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Piecewise Cubic Interpolation and Two-Point
Boundary Value Problems

By

Manabu Sakar*

1. Introduction

Cubic splines are of much use for approximating solutions of simple
two-point boundary value problems for both linear and nonlinear ordinary
differential equations. In the present paper, we shall give its mathema-
tical foundation by the use of Urabe’s method [5], which is quite uni-
versally applicable.

We consider the following two-point boundary value problem:
(1) i(t)= f(t, x(2), %(2)) (0<t<1)
with boundary conditions
(2) Apx(0)—Bo%(0)=a
(3) A1x(1)+B1x(1)=b

where f(t, x, w) is defined and twice continuously differentiable in a region
D of (t, x, w)-space intercepted by two hyperplanes t=0 and ¢=1.
We rewrite the problem (1)-(3) in the following form:

(4) %(2)=w(t) (0<:<1)
(5) w(t)=f (¢, x(t), w(t)) (0<<1)
(6) Ayx(0)—Bow(0)=a
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(7) A12(1)+ Biw(1)=b.

Now making use of B-spline Qu.1(¢)= EIFTZ:]: (=Y (e —i)n,
we consider spline functions of the form x,(¢)= pgsap@;(% — p),

n-1
wi(t)= p=Z—z B,,Qa(jh— — p) (nh=1) with undetermined coefficients _s,

Q_gy-+y Oy_y and B_s, B_1,--+, Ba-1. The above x;, and w;, will be an

approximate solution to the problem (4)-(7) if they satisfy

(8) % (8)=wn(t) (0<<<1)
(9) wi()=Pf (¢, x4(t), wa(t)) (0<<1)
(10) Aox1(0)— Bawi(0)=a
(11) A155(1)+ Biws(1)=b.

Here P is an operator defined by (Pf)(¢)= Zn] f(p)Ly(t), where Ly(t) is
$=0

a piecewise linear function with property Ly(t,)=05,, (¢4=gh). From a

well known relation Qm+1(t):Qm(t)—Qm(t—1), we see that equation (8)

is equivalent to the following system of n-+2 equations:

Cp—0lp_
(12) %Zﬁp (p:—z, —1,..., 7’[,—1).
Any two piecewise linear functions coincide with each other if and only
if they coincide at the nodes, therefore we see that equation (9) is equiva-

lent to the following system of n-+1 equations:

Bs-1—Bp2 __ Op_3t+4ay 2+ dp_1 Bp_atBp-1
1z Bz _y(y, ; Bt By

(P=Oa 1., n)'

The boundary conditions (10) and (11) give two equations:

A, a—3+462_z+05—1 — B, B-z‘;ﬁ—l

=a

(14)
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(15) .Al an—3+4ag—2+an—1 +Bl Bn-Z‘;‘Bn_l :b.

The number of undetermined coefficients is 2n-+5 and the conditions
(12)-(15) precisely give the requisite number of equations. For the con-
venience of the analysis, we rewrite (12)-(15) in the following form:

n—1

16)  FPa, H={ 2=t gl —o,

p=—2

F?(a, B)= { 315—1;3;;_2 “‘f(tm ap_3+4ag_2+ap_1’

Bp—z-gﬁpq )}” —0,

=0
- _ CK_3+4C¥:3+05—1 _ 3-24‘_.3—1 __a
Fh ((X:B)"‘{AO 6\/]7/ BO 2\/h \/h b
CKn—:i"‘‘/‘lccn—z"{'afn—l Bn—Z"'Bn—l L _
4 6V h B «/—h—} =0.

In what follows, the system of equations (16) will be called a determining
equation for spline approximations. In the present paper we use (16) in
order to facilitate the analysis, but clearly in practical computations it is
more convenient to use the equations containing only a,(p=-—3, —2,...
n—1) which can be obtained from (12)-(15) by eliminating {,.

