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Initial-Boundary Value Problems for First
Order Hyperbolic Systems

By

Kunihiko KajiTant*

§ 1. Introduction

In this paper we shall obtain energy inequalities and existence theorem
of the solutions to hyperbolic mixed problems with constant coefficients.

Let us consider the following mixed problems in a quarter space:

—gt—u(t):L[u(t)]—l—f(t) in ¢>0, x>0, y €R”

(1.1) u,!=0=g in x>0, yeR"
Bu|,_¢=0 in t>0, yeR",
where
L=a% 4 3 B0 4, 5)
ax = J a}f] 3 b

A and Bj(j=1,..., n) are NxN constant matrices and C(x, y) is
sufficiently smooth, and B is [ X N matrix.

Moreover assumptions on (L, B) are as the followings:

A L is strictly hyperbolic, that is, 4&+ ) B;y; has real distinct
eigen values for £€R!, 7=(y1,---, 7.) ER", (§, 7)5=0, and A is non
singular.

A.II) The multiplicity of the real eigen values of A~'(d+ 2 B;7,) is
not greater than two for ¢ €R', y €R”, (g, 7)=0.

Put M(z, 5)=A"'(x+iY, B;;), Rer >0, 7 €R". We denote by E_(z, )
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the span of all the ordinary and generalized eigen vectors of M(z, 7)
corresponding to it’s eigen values with negative real parts. Hyperbolicity
of L implies that dim E_(t, ) is constant for Re ¢ >0, €R” and it is
equal to the number of negative eigenvalues of 4. Let r ;(z, 7)(j=1,..,k)
be basis of E_(t, y), where k=dim E_(c, %), and H(z, 7)= (r1,---, rp) is
N xk matrix. Then [ Xk matrix B-H(t, y) varies continuously in Re ¢
=0, 7€R”, (¢, 7)70.

AIIl) B satisfies the uniform Lopatinski’s condition, that is, /=% and
det (B-H(z, 7)) is not zero for Re =0, 7 €R”", (z, )=0.

Denote a definition domain of L by 2(L)= {u, Lu € L*(R**), Bu| .o
=0}.

Our main results are the following:

Theorem 1.1. There exist positive constant o, and c such that, for
any v with Re t>pu(r—L) is a one to one and onto map from (L) to
L2(R%*Y) and for any positive integer m holds

- 1
2 | — D))" mrrt <<lpo —o
(1 ) ,I(f ) HLZ(R+ ):C (Ref /lo)m

Theorem 1.2. For any f(t) in &3 (L*RZ))V and%f(t)(]’=1,

oy n) in EYLEREY)) and for initial data g in H'RTHND(L), there
exists a unique solution of (1.1) which is in & (LERZT))NEUH(R))
ND(L), such that

L3 I 2-u®IF+ eI

<e(Dlgl+{, (OIS O+ B2 @I ds)

for t€l0, T, where ||-||(||-|l)) is @ norm of LER™V)(H'(R")).

§ 2. Stationary Problems

In this section we shall show the existence of the resolvent for the

1) f()ed?(E) means that f(¢) is p times continuously differentiable with values in
E(p=0, 1, --).
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operator L. Let L, denote the principal part of L and 2(L,) it’s defini-
tion domain. It is noted that 2(L,) is equal to 2(L).

Lemma 2.1. Under Al), AIl) and A.Ill), there exists a positive
constant 0 depending only on Ly such that

2.1) ll(z —Lo)u||=0 Re zl|uf]

for all ue H*R%Y) and for ©, Re v>0.

Proofs of Lemma 3.1 may be founded in ([87], [9], [15], [16]). It
should be remarked that the condition A.II can be removed for L, with
real constant coefficients. (Cf. [16]. [9].)

Lemma 2.2 (Hersh [6]). Suppose Al) and A.IIl). Then the image
(z—Lo)2(Ly) is dense in L*(R™*') for any complex number t with Ret
>0.

This is the special case of R. Hersh [6]. In fact he proved this
lemma under the conditions which are the hyperbolicity on L, (not
necessarily strictly) and det (B-H(z, 9))=~0 for (r, ) with Re v>0.

