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Piecewise Cubic Interpolation and Two-Point

Boundary Value Problems

By

Manabu SAKAI*

1. Introduction

Cubic splines are of much use for approximating solutions of simple

two-point boundary value problems for both linear and nonlinear ordinary

differential equations. In the present paper, we shall give its mathema-

tical foundation by the use of Urabe's method QSH? which is quite uni-

versally applicable.

We consider the following two-point boundary value problem:

(i) *co=
with boundary conditions

( 2 )

( 3 )

where /(£, #, uf) is defined and twice continuously differentiate in a region

D of (z, x, w/)-space intercepted by two hyperplanes £ = 0 and t = l.

We rewrite the problem (l)-(3) in the following form:

( 4 )

( 5 )

( 6 )
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(7) A1x(l) + B1w(l) = b.

Now making use of 5-spline Qm+i(
ml i=o

n-i / . \
we consider spline functions of the form xh(t} = J^ <^pQd-r~P )>

p=-3 \ fl /

n ~ l f t \wh(t)— 2] PpQsi-r — p) (nh=l) with undetermined coefficients a_3.
p=-2 \ fi /p=-2

a _ 2 5 - - - 3 otn-i and $_2, / ? _ i , - - - 5 0n-i- The above xh and wh will be an

approximate solution to the problem (4)-(7) if they satisfy

( 8 ) ±*(0 = «»(0

( 9 ) wh(t} = Pf(t, Xh(t\

(10)

(11)

Here P is an operator defined by (P/)(«)= E f(tp}Lt(t\ where L/0 is
p=0

a piecewise linear function with property Lp(ti) = 8pi9 (tq — qh). From a

well known relation @M-.-i(0—(?m( *) — (?»»(* — 1)> we see that equation (8)

is equivalent to the following system of n + 2 equations:

(P=-2, -1,..., B-l).

Any two piecewise linear functions coincide with each other if and only

if they coincide at the nodes, therefore we see that equation (9) is equiva-

lent to the following system of n + l equations:

The boundary conditions (10) and (11) give two equations:

-2+ff-l _
o - ~~
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(15)

The number of undetermined coefficients is 2n, + 5 and the conditions

(12) -(15) precisely give the requisite number of equations. For the con-

venience of the analysis, we rewrite (12)-(15) in the following form:

(16) F'J>(a, 0)= t-p-! -0, = 0,

FWffv R}— \ &t-i — &p-2 _ f(tfh uz, p;-j ^ j\tp,

9 J( ~°>i /)p=Q

i
-So

In what follows, the system of equations (16) will be called a determining

equation for spline approximations. In the present paper we use (16) in

order to facilitate the analysis, but clearly in practical computations it is

more convenient to use the equations containing only ap(p = —3, — 2,.-.,

Ti — 1) which can be obtained from (12)-(15) by eliminating @p.

In the present paper we assume that the problem (4)-(7) has an

isolated solution (x(t\ w(t)} satisfying the internality condition

u={(t, x,

for some d>0. By the definition in [4] (p. 46), a solution

to the problem (4)-(7) is isolated if and only if

BO
(17) G =

is non-singular, where
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is a fundamental matrix with property 0>(Q)=E (E the unit matrix) of the

first variation equation of (4)-(5) with respect to (&(t), w(0)> that is,

Corresponding to £(0> as easily seen, one can determine uniquely a

cubic spline function xh(i) of the form

(18) **(*)= if
p = -3

so that

(19)

Since ^(O^C4[05 1] due to the assumption f(t,x,w)eC2
tiX>w(D\ by

Theorem 2.3.4 in [1] (p. 29) it is valid that

(20) (4 = 0 , 1 , 2 , 3 )

uniformly on QO, 1] as A— >0. From &h(t\ °ne can easily construct a

quadratic spline function w^(^) of the form

p=-2

so that
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By (20), it is then valid that

\wh(f)-w(f)\ =
(21)

fl>*(0
uniformly on |^0, 1] as A— »0.

2. Some Properties of Spline Functions

In what follows, for any (p(t)€.Lz[Q, 1], we shall denote \ (p2(f)dt "2"

by \\<p\\) and for any finite dimensional vector c, we shall denote its

Euclidean norm by \c\.