In the present paper we assume that the problem (4)-(7) has an
isolated solution (£(t), #(t)) satisfying the internality condition

3

U=1{G, x, w>|[<x—m»u(w-m»zﬁ@, t€[0,17}CD

for some §0>0. By the definition in [4] (p. 46), a solution (&(2), @(¢))
to the problem (4)—(7) is isolated if and only if

an G

Il

l: Ao —Bo :I
A1 y1(1)+ B1z:(1) A1y(1)+ B1z2(1)

is non-singular, where
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[ ¥1(2) ¥2(t) }
=0(z)
z1(2) za(t)

is a fundamental matrix with property @(0)=FE (E the unit matrix) of the
first variation equation of (4)-(5) with respect to (£(¢), @(¢)), that is,

y(#)=2(),
2()=1 (¢, 2(2), W(2)) y(£)+ ful2, £(2), W(2))z(2).

Corresponding to #(z), as easily seen, one can determine uniquely a

cubic spline function %,(¢) of the form
n—1 t
a8) 20="2 0,0(L—p)
=3
so that
xh(tﬁ)=&<tﬁ) <P=0> 1, 23' : -,n),
(19) &1(t0)=2(0)

&h(tn) = jéc(tn)-

Since #(¢:)€ C*[0, 1] due to the assumption f(¢, x, w)€ C3%, ,(D), by
Theorem 2.3.4 in [1] (p. 29) it is valid that

(20) ] (_:li_t)k[x,,(t)— 4] l —0(+% (=0, 1, 2, 3)

uniformly on [0, 1] as A—0. From 2,(¢), one can easily construct a

quadratic spline function #@,(¢) of the form
aH)= "2 8:0s(L—p)
Wit —p=_25p03 7P
so that

n(t)=%n(2) (0<<<1).
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By (20), it is then valid that
lwa(e)—a(2)| = | 24(t)— 2(2)| =0(h®)
loa() —(e)| = | £4(2)— £(¢)| =0(h?)

uniformly on [0, 1] as A—0.

(21)

2. Some Properties of Spline Functions

1 1
In what follows, for any ¢(z)€ L*[0, 1], we shall denote U (pz(t)dt:lz—
0
by |l¢ll, and for any finite dimensional vector ¢, we shall denote its
Euclidean norm by |c].

Lemma 1. Let ¢(t)= 3. c,Lyt), then wh |c|<|lol|<AVE |c],
0=p
where uy and L1 are positive constants independent of h, and c=(c,,
C1y C2y-+y Cn)-

Proof. For t €[ 1y, tpi1](p=0,1,--; n—1), p(t)=c,Lp(t)+cps1Lp1(2).
Therefore we easily get

n=1(tps1 -
lolP="Z o @ dt=25 (c5+ cpepa -t
p=0J1, =

Since %(c?,—l—cf,ﬂ)gcﬁ-kcpcp“—}—c,z,Hg%(cf,—i—ch), we have %h|c[2
1
<|lg||*<h|c|? which proves the lemma with ﬂl:-\/T and 1;=1.
n—1 —
Lemma 2. Lt o= 3 ¢,0s(—p), then b e|<|loll<
p=1

AoNh|c|, where py and 1 are positive constants independent of h, and
C=(C—27 C_1y cn—l)'
Proof. Since ¢(t) is a quadratic polynomial on [, t5.1] (p=0, 1,

2,.-.., n—1), it can be written on [ ¢, t5,1] as follows:
t
0(0)= () + 6t )Xt — )+ & p+><t -~

Here it is easily seen that ¢(t,)= —CH_IZ_C&, ¢(tp)=i’i:%c—’”—2—, and
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$(tp+)=-52-2" thz" -17C  Therefore it follows that

where I, is a quadratic form with respect to c¢,_3, ¢;—1 and ¢, independent
of h. I, is nonnegative, and I,=0 implies that ¢(t,)=¢(t,)=§(t,+)=0,
that is, ¢p_2=cp_1=cp,=0. Therefore I, is a positive definite quadratic
form, consequently there are positive constants #» and 2, such that #3(c3_,

2
+ci +eH<I,< %(cf,_g+c§_1+c§). From this readily follows the con-

clusion of the lemma.

n—1 —
Lemma 3. Let ¢()= % e/0i(—p). then sk |e|<llgll<

AsVh|c|, where us and 13 are positive constants independent of h, and

c=(c_3, C_z-++5 Cp_1).
Proof. Since ¢(t) is a cubic polynomial on [¢;, tp.1] (p=0, 1,...,
n—1), it can be written on [f,, £5,1] as follows:

PO=9(t)+ 0 —t)+- L) (=g, Po) o

Here it is easily seen that ¢(t,)= c""3+4cé‘2+c"_1, ¢(tp)=c‘°_+hcp_3—,
Popy=—St1=Ea 000 ang (s, 4) = 1= S00atI00am s

Hence likewise as the proof of lemma 2, we have easily the conclusion of

the present lemma.

n—1
Lemma 4. Let ¢(t)=p§ chmH(%——p), then ||pll.<|cl|o for

m=>1, where |lp|l.= sup [@(2)], c=(com--; cn-1) and |c|=max]|c,].
0<#<1 »
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Proof. As well known, B-splines can be characterized by convolution

of characteristic functions as follows:

OQmii()= (x* *x)(2),
m+1

where
1 for t€[0,1]
()=
0 for t&[0,1].
From this characterization of B-splines it readily follows that
(‘) OSQM+1(t)Sl (m=07 1, 2:"'):
(ii) p=Z_:°°Qm+1(t—p)=1 (m=1, 2,...).

From these inequalities, we readily get the desired inequality.

Lemma 5. If g(t) is continuously differentiable, then
h ., )
II(I—p)gHg\/—?—HgH (I the unit operator).
Proof. One can easily verify that

tp+l
(T-pg@={"kst, Dg)ds  for any t€lty, 1,11

where k,(z, s) is a piecewise continuous function such that

1—% it s<t,

ki)(ta S)=
_ b=t

A if t<s.

e ——

One then has

S::J[(I—p)g(t)]zalzgg S ki,(t S)dsg gz(s)ds

I’

2 (tp,
S%S " gX(s)ds,
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from which readily follows the conclusion of the lemma.

3. The Jacobian Matrix of (Fi"(a, 8), F¥(a, ), F¥(a, B))

Put (FiP(a, B), Fi2(a, B), Fi¥(a, B)) =Fu(e, B) and let Ju(a, B) be
the Jacobian matrix of Fy(a, 8) with respect to ay(p=-—3, —2...,n—1)
and Bp(p=—2, —1,..., n—1). In order to investigate the properties of

Jiule, B), let us consider a linear system
(22) Julat, B)(E1, E2)+ (11, 72, 73)=0

where &1=(u_3, u_2,---, Un-1), E2=(v_3, V_1,--+, Up_1), T1=(C_2, C_1,-1,
Cn—l): Tz=(d05 dla"'a dn—l) and TS:‘(el: 32)-
Corresponding to &; and &;, we consider cubic and quadratic spline

functions y,(¢) and y,(¢) defined by
. 7-1 t _ N 7—-1 l____
yl(t)—FZ_s upQ4(—h— p) and yz(t)——p;_z Ust<h P>>

and in a similar way, corresponding to 7; and 7, we consider quadratic

and linear spline functions ¢;(z) and @3(z) defined by
n—1 ¢ n

2= T e0s(h—p) and gut)= T dpLy().
p==2 $=0

Since J(«, B) (&, &2)= %ing 07! [Fla+0¢&, B+0¢)—F(a, B)], corres-
ponding to (22), we have:

(23) ()= y2(t)—@1(2) (0<e<1),

Up_3tday atap Bp2tBs1 >
2

@0 gt =F(tn s : »(t9)

+fw<tp, ap—3+4aé,_z+ap—1 , 3#—21‘&—1 >yz(tp)

—@a(ty) (p=0,1,..., n)
(25) Ao y1(0)— By y2(0)= —Vhes,

(26) A1)+ Biy(1)=—Vh e,
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Now substitute (&, 8) for (a, B) in (24), then we have

}"z(t)'—_P[fx(t, "%h(t% 'ﬁ)h(t))yl(t)‘i’fw(t, ﬁh(t)s ﬁ)h(t))yz(t)]“(ﬂz(t)
(0<e<D),

since §2(¢) and ¢,(¢) are both piecewise linear. Equation (24) can be

rewritten as follows:

@7 (&)= f(t, 24(2), Wi(2)) y1()+ fru(ty £4(8), Wi(2))y2(2)+ R(2)— @2(t)
(0 <),

where R= "—(I_P) [:fx(ta 55!10)) mh@))yl(t)‘}"fw(ta xh(t), ﬁ’h(t))yz(t)]s (I

the unit operator).
Now by (23) and (27) we have:

LT £, 8400, 0OV 7 O+ Fults 2400, @) 0)]

=ty 240, DY)~ 1)+ Fulty 220, (0
XL oty #4500 11O+ folts 5400, D) 2(0) + RO = po(6)]
- filts 240, WO 78— futs 20, (D) 30)

for any t€[{0,1]. On the other hand, if A, is sufficiently small, by (20)
and (21) there is K;>0 such that

lfx(t> &h(t% 121/;(1:))!, |fw(t, &h(t)» ﬁ)h(t))ls %‘fx(t: '&;h(t)i wh(@) ]
A fulty 2040, )| <K: O<E<1) for any hTh,
Therefore by Lemma 5 we have

IR[|< \/%[Kl(llyle llelD+ Ky AK1(ll gl + 1 y2 D+ |1 RIT - Hl 2l [}

+ Kl yall+ 1 321D,
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from which follows
(1= eI RI <Rl + Kol + @ Kol all+ ol gl 3

Hence we have the estimate of ||R|| of the form

IIRII< 5 KLyl + 1l y2lD+ sl -+l g2lD,

or

(28) IRII=RKLI(y1, y2)ll+ (o1 @2l

where

1 92lI=] §, 10, 30128 [F=ClilP+ 12l T%,

o @2l =] {, 10100, ox(e)1de [F=LllgnllP+lipal T

Now let @,(t) be the fundamental matrix with property @,(0)=FE of

the following linear homogeneous system :
(29) 7 (0)=2(2)

2(0)=f(t, £a(2), Wi(£)) y () + fult, £1(2), Wu(2))2(2),
then comparing (29) with (18), by (20) and (21), we have
(30) |@4(6)—0()| =0(h®) (0<e<<1),

therefore we have a non-singular matrix G, associated with (29) corres-
ponding to G associated with (18) by (17). Then applying Proposition 1
of [47] (p. 44) to the system of equations (23), (27), (25) and (26), we

have

<y1(t)> <«//?e1> 1 (—%(3) )
(31) ——a,6 +§ Hyt, 5) ds,
ya(t) Vhe, 0 R(s)— ¢a(s)
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where

0i0) E—6*(%, 3 0w o 6=
(32) Hy(t, 5)=
l —06:*(%, 5 )00 (t<s).

From (31), by (30) we have the inequality of the form

Iy Y| <N'h My |(e1, €2)| + Mall(— @1, R— 2]

for any hA<h, provided A, is sufficiently small. Here M; and M, are

positive constants independent of A. Since

(= @1, R— @)|I<IIRI|+ ll@ull+ @2l <IIRI 4+ 2 (@1, @2l

by the use of (28) we then have

(1—hKM) [|(y1 y2I|<Vh Myl (es, €2) | +Mo(V 2 +RK)l(g1, @2,

from which we obtain the inequality of the form

(s 3|V b Ms|(es, e2)| + Mill(p1, @2)]

for any A<h, provided h, is sufficiently small. Now by Lemmas 1, 2
and 3,

1,1 1,1,
lSIISE \/h”}ﬁ”, 152|S—E \/"]_TI‘yZJ’

lol<tVB [71], @2l <tV A |72l
Therefore we finally have the inequality of the form

(33) [(615 €2)| <M | (715 725 73)]

for any h<h, provided h, is sufficiently small. Here M is a positive
constant independent of A. By (22), inequality (33) implies the non-
singularity of Ji(@, 8) and in addition the inequality

(34) |74 a, B)|<M for any h<lh,.
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Let a=(a_s, a_s,