Lemma 2.1, 2.2 and 2.5 imply immediately the following

Lemma 2.3. Suppose A.l), AIl) and A.1I). Then the operator
(tv—Ly) applies one to one and onto from D(Ly) to L*(R"*') for Re t>0.
Next we consider the operator L. Noting L= Ly+C, we have

Lemma 2.4. Suppose Al), AIl) and AIIl). Then the operator L
applies one to one and onto from D(L) to L*(R%) for any t with Rer
> B and satisfies

(2.2) l(r =Dl =0(Rer —B)|ul|

Jor all ue2(L) and Ret>P, where 0 and [ are positive constants in-
dependent of .
Proof. 1t follows from (2.1) that

li(c —Lu||=[|(r —Loju|| —[|Cul|
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=0 Re f[u|[—[|Cul|.

Therefore, §=sup|C(x, y)|/0 implies (2.2). Next we must prove that
(t—L)2(L) is dense in LE(R""Y). If it is not so, there exists v==0 in
L*(R"%*1) such that

(2.3) ((r—L)u, v)=0

for all u€2(L), where (, ) is the inner product of L*(R%*!). Noting
2(L)=2(L,), by Lemma 2.3 we have u € 2(L) such that

(r—Lyu=v.
This, (2.3) and (2.1) imply
(2.4) llv]|*=(Cu, »)
—~ B 2
<2 lP.
When Re >4, (2.4) contradicts v=0. Q.E.D.

Remark. When a positive constant § in Lemma 2.4 is larger than

one, we have

1

=Lyl St

for Ret>p

which implies immediately Theorem 2.1. But in general we can not ex-
pect so.
Put v=(r—L)'g (Rer>p). We need a lemma to verify the

regurality of v.

Lemma 2.5 (Lax-Phillips [10]). The definition domain 2(L) is
identified with the graph norm closure of

D= {u € H'(RI*'); Bu|s=0=0}

Lemma 2.6. When g belongs to H'(R}Y) and 2(L), v=(r—L) 'g
is in H*(R™*Y) and satisfies

(2.5) ||U||1§_C(Re T)Hng,
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where c(Re t) depends only on Re v and L.
Proof. From (2.2) we have
(2.6) lwli=c(Re 7)ll gll.

Further the fact that g in 2(L) and the relation tv=(r—L) 'tg=(r—
L)‘ng—i—g imply that
(2.7) llzvi| =c(Re )| gl +1ILglD

=c(Re 1)llglls-

If we can prove that 0*6 v(k=1,..., n) are in 2(L), our assertion will be
Ve

v

proved. In fact, since v satisfies the equation

0 17
2.8 ( —A——3 B ——— > =
(2.8) T axZ’ayj C =g

v satisfies

ayk

(T_Aaa 2B 0?@ >8yk -( 0 i )v—{—%—k—

in distribution sense. If ai’ v belongs to 2(L), we have
k
0 0
D=y €t 5o

(T ) 0 Ye v 6yk vt ayk g
which implies
e el
2.9 ayk = +l 0 Vi &

<c(Re )|l glls.

Noting that A is non singular, we can obtain (2.5) from (2.7), (2.8) and
(2.9).

We prove that

aay v (k=1,..., n) are in 2(L). Let p(y) be any
&
infinitely differential non negative function with compact support and total

mass one;
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Smp(y)dy=1.

The function p.(y) and v, are defined for positive ¢, as

e 2)

and
Ve =pe*v = SRn 0e(y —yv(x, y)dy'

respectively.

According to Lemma 2.5, it is easily seen that ai ve is in the pre-
Yk

domain Dp for ¢>0. From (2.8) we obtain the following relation

ve=fe0* di’k g+()e*<( aik C)-u)

where f5=C<pg* 9 v)——pﬁ‘(C- 0 v), which, as well known, belongs
3_)’}; ayk

to LZ(R%*1) and satisfies

(2.10) (r—L)

0
ayk

| fell=cllvll
and
£er)1 fe=0 in L*(RZ™).
From (2.10) and (2.2) it follows that

b
Oyke 0yk£

< e(Re f)(llfe—fe'l|+l

0
(0e—0er)* a}’k g”

b

fono fp

0
ayk
sequence and has a limit (e—0) which is in L*(R%*!). It is obvious that

which right side tends to zero limiting €, ¢'—0. Hence { ve} is Cauchy

the limit is equal to 0 v. And also from (2.10) it follows that L( 9
0 ¥ 0y
ve) tends to L( 9 v) in L*(R%*') for ¢é—>0. This shows that v
0y 0y
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belongs to 2(L).

