t!,
fbBf
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where g(u")=\\f(u', u")IU*(fl'(«"»> we have

~\QIP
\f(x' + tz',x" + tz")\pdz'\ dx'

bB/ _J

\f(x' + tz', x" + tz"}\t'dx'dz'
'bB

which gives

(3.6) \U0(t, «)|U.(fl'{0)^(o/6')1-1'*+1"«"«-"*( g(x" + tz")dz".
j bB"

The desired inequality (3.2) now follows from this and Holder's inequality.

The cases (a) and (d) in (ii) and in (iii) are immediate consequence

of (i). Therefore it is sufficient to prove the other cases. We may

assume that l = k or l = A + ff.

We shall prove first (3.4). Consider the case (b). Let fzL^

Then there exist functions v(t, #) and w(t, x} such that

, x} a.e. ̂ ,

where

Clearly by (3.3) we have

which gives

(3.4')

and (3.4) follows from this, since LpCL(i>'r/'> if p<
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Next consider the case (c). It follows from (3.6) that for every

g(X" + t*")<**"IUjc
")bB'

K(\u"\/t}{\uff\(n-
)btB» V' ( / M' '

where g(u//}=\\f(u/, i^OIU^'Cw")) and K(t) = t(-n~~s^1~llp\ Noting that

r-

) \u"\ib

when u

we have (3.4) with the help of Lemma 2.5.

Proof of (3.3). Let l<p<q<°o. Setting z*(£, x} = {tkUQ(t, x}}^

for 0<^^!T, u(<f ? %) = 0 otherwise, the left hand side of (3.3) is equal to

(+ ^dt
u(t, x)

Jo t

Take, ^, qi, qi and 1C so that

1 _ 1-6

Then we have from (3.4)

\\t"0*u(t9
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Since (L^IS'"-S(S), Lq^'n-s(Q)}e.q,sdLqls>n-s(Gl\ we obtain

which is the desired inequalities (3.3).

Proof of part (iii). By Lemma 2.5 we can easily see that the in-

tegral operator with the kernel

is bounded and linear from iJ^(R+) into L%*''*-*(Rn), where 0<(T<A;5

£<J^. Thus (3.5) is a consequence of (3.4) and Jessen's inequality (gen-

eralized Minkowski inequality). This completes the lemma.

Next consider the analogous inequalities for functions belonging to a

Besov space:

Lemma 3.2. Let & be an open set in RW
3 and assume that ¥(x) is

bounded and continuous. For every function /G 5J;|(J2)3 0<r</, 0<(2/

— !><r0, we define

+ t¥(x)\\ dzdw.

Let l^p^q^00, l^f, 7^°°, 0<ff<k. Set l — n/p — s/q. Then:

(i) For any /6 5J;^(fl) awrf 0<(2y-l>< T0

(3.8)
25

C zs a constant independent of f and t, and



274 TOSINOBU MURAMATU

(ii) Assume that Z + r-Jl^O. For every f€BT
p\{(Q) and 0<

« T
oU\Uj(t, a;)t'i|iI!.

where C is a constant independent of f and T, if I — /l + r>0 or if £<y.

And

1/r
(3.10)

where C is a constant independent of f and T, if r<Jg and if either one

of the conditions (a) Z + r>A, (b) f<J<7<°o, p<q, r<q, or (c) f<]r is

satisfied.

(iii) For any /€ B;^(

(3.H)

where C is a constant independent of f and T5 //" r^^, I + r^>0~ + A, g^y

or if l + r>a+L

Proof. Denoting the characteristic function of J2 by e(^), we find

that the function Uj(t, x} is not greater than

)2B

where

and hence we get

\\Uj(t, x)\\

dzdw,
\>f /

JbB J>t
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From (3.2) it follows that

bB

Therefore we obtain the first inequality in (3.8), which implies the second

inequality in virtue of Holder's inequality,

(ii) Proof of (3.9). We may consider only the case where $^y and

l + r = L From (3.8) it follows that

\\Uj(t, x)tl\\Lt.n-w^Ct-r\ Fj(tz}dz,
J 2B

( 1 u | /i)"+T | u | -TF/u) | u \ -"du.
j2tB

Applying Lemma 2.5 to the last integral transformation, we obtain (3.9).