_

Lemma 1. Let (p(t)= 2 cpLp(f\ then #i<J h \ c \ <||<H|</liV h
Q=P

where IJL\ and AI are positive constants independent of h, and c = (c0,

Proof. For *€[>/>, fy+i] (/> = (), I , - - - , ra-1), <p(i) =

Therefore we easily get

1 ^ 1
Since y(c|+ c2

p+l)<c% + cpcp+i + c|+1^y(c| + c|+1), we have -g-^

M c | 2, which proves the lemma with jUi= ,— and ^i = l.
V o

n-l / t \ _
Lemma 2. Let ^(0= Z c^3(^-— p), then ^ h \ c^,=-1 \ ri /

, where fa and 1 2 0^0 positive constants independent of h, and

Proof. Since #>(£) is a quadratic polynomial on (j^,, ^+1] (jo = 0, 15

2,.-., 7i — 1), it can be written on \jkp, tp+i^ as follows:

Here it is easily seen that p(f,)= c*-'+c*-i , y(^)= c*-i~c»-8 t and
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ft

IHI2= 2?
# = 0

^ Therefore it follows that

= "S A {Y
p=Q Jo\

w-1

where /^ is a quadratic form with respect to c/>_25 c^,_i and cp independent

of h. Ip is nonnegative, and Ip = 0 implies that <p(tp) = <p(tp) = (p(tp + }=Q,

that is, cp^2 = cp-i = Cp = Q. Therefore Ip is a positive definite quadratic

form, consequently there are positive constants #2 and ^2 such that /*2(c|_2

+ c|_1 + cp</p<^-(c2_2 + c2_1 + c2). From this readily follows the con-
u

elusion of the lemma.

n-l / 4. \ _
Lemma 3. Let (?(t}= 2 cpQA-T—p\ then /JL^ h \c\<^\cp\\<^

p=-3 \ n /

^3>M|c | , where jU3 and A$ are positive constants independent of A, and

. Since (p(i) is a cubic polynomial on [jp,

n — 1), it can be written on [j^, ̂ +1] as follows:

Here it is easily seen that y(t.)= ,
6 2A

; and -^ + )= c,-1-3c

Hence likewise as the proof of lemma 2, we have easily the conclusion of

the present lemma.

n~l /1 \Lemma 4. Let (p(t}= 2 cpQm+1f -j- — p L then
p = -m \ fl /

, where ||^|U= sup |^(OI» c = (c_m , . -- , c«_i) and |
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Proof. As well known, B -splines can be characterized by convolution

of characteristic functions as follows:

m+l

where

f 1 for t e [0, 1]

1 0 for t§ [0,1].

From this characterization of B -splines it readily follows that

(i) 0<,Qm+i(t)<l (771 = 0,1,2,..-),
oo

/ • • \ V~i f\ / . \ -I / ^^ -I o \

p— —°°

From these inequalities, we readily get the desired inequality.

Lemma 5. If g(t) is continuously differentiate, then

\\(I-p)g\\<^j=\\g\\ (I the unit operator*).

Proof. One can easily verify that

rtp+i
(I—p)g(t)=\ kp(t, s)g(s)ds for any t £ [_£/,,

Jtp

where kp(t, s) is a piecewise continuous function such that

I 1- *-**> if s<t,

kp(t, s) =

_ t~tp \f( h

One then has
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from which readily follows the conclusion of the lemma.

3o The Jacobian Matrix of (Fi1}(o, ft, F(?(a, £), Fi3)(«9 £))

