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Initial-Boundary Value Problems for First
Order Hyperbolic Systems

By

Kunihiko KAJITANI*

§ 1. Introduction

In this paper we shall obtain energy inequalities and existence theorem

of the solutions to hyperbolic mixed problems with constant coefficients.

Let us consider the following mixed problems in a quarter space:

(1-1)

where

d
dt

Bu

n

n

A and B j ( j = I , . - - , n} are NxN constant matrices and C(x, y) is

sufficiently smooth, and B is I X N matrix.

Moreover assumptions on (L, B) are as the followings:

A.I) L is strictly hyperbolic, that is, A£ + 2] Bflj has real distinct

eigen values for fGR 1 , ^ = (^ i , - - - , 77W)6RW , (f, ??)^0, and A is non

singular.

A.II) The multiplicity of the real eigen values of A~l(6+^Bji]j) is

not greater than two for (TGR1, ^ER W , (ff, ^)^0.

Put M(r, ^) = ^"1(r + fE5^)J Rer>0,^6Rw . We denote by £_(r, 17)
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the span of all the ordinary and generalized eigen vectors of 7kf(r, 77)

corresponding to it's eigen values with negative real parts. Hyperbolicity

of L implies that dim£'_(r5 9?) is constant for Re r>0, 9?£ER W and it is

equal to the number of negative eigenvalues of A. Let r /r, 9?)(j = !,...,&)

be basis of ^-(r, y\ where k = dim ^-(r, 97), and £T(r, ^)=(ri, . .- , r#) is

Nxk matrix. Then I X k matrix B-H(i:, 77) varies continuously in Re r

^0, 776 RK , (r , 77)^0.

A.III) 5 satisfies the uniform Lopatinski's condition, that is, l = k and

det (#'#(r, 77)) is not zero for Re r^O, 77 ER", (r, ^)=^0.

Denote a definition domain of L by @(L}= {u, Lu^L2(W^l\ Bu\x=Q

-0}.

Our main results are the following:

Theorem 1.1. There exist positive constant JUQ and c such that, for

any r with Re r>/^0(f — L) is a one to one and onto map from &(L) to

Z2(R++1) and for any positive integer m holds

(1.2) IKr-D

Theorem 1.2e For any f(t) in g\(L2(Wl+l^ and -- f ( t ) ( j =1,
c/y

in Hl(Rn
+

+l)r\®(L), there

exists a unique solution of (1.1) which is in ^

that

(1.3)

for ^€[0, T], u;tere ||- 1 1 ( 1 1 • Hi) « « wrm o/ ^(R

§ 2. Stationary Problems

In this section we shall show the existence of the resolvent for the

1) f(t}^$p
t(E} means that f ( t ) is p times continuously differentiate with values in
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operator L. Let LQ denote the principal part of L and ^(LQ) it's defini-

tion domain. It is noted that &(LQ) is equal to

Lemma 2.1. Under A.I), A.II) and A.III), there exists a positive

constant d depending only on LQ such that

(2.1) ||(r-L0)M||^Rer|W|

for all u e#1(R++1) and for r, Re r>0.

Proofs of Lemma 3.1 may be founded in ([8], [9], [15], [16]). It

should be remarked that the condition A.II can be removed for L0 with

real constant coefficients. (Cf. [16]. [9].)

Lemma 2.2 (Hersh [6]). Suppose A.I) and A.III). Then the image

(r — L0)@(LQ) is dense in L2(Rn
+

+l) for any complex number r with Rer

>0.

This is the special case of R. Hersh [6]. In fact he proved this

lemma under the conditions which are the hyperbolicity on LQ (not

necessarily strictly) and det (B-H(r, ??))^0 for (r, ??) with Re r>0.

Lemma 2.1, 2.2 and 2.5 imply immediately the following

Lemma 2.3. Suppose A.I), A.II) and A. III). Then the operator

(r — LQ) applies one to one and onto from &(L0) to L2(R++1) for Re r>0.

Next we consider the operator L. Noting L = jL0 + C, we have

Lemma 2.4. Suppose A.I), A.II) and A.III). Then the operator L

applies one to one and onto from Q?(lu) to I>2(R+4"1) for any r with Rer

and satisfies

(2.2) !l(r-£

for all u G &(L) and Rer > /?, where d and /5 are positive constants in-

dependent of r.