Assume that jD<g<oo and l + r = L Note the

where u(t, x) is the function which is equal to { t l U j ( t , x}}r for 0<i^r

and vanishes otherwise. Set 0 = l—rp/q and tc=—s/p, where rp = max

(JD, r). From (3.9) we obtain

where rC = max(£, r), and

Hence ^6 (Lp;n~s\S\ i°°(fl))(?fg- CL(qlr'^n~s(^\ in view of Lemma 2.4,

and we can conclude that

(3.10*)

If £<>q, this implies (3.10), since L(q>

When £<>, (3.10) is verified by (3.9) and Jessen's inequality.
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(iii) We may assume that l + T = (T+/1, r<Ly. From the fact stated

in the proof of Lemma 3.1 (iii) it follows that

t

Q o £ J

Hi

This combined with (3.9) gives (3.11), and the lemma is established.

By &J~(@) we denote the space of all functions which have bounded

and uniformly Lipschitz continuous derivatives up to order /—I .

From the preceding lemmas we obtain

Lemma 3.3. Let £ be an open set in IT, and let K(x9 z} G 0*-(R*

xR"), supp KCWxB. Assume that l<^p<*q<*°°, 1< ,̂ T7SS00, 0<r<;,

0<(T<i. Set A = n/p — s/q.

For any function /G Cx(^) and 0<t<TQ we define

(3.12)

Then:
(A) (i) For any f£.Lp(Q)r\C\ti} and 0<t<T0

(3.13)

(3.14)

where C is a constant independent of f and t.

(ii) There is a constant C such that for any f eLp(fi)^Cl(fi) and

o<r<r0

(3.15)
o

o^g o/ ^ condition (a) />/l, or (b)

satisfied.

(iii) Tferg ^"5 a constant C such that for any f ^Lp(^r\Cl(Q} and

o<r<r0
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(3.16)

if t7 + ^<^Z, and if either one of the conditons (a) (T+A<Z, (b)

SS°°3jp£S^5 (c) Kp^y^^0, s<n, or (d) 77 = 00 zs satisfied.

(B) Under the additional assumption that

*(*,*)= S D«Ha(x,z\
\a\ = j-l

where D®Ha(x, 2)6 ^~(E.n xRw) /or cwy a wtfA a\=j — 1

supp

for any \a\=j—l, there is a constant C such that for every

ncy(j2) fl«rf o < ^ < r (or o<r<r0)
0)

(3.17) \\v(t, *

(3.18)

(ii)

(3.19)

(/" Z + r^>A fl^J ^/ either one of the conditions (a) Z + r>/l, (b) f<

, or (c) f=l /5 satisfied, and

(3.20)

(a) Z + r — (T— ̂ >0, or (b) Z + r — <T — /i;>0, f ̂ ^ is satisfied.

Proof. Note that

(see proof of Q7] Lemma 2.6), then the assertions follow from Lemma

3.1 and Lemma 3.2,
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Proof of Theorem 1 and Theorem 2. To prove Theorem 1 it is

enough to show that the inequalities (1.5) and (1.6) hold for every /£

r^(£)nC°°(£). From Lemma 2.1 in [5J it follows that for any /£

Cm(ti) and |/9 |

which gives the desired inequalities with the aid of Lemma 3.3 (A).

In the same way Theorem 2 is verified by Lemma 3.3 (B) and the

integral representation (2.1') in

Appendix A

Let $(t\ t E R+
3 be a convex non-decreasing, positive function such

that 0(0/J->0 as t-^0 and that ®(t)/t->+°° as £->+oo. By i*(J3) we

write the space of measurable functions /(#) such that there is /l>0 with

With respect to the norm

is a Banach space, and is called a Orlicz space.

As a supplement to the imbedding theorem, we have the following

theorem concerning the limiting case.

Theorem A9 The imbedding operator

exists if t = n/p, where

Proof. Let Q^p- It follows from our proof of Theorem 2 that
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where X = n/p — n/q, 0< T< T0/3? and where Ci, £2 are constant in-

dependent of jf, T, and q. Take a fixed 7\ < To/S, and put

Then we have,

^S^^^)1^^ if

(take T=(B/qAYln)

BT-^ if

(take r=Ti).

