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A Difference Method for Boundary Value
Problems of the Third Kind"

By

Tatsuo Nocr**

Introduction

Pure difference methods for elliptic boundary value problems with
derivative boundary conditions are treated by Batschelet [17], Giese [2],
Lebedev [ 3-8, Volkov [9-10] and Wigley [117], etc.

For the same problems a kind of difference methods, what is called
“Finite-element-method”, are also investigated by Demjanovic [ 127], Friedrichs
and Keller [137, Oganesyan [14-15], Oganesyan and Rukovetz [16-17]
and Zlamal [18-197), etc. In this method a reduced minimal problem
from the original boundary value problem is solved approximately in a
subspace spanned by a class of finite number of “element” functions and
their translated functions. The resulting difference scheme approximates
automatically the differential equation in the interior of the domain and
the boundary condition at points near the boundary. In these works the
estimate of error between the exact and approximate solutions is given
either in order of mesh width or precisely in an explicit form.

On the other hand, as far as we know, there were few works about
difference methods for hyperbolic and parabolic mixed initial and boundary
value problems with derivative boundary conditions in a domain of any
shape. From mathematical interest we can refer to Lions [20] and

Chekhlov [21] whose method is called “penalty method”, in which the
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problems with homogeneous mixed (Dirichlet and Neumann) boundary condi-
tions are considered and are reduced to the problem of a differential equation
with some extended coefficients over the region and with the homogeneous
Dirichlet condition. But the rate of convergence is at most O(\/T), which
shows that this method is not fit for practical use. (A is mesh width.)

Here we propose a difference method with rate of convergence O(h)
for mixed initial and boundary value problems of wave equation and heat
equation with the boundary condition of third kind (and also for boundary
value problems of elliptic equations) in a fairly arbitrary region on the
plane. Our difference scheme corresponds to an integral formula of the
original differential problem and has natural structures. The proof of con-
vergence relies on the so called energy method (cf. Ladyzhenskaya [ 227]).

By trivial modification our method will be easily applied to the 3-
dimensional case, to the equations with variable coefficients and to the

problem with mixed boundary conditions.
§1. A Mixed Problem of a Wave Equation under a Derivative
Boundary Condition and Its Difference Approximation

We consider the mixed problem of the wave equation in a cylindrical
region Q(T)=2x (0, T) in R3(2 is a bounded domain in R?)

*u  0*u  0*u _ .
1.1) 5% oxZ 5'—y2_f(t’ %, y) in Q(T)

under the initial conditions

u(0, x, y)=o0(x, y),
(1'2) %‘(Oa X, y)=¢<x3 }’),

and the boundary condition on the lateral surface

Ou _

(1.3) on ou=g(@, x, y).
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Here 0 means the derivative along exterior normal to the boundary surface.

on
0 is a constant. Under appropriate smoothness conditions of the boundary
I' of £ and the functions f and g, as we know, a unique smooth solution
exists [ 23]]. Moreover we assume that at every point P €[ there is a
circle S such that SN2=P.

For the sake of the future treatment we transform the equation (1.1)
in an integral form by integrating the equation over any (¢, x, y)-region
wX [t,t+4t] and using the Green’s formula:

ng[%(t+"t’ % 9’)—%0, %, y)} dxdy
(1.4)

t+dtd au d t+Atd d d
—St tgaw 0n S+St ¢ SS&) f ¥ y’
where ds means the line element of the boundary of w.

Now we construct a net in R? whose nodes have coordinates of the

form
x=mh, y=nk (m,n=0, +1, £2,...);

where h and k are distances between the two adjoining nodes in the x-
direction and the y-direction respectively. Denote the set of all the
nodes in £ by £;.

We consider those nodes which adjoin to £;. We call a node adjoin-
ing to two nodes of £; a boundary mesh point of the first kind and call
a node adjoining to one node of £2; a boundary mesh point of the second
kind. Now we draw the ‘“broken” lines through half-integer points, but
we erase a broken segment lying between a boundary mesh point of the
second kind and the corresponding node of £2;.

Here we supposed that A and k£ are so small that no nodes outside of
£ have three or more neighbouring nodes of £;. (It is possible under our
assumption about /°.) Then if there appears a node being contained in a
triangular mesh whose sides consist of two broken segments and a part

of the boundary of £, we count it in the class of boundary mesh points



290 Tatsuvo Nocr

of the first kind, so that we need not consider original adjoining boundary
mesh points of the second kind. We express the set of the left nodes

of £} by £, which we call the set of interior mesh points.

The interior mesh point
The boundary mesh point of first kind
The boundary mesh point of second kind

> @ e

Fig.-1 The concerned mesh points

And we express the set of all the boundary mesh points by /. Finally
we draw line segments connecting the two neighbouring intersecting points
of the “broken” line and the boundary, and then we have the polygonal
region and express it by the same notation £,. The polygon £, consists
of some triangle, quadrilateral and pentagonal meshes having a boundary
of broken lines or a side of the polygon.

In order to construct a difference scheme, we apply the integral
formula (1.4) over each quadrilateral or pentagonal mesh and approximate
each term by a corresponding difference quotient as follows; for example,

over the hatched mesh in Fig. 1 we have a formula (after dividing by A¢)
(1.5) Suig=(g+0{utsn) A —a_puz+a, uy—a_juj+ Shf,l)

where A’y a_p, a., and a_; are the length of the right, left, upper and lower

side respectively, and S; means the area of the mesh. For the forward and

1) { }z+» means that the quantity in the bracket in calculated at the boundary mesh
point of second kind, while other terms are calculated at the concerned node,
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backward difference quotients we employed the following notations;

u@+ AL x, y)—ult, x, y)  u(t, x,y)—ult— DOt x, y)
= At 1= At ’
u(ta x+h, y)_u(t, X y) u(t; Xy y)_(t: x—h, y)
Ug= h y Uz— h b
. u(ta Xy }"Hf)—u(t, X y) o U,(t, Xy y>—u(ta Xy y_'k)
Uy= % sy Uy= k ]

and for difference quotients of second order, e.g.,

(u)i=umg=un

1
N

Lu(t+ Aty x, y)—2u(t, x, y)+u(t— N, 2, y) 1.

f denotes the mean value of f over the concerned mesh and g denotes
the mean value of g along the corresponding part of /. If we determine
the value of u at the boundary mesh point (x, o) of the second kind

adjacent to the concerned mesh by the formula
a_uz=(g+0u)AI' at (xo, ), or equivalently
a+hux=(g+6{u}x+h)Ar at (xo—h, yo), a_r=a. =k,

(which, we note, is only the replacement of notation and itself does not
mean the formal approximation of the boundary condition), the equation
(1.5) takes the form

(1.6) Splii=a hly—a_pUz+aby—a_zu;+ Spf.