Proof. It follows from (2.1) that
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Therefore, 0=^sup\C(x, y)\/d implies (2.2). Next we must prove that

(r — L)@(L) is dense in L2(R+Tl). If it is not so, there exists v=£Q in

L2(R*+1) such that

(2.3) ((r-LX w) = 0

for all u€^(L), where ( , ) is the inner product of i^R"4"1)- Noting

^(L) = ^(Z,0), by Lemma 2.3 we have u€@(L) such that

(r — L0)u — v.

This, (2.3) and (2.1) imply

(2.4) \\v\\2 = (Cu, tO

When Re r>#, (2.4) contradicts v=£0. Q.E.D.

Remark. When a positive constant d in Lemma 2.4 is larger than

one, we have

for Rer>/9

which implies immediately Theorem 2.1. But in general we can not ex-

pect so.

Put v—(r — L)~lg (Rer>/9). We need a lemma to verify the

regurality of v.

Lemma 2.5 (Lax-Phillips QlO]). The definition domain &(L) is

identified with the graph norm closure of

DL={u€Hl(Rn
+

+1); Bu , = 0}

Lemma 2.6. When g belongs to Hl(Rl+l) and @(L\ v = (r-L}~lg

is in -H"1(R"+1) and satisfies

(2.5) IH
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where c(Re r) depends only on Re r and L.

Proof. From (2.2) we have

(2.6)

Further the fact that g in 3(V) and the relation rv= (r — L)~lrg= (r —

L^Lg+g imply that

(2.7)

If we can prove that — — i;(/c = l , - - - , n,) are in @(L\ our assertion will be
dyk

proved. In fact, since v satisfies the equation

- v satisfies

A ^v r ,
r — A —-— 2^Bj-= j-^r v = (-^ C )'V+-= g

dx djj ) dyk \ dyk / 9j^

in distribution sense. If — v belongs to ^(£), we have

dy> ~)^ 9yk «'

which implies

(2.9)
dyk ®yk -g )

Noting that A is non singular, we can obtain (2.5) from (2.7), (2.8) and

(2.9).

We prove that — v (k=l,---, n) are in ^(Z/). Let p(y) be any
vyn

infinitely differential non negative function with compact support and total

mass one;
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The function pe(y) and v£ are defined for positive e, as

and

v£ = p£*v=\ nPe(y — y')v(x, y'}dy'

respectively.

According to Lemma 2.5, it is easily seen that -= — v£ is in the pre-
9yk

domain DL for e>0. From (2.8) we obtain the following relation

(2.10) (r-L)-v£=feps*- 9yk

where f£ = C{ p£*-^—v) — p £ * ( C - — v }. which, as well known, belongsJ \ dyk / \ 9yk /

to £2(R^+1) and satisfies

and

limf£ = Q in

From (2.10) and (2.2) it follows that

9 9
=; Ve —-^—

which right side tends to zero limiting e, e'—>0. Hence s——ve > is Cauchy
(ayk )

sequence and has a limit (e—>0) which is in L2(R++1). It is obvious that

the limit is equal to -^—v. And also from (2.10) it follows that L(-~—

v£ J tends to L(-^—V\ in L2(R++1) for e->0. This shows that 9 -v
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belongs to &(L).

Corollary. When g is in S(R++1), v = (i:-L)-lg belongs to Hs(Wl
+^1}

and satisfies

(2.12) IHI,^c(Rer,5)| |£|U

for any positive integer s, where ^(R++1) consists of infinitely differ entiable

functions with compact support.

Now we consider a lemma needed later on. Let us put r = ju + iff

(/*, ff real) and y(r) = (r — L)~l g. Then we have

Lemma 2.7. Suppose A.I), A.II) and A.III), then there exists a

positive constant c(#) depending only on ju and L such that

(2.13)

(2.14)

for all geH\Rn
+

+l)n&(L) and /*>/?, where

and t;(r, 0, y) means a trace of v(r).

