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On Global Solutions of the Generalized

Korteweg-de Vrles Equation

By
Masayoshi TSUTSUMI*

I. Introduction

Various physical phenomena in which nonlinearity and dispersion are

important (e.g., shallow water waves Ql], hydromagnetic waves Q2] and

acoustic waves in an anharmonic crystal T3]) lead to the Korteweg-

de Vries equation

ut + u ux + uxxx = 0

where subscripts denote partial differentiations. Existence and uniqueness

of the global solutions of the Korteweg-de Vries equation for appropriate

initial and boundary conditions has been proved by A. Sjoberg ^4J5 R.

Teman [5] and Y. Kametaka [6].

The purpose of this note is to investigate the initial -boundary value

problem for the generalized Korteweg-de Vries equation :

(1.1)

(1.2) i*(*,0)=/00, 0<*<1,

(1.3) z*(0, l) = tt(l, f) for all ^0.

Equation (1.1) also arises in the study of an anharmonic crystal \Jf\. The

cases p = 2 and p = 3 have been studied by T. Mukasa and R. lino Q7J

and K. Masuda £8], respectively. M. Tsutsumi, T. Mukasa and R. lino
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have treated more general nonlinear dispersive equation

But their assumption on the nonlinear term does not include the cases

T>03 P^4 and r<03 p = odd number J>5.

Below3 §2 is devoted to preliminaries. In §3 "potential well35 associa-

ted with the problem (1. !)-(!. 3) is considered and Main Theorem is

presented. The proof of this theorem is carried out in the final three

sections: Uniqueness is proved in §4, local existence is established in §5,

and a priori estimates are stated in §6.

We denote by Lp (a, b ; E) the space of Is- valued weakly measurable

functions u(t) on (a, 6) for which

5 if

SUP \\u(f)\\E<oo , if p=

where E is a Banach space with norm \\ • \\E. By Cm[ja, i;£'J1) we de-

note the space of functions which are m times continuously differentiate

over [jz, b^\ with values in E. We denote by Hs (s integer) the Hilbert

space whose elements are real valued 1 -periodic functions with finite norm

where u(x) = ̂ ake
27rik, a^k = ak, £ = V — 1 • We denote by (/, g) the

scalar product and by ||/|| the norm in the space .L2(03 1) ( = Zr0)3 that is,

rf* and

Then we have, for u(x) € Hs (sj>0)

\\Dfu\\,

1) In the sequel of this note, by m we always denote a nonnegative integer.
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where Dp = dp/dxp and ci, c2 are positive constants depending on s.

The following lemma is well known.

Lemma 1. If u(^)€^fS 3 s~^>k + l(k nonnegative integer), then u is

of class Ck and

(2.1) max \Dpu(x)\<,c\\u\\s for O^p^k,
Q^x^l

where c denote various positive constants.

Lemma 2, For any function u(x)^.H^ the inequality

(2-2) max | «(*) | ̂ c|j«||1'2(||«|| + !M)1/2

O^x^l

is valid.

In the next lemma we are concerned with invariant integrals associa-

ted with the solution of the problem (1. !)-(!. 3).

Lemma 3. Let u(x, t} be a solution of the problem (1. !)-(!. 3). Then

there are constants 8^ 82 such that

(2.3)

(2.4)

Proof. Differentiation with respect to t of the left members of (2.2)

and (2.3), use of the differential equation and integration by parts will

lead us to prove the desired properties.

3. Potential Well amd Theorem

Put

(3.1) /(zO = /i(iO+/2(zO.

Following the idea of D.H. Sattinger QlO] (see also J.-L. Lions fll])

we define "depth of a potential well" by
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(3.2) d= inf sup J(Zu).

Lemma 4. We have

Proof, Evidently we get

where

and

f1 f1

a(u) = \ u^dx+\
Jo Jo

Lemma 1 yields

Hence,

if 6(ii)^03 sup/(A&)= +

and if 6(ii)>0, sup J(Au)

- 2(p + 2) CW"

Q.E.D.

We introduce the potential well W\

W={u ueHlt 0<;J(Au)<d, vA6[0, 1]}.

Then we can easily obtain the following lemmas (see Lions CllH, p. 31):
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Lemma 5. // u € W, then we have Ou € JF, V0 e [0, 1].

Lemma 6. We have

Lemma 7. T7&0 s#£ JF is bounded in HI if d is finite.

Now we state the main theorem.

Main Theorem. For every initial function /(#) E ?Fn#3(OT+i), the

initial -boundary value problem (1. !)-(!. 3) has a unique solution u(x, t)

such that for any r>0

0, T; L2(0, 1)].

Corollary. // /(*) € JFnffoo, then u(x, t) 6 C°°[0, T; ffj,

Remark. In the cases of jo^l, 2, 3, ( f=±l ) and p = 2q (g^2, in-

teger, 7-= — 1), the above theorem (corollary) holds for f

(see [9]).

