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A Difference Method for Boundary Value

Problems of the Third Kind*
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Tatsuo NOGI**

Introduction

Pure difference methods for elliptic boundary value problems with

derivative boundary conditions are treated by Batschelet [1], Giese [2],

Lebedev [3-8], Volkov [9-10] and Wigley [11], etc.

For the same problems a kind of difference methods, what is called

"Finite-element-method", are also investigated by Demjanovic [12], Friedrichs

and Keller [IS], Oganesyan [14-15], Oganesyan and Rukovetz [16-171

and Zlamal [18-19], etc. In this method a reduced minimal problem

from the original boundary value problem is solved approximately in a

subspace spanned by a class of finite number of "element" functions and

their translated functions. The resulting difference scheme approximates

automatically the differential equation in the interior of the domain and

the boundary condition at points near the boundary. In these works the

estimate of error between the exact and approximate solutions is given

either in order of mesh width or precisely in an explicit form.

On the other hand, as far as we know, there were few works about

difference methods for hyperbolic and parabolic mixed initial and boundary

value problems with derivative boundary conditions in a domain of any

shape. From mathematical interest we can refer to Lions [20] and

Chekhlov [21] whose method is called "penalty method", in which the
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problems with homogeneous mixed (Dirichlet and Neumann) boundary condi-

tions are considered and are reduced to the problem of a differential equation

with some extended coefficients over the region and with the homogeneous

Dirichlet condition. But the rate of convergence is at most 0(\l h ), which

shows that this method is not fit for practical use, (h is mesh width.)

Here we propose a difference method with rate of convergence O(K)

for mixed initial and boundary value problems of wave equation and heat

equation with the boundary condition of third kind (and also for boundary

value problems of elliptic equations) in a fairly arbitrary region on the

plane. Our difference scheme corresponds to an integral formula of the

original differential problem and has natural structures. The proof of con-

vergence relies on the so called energy method (cf. Ladyzhenskaya £22]).

By trivial modification our method will be easily applied to the 3-

dimensional case, to the equations with variable coefficients and to the

problem with mixed boundary conditions.

§1. A Mixed Problem of a Wave Equation under a Derivative

Boundary Condition and Its Difference Approximation

We consider the mixed problem of the wave equation in a cylindrical

region Q(T) = tix(Q, T} in R*(Q is a bounded domain in R2)

si i\ 92u d2u d2u ~, ^ -=(t' *> ° m

under the initial conditions

&(05 x, y^) = <p(X) y),

a ON ft*.• t-t J v/ lAl / f\ X l / N

and the boundary condition on the lateral surface

(1.3) !^-*»:
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Here —— means the derivative along exterior normal to the boundary surface.
on

d is a constant. Under appropriate smoothness conditions of the boundary

F of J2 and the functions f and g, as we know, a unique smooth solution

exists Q23]. Moreover we assume that at every point P G F there is a

circle 5 such that Sr\S = P.

For the sake of the future treatment we transform the equation (1.1)

in an integral form by integrating the equation over any (z, x, y)-region

a) x [/, t + dt~^ and using the Green's formula:

-jjj-(t+At, x, y) — -JL(t, x, j)J dxdy

(1.4)
rt + 4t r ft rt+At rr

= \ dt\ ^-ds+\ dt\\ fdxdy,
jt Jao, an Jt J Jo> J

where ds means the line element of the boundary of a).

Now we construct a net in R2 whose nodes have coordinates of the

form

x — rnh, y=nk (TTI, n = Q, ±1, ± 2 , - - - ) ;

where h and k are distances between the two adjoining nodes in the re-

direction and the y -direction respectively. Denote the set of all the

nodes in J2 by @'h.

We consider those nodes which adjoin to Q'h. We call a node adjoin-

ing to two nodes of Q'h a boundary mesh point of the first kind and call

a node adjoining to one node of @'h a boundary mesh point of the second

kind. Now we draw the "broken" lines through half-integer points, but

we erase a broken segment lying between a boundary mesh point of the

second kind and the corresponding node of Sr
h.

Here we supposed that h and k are so small that no nodes outside of

J2 have three or more neighbouring nodes of @r
h. (It is possible under our

assumption about 7\) Then if there appears a node being contained in a

triangular mesh whose sides consist of two broken segments and a part

of the boundary of J2, we count it in the class of boundary mesh points
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of the first kind, so that we need not consider original adjoining boundary

mesh points of the second kind. We express the set of the left nodes

of &f
h by ,0/i, which we call the set of interior mesh points.