The proofs of Lemma 2.7 can be seen in Q8] and H16J. When g is

in ^(R++1), from (2.13) we have, by the same way as the proof of the

corollary of Lemma 2.6,

Corollary. When g is in ^(R++1), it holds that

/or <z;ry positive integer s.

We define the operator St(t>Q) for g-<E^(R++1) as

(2.15) Stg=

The finiteness of the right side of (2.15) is assured by (2.13). In fact,

considering — — \ e r t ' C ~ 1 d f f = l , we can write
Zn J-oo
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(2.16) stg=g+-

from which we can estimate roughly by (2.13),

(2.17) IIS^II^Igll + cWHLgll

Further it should be remarked that Stg is independent of #. In fact we

can easily see that #(r) — (r — L}~1 g is an analytic function of r, consider-

ing the estimate (2.6).

In the estimate (2.17) we can remove the term ||Lg|| from the right

side, that is,

Lemma 2.8. Suppose A.I), A.II) and A.III). There exist positive

constants c and JUQ such that

(2.18) \\Stg\\^ce^\\g\\ (00)

for all g-e^CRr1)-
The proof of Lemma 2.8 will be given in the next section.

Now we can show that Theorem 1.1 follows from Lemma 2.8.

Proof of Theorem 1.1. Let A be a complex number with Re

Then we can show

(2.19) (l-L)-ig

In fact, according to (2.13) and (2.16), we obtain by Fubini's theorem,

where -c = ju + io~ (/^0</^<Re /I). Considering that (r — L)~lg is analytic

in r with Re r>/*0, we obtain the relation (2.19). Then m times differ-

entiation of (2.19) with respect to ^ leads us to a relation

from which we can derive by using (2.18)
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for Re A >/*<,• This shows (1.2) because ^(R^+1) is dense in Z,2(R*+1).

The proof is complete.

§ 3. Energy Inequality

In this section we shall derive an energy inequality of the mixed

problem (1.1) with /(i) = 0, and using it we shall prove Lemma 2.8 sta-

ted in the previous section. We should point out that the method of proof

given here may be related to the results of £5].

We now consider a preliminary lemma well known, which proof is

seen in F4]].

Lemma 3.1. Suppose that a(f, ff) — A^-\- 2 Btfj has only real and
j=i

distinct eigenvalues for all real (?, y) =^=0. Then there exists a matrix T*(<?,

TJ) having following properties.

1) 7"(f 5 v) is a hermitian positive definite matrix with homogeneous

of degree zero for all real (f , ^)=^=0.

2) /(?, ^)«(? 3 ^) *s hermitian.

3) 7*(?j 0) z's « constant hermitian matrix ( = fo)'

4) /(A, 7^) /s <2^ analytic function matrix of I in the strip

where e fs « positive constant, (<?, ^) = (f, ^i,..., ^w) «/?J |^| — (^f H ----- H^)2.

We define a singular integral operator R as

(3.1) R<p=r*9=\KnJ(x-x', y-yW*', y'^dx'dy'

for ^ E ̂ (Rw+1), where f (A;, y) stands for a inverse Fourier image of

7(^5 17). It follows from 1) of Lemma 3.1 that R is a symmetric positive

operator, that is,

(3.2) (R<p, p)^|MI2

for ^6jL2(Rw+1), where <? is a positive constant.

Let <p be in #1(R++1)nC1(R++1) and ^ denote an extension of (p

which is equal to zero in #<0, that is,
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I (p(x, y) for x>§

0 for *<0.

We decompose r(£, ?) = r(£, 0) + r(f, ?)-r(£, 0) = ro + ri(f, ?)• Then it

follows from Lemma 3.1 that TO is constant and that fi(f, fj) has an

estimate

(3.3)

for £=^0, ^^O. Let RI be a singular integral operator with it's symbol

J ^)- Then we have

Lemma 3.2. 77&e following relation holds

(3.4)

/or «wjy ^9, 0 m /f1(R"t1), w/zere ( , ) means the inner product of

L2(R!t+1)