Cerollary. When g is in 2(R%™Y), v=(cr— L) ' g belongs to H(R%}*™)
and satisfies
(2.12) llolls=c(Re 7, s)llglls

for any posilive integer s, where D(R'TY) consists of infinitely differentiable
Jfunctions with compact support.

Now we consider a lemma needed later on. Let us put 7=ux+4io
(#, 0 real) and v(t)=(r—L)'g. Then we have

Lemma 2.7. Suppose Al), A.Il) and A.Ill), then there exists a
positive constant c(u) depending only on p and L such that

(2.13) [ @I do=cligl?

(2.14) S” <v(o)>do<c(w)llgll?
for all ge H*RYVYND(L) and n> B, where
<U(f)>Z=SRn lv(f, 0: y)'zdy,

and v(t, 0, y) means a trace of v(c).

The proofs of Lemma 2.7 can be seen in [8] and [16]. When g is
in 2(R%*™), from (2.13) we have, by the same way as the proof of the
corollary of Lemma 2.6,

Corollary. When g is in 2(RL*™Y), it holds that

[~ lo@lzdo=ea, s)gl
for any positive integer s.
We define the operator S;(¢>>0) for g€ 2(R%™) as

(2.15) .S',g=—2177:—gbe e(t—L) ' gdo.

The finiteness of the right side of (2.15) is assured by (2.13). In fact,

considering %S e"'t7'ds=1, we can write

—oo
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e'rt

(2.16) Sig= g+§1;8“ ¢ (c—L)"'Lgds,

from which we can estimate roughly by (2.13),
(2.17) IS:gll<!lgll+c(we”|iLgll  («>8).

Further it should be remarked that S;g is independent of 4. In fact we
can easily see that v(r)=(r—L) 'g is an analytic function of r, consider-
ing the estimate (2.6).

In the estimate (2.17) we can remove the term [|[Lg|| from the right

side, that is,

Lemma 2.8. Suppose A.I), AIl) and A.Ill). There exist positive
constants ¢ and py such that
(2.18) 1S gll=ce**|| gl (t>0)
for all ge 2(RI™).

The proof of Lemma 2.8 will be given in the next section.
Now we can show that Theorem 1.1 follows from Lemma 2.8.
Proof of Theorem 1.1. Let A be a complex number with Re 4> x,.

Then we can show
(2.19) (l——L)_1g=Swe_”Stgdt.
0

In fact, according to (2.13) and (2.16), we obtain by Fubini’s theorem,

Y =_LS” (g” - ) 7)1
Soe Sigdt =" ((Ter0mrar) e~ 1) gdo

:_zl;gjw(/l—z‘)_l(r—l,)_lgdo‘

where t=u+i0 (#o<#<Re 2). Considering that (z'—L)‘lg is analytic
in r with Re t> #,, we obtain the relation (2.19). Then m times differ-

entiation of (2.19) with respect to 1 leads us to a relation
(—1ra-Dtg={ (~omte s gas,
from which we can derive by using (2.18)

Iy gl<{ e | s, gllde
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=c+(Re 2—u0)"ligll

for Re 2>#o. This shows (1.2) because 2(R%1) is dense in L*(R%*1).
The proof is complete.

§ 3. Energy Inequality

In this section we shall derive an energy inequality of the mixed
problem (1.1) with f(¢)=0, and using it we shall prove Lemma 2.8 sta-
ted in the previous section. We should point out that the method of proof
given here may be related to the results of [5].

We now consider a preliminary lemma well known, which proof is
seen in [4

Lemma 3.1. Suppose that a(é, 7)= A&+ Z B;y; has only real and
distinct eigenvalues for all real (€, 7)5~0. Then there exists a matrix (€,
7)) having following properties.

1) 7v(&, n) is a hermitian positive definite matvix with homogeneous
of degree zero for all real (&, )=-0.

2) 7(&, palg, p) is hermitian.

3) 71(§ 0) is a constant hermitian matrix (=7,).