We can use the above difference equation (1.6) at any quadrilateral mesh

if we take
(1.7 a_puz=(g+0u)AI', a_r=k on a right boundary mesh point,

apptt,=—(g+0u)Al', a, =k on a left boundary mesh point,
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a_zu3=(g+0u)AI', a_r=h on an upper boundary mesh point,
auy=—(g+0u)Al'ya,,=h, on a lower boundary mesh point,
and e,,=a_,=k, a,,=a_,=Ah on any interior mesh.?
For a pentagonal mesh we have a formula

(1.8)  Siusr=aisuz—a_puztauy—a_u;+(g+0u) A+ S;,f,

where @5, a_p, a,; and a_; are the length of the right, left, upper and lower
side respectively, and Al is that of the side of the polygon £;. By using
the function ¢, which equals to unity on a pentagonal mesh and equals
zero on a quadrilateral mesh, (1.6) and (1.8) can be written together in

the form
(1.9)  Swwpg=apu—a_puztauy—a_ju;+0(g+ou)AI+ Sif.

In order to determine the value of u at each boundary mesh point of the

first kind facing a triangular mesh we apply one of the following formulae;
(1.10)  a_suzta_u;=(g+0u)AI at a right upper mesh point,
a_ntz—auy=(g+0u)AI at a right lower mesh point,
—aplztapuy=(g+0u)AI’ at a left upper mesh point
and  —a.puz—auy,=(g+0u)AI’ at a left lower mesh point.

At a boundary mesh point of the first kind facing a quadrilateral
mesh we mush apply another formula, for example, at a left lower point

of Fig. 1 we use the formula

(1.11) _a+hux+a—h{”i}y«tk_a+kuy=(g+6u)Ars

G-n %in O-k apg Bk gre

R R k k
—0dI etc- are not zero for sufficiently

2) From the construction of our net it is known that

a_p

uniformly apart from zero and then 7

small A.
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where { },,, means that the quantity in the bracket is calculated at
(%, y+ k), while other terms are calculated at (x, 7y), and other notations are
the same as above. At other boundary mesh points we can have analogous
formulae. The formulae (1.10) and (1.11) approximate formally the boun-

—a—i—a u= g with the error of order O(h)+0O(k), while (1.7)

dary condition
on

does not.

We also approximate the initial conditions (1.2) by the formulae
(1.12) u(0, %, y) =¢(x, y),
u<Ata Xy y)=¢(x> y)+At¢(x3 y)
Then we have the values of u on the planes t=0 and = A:¢ by (1.12),
and we can dermine the values of u on t=2A¢, 3At,... successively by
using (1.9), (1.10) and (1.11), etc.

§2. Convergence of the Scheme

Now we will prove that the solution of our difference scheme con-
verges to the solution of the original problem (1.1), (1.2) and (1.3) under
appropriate conditions.

We can rewrite the difference equation (1.9) in the form

(2.1)  Swusz =—g—(a+hux);+ %(a_hui)x—k-lzc—(a”uy); +‘12‘:_(a—ku'})y+
+0u(g+0u) AT+ Sif,

by using the fact that a_x(x)=a,w(x—h) and a_x(y)=a.(y—k). We
multiply the last equation by (u;+u7) and transform it with the aid of
the following formulae:

ut?(ut+ u?) = (uiz)b
(@ru)z(utur)=[anu.(ui+us) z—{a wu(ui+ st aon

(@-puz)(utus)=[a_uz(u:+us)lo— {o_suz(u:+ )z}t rin ete,
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where a curled bracket with a suffix have the same meaning as in (1.11).

Then we have the equation
_2\ h 2\ - h — -
Si(uz )t'—'z_[a+hux(ut+ uy) —|—7|:a_hux(ut—|-ut)]x
k k
+'2“[a+kuy(ut+ u?)]}'{"?[a‘kui(ut"*‘ u?)]y
h N h _ e
_‘2—{a+hux(ut+ ut)x)’x—h_7{a—hux(ut+ ut)x}x,—h

—E it u)} s e et ws)

+0u(g+ou)(us+ur) AT+ S;,f(u,—{— ui).

We multiply the last equation by At and sum over £2,X[t=s/At;
s=1,2,..., p—1]:

(2.2) X Su?|i=
2n

22 [7 Z a+hux(u,+u,)_i 2 aenug(us+uy)

G 21 zL(J) 1

+'— 2 e puz(utur)— 2 a_puz(u +uy)

2 i= iG(])+1 21 A%
J
- 3 a+kuy(uz+u:)—— 2 appuy(ustur)
2! JG(t) 2 ;= JL(z)—l

+ L 2 apuy(ustuz)— -1 2 a_puy(us+us)

2 ji= ]G(t)+1 2 j= ]L i)

P AT CIERD S SIS FCRVE IR
2n 2 2n

—%QZ’E k{aypuy(u,+ u?)y}y—k—%gk{a—kui(uﬁ' u?);}y+k+
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+ FZ (g+5u)(u;+u?)AF+gZ Sif (ue+ uf)1| )

where ig(j), i2(j) — x-coordinate numbers of right and left ends of each

row segment® of mesh points on y=jk in £, and js(i), jr(i) — y-coord-

inate numbers of upper and lower ends of each column segment of mesh

points on x=ih in 2. IZ’] means rZ 0s. Here we note the following
h h

relations:
arnta(uitus) i, =a_puz(us+us) | i1 —hanu.(ui+ 1)zl i
a_puz(ustur) |, =a u(us+us)|io1+ha_pu(us+ vzl i,
apuy(ustus) |, =apuy(ui+us)l o —kapu,(uetun)y g,
a_puy(uitus)lj,=apu,(uitus) |1+ ka_ru,(ui+ui)iyl i,
gZhh{a'+hux(u;+ UB)afznt gzhh{a—hu;(uri- UDifzih
Z%Jhawux(u,—l— ui):+ %ha_hu;(u,—i— ui)z
and
%k{aﬁ-kuy(u;"}‘ u)yty-rt %k{a—kuj(ut‘l‘ UF)P)y+k
= gZhIkaJrkuy(ut—l— us),+ %ka_kuy(u;—i- ui);.

Applying these formulae to the right side of (2.2), we have
QZ’E Shu%liAtt:

p-1
=X At Y apui(utu)— Y assug(utun)t
s=1 i=iz;]§j)+1 ,'=iLJgj)_1

+ 2 aswuz(uitun)— Y asu,(uitun)t

j=iclir+1 i=ir(-1
2 1

3) If @ is not convex, some mesh lines y=jk may be divided into several segments
by the boundary,
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— 5 (T + Db+ un)e— (T + Dha s+ u1)s

2 gl o ir)  an
J i

——( 2, 2 kasu st us),— (ZI + L)ka-su(ut+ un;

]G(l) JLt

+’4:(g‘+6u)(u,+u;)llf—l- %]Shf(ut—l- uz) .