. When «? belongs to ^(R^1), it follows from (3.3) that

is in L2(RB+1). In fact we have by virtue of Parseval's equality,

where |(f3 ^) stands for a Fourier image of $(x, y) and ||8 ||i means the

norm of ^T1(R++1). Hence we can regard RI$ as a continuous function

(l?i^)(^) from ( — 00, oo) to L2(RW) and also obtain the relation (3.4)

integrating by part. Moreover noting (JZi0)(#) in ^2(i2(Rn)) for ^

we have

(3.5)

where 0(0, ^) is a Fourier image of 0(0, y) with respect to y. Q. E. D.
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Corollary. We have the following relation

(3.6) (RLu, u) + (Ru, Lu)

= 2Re(RCll, u}-2Re<RlAu,, u>-<r0Au, u>

for any ueHl(W+
+l\ where L=A^-+ Z Bj-^—+C.

dx j=i djj

We now consider the following evolution equation

(3.7)

Then we are to derive an energy inequality for a solution of the equa-

tion (3.7).

Theorem 3.1. Suppose that a solution u (0 of (3.7) belongs to the

pre-domain DL and £}(L2 (R++1)), and further that u(t), -^-u(t) and
C/L

u(t)(j = l,.-.,n) are in L^((09 oo); Ir
2(RJ+1)).1) Then under A.I),

A.II) and A.III) there exists a positive constant c(^0) depending only on

/*o and L such that

for ^6[0, oo).

Proof. Let R be the singular integral operator defined in (3.1).

Then noting R^(t) e#}(L2(Rn
+

+1)\ we have

(3.9)
Jo

from which we can derive by means of the corollary of Lemma 3.2,

(3.10) (Ru(t\ u(t)} = (Rg,

1) £JQ((0, oo); L2(R%+1)) consists of all functions u ( t } such that
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Let us put T = /iQ-}-i6 and define #(r, x, y) and t)(r, f, 77) as

and

respectively. It is noted that hold

r \\vw\\2 dff=
J-oo

and

O

From (3.10) we can estimate

Our purpose is to prove the following inequality

(3.12)

Combining (3.12) with Lemma 2.7 in the previous section, we can prove

our theorem. In fact, v(r) belongs to the definition domain &(L) because

u(t) is in the pre-domain DL and t;(r) is a limit of t;/r) in

such that

Vj(r}=\ e~rtu(t)dt.
Jo

And since v(r} satisfies the equation

by Lemma 2.7 we can estimate

from which and (3.12) we obtain
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This and (3.2) imply (3.8).

We must now prove the inequality (3.12). Considering the represen-

tation (3.5), we have

(3.13)

where

(3.14) F(r, ^

To prove (3.12), we shall show that there exists a positive constant KQ

depending only on jU0 and L such that

(3.15) F(r, * ) l 2 ^ e » ( r , S, ti\2d?+\v(r, 0,

for | f] \ ̂ >KQ, where g(g , ??) is a Fourier image of g(x, j) and D(r, 0, if)

a Fourier image of t;(r, 0, j) with respect to y.

When M<J£OJ we have

and from (3.3) we have obtained by Schwarz's inequality

(3.16)

We turn now to deriving the inequality (3.15). To do so, we con-

sider the representation (3.14) for F(r, ̂ ). According to Lemma 3.1,

7*i(/l, fj) is analytic with respect to A in the strip |Im^|^e|^|, and

z)(r, ^, y) is an analytic function of A in ImA<0 because it is the Fourier

transform of v(t, x, y) which is zero for #<0. Therefore we may shift

the line of integration in (3.14) into the complex plane, that is,

(3.17) F(r, ti = -±-\
ATI Jlm\=-m
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where

Since #(r, x, y) satisfies the differential equation

taking the Fourier transform of it with respect to (x, y), we obtain the

following relation for t)(r, A, -rf)

(3.18) (r-iaGl, ?))3(r, J, ^ = Av(r, 0, ?) + /(r, J, ?) + £(*, ?),

where /(r, A, ̂ ) stands for a Fourier image of C(#, j)^(r, A;, j) with

respect to (#, j) and

(3.19) aU,ti = Al+ZBMj.
J=i

Let us note that there exists a positive constant K.\ such that M(r,

7]) = A~~l(t: — iJ^Bj-rjj) has distinct eigenvalues for |r|i^Ki|^|. Because it

follows from the condition A.I) that eigenvalues of A are distinct. To

estimate t)(r, A, ̂ ) on Im/l=— TTI by use of the relation (3.18), we must

give two different arguments when | r | ̂ Ki y and | r | ̂ >Ki \ 7] \ .