4) 71(2, n) is an analytic function matrix of 2 in the strip
IIm 2| <e|7], for 70,
1
where ¢ is a positive constant, (&, 7)=(&, 1,---, 72) and || =3+ - +92)2.
We define a singular integral operator R as
(3.1) R¢=7*¢=Sm+17(x~x', y—yo(x'y y)da'dy’

for ¢ € 2(R"*'), where ¥(x, y) stands for a inverse Fourier image of
r(&, 7). It follows from 1) of Lemma 3.1 that R is a symmetric positive
operator, that is,

(3.2) (Ry, 9)=0]l¢]?

for ¢ € L*(R**!), where 0 is a positive constant.
Let ¢ be in H(R™)NCYR"*') and ¢ denote an extension of ¢

which is equal to zero in x <0, that is,
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o(x, y) for x=0

o(x, y)=
0 for x<0.

We decompose 7(&, 7)=71(&, 0)+7(&, 7)—71(, 0)=70+71(§, 7). Then it
follows from Lemma 3.1 that 7, is constant and that 7;(§, 7) has an

estimate

(3.3) 11, n)|§c.|'—g']

for £~0, y=~0. Let R; be a singular integral operator with it’s symbol
71(§, 7). Then we have

Lemma 3.2. The following relation holds
(3.4) (R 20, 0)=—(0 o (RiD))— <0, Rif>
x 0x
for any ¢, ¢ in H*R"IY), where ( , ) means the inner product of
L (R and
<o, 9>={_ 000, 600, dy.

Proof. When ¢ belongs to H'(R"*1), it follows from (3.3) that %Rm

is in LER**!). In fact we have by virtue of Parseval’s equality,

g 0
R7t1

s 1o

Paxdy={ | i€r:& D3, 1)|*dedy

<c-{11*186, DI*dedy
<o

o}

where $(&, 7) stands for a Fourier image of ¢(x, y) and ||+||; means the
norm of H'(R%'!). Hence we can regard R;& as a continuous function
(R1%)(x) from (—oo, co) to L%(R") and also obtain the relation (3.4)
integrating by part. Moreover noting (R;¢)(x) in &£3(LZ(R")) for x € R},

we have

@8 <Rig, o>={_ (1" nee nae nae i, nay
where §(0, 7) is a Fourier image of ¢(0, y) with respect to y. Q.E.D.
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Corollary. We have the following relation
(3.6) (RLu, uw)+(Ra, Lu)
=2Re(R C’Z, u)—2Re<R 1A, u>—<yodu, u>

for any u € H'(R"*Y), where L= Aai—f— Z Bi——

0

By +C.

We now consider the following evolution equation

%u(t)ZLu(t)
u(0)=g.

Then we are to derive an energy inequality for a solution of the equa-
tion (3.7).

(3.7

Theorem 3.1. Suppose that a solution u(t) of (3.7) belongs to the
pre-domain Dy and &YHL* (R%Y)), and further that u(t), gt_ u(t) and
%u(t) (j=1,.,n) are in L%((0, o0); L*R%)).D  Then under Al),

j

AID) and AIIL) there exists a positive constant c(u,) depending only on
Lo and L such that

lu@®l|=c(ude| gl|
for t€[0, o).
Proof. Let R be the singular integral operator defined in (3.1).
Then noting Ru(z) € &1(LA(R"*1)), we have

39 (Ra@), u®)=Ra0O), s+ | L (Ra@), u)dr,

from which we can derive by means of the corollary of Lemma 3.2,

(3.10) (Ra(), u(e)=(Rz, g>+2g {Re(RCu(t),u(t))

—%<70Au(t), u(t)>—Re<R1Aﬁ(t)-u(t)>}dt

1) L:((0, o0); LA R%*!)) consists of all functions u(t) such that
Sweﬁz"““l’u(t)ﬂzdt<oo-
0
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Let us put t=g+i0 and define v(r, x, ) and (7, &, 7) as
o(z, %, y)=S e "u(t, x,y )dt
0
and
(, ¢, 77)=gm+le"”f_""”ﬁ(f, %, y)dxdy

respectively. It is noted that hold

[~ I@ipds=( e uepds

and

S” <v(z‘)>2d0‘=g:e“2""’<u(t)>2dt.
From (3.10) we can estimate

(3.11) (Ru(). u(t))<e-(

g||2+S:(||u(t)||2+ <R Au(®) >+ >u()>Ddo)

Zclgl*+e#{” (lo@I*+ < Rido()>*

+ <w(r)>%do).