© The interior mesh point
0 The boundary mesh point of first kind
A The boundary mesh point of second kind

Fig.-l The concerned mesh points

And we express the set of all the boundary mesh points by T'/z. Finally

we draw line segments connecting the two neighbouring intersecting points

of the "broken" line and the boundary, and then we have the polygonal

region and express it by the same notation Qh. The polygon Qh consists

of some triangle, quadrilateral and pentagonal meshes having a boundary

of broken lines or a side of the polygon.

In order to construct a difference scheme, we apply the integral

formula (1.4) over each quadrilateral or pentagonal mesh and approximate

each term by a corresponding difference quotient as follows; for example,

over the hatched mesh in Fig. 1 we have a formula (after dividing by A£)

(1.5) 1)

where A/\ a./,, a+k and a-k are the length of the right, left, upper and lower

side respectively, and Sh means the area of the mesh. For the forward and

1) { }x+h means that the quantity in the bracket in calculated at the boundary mesh
point of second kind, while other terms are calculated at the concerned node,
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backward difference quotients we employed the following notations;

__u(t+ A*, x, y) — u(t, x, y) _ u(t, x,y) — u(t—&t, x, y)
Ut -- __ - , U1_ - __ -

__ u(t, x + h, y} — u(t, x, y) __ u(t, x, y) — (t, x—h, y)
u, -- - , u-x -- ^

_ u(t, x, y+k)-u(t, x, y) _ u(t, x, y)-u(t, x, y-k)
Uy , Uy ~k

and for difference quotients of second order, e.g.,

, ,
/ \ L

f denotes the mean value of f over the concerned mesh and g denotes

the mean value of g along the corresponding part of F. If we determine

the value of u at the boundary mesh point (XQ, y0) of the second kind

adjacent to the concerned mesh by the formula

at (x^ j0)3 or equivalently

at (xQ — h, y0), a-h = a+h = k,

(which, we note, is only the replacement of notation and itself does not

mean the formal approximation of the boundary condition), the equation

(1.5) takes the form

(1.6)

We can use the above difference equation (1.6) at any quadrilateral mesh

if we take

(1.7) a-hUx = (g+8u)&F, a-h — k on a right boundary mesh point,

= — (g+8u)AF, a+h = k on a left boundary mesh point,
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a,-kUy = (g+du)&r, a-k — h on an upper boundary mesh point,

a+kuy=— (g+8u)Ar, a+k = h, on a lower boundary mesh point,

and a+h = a>-h=:k, a+k = a,-k = h' on any interior mesh.2)

For a pentagonal mesh we have a formula

(1.8) ShUti = a+hUx — a-hux + a+kUy — a-kUy + (g+du')&r+Skf,

where a^, a_/z, a+k and a-k are the length of the right, left, upper and lower

side respectively, and AT" is that of the side of the polygon Qh. By using

the function dh which equals to unity on a pentagonal mesh and equals

zero on a quadrilateral mesh, (1.6) and (1.8) can be written together in

the form

(1.9) ShUtj = a+hUx — a-hux + a+kUy — a-.kUy + Sh(g+8u)&r+Shf.

In order to determine the value of u at each boundary mesh point of the

first kind facing a triangular mesh we apply one of the following formulae;

(1.10) a-hUx + a,-.kUy = (g+du}&r at a right upper mesh point,

at a right lower mesh point,

at a left upper mesh point

and —a+hUx — a+kUy:=(g+Su}^r at a left lower mesh point.

At a boundary mesh point of the first kind facing a quadrilateral

mesh we mush apply another formula, for example, at a left lower point

of Fig. 1 we use the formula

(1.11)

2) From the construction of our net it is known that -^- -^- -% -̂ and —t-^- are
h h k k

uniformly apart from zero and then ^~—ddF etc- are not zero for sufficiently

small h.
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where { }y+k means that the quantity in the bracket is calculated at

(X y+&), while other terms are calculated at (x, j), and other notations are

the same as above. At other boundary mesh points we can have analogous

formulae. The formulae (1.10) and (1.11) approximate formally the boun-

dary condition-^- — d u = g with the error of order 0(1i) + 0(k), while (1.7)
On

does not.