) an—l)’ B:(B—% ﬁ——l)"'a Bn—l); a{’:(aiglaf_z,...
ay1,), B'=(BLy, BL4,--

-y B;—1) be arbitrary vectors that

(35) {[%(ap_3+4ap—z+ap—1)—50(%)}2 [ (Bp-2+Bp-1)— w(tp)]z}%

NIH

{[%(a;_3+4a;_z+a£—1)"55(%)]2 |: (Bp-2+Bp-1)— W(tp):lz}

(PZO, 1,..., n)
Put

0 1 1 7
by, fl:tp: —6(ap-3+4ap—2+afp»1)a 7(5ﬁ—2+ﬁp»1)J|=J§;24)1(a, B),

05 thPa 6(“1: 340, s +ay_1), 2(31: 2+ 8- )} J#(a, B),

then from (16) it is easily seen that

(36) i A= T, BIP< X AZLT e 6)—Thie, 807
+ Z [T e, B)—TE (e, BT}
Now

T5@ )= i e 5@ s+ 40 1t 1), 5 (BpatByr) |

%(6,,,,1,_3 +404,p-2F04,p-1)s

(2)
15112

(a, B)= fw[tp, —Aap_st+4ap_stay 1), %(51;—2'*‘51; 1)]'
1
?(64123 P—2+6u12,ﬁ~1)-

Hence by means of the mean-value theorem we have

(37) NS ACN R ACE BT+ LT B)—Tala, BT

<LCT{(ap-3—t)-3)* +(p-2—t)-2)" + (ap_1 —a}_1)*}
+{(Bp-2—Bp-2)*+(Bp-1—B-1)*} 1,
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where C is positive constant such that
| faa(ts %5 w5 | fau(ty 2, W), | fuu(t, 2, w)| <C
for all (¢, x, w)e U. By (36) and (37), we thus obtain
(38) | Jule, B)— (e, B)| <M [(a—a's B—B")]

where M'=+3 C. Clearly M’ is independent of h.

4. Existence of Spline Approximations

First let us estimate |F(a&, 8)|. Since @w,(t)=4%(t) (0<t<1),
we have

Further, since

2u(tp)=2(tp), &atp)=4(t5) (p=0,n)

by (19), we have

Boy (0)= 7

1

1
Vh 13

Aoﬁh(o)— \/ i

FiP(a, /)=

\/%Alxlxnm%&@,,(n—%}:o.

For F2(a, 8), by (20) and (21), we have
FiP(a, B)={iu(ts)—f (L5 2a(tp), wi(ts))} =0
={[@n(t)—@(tp)]
+ LS oy 2C2p)s @(25))—f 25y 2a(25), Wa(5)) 1}

=0(h?) (h—0).

Therefore we have
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|F#(&, B)| =+ n+10(>).

Since n=—1—, we then have

h
” 3
|Fi#(a, B)| =0(h?).
Thus we see that
3
2

(39) | Fila, B) | <Lh

for any h<h, provided h; is sufficiently small. Here clearly L is a posi-
tive constant independent of h. Inequality (39) expresses that (a, 8)=
(&, ) is an approximate solution of Fy(a, 8)=0. Hence we apply
Proposition 2 of [37] (p. 123) to the determining equation F(e, 8)=0 to
prove the existence of its solution, that is, the existence of spline approx-
imations to the solution of the problem (4)-(7). By (20) and (21), let
us note that there is a positive constant N such that

(40) [|C&n, @Wr)— (2, fv)l|w=ossltl£1 | (&1(2), @a(2))— (£(2), @(2)) | <NA?

for any h<Ch, provided h; sufficiently small. We suppose that Nhj<J,
and consider the set V' defined by

Vh:{(ta Xy W) l(x3 W)—(.’,%h(t), wh(t))léa_Nhsa S [0> ]-]}-

Then by (40) it is clear that
(41) V,CU for any A<h.,.

Let £, be the set defined by
2=1@ 8)|1(@ B (@ H|<I—Nw},
then for
n—1 n—1
xh(t)=:p=z_]_3at,Q4<—;7—p) and wh(t):;pngpQ:i(Ti—_p)

with (@, B)€ £, by Lemma 4 we have
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| a(8) — 24 12+ | wi() — w04 () |’ <|a—a | + | B— 5| (0<e<),

consequently (¢, xx(t), wi(¢))€ V,CU for any t€[0, 1]. This means that
Fy(a, B) is defined on the region 2, for any A<h,.
Now by (34) and (38) it holds that

(42) [Tit(a B)| <M for any h<h,,
and
|Jh(aa B)_Jh(d’ é)l.g M,|(C¥, B)‘(da B)[

(43) for any h<<h, and any («, 8) € 2.