Our purpose is to prove the following inequality

@12) (T <Rido@>do=clliglP+{" (@I + <o()>?do).

Combining (3.12) with Lemma 2.7 in the previous section, we can prove
our theorem. In fact, v(r) belongs to the definition domain 2(L) because
u(t) is in the pre-domain Dy and v(r) is a limit of v;(r) in @(L)(j—>o0)
such that

v,-(z‘)=SZe"”u(t)dt.
And since v(tr) satisfies the equation

(r—L)v(r)=g,

by Lemma 2.7 we can estimate

Sj,a(””(f)“z-f- <v()>3do<ec-|

gll?,

from which and (3.12) we obtain
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(Ru(D)-u()<ce||g|l%,
This and (3.2) imply (3.8).

We must now prove the inequality (3.12). Considering the represen-

tation (3.5), we have

0 /'\_/
(3.13) S <R1Au(f)>2d0':SRM|F(z', )| dody,
where
(3.14) P, =\ 1a(&, 1) A0, & e

To prove (3.12), we shall show that there exists a positive constant K,
depending only on g, and L such that

@15 | 1r pirde=c{]” ([7 1o & ni2de+ 1oz, 0, 7)1 )do

+{7 1ate, 12ae}
for |7|=K,, where Z(¢, 7) is a Fourier image of &(x, y) and (z, 0, 7)
a Fourier image of v(r, 0, y) with respect to y.
When |7|<K,, we have

Fe nIS| | 1@ nase, & nlde+| 11 D, & 7l de

1€

and {rom (3.3) we have obtained by Schwarz’s inequality

@) | e pPaasd] (Ra@P+ @)D
1=K, —oo
gcg" |o(c|)2do.

We turn now to deriving the inequality (3.15). To do so, we con-
sider the representation (3.14) for F(r, 7). According to Lemma 3.1,
71(4, ») is analytic with respect to A in the strip |Imd|<¢|y|, and
?(r, 4, 7) is an analytic function of 2 in ImA<0 because it is the Fourier
transform of ¥(r, x, y) which is zero for x<0. Therefore we may shift

the line of integration in (3.14) into the complex plane, that is,

(317) P, = @ s, 4 i

Imi=—
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where 0<m=<l¢|7].

Since v(r, x, y) satisfies the differential equation
(T—A—a-— 3 Bj—a—~—C>v(r %, ¥)=g(x, )
0x s ay] s Yy ) ’ b

taking the Fourier transform of it with respect to (x, y), we obtain the

following relation for #(t, 4, )
(3.18)  (e—ia(d, )i(s, 4, 7)=Av(z, 0, D)+ f (e, 2, m)+ &, 1),

where f(z, 2, 7) stands for a Fourier image of C(x, y)v(r, x, y) with
respect to (x, y) and

(3.19) a(l, 7)= A2+ Z"ZIBMJ--
=

Let us note that there exists a positive constant K; such that M(x,
7)=A"'(t—i);B;y;) has distinct eigenvalues for |t|=K;|7|. Because it
follows from the condition A.I) that eigenvalues of A are distinct. To
estimate 9(z, 4, 7) on ImA=—m by use of the relation (3.18), we must
give two different arguments when |t|<K;|7| and |t|=K;|7].

To estimate #(r, 4, ) for |v|<K,|7|, we shall need the following
lemma (cf. K.O. Friedrichs and P.D. Lax [5 ], Lemma 4.1);

Lemma 3.3. Suppose that |t| <Ki|y|. Then there exists a m=
m(7y) in the range

(3.20) —elnl<m=elq|
such that
(3.21) |(e—ia(t, )< S

for all 2 with Im 2=m(y).
Proof. Using (3.19) and the assumed fact that A4 is non singular,

we can write

(c—ia(2, n))=i/1A{A‘1/I‘1< ‘- sz,z]-))— 1}
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which shows that (r—ia(4, 7)) is invertible for |¢|<Ki|7| and |[4|=
20471

Il
we shall verify (3.21) for |1|<K;|y|. Since (3.20) and (3.21) are ho-
mogeneous, we can normalize so that |7|=1. Let /" denote the set
of 1 with —e<Im A<—¢/2 and |Re 4| <K;. To each (7o, ) with
| 702+ | 70| ><K2+1 the number of the root 1 of (to—ia(4,7,))=0 which
belongs to /" is at most I. Since the roots 4;(t, %) of (r—ia(4, 7))=0

