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Construction of Local Elementary Solutions
for Linear Partial Differential Operators

with Real Analytic Coefficients (I)

The case with real principal symbols

By

Takahiro KAWAI

§0. Introduction

In this paper we construct local elementary solutions for linear

differential operators P(x9 Dx) whose principal symbols are real and of

simple characteristics and investigate their regularity properties using Sato's

theory of the sheaf ^ (Sato DC^CAl). Throughout this paper we assume

that the coefficients of differential operators are analytic.

In §1 we prepare some theorems which extend the classical existence

theorem of Cauchy-Kowalevsky in complex domain to cases of singular

initial data. (Cf. Hamada [1].)

In §2 we employ the results of §1 to construct local elementary

solutions for Cauchy problems for (/-) hyperbolic operators. As an appli-

cation of the method employed there, we construct a singular solution u(x)

of P(x, Dx)u = Q whose singular support is "very small". (See Theorem

2.8 for the precise meaning of this statement.)

In §3 we construct a local elementary solution for a linear partial

differential operator of real principal symbols with simple characteristics

and decide where its singularities locate to conclude that the result of §2

on the existence of singular solutions with small singularities is the best

possible one.

Throughout this paper we denote by M an ra-dimensional real analytic

manifold which we identify with a domain in Rw containing the origin.
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364 TAKAHIRO KAWAI

and by 5*M its cotangential sphere bundle (or co-sphere bundle for short).

About the sheaf ^ defined on S*M we refer the reader to the precise and

extensive exposition by Kashiwara based on Sato's lectures (Sato [JT]).

The results in this paper have been announced in Kawai Ql], Q2]

and [5].

The author expresses his sincere gratitude to Professor M. Sato,

Professor H. Komatsu and Mr. M. Kashiwara for their guidances and

advices. Without the atmosphere of the seminars with them this paper

would not have been written.

§1. Singular Cauehy Problems In a Complex Domain

In this section we consider an m-th order linear differential operator

P(z, Dz) with holomorphic coefficients defined near the origin in Cn. We

denote d/dzj by DZj^ the symbol of the differential operator by P(z9 ?),

and its principal symbol by Pm(z9 ?). The latter is the homogeneous part

of P(*, f) of order m. Throughout this section we abbreviate (£2? • • • 5 f»)

to £' and (22, • • • , zn) to z'. We assume in the sequel that Pm(z, f) has

the form 2 **>-,<*, f')?i with aQ(z, f) = l.
j = 0

Under the assumption (1.1) below Hamada fl] has proved the follow-

ing decisive theorem.

Theorem 1.1. (Hamada [1] p. 23.) Suppose that

(1.1) P-.(0; £1, 1, 05 ...5 0)^0 if Pm(Q; £19 1, 0, ..., 0) = 0.

Then the following Cauehy problem (1.2) has the unique solution u(z)

which is analytic in a neighbourhood of z = 0 except for Ki\J---\jKm.

Here KI, • • - , Km are the characteristic surfaces passing through zi = z2 = 03

and each Kj is a non-singular hypersurface defined by the equation

<Pj(z)=Q, where (pj(z) are obtained by solving the Hamilton-]acobi equations.

P(z Dz)u(z) = $

= Wk(z'\ where k = Q, 13 • • - , m — 1.
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More precisely, provided that Wk(z') (k = Q, 1, •••,m— 1) have at most

poles along 2:2 = 0, the solution u(z) of (1. 2) is expressed in the form

(1.3)

where Fj(z\ Gj(z) and Hj(z) are holomorphic in a neighbourhood of z = 0

and pj is a positive integer.

It is obvious from Hamada's method of the proof that we have the

following Theorem 1.1', which differs from Hamada's theorem only in its

form of presentation. Before stating Theorem 1.1' we prepare some nota-

tions.

Throughout this section we assume the following condition :

(1.4) In a neighbourhood of (*', f') = (0, f J ) ( l ? J =1)

Pm(^ *', f i, f') = 0 implies -^-P«(0, *', fi, £')¥=<>.
</?i

Definition 1.1. For any y with sufficiently small \y'\ we denote

by {Kj(y\ £0}/*=i tne characteristic surfaces of P(z, Dz} passing through

the intersection of two hypersurfaces {zi = Q} and {<zf— y, f > = 0}.

Definition 1.2. We denote by (Pj(z, y', fr) the characteristic func-

tion corresponding to the characteristic surface Kj(y', f7) satisfying

Pm(z, gradz(pj(z, y' f, f')) = 0 with the initial condition <zr—y\t;r> on

izi = Q}.