We also approximate the initial conditions (1.2) by the formulae

(1.12) *(<>,*, y) =?(*, y),

u(&t, x, y) = <p(x9 j)+ A*0(*, j).

Then we have the values of u on the planes t = Q and t= A£ by (1.12),

and we can dermine the values of u on t = 2At, S A z , - - - successively by

using (1.9), (1.10) and (1.11), etc.

§2. Convergence of the Scheme

Now we will prove that the solution of our difference scheme con-

verges to the solution of the original problem (1.1), (1.2) and (1.3) under

appropriate conditions.

We can rewrite the difference equation (1.9) in the form

(2.1) Shut-t —

by using the fact that a-h(x) = a+h(x — K) and a^k(y) = a+k(y— &). We

multiply the last equation by (ut+uj) and transform it with the aid of

the following formulae:

etc.,
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where a curled bracket with a suffix have the same meaning as in (1.11).

Then we have the equation

ut+u^x+ —

—{a+hux(ut+uj}x}x_h — —-

We multiply the last equation by At and sum over

(2.2) 2

P-i r i
2 A* — 2 a+h

S = l L 6 i=ip(j)

* i = tL(

-7T 2 a+kuy(ut+uj} — — 2
* j = JGU) * j = JL(U-

i i

-^T 2 a-.kUy(ut+u-i} — —- 2
'

Q-2 h{a+
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where Z'G(/)> ii(/) — ^-coordinate numbers of right and left ends of each

row segment35 of mesh points on y=jk in $/2, and /cCO? j i(f) — j-coord-

inate numbers of upper and lower ends of each column segment of mesh

points on x = ih in Q^. 2 means 2 ^h- Here we note the following
i +• F/h Fh

relations :

and

Applying these formulae to the right side of (2.2), we have

P-l

3) If i3 is not convex, some mesh lines y=jk may be divided into several segments
by the boundary.
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— -s-( 2

-TT(
*

3

Applying the boundary conditions (1.7), (1.10) and (1.11), we have

We transform each term of the right side as follows:
P-I P-I

t^^u^ I ̂ A*— A *M,M^ I o,

p—l

P-l
= U2

y I ^
A? — A tUyUyt UA* "" ̂  * M j, U^ | 0,

P-l
+ut)= 2

5=1 S=l
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S
s=2

and

/>-!
2

5=1

Thus we have

(2.3)

+*"2 + ( 2
« L ( J )y

/it/)i

2]
f G ( y >
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Fh F

Z 2
5=2

*

Here we transform the second bracket of the right side as follows:

A* V( V
O L A 2 - 12 iG(

i6(y) Z i^ip

+
\ S
( Z +4- 2 V*Mi(Mi(a;)-Mi(^-
\ SL( / ) ^ i^«i(y)/

2 +-^- 2

+( 2 + 4 - 2 V
\ y z ( i ) 2y^y£(f) /

— Z a+huxuj+ Z a-hUxUi— 2 a+kuyut+ 2 a-kUyUi
tow « i (y) y < ? ( « ) y x ( « )j y j *

+ -TT 2 a+hux(ui(x+fi) — uj(xy)+— 2 a-.h
* i*iG(V 2

— 2
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-5- E a.ku-y(u-t(y^-U1(y-k»~}.
2 j*jLu) J

By the last relation and intial conditions (1.12), the equation (2.3) takes

the form

(2.4)

= A« — 2 a+kuxui+ 2 a-
L i G (y> »L( J )

^

- —
2

— ui(y—

y

-77 S a+kuy(u-t(y+k) — ui(y)} + -~
2

(E+ Erh rf
h
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Each term in the right side of the last equation can be estimated

as follows;

— 2.J &+huxut~i~ 2j &-hUxUl— Zj a-f
IGJ *V 3Gil

'~* i\+ rahl«ix }^r LJL a+h{-£-

.

i=t*imL(j)
a-hu>x(ut(x} — u~t(x

lj) i=t*iL(j)

A^r v
~9~ . 2_i . «

& \—i^iG(J) 4

' S a+

2, v-. a+h + a-h^z, ^ a+h + a-h 2
~ - ~ - ~ - -_^ t _i - ~A - t

2, Lj = f o ( y ) 4 * = «>(/) 4

2 2a+^u| + 2 2&-hUx + 2 2a+^z^^ + 2
yG ^ J lf 3 lf l J JiL

And by using the boundary condition we have



BOUNDARY VALUE PROBLEMS 301

Fh

Fh

where Ci and C2 are constants independent of Az3 h and &. Other

terms in the right side of (2.4) are also estimated by Schwarz's inequality.