Consequently we obtain

J^P ]\

Therefore

if

4eAA<*l and

This implies that
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which is the desired inequality.

Appendix B

In this appendix we prove a theorem, half of which is contained in

Theorem 1.4 in [7].

Theorem B. Let /*03 /*i>0, IrS^po? pi, <?o3 91^°° and let 0<0<1.

Set

1 1 — 0 , 0 1 1 — 0 , 0
pi q

Then, (i) if r^>p and r^

00 if r^

All injections above are continuous.

The theorem is proved in virtue of the following lemmas.

Lemma B.I.

(a)

(b)
Proof. Set A = ra(n+l. Define the linear operator

by

L{fa}=
l « l=m o

where

Ka(x, *) = -
77l(77Z+l) ,7|i2\ r
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It follows from Lemma 3.3 that L is bounded. Also with the aid of

Lemma 2.1 corollary in Q7] we have

for every /G

Applying the interpolation theorem, we see

L:({L*«(Q)}\ {

is bounded. Combining this with

(L^,L

and that

for every f£ W™(@\ we have part (a). Part (b) can be proved similarly.

Let (My /*) be a measure space, and let p(x) be a non-negative meas-

urable function. By LP>P(M; X) we denote the Banach space of functions

/ such that pf € L\M\ X\

Lemma B.2. Let JT0, X\ be two Banach spaces contained in a

Hausdorff linear topological space, and let l<J#o5 ?i5 p^°°, 0<0<1. Set

•j -j _ n f\

- ~ - + - 3 Xff p = (XQ,
q qo qi

where p05 Pi be non-negative measurable functions,

(i) If p<zq, then

with continuous injection.

(ii) // (M, /JL) is 6-finite and if q<^p, q< +°o, then

with continuous injection.
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Proof. First we note that

(Fo, Yl)e,p=S(pQ, 6, r0;/>i, 0-1,

where l/p = (l-0)/p0 + 6/pl (Peetre [12]).

(i) Since p^=q, we can choose po^qo, pi^qi- Let

where

By a lemma due to Lions-Peetre [J3T\

So that, in view of Holder's inequality and Jessen's inequality,

X

which implies part (i).

Proof of part (ii). It is sufficient to show that for any simple

valued function f there exists u(t, x) such that
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Let

where av E X0,p, and {0y} are characteristic functions of measurable., dis-

joint sets. By definition for any c>l we can find uv(t) such that

/ .\ dt
)o t

with

Then

where

has the required property.

Lemma B.3. (a generalization of the commutativity theorem due to

Grisvard). Let X0? XL, F0, FiC^ ^ Banach spaces.

(i) As5^m^ £/z#£ ^ere exists a linear operator E from 3C into

L}OC(R+;^) such that E is continuous from Si into W^ (&' = 0, 1) and

PEf=f for every /€ 50+ 5i, where

Jo t
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where X = (l

(ii) Assume that there exists a linear operator J from «£P0 + &\

& such that ] is continuous from £?i into Si (z = 0, 1), and Ju=f if u(t)

=f a.e.£. Here

if p^q>
Proof, (i) From the interpolation theorem it follows that E is con-

tinuous from (S0, Si)fffp into (W^ W\)Q>p. In view of Lemma B.2.(i) we

see

(r0, Wl)e,pCL^(^',Xe,P)r\L^-l\^^ Ye>P\

Therefore, PE is a continuous injection from (50, Si)gtp into S#.

(ii) By interpolation we see that / maps continuously (^f05 ^i)e,p

into (S0, Si)e,p* It follows from Lemma B.2. (ii) that / is a bounded

linear operator from

into (50, SI)O,PI so that we have (ii). This completes the lemma.

Proof of the theorem. Part (i). Combining Lemma B.I, Lemma B.3.(ii)

and Lemma 4.3 in Q7] (this lemma is still valid if we replace W™ by B™>00\

we have

where jUi=o~im (i = 03 1), /i=0"m.

Part (ii).

In view of Lemma B.3.(i)3 Lemma 4.2 in £7] and the fact that
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(apply the interpolation theorem to the operator /->Da/), we see that

0,
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