Remark 1. As is well known 0>yGz, j', fO is obtained by solving the

Hamilton-Jacobi equations associated with Pm(z, ?). Note that <pj(z, y, f ')

is homogeneous of order 1 with respect to ? '. By this reason we some-

times call 0>y(*, y, f 7) a phase function. (Cf. Hormander

Remark 2. By the condition (1.4) the roots {?{(/, ?')}7=i

of the equation Pw(0, j7, fi, f7) — 0 are mutually distinct and

~ fi^Cy7? £0 f°r some Ay. Hence afterwards we
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Q
assume —<pj\zi y' <> £) ==?{\y ? £')•

Theorem 1.1'. Consider the following Cauchy problem:

n ,x J dk
 ( , , ^ vk(z, y', r)(L5) 1 ~s^u(z^z >y' f}

 z 0
=<0 / -V g'>'t/^i 2j = o \2 ^y , g- /

where Vk(z, y'9 £') *s # holomorphic function in (z, yf, f ) which is

homogeneous of order 0 M;#/& respect to ?' and I is a positive integer. (In

this paper it is sufficient to take v ̂ constant.}

Then the Cauchy problem (1.5) has the unique solution u(z, y'9 f),

which is expressed in the form

(1.6)
y(^5 y', f 0 log ^(z, /, & + Hj(z, y'

-Fy(.ar, j', f ')j G/(-2r, j', f ') «^J -H/(^j J7
3 f 0 #^ holomorphic near

(0, 0, f Q) ff^ ^/ ^s fl positive integer.

Remark. By the method of the proof of Hamada [1] it is obvious that

we can choose Fh Gj and Hj so that P(z, Dz}u(3\z, yf, ^0 — 0 holds, where

«">(*,/,£') is by definition c^^^ + GX^/,r)log^(z) /,?') +

+ Hj(z, y, f7)- This remark motivates the modifications of Theorem 1.1',

which are given in Theorem 1.2 and 1.3.

Theorem 1.1' is basic in constructing elementary solutions for Cauchy

problems for (/-) hyperbolic operators. In order to employ the existence

theorem for singular Cauchy problems in a complex domain to develop the

local theory of general linear differential operators as in §2 and §3, we

must modify Theorem l.l7 in various ways. Hence in the rest of this

section we state the variants of Theorem 1.1. Though they differ from
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Theorem 1.1 in the form of presentation, their proofs are essentially the

same as in Hamada fl]. We use the same notations as in Theorem I.]/.

Theorem 1.2. Consider the following Cauchy problem (1.7)^ for

some positive integer p with l^p^m under the assumption (1.4).

(1-7),

)u(z, /, f') = 0

_ vk(z, /, f Q

<^-/,r>/

Z zs 0 positive integer and vk(z, y', f ') satisfies the same conditions

given in Theorem 1.1'.

//" M;£ choose any p hyper surf aces of {K/}™=1, say KI, ..., K^3 jf/^ew

£/&£ Cauchy problem (1.7)/, admits a solution u(z, yf, gf) which is represent-

ed in the form

(1.8),
+ c/z, j', f Oiog?/*, r

7, f o + jy/z, y', f

#/(£, j'3 f ',) «^ holomorphic near

(z, j;, fO = (0, 0, fo) ^^ ^ ^5 fl positive integer.

Remark. When p is equal to zra, the Cauchy problem (1.7), reduces

to the Cauchy problem (1.5). Except for this special case the solution

u(z, y', g 0 is not unique.

Proof of Theorem 1.2. We first construct a formal solution u(z,y', £ 0

of (1.7)^ suitably and prove its convergence. We can assume that Vk = Q

(k=/=fi) and that Vh(z, y', £') contains no power of <z /— yf, fx> by the

principle of superposition. For the formal construction of u(z, yf, f ') we

introduce the following functions 0/(r) (j=—m, — m + I, • • • ) satisfying

the following (1.9) after Hamada
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(1.9)

where ^« = 1 + -|-H h— and A=0.
^ d.

We assume by the aid of these functions that the solution

u(z, y\ £') has the form

(1.10) u(z, y', £') = S { E tfiC^X*, j', f'))u».X^, j'> £')}•
.7 = 1 * = 0

Assuming the form of i^(^5 j', f') as above we can proceed just as in

Hamada \JC] pp. 27 — 30. The only difference from Hamada's proof is to

use the inverse matrix of

/1 1'si si
w-1 (s^

instead of
771

to determine the successive initial data on {*i = 0} for Ukj by the initial

data of u imposed in (1.7)/,.

The convergence proof of the formal solution (1.10) is just the same

as in Hamada Ql] pp. 32 — 36.

1) The symobl (f f)& means the k-ih power of f[.
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The most important case in Theorem 1.2 is the case p=l since we

shall consider the local theory of linear differential operators in the frame-

work of Sato's sheaf ^. For this reason we study a little more general

case when p = l.

Theorem 1.3. Consider the following Cauchy problem (1.11).

y
<*'-/,£'>'

where I is a positive integer, v(z, y'5 f ') satisfies the same condition on

vk(z, y' ', f ') g-z'flew m Theorem 1.1', <2(z? AO z"5 fi linear differential opera-

tor of order p with p<,m — I and Qp(z, grad2^i(z, y', ^0)U1=o¥::0.