Applying the boundary conditions (1.7), (1.10) and (1.11), we have
Z Swus| 8=

- Ly o+ IDha (et un)e (3 A D)haspus(urt it

1GJ 1LJ
7 i

+( Z + Z)ka+kuy<ut+ ut>y+< Z + Z)ka—kuy(ut+ut)y]

jeli) JL(z) 2n
J

+ jgiﬁt[; Af(g+6u)(u,+u;)+rZ',‘ ATI(g+0u)(us+us)+
+QZIShf(ut+ uy) .

We transform each term of the right side as follows:

ZAtux(ut+ut)z ZAtEuxuxt+{uxuxt}(s+1)AtJ Atulg]o

— Atuxux; lpAt
=ul|32 — Avuugg| ppe— Dtusia o,
e 2| o0t
ZlAtu;,(u,—Fu,‘,);:u;Io —Atu;u;;“A,——Atu;u;tlo,
S=
= 2| At
ZlAtuy(u,—{— ug)y=ul| 0% — Atuyuyz| pae— Dty o,
S=
-1
ZlAtu5(u,+u7)5,=u§|§A'— Atuzusi| par— Dtuzusze o,
S=
p-1 p-1
ZlAtg‘(uer uy) = leA L(wpi—{ugiterymt+@@i—{u &} s-1yat]
&= =

b-2
—ug |2 ugl - B Amgi— L At
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=(glpA)+g((p—D A u(pAt)
—Atg((p—DADu(p—1)Av)
p p-2
— 2 DNtugi— 2 Atu gy
§=2 s=9
—(g(At)+ g(0)u0)—Arg(At)ui(At)
and
gmau(u,+ m:ii)A 03(u?)— A 18u(0)u0)— Adu(pA)ui pAt)
=0u’(pAt)— Aedu(pAt)ui(pAt)
—0u?(0)— At0u(0)u(0).
Thus we have

(2.3) _quShu%l 2
h

—[( +Z)ha+hu2+( PN +92)ha-hu§+

u;(] tL(J)

+( X +Z)ka+kuz+( % +Z)ka pud |50

jeli) ]L i)
7

[( 2 +Z)ha+hu w7+ ( Z +Z)ha AUELzET+

iris) ig(f)
i 7

+( 2 —I—Z)kaJ,kuyuyt—l-( Z +2Dka_ kuyuyt]pm‘l‘

jeld) ]L () 25
i

[( + Dhaspustia+( 2+ 2ha-uzuz
h

m(f 3 ir(j)
J

+( 2+ Dkauyuy+( 2+ X)ka_rusuzo
JG‘SU 2n JLi(t) 2n

*I—(I'Z-FFZ,I)AT@uZIgN— At(IZ+IZ)AF6u(pAt)u7(pAt)

— BT+ ) AT 0u(0)u(0)
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+(rZh} +I§)AF[(57(]JA D+ g(p—1)A))u(pAt)
—Atg((p— D) ADu((p—1)At)]

~(Z+ IDATT(E(B 0+ g0)u(0)— Arg(Anui(An)]
) p-2

— L AUE+D)ATugi— 2, AL+ 2ug:
s=2 r, rj 5=0 rn T
p-1 -

+ 2 At Suf (uituw).
s=1 2n

Here we transform the second bracket of the right side as follows:

BELCE + Dot ( 5+ Dha s+

igli)  @n iL(p
7 i

+( 2 +Z)ka+ku uyi+( Z +Z)ka FUFUTT ]

je(i) JL i)
3

= At[(,-g%) +—— PN )aT;,u,,(u;(x-l—h)—u?(x))

s=/=m(.7

(3 45 5 Jawus(uie)—uix—h)
il 2 i=/=ijz,(j)

+(z tg T Jarsu(ary+R)—ur(y)

2 '=/=j‘_(;(i)
—A {(rz + IAT(g+ouyus—

— 2 aausuit Y, a_juzui— Y, @i puyui-t Z a_usui+
iG]SJ') in(f) ja(i) JL i)
7 3

g D it h) — i)+ o T asus(une)—
z#tjs(l) 1LJ

—uie M)t 5 anus@ily +H—ui()+
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J=#JL i)

+1 % e N—uily—R) .

By the last relation and intial conditions (1.12), the equation (2.3) takes
the form

2.4 ZShuf(pAt)Jr 5 LC 20+ 2Dhaui+( 3+ 2Dhe jui+

10(1 2n iL(7) 21
i

+( 2 +Z)ka+ku2+( Z +Z)ka KU Jpat

jald) .IL i)
1

=At|:— 2 @uplpUit DL QopuzuT— DL Qplyuit )L a_pujui
i60) L0 ieth L
7 J 13 1

+% P aontsid +R)—ui@) + Y a pus(ui(x) —uilx—h)

+i 2 i+ 1LJ
j

+— Z a+kuy(u:(y+k)—u:(y))+~ 2, a-ru(ur(y)—

2 i 2 5
—uily—h) |pa

HE+ DATTou = 5 tduuilye

+(§ +§)Ar[(g(pﬁt)+ g(p—DAu(phe)
—Atg((p—DADui(pAb)]

~(z+ rzh)ar[sjogtug;+ PN S
—l—jgiAthhS;,f(uﬁ—u?)-i- S

—[( + Z)ha+h(¢ + A t¢¢x> +( Z +J§)ha—h(¢%+ A t¢¢5)

igly) 1L(j)
i

+( X +QZ)ka+k(¢§+ At(ﬂﬁby)'i'(j%) +§)ka~k(¢%+ Atops)]

jeld)
1

—(L+ 2DATT(g(AD)+g(0)p— Atg(ADD].
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Each term in the right side of the last equation can be estimated

as follows;

| At — 20 anuzui+ 2 a_juzui— 2, aqpuyui+ ), a_pujui|
e ) jafh iz
J 7

2 2 2
éAt[ = a+h(h+2u§)+ = a_;,(h—I—Zu,%)—}— = a+h<—u—‘—|—2u_2v)
i) 8 i) 8 iofi) 8
b x an(®henad)]
s P\8 AN

lé—t—[ > aupu(ui(a+h)—ui(x)+ Z a_puz(ui(x) —ui(x—h))+

2 iFig(s) i+ xLJ
i

a4 B asun) - ui(y—h) ||

7 ]G i)
_ 20 (N2
gﬂ[ Z a+h(ut(x+h) +ut(x) +2u§>+
2 o) 4

v (u,(x) tui(x—h)? o2 >+ S u?(y—i-k)z—i-u?(y)z_i_zug)

iFin(f) J?L-‘JG(H
i

+ 3 a_k<u?(y)2+ Z?(y_k)z—i—Zu;%):}

J#ILD
1
_At aipta_n 2 a.pta_p 2 aipta_p 2
== X = lyid Y TR gsg R e
2 Li=igp 4 i=iz(j) 4 i+iolf). isth 2
J
Qipta_p 24 3 arta_p Gptap 2
LapbOob 2y 3 Sebtlongiy Bty
i=ieti 4 = 4 iFielD it 2
13 1

+ 2 2a.ui+ Y 2a_juit Y 20 4u?+ Z 2a_ ku:]

J#—'ta(]) ]#‘11,(:) .7+1a(1) 7 JL(s)

o2 +2)AI(g(pan)+g((p—DAu(pAd)|

ST+ D OT] upat + 5 (g(pary+ g(p—DAD |.