Take an arbitrary positive number k<1 and put 61=min\: 0 —Nhg].

k
MM~
If we take sufficiently small hz<min(hy, k1, h2), then it is possible to take
0 so that

3
(44) MIR® <ov<oy for any hhs,

Let 2;, be the set defined by
‘gﬁhz'{(a: B) I(aa B)_(dy B)lgah}-

Then for any h<lhs and any (a, )€ £5,, we have
|(a, B)—(a&, B)| <04<<6— Nh3<6— Nh®, which means (@, 8)€ £,. Hence
we see that

(45) 25, C Ly for any h<hs.

Now for any h<lh; and any (a, B) € £;,, by (43) we have
(46) | Ti(a, B)—J(as B <M'[(@ B)— (& D) SMO<M0 <.

Moreover by (39) and (44) we have:

. 3
47) Mlﬁl'h(—a]; Al < jlll—L—th <04 for any A<hs.
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The expressions (42), (45), (46) and (47) show that the conditions of
Proposition 2 of [3] (p. 123) are all fulfilled. Thus we see that the
determining equation Fj(c, 8)=0 has one and only one solution (&, 8)=
(@, B) in 2;,. This proves the existence of spline approximations to the
solution of the problem (4)—(7).

5. Convergence of Spline Approximations
By Proposition 2 of [37] (p. 123), the solution (&, 8) of the deter-

mining equation Fp(a, 8)=0 satisfies the inequality

MLE®
1—%

(48) I(dy ,@)——(d, B)l S for any hgha.

Let a=(&_3, @_2y+++y An_1) and B=(B_z, B_1,--5 Bn-1), and put

Since F{'(a, B)=0, it is clear that
(49) z1(t) =wn(2) (0<t<1).
From (48) follows

ja—al, 18-81=0(k%)  (0).
Therefore by Lemma 3 and 2 we have
(50) 1Zh— &all, lma—@al| =0GR*)  (A—0),
and by Lemma 4 we have

3
(51) |Zh— Zalles l10n— Wl =O0CRZ) (h—0).
On the other hand,

21— 2ll.=0G")  (h—0)
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by (20), and
lwi—oll.=0®%)  (h—0)
by (21). Hence from (50) and (51) we have:
25— 21, ll@—all=0(*)  (h—0)
and
|a— il 04— 8ll.=0(2)  (—0).

Since %,(¢)=wx(¢) (0<t<{1) by (49) and @(¢t)=2%(¢) by the defini-
tion, we thus have

Theorem. In a sufficiently small neighborhood of the isolated solution
%2(t) of the problem (1)-(3), there is a cubic spline function %,(t) of the

form
n—-1
w0 = 3 a0 4—p)

such that

(i) the coefficient @ =(Q_3, A_3,---, Ay_1) Satisfies the determining equa-
tion Fi(a, B)=0 together with the coefficient B=(B_2, B_1,---5 Bn_1) of the
quadratic function defined by

_ 2 s ¢
m(O=20= % #Q(1—p)  O=<e<),

(ii)

(52) Za— 4, [|Za— &1 =0(R%)  (h—0)
and

(53) B4 &l 52— 2] =07  (h—0).

The expression (53) clearly implies the uniform convergence of %,(t)

to the exact solution #(z) on [0, 1] together with its first order derivative.

Remark. If By=0, then %,(0)=#(0) by (14). Then applying
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Schwarz’s inequality to the equality

2(0) ()= [24()— 4(s)]ds,

we have
|2u()— 2@ | <[z —2l|=0(R%)  (0<t<1),

that is,

(54) 24— 2ll.=04%)  (h—0).

One can see in a similar way equality (54) is valid also when B;=0.

Thus if By=0 or B;=0, we always have (54).
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