Then we have the following inequality.

(2.5) Ete(/?A02+-k( Z +I3ha+hul + ( E
£ft 2 f f f ( / j ^A fL<

E 2a+hu
2
x+

oi/)

i

E a+ku
2
y+ E a-*z*f

j*jGU) j+JLd) J

p-l

Es=o rh r
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Here we note two lemmas.

Lemma 1. For any u defined on J2/i + /^3 we have the inequality

where s is an arbitrarily small constant. The constant C(e) depends on

and becomes larger as s becomes smaller.

Proof of Lemma 1. We first note that for any v

(2.6) E a+h(x—h}v~ 2 «+;*(»= Z ha+hvx
< y )
y

where 2 means the summation over all the mesh points of &h and
**+{/z(/>-i}

all the boundary mesh points having the coordinate numbers z^C/) — 1. In

fact,

2 AO+AV,
)-i>

~ I)(V(*G) ~ v(f G - 1)) +

»(»i - l)(»(i£) - O(ZL - 1))]
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h(iG — 1) — a+h(iG — 2))t7(iG — T) +
3

H ----- h (a+h(ii) — a+h(iL — 1)M&" z)H

j J

Hence we have the formula (2.6). Similarly we have

(2.7)

Now we define two functions 0i and 02 over a region Q'~^Q which

are equal to cos (TZ-, %)4) and cos (n, j) respectively at a point on each

side of rh + rf
h, and which have bounded derivatives of the first order in

Qf . It is possible if the boundary F of Q is smooth. The expression

to be estimated can be written as follows:

JG+l

v,» 2r/a+*-o-*y . / ' o + t V
" +

iL-l
A

Ar+

4) cos (TI, ^) means the direction cosine between the outer normal and the
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y+k J
Ar

4- AF

where the right side is what was expanded in the case of Fig. 1.

The symbols 2 and Zl'? etc. mean the summation over the boundary

mesh points of the first kind facing triangular meshes, and the symbol

2" denotes the quantity at the boundary mesh points of the first kind
iL-lJL-I
facing a quadrate mesh. Further 2 -> etc. denote the summation over the

10 + 1
A

boundary mesh points of the second kind. In other cases we have only

trivial change.

Now the last equation becomes

A j-,AT / iL/i-i

^, 7,2 / a-k \ v « „%( ~~a+k\
«-^w l^TT7"]"" ^ a+*^ I A r )\A7 / jL(i)-i \ A/ /

where S— 2 + S + Z I - By using the functions 0i and
"y yo+i A

we have
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__ 2 a-
ti,

J

2—ku
2</>2— 2

S

By applying (2.6) and (2.7), the last equation becomes

(2.8) i>2

Here we note that because the equalities a-h(x) = a+h(x — h} and

= a^&(y — A;) hold at some interior mesh points of S^ we have

= (S + L+ r ,
(A) (A) h h

and

(A) (A) n

where 2 (25 2 and 2 ) denotes the summation over the mesh points
IG IL JG JL
(A) (A) (A) (A)

IG (&"z3 JG and JL) adjoining the boundary mesh point of the second kind.
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2 denotes the summation over the mesh point adjoining two boundary
n
mesh points of the first kind, one of which faces to a quadrate mesh and

another to a triangular mesh. (See the point 0 in Fig. 1). Now

JG JG
(A) (A)

JG
(A)

A (A)

and

tL
(A)

We note also that

a+k(y —

and

E(a+/z(^) — a+h(x—

Therefore from (2.8), we have

(2.9) i>2

ha+h(</>iu2)x+
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2

JL-1
A (A)

(A)

2
JG+l JG

A (A)

2 </>2
lE2kuUy + k2u2

JL-l JL
A (A)

Applying the formulae

(x +tl)uxU

and using the Schwarz's inequality in the right side of (2.9), we have

the estimate

Oh

where C(e) depends on e and the bound of 0i, 023 - 0 , ••-,-^-^-5 etc.
a^; a j

From the last equation we get Lemma 1 for small h.