To estimate z)(r, A, iy) for r l rS^ I^ I , we shall need the following

lemma (cf. K.O. Friedrichs and P.D. Lax Q5], Lemma 4.1);

(3.20)

Lemma 383. Suppose that r | fS KI \ TJ \ . T/z^w ^^r^ exists a m =

in the range

(32n Ifr-iaa wYr1^ COnst
^O.£-Ly \\^ iUs\/{) 'I))i y fc i/^v."-? '/// =^ i 2 I

/or «// A with Im A = m(iq}.

Proof. Using (3.19) and the assumed fact that A is non singular,

we can write



INITIAL-BOUNDARY VALUE PROBLEMS 195

which shows that (r — ia(A, ??)) is invertible for |r <^iM and |A| 2>

\\A~l (K^ZlBj )\i\=K2\v\ and | (r-ia(^ ^Tl I ̂ r^- Next
Z I A |

we shall verify (3.21) for | A | <J?2 M • Since (3.20) and (3.21) are ho-

mogeneous, we can normalize so that |^|=1. Let F denote the set

of A with — e ^ I m A f S — e/2 and |Re A <^2. To each (r0, ^0) with

| ro |2+Uo|22S£i + l the number of the root /I of (r0-m(^ tfo)) = 0 which

belongs to jT is at most Z. Since the roots ^/(r, 97) of (r — ia(A, y)}=Q

vary continuously, for (r, -rf) in a sufficiently small neighbourhood F(r0,

^7o) of (r0, tfo) with | r 0 | 2 + | ? 7 o 2^^i + l, it holds that

(3.22) U/r, 7)-*/r0, 7o)l^-gy • y (/ = 1,-, 0-

Let /"'(^"oj ^o) be the set of A = g — im with B/2^m^s which differs from

any root Ay(r0 j ^0) (; = l , - - - 5 0 at least by — — --|-. From (4.22) it follows
«j& Z

that for (r, ??)6 F(r0, T?O) and for A€r(r 0 , 17 0) (r — ia(/l, T?))"1 is bounded.

Since the set (r, 57) with | r |2+ \fl\2^K\ + l is compact, it can be covered

by finite open sets V. Hence the statement of Lemma 3.3 holds for any

(r, 77) with | r | <.]&! 1 77 1 . Q. E. D.

Solving (3.18) for D(r, A. ??), we can write

(3.23) t<r, A, 7) = (r-»-oa ii)Yl{Av(r, 0, r/)+/(r,

and from (3.21) we obtain the estimate

(3.24) |D(r, A,7)|<-fT-{Kr, 0, 7)| + |/(r, A, 77)

Using this and (3.3) to estimate the integrand in (3.17), we can obtain

Uw. 0, 77) | + |/(r, A, 7)| +

(r, 0, ̂ l^ + d/Cr, A,

Integrating this with respect to 0", we get
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(3.25)

^We next estimate F(r, 77) for M^KiM- Then M(-c, y} =

j) having distinct eigenvalues, we have the expression as

(3.26) (i:-ia(t, tf))~1 = A

= , M/r,
j=i ik — kj(r, 77)

for |r];>£i 77!, where /l;-(r, ij)(j = !,••- , JV) are eigenvalues of M(r, 77)

and M/(r, 77) are matrices homogeneous of degree zero in (r, ?;). Let real

parts of A/(Y, ?;) and it's imaginary parts denote by v/r, 77) and C/(V, 77)

respectively. Then we need a lemma to estimate (3.26).