And by using the boundary condition we have
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| At(rZh+PZ/)AFg((p——1)At)u;(pAt)[

IA

S+ DA g(p—D A0+ Btui(pho)?]
<C1AtZShut(pAt)2+ (Z—l—Z)AF[g((p DA 8)2+ Colhk Nt? g2,

where C; and C, are constants independent of A¢, A and k. Other
terms in the right side of (2.4) are also estimated by Schwarz’s inequality.
Then we have the following inequality.

(2.5) Zshul(PAt)Z+ - 1L( Z +Z)ha+hu +( 2 +Z)ha pug+

iG] ir(s)
j

+( 2 +g2)ka+ku§+(_2(,) +§)ka_ku5]pAt§
3 JjLli 3

jeld
1

<nd 3 (Tratr)uty 3 (Ghpt )t 5 (e o)

ep\ 4 15 8
7

a a 2 aipta_p 2 aipta_p 2
(—k+ +k> ui+ Yy ATERgRy o TR0kl
]L(s) t#ta(]) ir(7) 4 JFicti), jrii) 4
1

+ ¥ 20.u2+ Y 20 uit Z 20 ul+ 2 2a_ kuf

ig(s) irts) g () L(t)
i 7
+ 2 anuiit Z a_puit Z a. i+ Z a—kuﬂ
:#zau) i 1]1:(,7) J+ ]G i) J JL(z) pAE
b
+Ci Aty Siui(pAe)*+ 2] AtZS;.u%
Qn s=1 2n
2 2
+(+ DT (14210 ur+ (181 + 85 Jut]
rn 17 L 2 2 2 bt
p-1
+ 2 AU+ DusA)EAT
s=0 r'n T

-I—(ZH—Z)AF[Zg((p DA+ At (1+CN M) gi(p e’

b-1 b-1 -
+ L AUS+ AT g+ 5 At D Saf "+ LSwp+
s=0 rn, 1% s=1 2n 2n
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+3 (3 + Dbena{(1+55 )t + 5log

1(;(_7)

+(3 + ko {145 e+ 50

i)
J

+ (2 4+ ke (145 )es+ Stel)

]g(;) Qpn

+ (3 + Doba (145 i+ 50 |

]L(i) 2

+ (S DATLEOF + A+ ADZ(AO +¢"+ Aty

Here we note two lemmas.

Lemma 1. For any u defined on 24411, we have the inequality
TulA+ Y ulAT
r r,

geZ[:h(aMuﬁ—i-a_;,u;z,)+k(a+ku§+a_ku§)]+ Cle)Y Syu?
2n 2n
where ¢ is an arbitrarily small constant. The constant C(e) depends on &

and becomes lavger as & becomes smaller.

Proof of Lemma 1. We first note that for any v

2.6) 2 aulx—hw— 2 aulx)v= . ha v,

ig()+1 ir J) 1 en+{ir()—1}
7

+ JZZ:(aHx(x) _a+h(x —h))v,

where {Z }means the summation over all the mesh points of £, and
2p+{is(i)-1
all the boundary mesh points having the coordinate numbers i;(j)—1. In

fact,

ha v,
2n+{ig(H—-1}

= §EG+h(ic)(v(ic +1)—v(i6))+aamGe— 1D (@) —v(Ec—1))+

+-FaaGr)lr+1)—vG)+anGr—1D)wGE) —v@GEL—1))]
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= ;(hh(ic)v(ic +1)— ;aw(iL —Do@—1)
- JZ[(aHz(iG) —a.i(ic—1)v(ic) +(arnlic— 1) —a.a(ic—2)v(ic— 1)+
+ -+ (anGr) —anGr—1))vG ) ]

= % aula—hu(x) ~ o aen(@e(E)— HZ’E(aM(x) —a.i(x—h)v(x).

ic(j
J
Hence we have the formula (2.6). Similarly we have

2.7 je(%'uaw(y—k)v(y) —]_L%}_law(y)v(y)

= iy ety t @) —anly—B)w.

Qn+{jpti)—1}

Now we define two functions ¢; and ¢, over a region £’ D8£ which
are equal to cos (n, x)* and cos (n, y) respectively at a point on each
side of I',+1;, and which have bounded derivatives of the first order in
£’. It is possible if the boundary I” of £ is smooth. The expression

to be estimated can be written as follows:

IguzAF+§u2Af
;gzﬂuﬂﬂu ]Mﬂ;g;m;)z+<z*;>z]ﬂ

o) G Jare molGr) + (G
+ o] () + (R

] r
Bl T Jare g5

2
Qip—CQp

4) cos(n, x) means the direction cosine between the outer normal and the x-axis.
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v 2o () ] er (B
R LY

gl () () Jor

where the right side is what was expanded in the case of Fig. 1.

The symbols ) and ', etc. mean the summation over the boundary

ig+l ; 1
G+1 L

mesh points of the ﬁrst kind facing triangular meshes, and the symbol

>3/" denotes the quantity at the boundary mesh points of the first kind

irz—1

jr—1

facing a quadrate mesh. Further ) , etc. denote the summation over the
igtl
A

boundary mesh points of the second kind. In other cases we have only

trivial change.
Now the last equation becomes

SwEAT+u?AT
Iy I";L

— 2f QG—p ’ 2 A.p—0Q_p
- Z a_pl ( - Z apl ( Z @, pl (————~)
ig(D+1 AT inip-1 Ar i1 AT

J 7

ji—1

7 2 a+h 2f — Qi
+ La-n ( >+ 2, 0 ( Tl (AF )

jL—1
2 2
2)0+p—0Q_p —a_p
+E { AT }x_ A+ 3 u? { AT }m A+
7 A
2 2
2fapn—a_y AT 2{a+h_a—h} AT
+.7'GAZ+:1u { AT }J’—k +jf,i—:1u AT y+k

s puf(eamas ) s(2ameaY ar,
13

where >/ = 2 + > + Z’ By using the functions ¢; and ¢,
ir()~1 zL 1 ir(H)-1 ir—1
7 je+l A jL—-1
we have
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SwEAT + S ui Al =

'y I”

> oauldr— X aculdit Z’a R
za(§)+1 zL(‘_;'_) 1 ir—1
+ 3 awuPda— axuPs

jG(z)+1 JL( i)—1
+ 2 wPPIAl+ Z u?QiAT

iz+1 zz, 1

+ X2 uPPIAT+ 3 uPiIAT + ;u2[¢§+¢§jar.