Lemma 2. For any u defined on , Q A x Q s A £ ; 5 = 0, I , - - - , /? ,

we have the inequalities

(2.10)

(2.11) 2 A^S 5^(5 A*)2^2r22A*2 5^^5 A 02

The proof of Lemma 2 is easy. In fact
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P
u(p&t}= Z A*M7(

5 = 1

Hence we have the desired inequalities (2.10) and (2.11).

Now we return to the inequality (2.5). At first we note that by the

boundary conditions

Using Lemma 1, Lemma 2 and the last equation, we have the following

estimtes about the term of the summation Z + Z> on the right side
rh r'

of (2.5),

rft r^

A ^2
-2 Shu-t(p A f ) 2

' /i

where £' =

and C5=-<1+ | f f | ) . And
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rh r'h

p-i
2

+ C6(e)*2 A « S S*ui(s A O2 + C6(e)' 2 S/XO)2
3

5 = 0 0fc -0ft,

where C6(e) = 2r2C(e) and C6(e)' = 2rC(e). By applying these results in

(2.5)3 the following inequality holds:

y G ( / )

2A^ A 2 . 1 ^ , /1 2A£ 0 ,\
— — T -- £ )ul + -^ S A a + * ( l — — T -- 2e )

fl / Z i*j=tG(j) \ fl /
j

, /-
Aa_/ i (

ty) \

2A^ A 2 i 1
— — r- -£ )Uy + -7rA; / •" 2 y=

— — =— — s

V Z (^ 2 A^ .A 2 , 1 ^ 7 A 2 A* O AL Aa_ f t [ 1 — — T— — £ )u- + -— 2 A o - f t ( l — — 7— — 2£' )
i ( f ) \ K / y 2 j=j=jLd} \ k J
i i

p
2



310 TATSUO NOGI

where

SJ = S»(l - Ci A * - ^57==) , C7(e) = 1 + C4(e') + C6(e),

)=zf

P-l

S=Q rh Ti

and

2 r*
Now we choose At, A and & as follows:

where a is a small constant. Then for sufficiently small

a, h
4
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etc.,
^ \ n n /

and

9'*V
2" " * V ~ ~ 4 J = ~ 2 V ~JT a+k + a_kJ TV1""^**

^y 5* etc.

Further we can take e'(e) so small that

ha+h( 1 — —y— — e' J ^>aha+h etc.

Substituting these inequalities into (2.12) we have

We set

_*M|)
J

Then the last inequality can be written in the form

(2-13) S(p^S(p-l

where C=

Hence we find that

^-, — ) ,
Ct Ct /
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We choose Ai so small that 1 — CBAt^>— - and we put — — ^— -r — = R,
2 1 — Cg A t

Then

We apply the last inequality successively, and then

However

since

Therefore we get

Finally we estimate
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where we used the fact that the functions cp and 0 are smooth in Q'

Consequently we have

i. e., 2
s=i

From the last inequality and (2.13) we have also a strong inequality

(2.14) 2

Thus we have

Theorem I (Stability). Suppose that A£, h and k satisfy the condi-

tion

(2.15) i-J^l_^ai>05 l_J^-^ai>03/i k

where oc\ is an arbitrarily small constant. Then the solution u of the

difference problem (1.9), (1.7), (1.10), (1.11) and (1.12) satisfies an energy

inequality (2.14) for sufficiently small A£ and p/\t<^T.

Immediately from the last theorem we have a convergence theorm.

In fact we express the solution of the differential problem (1.1), (1.2) and

(1.3) by v and the corresponding solution of the difference problem (1.9)3

(1.7), (1.10), (1.11), and (1.12) by u. And we put w = v — u. Let us

consider, for example, again the hatched mesh in Fig. 1. Then we have

(g+d{v}x+h
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, ^ ,.,. ., , d*v d3v d3v d2v d2v d2v dv ,
under the condition that ^r-g-, 2 , 2 , ^—g, -~—2~s -?r~n—» ^r~ and

dt3 dxdt2 dydt2 dx2 dy2 dxdy dx

v are continuous3 where MI depends on the magnitude of-— - dAC V^UllL-lllUWU.05 \V LL^L t, J.¥JL^ VJ.^pV^ilVO.0 V^ii LIJL^ J-AlClg A1J. U d\_l\^ WJ. — ^~« —^T ^T K~

dy ot6 oxot*

A d3v n, , A .^ . f 92v d2v d2v dv , dv ,and , M2; depend on that of ^-g, ^-3, -^— r — , -^r— and -^— , and
dydt2 dx2 dy2 dxdy dx dy

are lengths of sides of the trapezoids. Hence we have

i

since i; is the solution of (1.1). Therefore on the concerned mesh point

w satisfies the equation

which can be written in the form

where | gi \ <^const. h and fi = MI h. Analogous difference equations are

satisfied by w on the mesh points adjoining to the boundary mesh point

of second kind.