4. Uniqueness

Assume that W(A;, 0 and #(#, «) are two solutions of the problem

(1. !)-(!. 3) satisfying the same initial condition. Then the difference

w=u — v satisfies

w* + wxxx =—rupux + rvpvx,

w(Q, 0 = ̂ (1, 0 for all
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Hence we get

—d\\w\\2/dt = (w, wt)=—r(w, upux} + r(w, vpvx}

!const.|Hi2

from which it follows that in 0<J

w=Q.

5. Local Existence

We attempt to construct the local solution of the problem (1. !)-(!. 3)

by iteration:

(5.1) u(

(5.2) u(n\oc, 0)=/(*), 0<*<1, (/i = l, 2,

(5.3) u(n\Q, 0 = H(>0(1, 0, for all *:>0,

with initial element

(5.4) u^(x, 0 = 0.

Lemma 8. Suppose that f(x}€H3(m+i^ (p(x, 06L°°(0? T; H^m+i^)

nC[0, r;^3Jn ...... nCw[0, r;Z2(05l)]. TAg« ^r^ ^w/5 a unique

function u(x, t) satisfying

(5.5) iieL-(0, T;H3(m+l^ nC[0, T;H3mlr\ ...... ACW[0, T; L2(0, 1)],

(5.6) Z^+<P(A;, 0^*+"*« = 0,

(5.7) ii(*, 0)=/(*),

(5.8) w(0, 0=w(l,0»

This lemma is easily proved by the method of semi-discrete approx-

imation.

In virtue of Lemma 8, we see that for each

, r; ^3w]n ...... nc-ro, r;
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Next we shall show that the family {uw} is uniformly bounded with

respect to n in a certain small time interval.

Lemma 9. There exists a positive constant tk such that in 0<^<^< T

(5.9) ||uw(OII*^*, £ = 0,1, ...... ,3(7^ + 1),

where L/, are constants independent of n.

Proof. At first we prove the assertion in the case k = 2.

Multiplication of the equation (5.1) by u(n), integration with respect

to x and Lemma 1 give

from which it follows that

(5.10) ll« ( l°l|2^l|/ll2 exp (c sup H^'-^r)!!^).
OUT^I

Multiplication of the equation (5.1) by u(fx, integration with respect

to x and Lemma 1 give

from which it follows that

(5.11) | iti-'H2^ |/,||8 exp (c sup \\u^l\ry\\lt).
Q^T-^f

Multiplying the equation (5.1) by D4w(w) and integrating with respect

to #, we have
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Using Lemma 1, we get

(8up|B<r1 > l )2I

«£•-»«£•') I

) I /-1 sup| «j

and

1 sup I u?-" I Hit

Hence, we have

which implies

(5.12) l«SII2^(ll/«ir + c sup Huf"-1^)!!! sup
O^r^t Q^r-^t

x exp(c sup \\u(n~l} (r)|!f *).
O^Tg^

Combining the inequalities (5.10), (5.11) and (5.12), we obtain

(5.13) \\uM\\\ ^c2||/||l (1+ sup ll^-^Olif t exp (c sup ||u(-^(r)||f 0)
O^r-^t Q^r^t

X
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Now, let b be an arbitrary fixed positive number and put

i A.\ t - \ j log (1 + 6) _ b _ Tl; l * ^ p 9 * ' '
Then in the interval 0<[£<^l5 the estimate

(5.15) \\uw(t)\\l^Ll

holds if we take Ll = c 2 \ \ f \ \ 2
2 (1 + 6)2.

Indeed we can prove the above assertion by induction on n. When

n = l, we get

Suppose that the assertion holds when n = r, then we have

exp

for O^

Secondly we prove the estimates (5.9) for &>2 by induction on k.

Multiplication of the equation (5.1) by D2kuw and integration with

respect to x give

Since

(where 2 is taken over all (#1, , ctp+i) w i tha i+ - . - .

and with a^k — 1 for all i and Ci, C^ Cai...a are constants), we have
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\(D*u<n\D* {(a0-1')*"?1})!

<;C\\u(n-l)\\p
k{\\Dkuw\\2+ \\uW\\l-J for

Hence

from which it follows that

+ c sup llu^-^COUJ sup

Summation gives

(5.16) ||aw||S^(c2||/||S+c sup liu^'COIlS sup HitWWIIJ^O
O^T^f O^T^i

x expCcsupHu^ 'WIIJO (*>2).

Repeating the same argument as for k = 2, it is easy to see that the

inequality (5.16) implies the validity of the estimates (5.9) for &>2 if we

take

(5.17) L, = c||/||

and

(5.18) ^ = ̂

Q.E.D.