1A+ T 1B D 7] =Kalg] and [z —ia(t, 7)< Next

vary continuously, for (r, 7) in a sufficiently small neighbourhood F(r,
70) of (o, 70) With |zo|®+ |70]°<K?%+1, it holds that

e
2

(3.22) |45 =250 1| S (=1 D,
Let I'(zg, 70) be the set of A=&—im with ¢/2<m=<¢ which differs from
1 ¢
3l 2
that for (t, 1) € V(zo, 10) and for €1 (zy, 70) (t—ia(Z, 7))7! is bounded.
Since the set (tr, %) with |7|%+ |7|*<K?%+1 is compact, it can be covered

any root A;(to, 70) (j=1,.--, [) at least by . From (4.22) it follows

by finite open sets ». Hence the statement of Lemma 3.3 holds for any
(z, ) with || <Ki]|y]. Q.E.D.
Solving (3.18) for #(r, A. %), we can write

(8.23) #(z, &, P =(r—ia(k, 7)) {4v(r, 0, n)+f(c, &, D+ g, »},

and from (3.21) we obtain the estimate

@24)  [oC )=l 6 DI+ £ 4 I+ 23, )

Using this and (8.3) to estimate the integrand in (3.17), we can obtain

PG el [T o, 0, 141 7, 2,1+ 1 2, DA

_ 2 1 2 A 2
<e{lote, 0, DI+ (1A 2 m) 2 8, 1Dl

Integrating this with respect to 0, we get
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@25 | | F(z, 7)|do
|7|=K,ig]

<c{| "o, 0, 1o+ ({17, 4 12dado+ () g2, myan).

We next estimate F(r, 3) for |t|<Ki|y|. Then M(c,75)=A4"

(r—1i2;B;y;) having distinct eigenvalues, we have the expression as
(3.26) (r—ia(2, 7)) =AMz, 7)—i2)™*

— Z %(73 77)
=1 = 2(x, )
for |t|=Ki|n|, where 1;(z, 7)(j=1,..., N) are eigenvalues of M(z, 7)
and M;(t, y) are matrices homogeneous of degree zero in (tr, 7). Let real
parts of 2;(tr, %) and it’s imaginary parts denote by v;(t, ) and ;(z, 7)

respectively. Then we need a lemma to estimate (3.26).

Lemma 3.4. Suppose that |t|=Ki|y| and |7|=K,, where K, is
a sufficiently large constant. Then there exist positive constants c(u,) and

0 which are depending only on u(=Ret) and L such that
(3.27) [vi(z, )] <c(uo)
(3.28) o)z =10 M

where ©=y+10.
Proof. For |t|=Ki|y| 2z, 7)(j=1,..., N) are analytic functions
of (v, 7). Hence we can write

' d
329) - 0={ L, anda

1
(te oo
= So kZZIWv/(z—, anada

Let a; (j=1,..., N) be eigenvalues of 4. Then noting that 4;(z, 0)=

1

a;'t and that g; (j=1,..., N) are real, we have v;(r, 0)=a; '#. Since

6_?7—Vj (r, ay) are homogeneous of order zero, they are uniformly bounded
E
for |v|=Ki|y| and |y|=K,. Thus the relation (3.29) implies (3.27).
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Since E%_—C,-(r, ) are differentiable in », we can write
9 e —9 ¢ 3 i( 0 ¢ )

Noting that aa—gcj(z', 0)=aj;! and that a—?ﬁ(—gof Zi(z, a:77)> are homo-
geneous of degree minus one, we can get

(8.31) 2t ) )| S e

‘077

for |t|=K;|y| and |7|=K,, where K, is a sufficiently large positive
constant. Thus (3.30) and (3.31) imply (3.28). Q. E.D.
Further, let us note that considering (3.20) and (3.27) we get

(3.32) |m(7) —vi(z, )| =0117]
for |t|=K;|y| and |3|=K,, where §; is independent of ¢ and 7.

From (3.23) and (3.26) we obtain the estimate

|o(z, 0, 7)|?

N
(338) 106, 4 DI'S X (e = e

+ 1 f G, 24 )2+ 184, 1)| %

and from (3.3) we have by Schwarz’s inequality

(3:34) (Fate, ) P=<({{7 1065, 2, w1 a2)

<clul{Ioe, 2, mI*da.