In the same way we have the equation satisfied by w at the interior

mesh point;

where M3 depends on the magnitude of the third derivatives of v with

respect to £3 x and y.

Therefore we have the difference equations over the region J2/* in the
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same form as in (1.9);

under the boundary conditions in the form as in (1.7);

a-hWx = (gi + Sw} A/", a-h = k on a right boundary mesh point,

a+flwx = — (gi+Sw)AF, a+h = k on a left boundary mesh point,

a_ kWy = (gi + dw\ a-k — h on an upper boundary mesh point,

a+k = h on a lower boundary mesh point.

At the boundary point of first kind, the formulae (1.10) and (1.11)

du
dnapproximate formally the original boundary condition —— — du = g with the

error of order 0(Ji). This means

at a right upper mesh point,

at a right lower mesh point,

at a left upper mesh point,

at a left lower mesh point,

and (in place of (1.11))

In all the above formulae about w we can recognize that gi = 0(h), fi =

0(Ji). So that we find that w satisfies the difference problem with 0> = 0,

0 = 0(AO, g=0(h} and f=0(h) + 0(At2). Therefore we have from

(2.14), using Lemma 1,

(2.16) \\w\\ h=\\v-u\\h=0(h) when &->0
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uniformly for p£±t<^T, where

+ a-h^2, I J J

and we supposed that a solution of the differential problem has continuous

third-derivatives in S X QO, T]. Hence we have

Theorem 2 (Convergence). Suppose that the boundary F of Q is

sufficiently smooth and a solution of the differential problem (1.1), (1.2)

and (1.3) has the regularity just stated. When A£, h and k tend to zero

under the condition (2.15), a solution of our difference problem converges

to the corresponding solution of the differential problem in the sense of

(2.16).

§3. A Parabolic Problem

We can construct an analogous difference scheme for a mixed initial-

boundary problem for an equation of heat conduction

(3.1) *L_|!» -|!» =/ in Q(T\
dt doc2 dy2 J

(3.2) toL-8u = g, on Tx[03 T]^

(3.3) u(0, x, y} = <p(x, y).

Here the notations are same as in §1. As an approximation of the differ-

ential equation (3.1) we set an implicit difference equation analogous to

(1-9),

(3.4) Shuj

As boundary conditions we use the formulae (1.7), (1.10) and (1.11). As

initial conditions we use

5) As in §1, we assume here and in §4 that at every point PeT there is a circle S
such that
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(3.5) z*(0) = ?>.

In the same way as in §2 we can prove a stability theorem and a con-

vergence theorem. For the proof we multiply the equation (3.4) by

and sum all over Ghx[_t = s&t; 5 = 1, 2,...,^], then

(3.6)

However we have

Z
s=l Z s=l

and

a+huxu—
/ i(y)

a+huxu—
(j)-l i0(

2 a-kUyU— 2 a+kUyii— 2
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Therefore the equation (3.6) can be written in the form

P r
= 2 Ad 2 a-kUxU— 2 a+huxu+ 2 a-kUyU— 2 a+

s = l Lz G ( . / )+ l iL(j)-l jG(i) + l /£(«>-!
kuyu

- ( 2 + 2 )*a+ ,u;~(L+ 2 )Aa_*§
/ (?(*)*

Applying the boundary conditions (1.7), (1.10) and (1.11) to the last

equation we have

(3.7) 4-

2 AC(2+ 2 }ha+h

+ (2+ 2 )ka
G(

~ZShu(o)2+ 2
2 ^2ft 5=1

2

Now we estimate the second sum of the right side by the Schwarz's in-

equality and Lemma 1:

S
s=i rh r' L 2 \ 2
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r" r'*,

+(^-

and

If we take e so small that

then we have from (3.7) using the above estimates,

(3.8)

where Ci = l + (l + 2|*| )C(s). Further if we put

we have from (3.8)