Put (F?(a9 £), F?(a, /?), n8)(«, £)) = **(«, £) and let /A(a, /?) be
the Jacobian matrix of F/^a, /?) with respect to ap(p=—39 — 2 - . - , ft — 1)

and t3p(p=—2, — I , - - - , ft — 1). In order to investigate the properties of

//z(a, /?), let us consider a linear system

(22) jk(a, exei, f 2)+(ri, r2, rs)=o

where f i=(u_3 , Z A _ 2 , - - - , M»-I), f2I=:(^-25 f _ i , - - - 5 t;w_i), ri = (c-2» c_ i , - - . ,

cw_i)5 T2 = (dQ, di,>", dn-i) and rs = (ei5 c2).
Corresponding to fi and f 2? we consider cubic and quadratic spline

functions y\(f) and yz(t) defined by

-p and yM= Xa

and in a similar way, corresponding to TI and 7 2, we consider quadratic

and linear spline functions <p\(t) and $2(1) defined by

*T> CiQs(-T--p) and
#=-2 \» /

Since /(a, /?) (Si $2)= lim 0 * [~F(a:+0?i, 0 + 6^2) — F(a^ /9)]5 corres-

ponding to (22), we have:

(23) yi(t}=y

(24) ?2(tp)=j

(25)

(26)
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Now substitute (a, #) for (a, /?) in (24), then we have

*, xh(t\ «>/i(0)7i(0 + /«*(*, xh(t\ fth(t)} 72(0] -

since J2(0 and <??2(0 are both piecewise linear. Equation (24) can be

rewritten as follows:

(27) jr2(0=/«(*, **(0,

where R=-(I-P) [_fx(t,

the unit operator).

Now by (23) and (27) we have:

X

- 72(0

for any ^ G LO, 1]. On the other hand, if /i0 is sufficiently small, by (20)

and (21) there is Kx>0 such that

<1) for any

Therefore by Lemma 5 we have
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from which follows

Hence we have the estimate of ||jR|| of the form

or

(28)

where

Now let ®h(}) be the fundamental matrix with property @h(Q)=E of

the following linear homogeneous system :

(29)

then comparing (29) with (18), by (20) and (21), we have

(30) \0k(t)

therefore we have a non-singular matrix Gh associated with (29) corres-

ponding to G associated with (18) by (17). Then applying Proposition 1

of [4] (p. 44) to the system of equations (23), (27), (25) and (26), we

have

(31) =-<&h(t}G- _
o
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where

tiB;
(32) H£t,s) =

From (31), by (30) we have the inequality of the form

IKji, ~

for any h<Ji$ provided hQ is sufficiently small. Here MI and M2 are

positive constants independent of h. Since

IK-?!, R-<f2)\\<,\\R\\ + l l p i l H - I

by the use of (28) we then have

(l-hKM2)\\(yi, j2)||<VTM1|(elj C2)

from which we obtain the inequality of the form

IKji,

for any A<A0 provided hQ is sufficiently small. Now by Lemmas 1, 2

and 3,

Therefore we finally have the inequality of the form

(33) l(?i,?2)l<M|(n, r2, r3)l

for any /&</&0 provided hQ is sufficiently small. Here M is a positive

constant independent of h. By (22), inequality (33) implies the non-

singularity of //z(o:, $) and in addition the inequality

(34) \J~h\a, &)\<M for any h<hQ.
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<z»_i f), fi' = ({l-2, /?-!,••-, Pf
n-i) be arbitrary vectors that

(35) {["-!(«,_

(jD = 0, I,-.., n).

Put

9_

9

then from (16) it is easily seen that

(36)

Now

r i

I /*

Hence by means of the mean-value theorem we have

(37)
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where C is positive constant such that

\fx*(t, x, w)|, \fxw(t, x, w)\, \ f w w ( t 9 x, w

for all (t, x, w) E U. By (36) and (37), we thus obtain

(38) Jh(a, £) -/*(«', n\<Mf\(a-af, 0-0') I

where M' = \j 3 C. Clearly M is independent of h.

4. Existence of Spline Approximations

First let us estimate F(a, /?) | . Since wh(t}='och(t*)

we have

Further, since

by (19)3 we have

For F%\&, /9), by (20) and (21), we have

Therefore we have
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Since n=—> we then have
fi

Thus we see that

(39)

for any h<Jii provided hi is sufficiently small. Here clearly L is a posi-

tive constant independent of h. Inequality (39) expresses that (a, 0} =

(d:, #) is an approximate solution of Fh(a, /?) = 0. Hence we apply

Proposition 2 of £3] (p. 123) to the determining equation jp/z(a, $) = 0 to

prove the existence of its solution, that is, the existence of spline approx-

imations to the solution of the problem (4)-(7). By (20) and (21), let

us note that there is a positive constant N such that

(40) ||(£/z, WH) — (£5 w)||co= sup

for any h<Ji2 provided h2 sufficiently small. We suppose that

and consider the set VH defined by

Then by (40) it is clear that

(41) VhCU for any h<Jiz.