Lemma 3.4. Suppose that r | ̂ > KI 1 77 1 and \^\^K^ where KQ is

a sufficiently large constant. Then there exist positive constants c(/*0) and

d which are depending only on X = Rer) and L suc^

(3.27)

(3.28) d
dff

r, 77)

Proof. For |r|^iTi|^| ^-(r, 97) (/ — I , - - - , TV") are analytic functions

of (r, 77). Hence we can write

(3.29) v/r, 10-v/r, °) =

ri
= \

JQ

Let ay (y — I , - - - , TV) be eigenvalues of A. Then noting that A/(r, 0) —

ajxr and that a/ (/ = 1,-.., TV") are real, we have v/(r, O)^^""1^. Since

—jr - Vy(r, #77) are homogeneous of order zero, they are uniformly bounded

for |r ^>Ki\y\ and M2>£0. Thus the relation (3.29) implies (3.27).
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Since — — C*(jj ff) are differentiable in ??, we can write

(3.30) CXr, , ) - ( r , 0) =

Noting that -=—C/(r, O^a,-1 and that -—( —— C/(r, ^v) ) are homo-
O'tT /T)«VI- \ /nJ/T J ' ' I

geneous of degree minus one, we can get

9 ( d „ ,(3.31)

for | r | ̂ >K21 7] | and | rj \ ̂ >K0, where K0 is a sufficiently large positive

constant. Thus (3.30) and (3.31) imply (3.28). Q. E. D.

Further, let us note that considering (3.20) and (3.27) we get

(3.32) | m(if) — v/(r, fj) \ >8i \ y \

^or r I ^^i ^ and 17] | ̂ >K0, where Si is independent of ff and y.

From (3.23) and (3.26) we obtain the estimate

and from (3.3) we have by Schwarz's inequality

(3-34) |F2(r, 7 ) l 2 ^ c | 0 ( r , A, ^

Moreover, from (3.27) and (3.32) we can derive the following

(3.35) J M / A )T2^\
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for }ti\^K0, and considering (3.28) we obtain by a change of the variable

of integration

(3-36) Jina^i,! ~R-A/r, ri\2~

dfff
JM - v/r,

for |

Using (3.35) and (3.36), we can derive from (3.33) and (3.34) the

following

(3.37)

Considering

and

we can derive (3.15) from (3.25) and (3.37). Integration of (3.15) with

respect to 97 and (3.16) imply our main inequality (3.12). This completes

the proof of Theorem 3.1.

We can prove Lemma 2.8. If we can prove that Stg is a solution

of (3.7) which satisfies the condition of Theorem 3.1, the lemma will be

proved. We state as the followings:

Lemma 3.4. Let g be in ^(R++1). Then Stg satisfies the following

properties

1) Stg is in &(L) for £>0 and satisfies
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-j-Stg=StLg=LStgdt

2) lim Stg=g in L2(R+Tl).

Proof. We can write

(2.16) stg=g+—(~ r-lert(
2iTC J-oc,

Let us put

which clearly is in @(L) because (r — L) lLg belongs to the pre-domain

DL by virtue of the corollary of Lemma 2.6. Noting that L(t — L)~lLg

— (r — L)~lL2g, we have

1 f^ e1* _i 2

which converges in Z2(R++1) limiting JD->OO by virtue of Lemma 2.8.

This implies that S^g in &(L) and that the following relation holds.

(3.38) LStg--

= StLg.

Noting that the residue calculus gives

we can write

StS=g+tLg+ -
Cj

which right side belongs to <f J(L2(R++1)), hence we obtain

= S,Lg,

which and (3.38) give the property 1). We prove 2). It follows from
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Lemma 3.7 that the second term in the right side of (2.16) is in <f ?(R+ f l)3

hence it holds

which integration is independent of Re r because (-c — L)'lLg is analytic in

r. And considering Lemma 3.7, we can have

-oo r

which gives the property 2). Q. E. D.

Proof of Lemma 2.8. Put u(l) = Stg. From Lemma 3.4 it follows

that u(t) and it's derivative in t are in ^?(L2(R++1)) and LJ((0, oo); I2

(R++1)) and that u(t) is a solution of (3.7). Therefore it is sufficient to

prove that u(t) is in the pre-domain DL and — — u(t) (j = l , - . - 3 TI) in

Since g is in ^(R++1)3 from the corollary of Lemma 2.6 it is seen

that v(r) = (r — L)~lg is in the pre-domain DL, and further noting that

Lg is also in ^(R^+1), we can see that Lv(-c) = (-c — L)~lLg is in the

pre-domain DL and from the corollary of Lemma 2.7 we obtain the esti-

mate

(3.39) P \\LvM\\*dfi^c(ti,s)\\Lg\\*
J —00

for any positive integer 5 and /£ — Rer>/9. From the expression (2.16)