(3.9)

By the same way as in §2 we get
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and by (3.9) we have consequently

(3.10)

where C^ = CiC2 + l- Thus we arrive at

Theorem 3 (Stability). A solution u of the difference problem (3.4),

(1.7)5 (1.10), (1.11) and (3.5) satisfies the energy inequality (3.10) uncon-

ditionally for p A t<;T. (Unconditionally stable)

Theorem 4 (Convergence). Suppose that the boundary F is sufficiently

smooth and a solution v of the differential problem has continuous deriva-

Q2v d2v d2v d*v d*v d3v , d*v .
twes > ~ > - * > '
Then the solution u of our difference scheme converges to the corresponding

solution v of the differential problem for A£, h and k— >0 in the sense of

\\v — u\\h~+Q uniformly for p&t<^T,

where

§4o An Elliptic Problem

Here we consider the Neumann problem for an elliptic equation :

92u d2u , /•/ N n

on

We know that the above problem has one and only one solution under

appropriate smoothness condition on F, / and g. Now we can construct

a scheme analogous to (1.9) or (3.4) on our net in §1 as follows:
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(4.3) —a^hux + a-hUx — a+kUy + a-kUy — dhg+Shu = Shf,

with the same boundary condition as (1.7), (1.10) and (1.11) in §1.

We will prove that this difference scheme is uniquely solvable and its

solution converges to an exact solution of (4.1) and (4.2). For the pur-

pose we multiply u on both sides of (4.6) and sum over J2/z, then we

have

a+huxu— d-kUyU a+kuyu
'

r

(see the case of a heat equation in §3). Applying the boundary condi-

tions (1.7), (1.10) and (1.11), we have

—(S-r
i

We can estimate the right side by using the Schwarz's inequality and

Lemma 1 as follows:

+V



322 TATSUO NOGI

where Si is an arbitrarily small constant, £ and C(e) are two constants

appearing in Lemma 1. We take £1 so small that £ £i<— and £i(C(e)+l)
4

3<— hold, then we have from the last inequality,

£1 rh r;

Immediately from the last inequality the uniqueness of the solution

of our scheme, and consequently the existence hold. And further we can

prove a convergence theorem in the same way as in §2 and §3. Thus

Theorem 5 (Convergence). Suppose that the boundary F of Q is

sufficiently smooth and a solution of the problem (4.1) and (4.2) has

regularity such that third derivatives are continuous in Q. When h and

k tend to zero^ a solution of our difference problem converges to the corres-

ponding solution of the differential problem in the sense of

as &->0,

where w is the difference between an exact solution and its approximate

solution. And

\ N \ h = Z [A(aH hul + a-hu$) + k(a+k u
2

y + a_^|) + Shu
2^.

nh

§50 A Numerical Experimeiit

In order to test our scheme, we consider a simple problem. Let Q be
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a unit circle and F its boundary. The problem is to find the function

v(x, j) satisfying the equations

• n s rn T-im fix CO, r],

dv =2 on rx[0, T],
dn

v, x , j = --, x, y = x y n .

We can easily see that the exact solution takes the form

v(t, x, y) = 2£2 + *2 + y2.

For simplicity we take the mesh width h = k = Q.l and the time step

£ = 0.05 which are considerably coarse. For the calculation we have only

to consider an octanant of the unit circle because of symmetry (see Fig. 2).
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Fig.-2 The mesh points used
in computation

The result of the numerical performance shows stable features of our

scheme. We compare the exact solution and our numerical result at

* = 10A* = 0.5 and * = 20A* = 1.0 (see Table-1 and-2).

We see that at t = 0.5 (z = 1.0) the maximum error which arises near

to the boundary is 0.12 (0.27), while the minimum error is 0.05 (0.10),

which takes place away from the boundary. These results show that the

total error has order of 0(h) in 0<*<1.0. It is the expected matter

from our Theorem 2,
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, _A[- Approximation
t—U.O y^ —Exact

1.43

1.36

Table-1
Approximation and exact

solutions on the mesh points

at £ = 0.5

I Q Approximation
~~ ' Exact

2.84 2.93
3.06

2. 75 2. 84
3.00

2.66 21ll_
2.98

Table-2

Approximation and exact

solutions on the mesh points

at J = 1.0
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