Let Qh be the set defined by

={(*,£) |(a, £)-(<*,

then for

= ,nTL^pQ^~p) and

with (a, /9) 6 ifl/i, by Lemma 4 we have
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consequently (t, xh(t), wh(t)}£. VhCU for any £6[0, 11. This means that

Fh(a, /?) is defined on the region Qh for any h<Ji2.

Now by (34) and (38) it holds that

(42) \Jk\&> ft\<M for any h<hQ,

and

\Jk(a, 0) -/*(<*, ft\ < Jlf|(a, /9)-(d,

(43) for any /i^2 and any (a, /?) e fl*.

F A : " 1Take an arbitrary positive number &<1 and put <Ji = min , d — Nh^ .

If we take sufficiently small /i3<min(/io, /&i, ̂ 2)5 then it is possible to take

8h so that

(44) ~~<Sh<,S^ for any

Let Qs be the set denned by

Then for any h<Ji% and any (a, ^9) 6 ^s^ we have

| (a, j8)-(d, ft\<Sh<d-Nhl<d-Nh\ which means (a, ^)€fl*. Hence

we see that

(45) £SftCtih for any

Now for any A<A3 and any (a, j3)€SSh, by (43) we have

(46) * , - * < , a 5 - , - , .

Moreover by (39) and (44) we have:

(47) ^ ^ ^ ^ ^ any
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The expressions (42), (45), (46) and (47) show that the conditions of

Proposition 2 of [3] (p. 123) are all fulfilled. Thus we see that the

determining equation -F/z(a, /?) — 0 has one and only one solution (a, /?) =

(a, /?) in SSh. This proves the existence of spline approximations to the

solution of the problem (4)-(7).

5. Convergence of Spline Approximations

By Proposition 2 of [3] (p. 123)5 the solution (a, £) of the deter-

mining equation F^(a, /?) — 0 satisfies the inequality

_3_

(48) | (a, /?) - (a, /§) | ̂ ~~ for any h<Ji3.

Let a = (a-3, &-2,---, a»-i) and /S = (^_2, P-i,---, /5»-i), and put

Since F(f(a, /?) = 0, it is clear that

(49) S*(0

From (48) follows

\a-&

Therefore by Lemma 3 and 2 we have

(50) \\%h-b

and by Lemma 4 we have

(51) ||3»-A»|

On the other hand,
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by (20), and

by (21). Hence from (50) and (51) we have:

\\xh-%\\,\\wh-w\\=0(h2)

and

Since Jch(t) = wh(t) (0<^1) by (49) and £<0 = £(0 by the defini-
tion, we thus have

Theorem8 In a sufficiently small neighborhood of the isolated solution

&(t) of the problem (l)-(3), there is a cubic spline function %h(t) of the

form

**(*) = z;1 *
p = -3

such that

(i) the coefficient a — (a_3, a _ 2 3 - - - 5 #»-i) satisfies the determining equa-

tion Fh(a, (3) = Q together with the coefficient /? = (/5_2, ^- i , - - - , /5w_i) of the

quadratic function defined by

2

(52) \\-Xh-b\\,\\-Xh-k\\=0(h2} (A-^0)

(53) II**-

The expression (53) clearly implies the uniform convergence of xh(t}

to the exact solution x(t) on QO, 1] together with its first order derivative.

Remark. If B0 = Q, then 3c/i(0)=£(0) by (14). Then applying
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Schwarz's inequality to the equality

ri
xh(t}-x(t}=\ [_xh(s)-

Jo

we have

that is,

(54) ||SA-A|U

One can see in a similar way equality (54) is valid also when Bi = Q.

Thus if $o = 0 or Bi = Q, we always have (54).
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