JGA“' JL— A

By applying (2.6) and (2.7), the last equation becomes
(2.8) JulAT+Su A=
ry I";L
= % haa(@u®).+ Yan(x) —aw(x —h)pru®
Qn+{ir(H—-13} 2n

k. s(02u%)y+ D(aa( )= e y—k)pau’

Qp+{jLti)—13}
+ Z a_ 1,§/}1{u —Zkuuy—i-k u- }'y+k
ir—1
jL—1
+ 2 QAT+ Z'g/)z AT
i¢;+1 ‘LA—
+ 2 QWAL+ 3 pWEAT+ o3+ ¢3uAT.
chrl JLA_ re,

Here we note that because the equalities a_i(x)=a.s(x—h) and a_(y)

=a.;(y—k) hold at some interior mesh points of £;, we have
gZ(m(x)—m(x—h))sbluz
h
_(Z+Z+Z+Z><a+h(x> a+lz(x h))fblu

B %
and

g(aik(y)wﬁhk(y—k))gbzuz
_(Z+Z+Z)(a+k(y) d+k(y k))pau?,

A
(A) (A)
where Z (Z, Z‘, and Z ) denotes the summation over the mesh points

(A) & K 7
ic (i L, je and j i) adjoining the boundary mesh point of the second kind.
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>, denotes the summation over the mesh point adjoining two boundary
ry
mesh points of the first kind, one of which faces to a quadrate mesh and
another to a triangular mesh. (See the point £ in Fig. 1). Now
Z(aen(®) —alx—m)prul=— o1 (y+E)p1(u AT

JG

]AG
= —;G‘;:l M[uz—2kuu5+k2u§]Af+(jZ;]k¢11(y+ B, (y)ulAT,
A (A
%(a+h(x>_a+h(x_h))¢1u2 |
(A
= —-jg;l gbf[:uz—l-Zkuuy-{-kzug]AI—'-—%'kgbl(y-—k)g[)l;,(y)uzA]—',
A )
izt;:(aw(y)—am(y—k))ﬁbzuz
=- :élﬂb%EuZ—Zhuuthu%]AFJr Zhoa(x +h)aa(2)u AT
A ()

,-ZL: (aru(y)—awi(y —k))pou®
(A)

=— 2 ¢H u?+2huu,+huZIAT — Y hpo(x—h)pozuAT.
ir—1 iz
A A

We note also that
rZ}(a+h(x)—a+h(x—h))gb1uz +Z/:(a+k(}’)_‘a+k(9’—k>)¢’zu2
h I—-h.

== D@t +gputar

Iz”(a+h(x)—a+ll(x _'h))gbluz = %:(a+h(x)—“a+h(x ——h))ﬁbluz

=— Xahu(y +k— Xa_skru(y+kE)>.
b o

Therefore from (2.8), we have

(2.9) XulAT+Yu?Al
I'p T';l

= 2 ha. i($1u®)s+ PN }ka+k(¢zu2)y+

2p+{iL(j)-1} on+{iLtir-1
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— 21 O3 —2huuz+h*uZ AT + Thpo(x+h)po(x)u’ AT

ig+ i
—iglt/J%[Zhuux—l-hzuf;]Ar—‘ZL:}zAg[ig(x—h)gl)g;uzAF

A V)
—j§1gb‘{'[——Zkuu;—l—kzu%]Ar—i—%kgbl(y—}—k)gl)ly(y)uzAf

7 )
—jLZA;.'I¢%[2kuu},+k2u§]Ar—%}kgbl(y—k)gbl;(y)uzAF

7iS

+iLZ_];’a_hgbl{—Zkuu;+k2u§};+;—a,,,k¢11yu(y—I—k)z.

jr—1

Applying the formulae
(¢1u2)x: §b1xuz +¢1(x +h)uxu + {Sbluui}m-h)
(¢}2u2)y: ¢Zyu2+ ¢)2(y +k>uyu + {¢2uu5}y+k

and using the Schwarz’s inequality in the right side of (2.9), we have

the estimate
SulAI+ulAl
Ty T';l

és; Lh(aspui+a_ju2)+ k(o uita_wu?) ]+ C(e)}!; Syu?
h h

YO T ulAT,
r
where C(¢) depends on & and the bound of ¢, ¢2, @aﬁf; AT —aa¢—2 etc.
Y

From the last equation we get Lemma 1 for small A.

Lemma 2. For any u defined on 2,%[sOt; s=0,1,...,p, pAt<T],
we have the inequalities

b
(2.10) X Suu(pAt)!<2TY ALY Siuils At):+2Y Su(0)?
21 s=1 2n 2n

and
b b

(2.11) DALY Siu(sAtP<2T?3 ALY Spui(s AP +2TY Spu(0).
s=0 n s=1 2n 2n

The proof of Lemma 2 is easy. In fact
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»
u(pAt)= 3 Atui(sAe)+u(0),
521
?
u(pAe)*<2(pAt ) Atui(sAe)*+u(0)?).
s=1

Hence we have the desired inequalities (2.10) and (2.11).
Now we return to the inequality (2.5). At first we note that by the

boundary conditions

G,
RS ST R

2y C3h22g§AF.
I
Using Lemma 1, Lemma 2 and the last equation, we have the following

estimtes about the term of the summation ), -+ Z, on the right side
I'n I"
of (2.5),

3 2, A2 ]g
(§+§)AF[<1+7|6I)u +—2—(1+l(3l)u tont
3 2 2 2 2
g(l—{-—?l6|>€Z[h(a+hu,¢+a~hu2)+k(a+kuy+a—ku’5):|j’N
2n

(15 101)C@ D Suup ey

CzAt
2\ hic

gs’gz [h(a+hu§+a_hu,—2,)+k(a+ku§ -+ a_kuf,):]M,

CgAt h?