Moreover, from (3.27) and (3.32) we can derive the following

S S * -
(3.35) Sl/l (T, pP=° S 1§ —=Ci(e, Wi+ [m(p)—vi(z, 9|

oo dS
< %S
=Cg_u RN

8
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for |y|=K,, and considering (3.28) we obtain by a change of the variable

of integration

do
3.36 S
( ) IrizKqlql Il—'/IJ'(T: 77)|2
= ‘ do -
IT12 K0l |E_Cj(fa 7/)Iz+ !m(ﬂ)—VJ'(T) 77)12
* d
=| il €=tEm)
<o 1
=l
for || =K.
Using (3.35) and (3.36), we can derive from (3.33) and (3.34) the
following
@30 | 1R tde=e][” 15, 0, m) 17+ (1, 4 )17 d)de
T|Z 17 —oo
+{ 1ea, mia}.
Considering
(176 4 mraze o, e e
and

frea, nira<]"_1ae iz,

we can derive (3.15) from (3.25) and (3.37). Integration of (3.15) with
respect to % and (3.16) imply our main inequality (3.12). This completes
the proof of Theorem 3.1.

We can prove Lemma 2.8. If we can prove that S;g is a solution
of (3.7) which satisfies the condition of Theorem 3.1, the lemma will be

proved. We state as the followings:

Lemma 3.4. Let g be in 2(RY™). Then S;g satisfies the following
properties
1) S;gis in D(L) for t>0 and satisfies
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A sg=sLg=L5g
/t
2) lim S;g=g in L*RY™Y).
t—=+0
Proof. We can write
(2.16) Sig=g+ 5| e e = D) Lgdo.

Let us put

4
uy(t) zleigﬂﬁf‘le”(r——L)’ngdO‘,

which clearly is in 2(L) because (r—L) 'Lg belongs to the pre-domain

Dy by virtue of the corollary of Lemma 2.6. Noting that L(T—L)_ng
=(r—L)'L?g, we have

Luf= (" -1y L gds
2w )-p» T
which converges in L*(R%'!) limiting p—>oco by virtue of Lemma 2.8.

This implies that S;g in 2(L) and that the following relation holds.

0 T
(3.38) LSig=Lg+ 5|  ©(r—1)'L2gdo

Noting that the residue calculus gives
2

— o0

20 Tt
1 S —%z—zw:t (t>0),
we can write
1 (™ e _
Stg: g_’_tLg‘!‘ E‘S_w?‘(T_L) leg dO-,
which right side belongs to &}(L*(R%*1)), hence we obtain

d _ 1 = 8” _ 2

—co

=S8,Lg

tokl

which and (3.38) give the property 1). We prove 2). It follows from
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Lemma 3.7 that the second term in the right side of (2.16) is in §(R%'1),
hence it holds

. 1 (1 1
1 = —\ —(r—L) 'Lgdo
Jm Sg=g+ 57 Lr(f )" Leda,
which integration is independent of Re t because (vt — L) 'Lg is analytic in

7. And considering Lemma 3.7, we can have

. 1 1 -1
1 _§ S (r— =
clmf (r— L) 'Lgdo=0,

—oo

which gives the property 2). Q.E.D.
Proof of Lemma 2.8. Put u(t1)=3S;g. From Lemma 3.4 it follows
that u(t) and it’s derivative in ¢ are in &%(L*(R%*1)) and L2((0, oo); L?
(R%*1)) and that u(¢) is a solution of (3.7). Therefore it is sufficient to
0

) (j=1,., n) in
RON n)

prove that u(z) is in the pre-domain Dy and

LE((0, o0); LA(RYH)).

Since g is in 2(R%*!), from the corollary of Lemma 2.6 it is seen
that v(r)=(r—L)'g is in the pre-domain Di, and further noting that
Lg is also in 9(R"*1), we can see that Lv(r)=(cr—L)'Lg is in the
pre-domain Dy and from the corollary of Lemma 2.7 we obtain the esti-

mate
(3.39) [ Io@izdo=cta, liLgl

for any positive integer s and #=Retr>f. From the expression (2.16)

anb (3.39) we can derive, by Schwarz’s inequality,
(3.39) lu()2=IlgllZ+c(u, s)e**||Lgl|?

for any positive integer s and for #>{f. Hence by Sobolev’s lemma we
can see that u(¢) is a C”-function of (x, y) in R%1 and also u(¢) is in
0
0y;
Lz ((0, o0); L*(R%Y)) for po>p. Thus the proof of Lemma 2.8 is

complete.

the pre-domain Di. It is clearly seen that u(t) (j=,---, n) are in
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§ 4. Existence Theorem

In this section we shall prove Theorem 1.2. To do so we use Hille-

Yosida thorem.