anb (3.39) we can derive, by Schwarz's inequality,

(3-39) \\

for any positive integer s and for /*>/?. Hence by Sobolev's lemma we

can see that u(t) is a C°°-function of (:*;, j) in R++1, and also u(t) is in

the pre-domain DL. It is clearly seen that ——u(t) ( / = , • • • , n) are in
djj

£J0((0, oo); L2(R*+1)) for /^O>A. Thus the proof of Lemma 2.8 is

complete.
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§ 4. Existence Theorem

In this section we shall prove Theorem 1.2. To do so we use Hille-

Yosida thorem.

Theorem 4.1 (Hille-Yosida). Suppose that the operator L satisfies

(1.2), then there exists a unique semi group Tt having L as the infinitesimal

generator.

Remark. It is easily seen that the semi group Tt assured by Theorem

4.1 can be identified with 5; defined in the section 2.

Applying Theorem 4.1 to the following equation

(4.D

we have

Theorem 4.2. Suppose (1.2). Then for given f(t) such that f(t)

and Lf(t) are in <f?(L2(R++1)) and for initial value g in &(L)9 the

unique solution of the equation (4.1) in £}(L2(Wl+l)) and &(L) exists and

is given by

(4.2)

Moreover the following energy inequality holds

(4.3) ||

By the above theorem we obtained the solution belonging to

(R++1)) and &(V) under the restriction such that f(t) is in <^J(^(Z,)) and

g in @(L). Moreover, when g is in ^(L)O^T1(R++1) and f(t\ f (t) and

-^—f(0(/ — 1 5 - - - 3 ^) are in ^9(L2(R+4"1))5 we can obtain the solution inJ o - , . « / x x x J •* ' x lx x '''

Suppose that f(t) is in <f J(^2(R++1))- Then the differentiation of the

expression (4.2) with respect to t leads us to
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which gives

(4.4) ||:

We can remove the restriction in the argument of Theorem 4.2 such that

f(t) in 0(L) and Lf(t) in <f°(L2(Rt+1))5 using the estimate (4.4), that

is

Lemma 4.1. // /(*) is <?}(L2(Rn
+

+l^ and g in 9(L\ then there

exists a unique solution of (4.1) belonging to <f J(Z2(R++1)) and @(L\ and

satisfies (4.4).

Proof. For given f(t) £^J(L2(R+"I~1), we can choose the sequence of

functions {fn(t)} such that

1) fn(t) and Lfn(t) are in <f J(L2(R++1))

2) il/w(0)-/(0)|| and ^\\fn(*)-f(s)\\ds tend to zero

when TI->OO.

Let z^»(0 be the solution of (4.1) for data (/M(03 g1)- Then from

(4.3) and (4.4) we have

max \\Ufi\S) — Ufli\.s)\\ ~\~ max \\ut}(s) — ^»n\<s/

Therefore {un(t}} converges and the limit u(t) is in £}(L2(RH++l)) and

satisfies (4.1) and (4.4). It follows clearly from (4.3) that the solution

which we have constructed is the unique solution of (4.1).

Proof of Theorem 1.2. Let u(t) be a solution obtained by Theorem

4.2. Put

It is obvious that ̂ -u£(t)(j = 1,..., n) are in <?}
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C\3f(V) and satisfy

d
dt

d
M,6Awy cfr

0yy ajy °

where /e(0 —Pe*/(0? ge — Pf*^"- Hence from (4.3) it follows

(4.5) - U e ( f )
dyj

dt

Hence < — — i*£(0 f is Cauchy sequence in <f J(L2(R++1)) and it's limit is
( v yj )

dequal to — — u(f). Limiting e— >Q in (4.5). we obtain

(4.6) d
dyj

•u(t)
dyj /CO

for y = l, 2,..., 7i. The fact that u(t) is a solution of (4.1) and (4.4)

imply (1.3). This completes the proof of Theorem 1.2.
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