+ (1+ldl)ZS,,u,<pAt)2 (1+16|)zg,(pmmr

»
+Ci(e) I Dt T Sr(sAr)’
s=1 3

Atz /7 4
+ G5 B Sialp A0+ Ci() T S0

—i—CgAtzherg;(pAt)zAF,
h
r—(143 - 3 _C
where s——(1+ ; |6|>e, 04(5)—2T<1+—2—16|>C(e), C=S 1+ 1)),

Ci(e’)-—-Z(l—l—%lM)C(a) and cg=%(1+|a[). And
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glAt(;+I;)u(sAt)2AF

1
<e 2 AnMamuita ) +h(a sl +a )
2n

p-1
+CE) X At Swui(sAt)?
s§=0 2n
p-1
<eX At;[h(aﬁzui—I—a_hu§)+k(a+ku§+a_ku§)]sm
s=o 7

-1
+Ce(e) I, AT Suur(s Ae)+ Cole) T Swu(0Y,

where Cs(e)=2T?C(e) and Cg(e)=2TC(e). By applying these results in
(2.5), the following inequality holds:

2.12 { Gty >7 2 [EZ__ <a;r N ] 2
( ),Zﬁ;) — At N b N L
J i
Sh (a+k_,_a k) 2 r S;, _ (a_k a+k>] 2
+]~§,)[ At ]”’JF,-LZ;;f)Lz i raaay WAL
S; aipta_ 2 S ap+a_ 2
N, [ o)
i+iaJ<_fZ>,:iL(j) 2 4 urf‘#m%;nm 2 4 e
2At 2Nt A
+ 3 haa(1-220 ¢ )2yl & ha+;,(1————26 u2
iaj(j) h 2 iﬁ’:t(;(]) h
Jj
b (122 Yt L 3 e, (1-280 g,
izl h 2 i+ h #
J
28t ,\. 2 2Nt
+ 5 kaa(1-220 e Vuzy L 5 hay, 12883 >
jc;i(i) k 2 ]+]G(1)
+ 3 ka_, 1_&_8') NN N PR k<1_2_A_‘ ,) 2}
Frfi) k 7 #;Lm bt

b
<Ci(e) 23 At Spua(sAt)?
s=1 2p

»
+e 21 At;[h(amuﬁ—I—a_;,u,%)—{—k(a+ku§+a_ku§)]m,«
s= 12

+F(p)+G(p)+0,
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where

A?
Si=Si(1= CiAt=Csr) s Gl =14 Cule)+Cile),

F(p)= ,,g AT S,

G(p)=(g‘: +PZ;E)AF[2g((p— DAL+ A tz<l + CZ\/ZW;)g;(pA t)z]

p-1

+ 5 AN+ TAT g+ (D + ) AT 0)2+
s§=0 T'n T 2T, ry

A+ ADGANTHGACK T gi(p Ay AT

and

- _%{( o+ Z)haTh[(l +»A—2—5>¢§+%5¢2]

ig(7) 2n
J

+( 2 + Doha ] (145

1[,(]) 2n

+(3 + Doka] (145

JG(z) 2n

+(5 + k| (1455 )ei+ 502 ]}

]L(z)
+ QZ Spp® +(Cu(e)+ Ca(e)’)!; Sie?
+H T+ AT + g™,
Tp I’;l
Now we choose At, h and k as follows:
1_

>2a>0, 1— >2a:>0,

2Nt VAN
h k

where « is a small constant. Then for sufficiently small A¢

i;l_At<(L4h+a h) Sh At(a rta_ h)+At<a n ClS,, CsS;;At)

2 4 "8/ 2 4 8 2 2\ ik
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‘Z”<1—2%t M))ash, etc.,

and

Si_ (a+,,+a_,,> §_< _2At K )_&( Ad®
5 At 7} _22 1 b aita 3 CiANt+Cs

aip + a_g \/ hk
> etc.
= Sh
Further we can take &'(¢) so small that
ha, (1 — w2—%—':—a’> =>aha. etc.

Substituting these inequalities into (2.12) we have
aﬂZ}hShui(PAt)z+£(2—QZ’]L[h(a+hu§+a_hu§)+k(a+ku§+a_kug)]m:
<6 5 BEZ Suus A0y
e 5 ADIMo i+ o ud) Kot ol

+F(p)+G(p)+0.
We set

b
% O¢ 3] St Eauita wd)+E euita wd o

s=1 2n
=S(p).
Then the last inequality can be written in the form
S(p)—S(p—
(2.13) (p)=S(p=1)

N =CsS(p)+¥(p),
where C=max<~CJc(¥—a)—, i& W(])>_-—(F(P)+G(P)+q))

Hence we find that

SP=1=¢a; cms<f’ AN cmmf’)
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1 1 _
We choose At so small that 1—CgA t_2_7 and we put T-GAs R.
Then
S(p)=RS(p—1)+RAt¥(p).
We apply the last inequality successively, and then
p
S(p)ng‘lS(l)—l— RAt Y, RW(s).
§=0
However
CsdAt

since
INESINES S

Therefore we get
S(p)=e”“[S(1)+ T¥(p)J.

Finally we estimate S(1);

SW= T Sub*+ Has(put Dtgol+Ea s(pit Aepal +
+Eaa(e,t AP+ Eau(ost Degs) |
gl 3 s (3 oe s (3o
o2+ (5L 0 —hr+ (5 o)
+(BL o mr+ (50 P (2}
|

Sha A 24
-+ (SE o G—mr+ (5L 0 (2]

3ka k

25
{
3ka+ & {
G
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=G Su(9*+ @i+ o2+ 02+ o),
h

where we used the fact that the functions ¢ and ¢ are smooth in £'D Q.

Consequently we have

S(p)=Cio(T&(p),
. 2 2, h 2 2y k 2 2
i. e, 2 At x| Swui+—Aaauitaud)+o(aul+a_rul) |sar
s=1 an 2 2
gclt)(T)T(P)-

From the last inequality and (2.13) we have also a strong inequality
2 h 2 2 k 2 2
(2.14) QZ Shut+?(a+hux+a—hui)+_§(a+kuy+a—kuj> pat
h

=Ciu( T>§F(P)-

Thus we have

Theorem 1 (Stability). Suppose that At, h and k satisfy the condi-
tion

(2.15) 1— Z%t >a,>0, 1— 2%‘ >a,>0,
where « is an arbitravily small constant. Then the solution uw of the
difference problem (1.9), (1.7), (1.10), (1.11) and (1.12) satisfies an energy

inequality (2.14) for sufficiently small At and pAt<T.

Immediately from the last theorem we have a convergence theorm.
In fact we express the solution of the differential problem (1.1), (1.2) and
(1.3) by v and the corresponding solution of the difference problem (1.9),
(1.7), (1.10), (1.11), and (1.12) by u. And we put w=v—u. Let us

consider, for example, again the hatched mesh in Fig. 1. Then we have

o 0%
rUr = 6t2 dxdy'l-Mthh,

(g+0{v}un) —aﬂhv;—l—auvy—a_kv;:%%dlﬂ-{—Z_th,-AT,-,

Shf=SSfdxdy,
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v 0% v 0% 0%v 0% 0w

under the condition that 553 Dxoi®’ 5y0e7 n? 5972 Bxdy B and

v are continuous, where M; depends on the magnitude of 0%y ag—v

Oy ’ 50 9x00
0%v 0%y  0*v 0% v v

and 550t FIwRE M;; depend on that of 7? a_y_z’ T@y’ B and Oy’ and

AT; are lengths of sides of the trapezoids. Hence we have

Sivii—[(g+0{v}sen)—a_witarvy—a_pw5]—Sif

i actr§gs ar—Jfroceymssipamsr

%y 0% 0% }

=\| oo —=S—"—F |dxdy+MhSy— 2 AMs; N T';

N 5yz / dxdyt MihSi— kM,
=M1hSh—ZhM2iAF,-,

since v is the solution of (1.1). Therefore on the concerned mesh point

w satisfies the equation

S;,w,;=6{w},,+h—a_hw;+a+kwy—-a_kw5,+M1hSh— Z_:hMZiAFi,

which can be written in the form
Siwiz=(g1+0{w} x1) —a_pwz+a wy—a_pws+ S f1,

where |g1| <const.” and fi=Mh. Analogous difference equations are
satisfied by w on the mesh points adjoining to the boundary mesh point
of second kind.