Theorem 4.1 (Hille-Yosida). Suppose that the operator L satisfies
(1.2), then there exists a unique semi group T, having L as the infinitesimal

gencrator.

Remark. It is casily seen that thc semi group 7; assured by Theorem
4.1 can be identified with S; defined in the section 2.
Applying Theorem 4.1 to the following equation

(4.1) “g’:—u(t):L[ll:(t)]-l- f@®
u(0)=g,

we have

Theorem 4.2. Suppose (1.2). Then for given f(t) such that f(t)
and Lf(t) are in &UL*(RL™)) and for initial value g in D(L), the
unique solution of the equation (4.1) in XL *R™)) and 2(L) exists and
is given by

(4.2) w(O)="Tog+ S:, T, f(s)ds.

Moreover the following energy inequality holds
t
(4.3) lu@lI=e-ellgh+c{ et £(5)lds,

By the above theorem we obtained the solution belonging to &1(L?
(R%1)) and 2(L) under the restriction such that f(¢) is in £9(2(L)) and
g in 2(L). Moreover, when g is in 2(L)NH'(R%*') and f(¢), f'(¢) and
—0%/-7{(':)(]':1,..., n) are in &%(L*(R"%*1)), we can obtain the solution in

J
D(L)NEHLERTNNEY(H (RE)).

Suppose that f(¢) is in #3(L*(R%*Y)). Then the differentiation of the
expression (4.2) with respect to ¢ leads us to
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W/(8)=TA(Lg+ FO)+ g: T, f(s)ds,
which gives
(4.4) lu' ()| =ce’ {i\Lg+f(0)Il + S; ||f’(S)IIdS}-

We can remove the restriction in the argument of Theorem 4.2 such that
f@ in 2(L) and Lf(t) in &¥(L*(R%*Y)), using the estimate (4.4), that

1S

Lemma 4.1. If f(t) is ¢}(L*(RY™Y)) and g in 2(L), then there
exists a unique solution of (4.1) belonging to &X(L*(R%1Y)) and 2(L), and
satisfies (4.4).

Proof. For given f(t)€&}(L*(R%"Y), we can choose the sequence of
functions {f.(¢)} such that

1) fu(t) and Lf,(¢) are in €3(L*(RE™))
2) [If0)—f(0)] and S:’n Fa(s)—f()lids tend to zero

when n—oo.
Let u,(¢) be the solution of (4.1) for data (f.(¢), g). Then from
(4.3) and (4.4) we have

max. [lu,(9) = un()l|+ max u;)—ua)

Scer {1 Ao = FuOl1+ | 117i) — fal ds}.

Therefore {u,(t)} converges and the limit u(¢) is in &}(L*(R%*!)) and
satisfies (4.1) and (4.4). It follows clearly from (4.3) that the solution
which we have constructed is the unique solution of (4.1).

Proof of Theorem 1.2. Let u(t) be a solution obtained by Theorem
4.2. Put

ue(t) =0 u(t).

It is obvious that %ILg(t) (j=1,--, n) are in EHL*RT)NEWH (RT))
7
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N2(L) and satisfy

%(rf e@) H(5 4 O)+

ue( )=

Ju@)+ fe(e)}

}’
where fs(t):pg*f(t), ge=0s+g. Hence from (4.3) it follows

5

(4.5) "’y 1) u

<ce*! {H aa
J

i

L6 ey Jeos o]

Hence {alue(t)} is Cauchy sequence in &Y(L*(R%*!)) and it’s limit is
Yi

equal to

aay u(t). Limiting ¢—>0 in (4.5), we obtain
i

(4.6) “ 0ayj u(t) “écew{”g”r"gl(

for j=1,2,..., n. The fact that u(¢) is a solution of (4.1) and (4.4)
imply (1.3). This completes the proof of Theorem 1.2.
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