Lemma 10. There exists a positive constant Tm such that in the

interval 0<,t<;Tm

(5.19) sup \\u

<p sup \\u(n\t)—u(n~

holds3 where 0<p<l,
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Proof. The difference Z(n) = zi(n+1)- uw(n = l, 2, ...... ) satisfies the

equation

(5.20) z(
t

where v = (u™y-l + (u™y-2u<H-l>+ ...... + ttW(^l-iy-2 + (i6(l|-1))^1 and

Multiplication of the equation (5.20) by D2kZ(n^> (4 = 0, 1, ...... , 3/71 + 2)

and integration with respect to x give

Using Leibnitz formula, Lemma 1 and Lemma 9, we have, in

\(DkZ(n\Dk{vZ^u(rl}V\^c\\DkZ^

and

\(DkZ(H\ D*{wZ?)})|^c||JD*Z(ll)||2+||Z(")|IS_1.

Hence, we get

rf|(/?*z(»>||Vd^c||i?*zw||2+c(i|z("-^||j+i!z^^

from which it follows that

sup \\DkZ^(tW<,ct( sup \\Z^-l\r)\\l+ sup !|Z^(r)!I
O^rrgf O^T^? O^rg;

Summation with respect to k from 0 to 3m + 2 gives

(5.21) sup HZWCr) ! ! !^ -^— sup ̂ -"(OHL^

for 0<c*<l.

If we choose rw<min {l/2c, ^3(W+i)}, we establish (5.19).

Q.E.D.

Remark. Proofs of Lemma 9 and Lemma 10 are rather formal. But

if initial function /(#) is regularized so that f^H^ then we have uw €

C°°[_Q, T\ H^\ for each ra>0 and, moreover, the estimates (5.9) are in-
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dependent of such regularizations, which assures the above calculations in

proofs.

From Lemma 9 and Lemma 10 we see that there exist a function

u(x, t) and a subsequence of {u(n^} (also denoted by {u(n^}) such that as
71— >oo

u(n\x, t) - > u(x, t) weakly star in £°°(0, Tm; #3(m+1))

and

u(n\x, t) - > u(x, 0 strongly in Z,~(0, Tm\ H3m+2).

In view of the equation (5.1), we easily see that u(x, t) is a solution

of (1.1). Thus we obtain the following local existence theorem:

Theorem 1. For every initial function /(#)€ #3(^4-1)5 there exists a

positive constant Tm suck that in the interval 0<^<JTm the initial -boundary

value problem (1.1), (1.2), (1.3) has a unique solution u(x, t) such that

5 Tm; ^Jn-'-nC'TO, Tw; L2(0, 1)].

6B A priori Estimates

Let u(x9 t) be a smooth solution of the initial-boundary value problem

(1.1), (1.2), (1.3).

Lemma 11. For any £>0, we have

(6.1) u(

if the initial function f(x) 6 W.

Proof. Without loss of generality we assume u(x, t)^Q. Suppose that

(6.1) does not hold and let £* be the smallest time t for which u(t*} £

W. Then zi(**) € d W and from Lemma 6, we get

(6.2) J(u(t*y)=d

or

(6.3)
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We see that (6.2) contradicts the fact that J(u(t}} is an invariant integral,

i.e.,

From (6.3) we have

which also leads to the contradiction. Q.E.D.

Theorem 2. If /(#)£ Wr\H^m+i^ then we have for any T>0

(6.4) sup ||n(OIU<c, (£ = 0> 1, 2,

Proof. If d is finite, in virtue of Lemma 7 and Lemma 11, we see

that u(x, t) is bounded in HI for V£>0, i.e.,

(6.5) sup |
o^^r

If d=oo3 in virtue of Lemma 6 and Lemma 11, we can show that if

and if 6(ii)>0,

which imply (6.5).

We now prove (6.1) for k = 2. Put

Differentiation of 73(«) with respect to ^, use of the differential equation

(1.1) and integration by parts give



342 MASAYOSHI TSUTSUMI

Since

and since

rl

I
0
u2puxuxxdx \\uxx\\

we have

(6.6) dh(t}/dt<,c\\uxx\\
2+c.

Here we have used Lemma 1 and Lemma 2. Integrating (6.6), we get

(6.7) lk

3(^+1)

<c('\\uxx\
= Jo" *"

$:<
since

;o

The inequality (6.7) yields

(6.8) sup \\uxx(t)\\<c for any T>0.

Combining (6.8) with (6.2), we have the estimate (6.4) for k = 2.
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Next we prove (6.4) for k^>3 by induction on k.

Multiplication of the equation (1.1) by D2ku and integration with res-

pect to x give

d\\Dku\\2/dt=-2r(Dku, D\upuxy).

Since

we get

from which it follows that for any T f>0

l|£*"H2^lWl!2exp(c(l+ sup

Summation gives

(6.9) iW!!^c||/|!! exp

Suppose that the assertion holds for k — 1 (&^>3)5 then from (6.9), we see

that it also holds for k. Q.E.D.

Proofs of Main Theorem and its corollary are easily established, as

usual, if we combine Theorem 1 with Theorem 2.

Remark. The Cauchy problem for the equation (1.1) can be treated

with suitable modifications of the method in this note.
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