In the same way we have the equation satisfied by w at the interior

mesh point;
Shrs= a4 W, — a_ Wz + Gy Wy — a_pwy+ Spf1, fr=Msh,

where M3 depends on the magnitude of the third derivatives of » with
respect to ¢, x and .

Therefore we have the difference equations over the region 2, in the
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same form as in (1.9);
Siwii=awy—a_gwi+awy—a_wy+0x( g1+ 0w) AL+ S fy

under the boundary conditions in the form as in (1.7);

a_wz=(g1+0w)AI'y a_p=k on a right boundary mesh point,
arw;=—(g1 +Ow)AT, a =k on a left boundary mesh point,
a_ywy=(g1+0w), a_r=h on an upper boundary mesh point,
a,wy=—(g1+0w), a,,=h on a lower boundary mesh point.
At the boundary point of first kind, the formulae (1.10) and (1.11)

approximate formally the original boundary condition %—6 u= g with the

error of order O(h). This means

a_wz+a_ywy;=(g1+0w) at a right upper mesh point,

a_wz—a wy=(g1+0w) at a right lower mesh point,
—a, Wyt a_w;=(g1+0w) at a left upper mesh point,
— @y Wy — @y gy =(g1+0w) at a left lower mesh point,

and (in place of (1.11))

—a Wit ap{wzt yir—aw,=(g1+FOow)AT.

In all the above formulae about w we can recognize that g,=0(k), fi=
O(h). So that we find that w satisfies the difference problem with ¢=0,
¢=0(At), g=0(h) and f=O0(h)+O0(At*). Therefore we have from
(2.14), using Lemma 1,

(2.16) llw||n=|lv—u|l,=0(h) when A—0
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uniformly for pAt<T, where
ol = 2| Suwl+-2a. o2+ o)+ (o 0f + 0+ St |
13

and we supposed that a solution of the differential problem has continuous

third-derivatives in 2x[0, T]. Hence we have

Theorem 2 (Convergence). Suppose that the boundary I' of 82 is
sufficiently smooth and a solution of the differential problem (1.1), (1.2)
and (1.3) has the vegularity just stated. When At, h and k tend to zero
under the condition (2.15), a solution of our difference problem converges
to the corvesponding solution of the differential problem in the sense of
(2.16).

§3. A Parabolic Problem

We can construct an analogous difference scheme for a mixed initial-

boundary problem for an equation of heat conduction

ou 0%u 0%u _ .
(3.1) a—t W_W—f n Q( T)a
(3.2) g%—ﬁu:g, on I'x[0, T],»
(33) u(O, Xy y):¢<xa _'y)'

Here the notations are same as in §1. As an approximation of the differ-

ential equation (3.1) we set an implicit difference equation analogous to

(1.9),
(34) Swwi=apuz—a_juztauy—a_u;+0(g+0u)AT+ S;,f.

As boundary conditions we use the formulae (1.7), (1.10) and (1.11). As

initial conditions we use

5) As in §1, we assume here and in §4 that at every point P&l there is a circle S
such that SN2=P.
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(3.5) u(0)=¢.

In the same way as in §2 we can prove a stability theorem and a con-
vergence theorem. For the proof we multiply the equation (3.4) by u/\¢
and sum all over £, x[t=sA¢t;s=1,2,..., p], then

b
(3.6) > ALY Swuiu
2pn

s=1

1 P

T2 &

At%l[h(amux);u%-h(a_hu;)xu+k(a+kuy)5u +k(a_ruz)yu]
h
P _
+ ZlAtZ[ﬁh(g—l-@u)uAT—}— S;,fu:].
§= 2n
However we have

» »
32——;1 Atu;u=—;— > Attu? -{—%u(pAt)z—%u(O)z

s=1

and

gZh(awux);u =gZh[(a+huxu)5— {a-nul} i)

— 2
= Z Qi plyU — Z a+huxu_2ha—hufc
igl) iL-1 n
J 7
= 2 a_puzu— 2 Qipusu— ), haui—Yha_jul,
ig(n+1 ih-1 gl 2n
J 7 7

Yh(a_pus)zu
2n

= D a_juzu— a puzu— 3, ha_pul— Y ha, u?,
igln+1 in(h-1 i o
J J 7
Zk(a+kuy)5u
2n
= > a_juzu— avruyu— 2, ka,ul— Y ka_jul,
jelD+1 irih-1 i o
1 7

QZk(a_kuy)yu

jelh+1 jL-1 i)
1 1 1

= ) a_juzu— aiplyu— 2, ka_ku%—§ka+ku§.
h
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Therefore the equation (3.6) can be written in the form

V4
L s Su(pre?— w0+ 28 5 ALY Spu?
2 an 2 s=1 e

»
= At[ 2. a_puzi— )5 aipuzu+ ), a_puzu— Qi plyl
= iglp+1 -1 jeln+1 i1
J 1 1

_(Z+ Z )ha+hux (Z+ Z )ha hu“

2n ig(f) 2 25 L(])
j

—(Z+ 2 )ka+kuy-*—(2+ 23 Jka_i}

2n JG (i) 2n 11.(1)
+r2(g+au)uzxr+gzshfu] .
h h

Applying the boundary conditions (1.7), (1.10) and (1.11) to the last

equation we have

b4
@) $SwpAD+5L T AT Sl

+ 15 AKE+ B e i+ (D T ha it

s=1 25 ig(j) Qn ir(7)
7 j

H(Z+ X ke i+ (4 2 kapuf]

2n JG(t 24 ]L(z

b
=1 S5m0y + X AN AT (g+0u)u+ X AT (g+0u)u
2 o s=1 T T

—I—Z:Shfu]
2n
Now we estimate the second sum of the right side by the Schwarz’s in-

equality and Lemma 1:

| & AMLEAT(g+0wu+ T AT (g+8ua]]

<3 oug+RAr] Lg+(5+100)]
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b
<L ¥ AS+DEAT
2 s rp T
b
+(5+101)s At ETh@ i+ o D)+ kol +a u)]
n= 3
1 b
+(5+101)60) 2 A Spw?
2 s=1 2n
and

b _ b -
| S AE S ul <L A SW( TP ud).
=1 R 2 521 25
If we take ¢ so small that

(3=t

then we have from (3.7) using the above estimates,
»
(38) TSwlpA+ g 3 A5 h(es st +a wd+ el +o wd)]
r §= n
?
<> S5u(0)2+Cy X AtY) Su®
2n s=1 2n
» b ~
+ AU FINEAT+ 2 At Shf?
s=1 ry, Ty s=1 2n
where C;=1+(1+2|0|)C(e). Further if we put
b
S(p)= 2. At X Spu(sAt)?
s=1 2n

1

) g
—l——z-q;l At s§1 At%[h(awu%—}—a_hué)—l—k(a+ku§,—!—a_ku%)]

b » _
V(p)=2Swu0)*+ 2 AN+ 1) AT+ 35 At Shf?,
2n s=1 Ty I";b s=1 2
we have from (3.8)

S(p)—S(p—1)
VAN

(3.9) =CS(p)+¥(p).

By the same way as in §2 we get

S(p)=C¥(p),
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and by (3.9) we have consequently

b
(310) X Suu( pm)2+-;_ % At DTkl +apud)+haudta )]

b »
<SC[XSiu(0)?+ X A +2)g* AT+ X, Aty Sf7,
2 s=1 Tp T';L s=1 2
where C3=C;C3+1. Thus we arrive at

Theorem 3 (Stability). A solution u of the difference problem (3.4),
(1.7), (1.10), (1.11) and (3.5) satisfies the energy inequality (3.10) uncon-
ditionally for p ANt<_T. (Unconditionally stable)

Theorem 4 (Convergence). Suppose that the boundary I is sufficiently
smooth and a solution v of the differential problem has continuous deriva-
v 0% 0%v 0%v 0%v 0%v v . 5
517 xdi° Dyoi° 92 oxty’ dytox M 5yp AL T

tives

Then the solution u of our difference scheme converges to the corresponding
solution v of the differential problem for Nt, h and k—0 in the sense of

llv—ulls—>0 uniformly for pAt<T,

where

»
l|w||;,=gZ Siw(pAt)? —i——;— 21 At ;[h(a*hwi+a_hw§)+k(aTkw§+a_kw%):].
h §= h

§4. An Elliptic Problem
Here we consider the Neumann problem for an elliptic equation:

. P?u  0%u

(4.1) B —W-{—u:f(x, ¥) in £,
ou
(4.2) a—n—g(x, ¥) on I'.

We know that the above problem has one and only one solution under
appropriate smoothness condition on /', f and g. Now we can construct

a scheme analogous to (1.9) or (3.4) on our net in §1 as follows:
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(43) —a+hux+a_hu5—a+kuy+a_ku5—5hg‘+ Shu———S;,f_,
with the same boundary condition as (1.7), (1.10) and (1.11) in §1.

We will prove that this difference scheme is uniquely solvable and its
solution converges to an exact solution of (4.1) and (4.2). For the pur-
pose we multiply z on both sides of (4.6) and sum over £2;, then we

have

— > a_puzu-t Arplizb— D, G_puyu-+ Qi plyll
ig(j)+1 ir()—-1 jeli)+1 jrti)—-1
J i H i

+ (Z+ Z )ha+hu2+——(2+ 2 ha_jul

2n ig(j) ir(7)
j 7

——(ZH— 2 )kcmauz-l- (Z+ 2 Yka_pu?

2nr  jeli) Ln JL(t)

— 2 gulAI'+ Y Su?=73] Sfu,
rs 2p 2n

(see the case of a heat equation in §3). Applying the boundary condi-
tions (1.7), (1.10) and (1.11), we have

+ (Z+ Z dka wul +—(Z+ 2 dka_jul

2n JG i) L(ii)
+ 0 SuP=(N+5)AT gu+ 2 S, fu.
2n 'y I";L 2p

We can estimate the right side by using the Schwarz’s inequality and

Lemma 1 as follows:

-—(Z+ 2 )ha+hu5+—(2+ Z )ha_hu%

2n tg () ir(f)
Jj

F 5 (T B ka5 haudt T St

Jjeli) 2n iz (i)
[ 7
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Iy

< N+ I AT + (N EAT
r de; 'r,, 17,
2, 1 72
+6!§Shu +—E§Shf
éeell;[h(awu%—a_hu%)—l-k(a+ku§+a_ku%)]
e (CE+ DT S+ (L4 D) F AT+ T Sif%
o dey ' T, de1 oy

where & is an arbitrarily small constant, ¢ and C{e¢) are two constants

appearing in Lemma 1. We take &; so small that ¢ 81<7A1i— and e,(C(e)+1)

<% hold, then we have from the last inequality,

g][h(a+,,u,2,—i—a_hu%)+k(a+ku§—l—a_ku»§-)]+;Shuz
<L m+mgar+ Lysgn
T & rn T, €1 @x

Immediately from the last inequality the uniqueness of the solution
of our scheme, and consequently the existence hold. And further we can

prove a convergence theorem in the same way as in §2 and §3. Thus

Theerem 5 (Convergence). Suppose that the boundary I of £ is
sufficiently smooth and a solution of the problem (4.1) and (4.2) has
regularity such that third derivatives are continuous in 2. When h and
k tend to zero, a solution of our difference problem converges to the corres-

ponding solution of the differential problem in the sense of
||lwll»=0(h) as h—0,

where w is the difference between an exact solution and its approximate

solution. And

”w”h = ;j[h(aﬁ /zuazc+ a_,,u,%-)+ k(a'f‘kug + d~ku%)+ S/;uzj.
n

§5. A Numerical Experiment

In order to test our scheme, we consider a simple problem. Let £2 be
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a unit circle and I its boundary. The problem is to find the function

v(x, y) satisfying the equations

2 2 2

gt;’ _<ng2 +gy”2)=0 in 2x[0, T7,
ov

n =2 on I'x[0, T,

v(0, x, y)=g—:(0, %, y)=x"+ 5 in 2.

We can easily see that the exact solution takes the form
v(t, %, y)=2t"+x%+ y>

For simplicity we take the mesh width A=k=0.1 and the time

step

t=0.05 which are considerably coarse. For the calculation we have only

to consider an octanant of the unit circle because of symmetry (see Fig. 2).
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Fig.-2 The mesh points used

in computation
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The result of the numerical performance shows stable features of our
scheme. We compare the exact solution and our numerical result at
t=10A¢=0.5 and t=20A¢=1.0 (see Table-1 and-2).

We see that at t=0.5 (:=1.0) the maximum error which arises near
to the boundary is 0.12 (0.27), while the minimum error is 0.05 (0.10),
which takes place away from the boundary. These results show that the
total error has order of O(h) in 0<C{¢<(1.0. It is the expected matter

from our Theorem 2,
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