Then the Cauchy problem (1.11) admits a solution u(z, y' , £;) which

is expressed in the form

(1.12)
( +G(z, y', £>g <Pi(z, y', £') + H(z, y ', f),

where k is a positive integer and F(z, y' ', f '), £(2, j7, f ') «nd H(z, yf, g 0

<2f^ holomorphic near (z, y'9 fO = (0, 0, £Q).

Proof. We abbreviate 0>i to ^ in the proof. We first assume

that u(z, y'9 f ') has the form

where we take A=p in the formula (1.9) which defines 0&(r). As in the

proof of Theorem 1.2 we can assume without loss of generality that

v(z, y', f) has no powers of <z / — j', f 7>. Then coefficients uk(z, y' ', ?x)

of the above expansions is formally defined successively by solving first

order linear differential equations (the transport equations) as in Hamada

p. 27, i.e., uk is chosen to satisfy

(1.13)

m
(l.U) JS?M= - E
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where &\jT\= <gradfPw(z, ?)U=grad t* f gradzii> + c(z, y', $')u with some

holomorphic function c(z, y', f 0 defined by the lower order terms of

P(z, Dz} and Lp are some linear differential operators of order at most

p. In fact, by assumption (1.4), the plane {zi = Q} is non -characteristic

with respect to these differential equations and the condition that

Qp(z, gradjg^O ZI=Q=/=^ assures that we can determine successively the

initial datum for Uk(z, y', fO on {zi = Q} by the condition imposed in

(1.11). Thus we can formally determine u(z, y', £0- What remains to

be proved is to estimate the growth rate of | Uk with respect to A. In

course of the estimation we can assume that y' = Q and £' = (!, 0, - - . 5 0)

without loss of generality because all the constants which appear in the

estimates are uniform with respect to parameter y' and f' as far as they

are sufficiently near (y', f') = (05 £Q). The estimation is performed by

proving the following estimate (1.15) by induction on k:

(1.15) ] D'MuM 1 ^ c ( k ) + e x p ( r \t\)K(\t\ )*+'+

where 7 and p are some constants, K(t) = exp(rnt)(l-{-rnt) and c(k) =

c\NA with ^4 = max | v | and some constants c0 and N which depend only
\z'\-£p

on P(z, Dz). The induction is performed by the estimation of uk and

uk, where uk=uk+uk and uk satisfies JSf^Sj = 0 with the same initial

condition on {21 = 0} as that of Uk and Uk satisfies (1.14) with the Cauchy

datum 0 on {zi = 0}. Then the induction proceeds for uk without any

changes of the proof of Hamada Hi] p. 35 by the definition. Since fn is

larger than 1 we can also prove (1.15) for uk with k replaced by k+l.

(Remark that operator 9JJ/, which appears as in p. 28 of Hamada £l],

when we define the Cauchy data of Uk on {zi = 0} contains not only

(d/dzi)k (0<^Af^jO but also other differential operators in our case. But

the order of the operator 2W/ is also at most /, hence the induction

proceeds.)

Remark. It is obvious from the method of the proof that Theorem

1.3 holds under the following localized condition (1.40 instead of (1.4).
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(1.4') ?DF~^m^' £^0 near f05 where go = graAz<pi(z, 0, ££)

This remark applies also to the following corollary.

Corollary 1.4. Consider the following Cauchy problem (1.16). Denote

by <p(z, y, £, s) one of the phase functions of P(z, D2) for which

P(z, />>(*, y, £, *)= 0

(L16)

where I is a positive integer and Qp(z, grad(ZjS)^(z, y, ?, 5)) 2l=s^0. (/fere

JD /s £/z0 order of Q(z, Dz, Ds\)

Then the Cauchy problem (1.16) admits a solution u(z, y, f , 5) which

has the form

( u(z, y, f, 5) =F(z, j, f, 5)^(2:, j, f, 5)-* +
(1-17)

where k is a positive integer and F, G and H are holomorphic near

(z9 j, £, «) = (0, 0, f o, 0).

Remark 1. This corollary is only a restatement of Theorem 1.3 from

the logical view point. However the above form is more convenient in

§3, hence we have stated the corollary for the convenience of references.

Remark 2. It is obvious from the method of the proof that instead

of <zf— y',$'> we can use any holomorphic function %(*', y', f ') if

x(z'9 y', £') is holomorphic near (z\ y\ f') = (0, 0, f Q), homogeneous of

order 1 with respect to ?' and satisfies %(^, /, f')= <^'— /»?'> +

+ 0(|z' — y 'Hf 'D- This remark is used in our note Kawai [3] and will

be used in our forthcoming paper Kawai \J5~] in order to construct local

elementary solutions, which defines a kernel function of a pseudo -differential

operator (in the sense of Sato ^4], C5])5 under the condition motivated by
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that given in Nirenberg and Treves j^l]. (The condition is called condition

C/VT)/ in our previous note Kawai [A].)

§2. Construction of Elementary Solutions for Cauchy Problems

Until the end of this paper we consider an m-th order linear differential

operator P(x, Dx) with real analytic coefficients defined near the origin of

Rw. We assume further that its principal symbol Pm(x, f) is real and

that Pm(x, f) is of simple characteristics, i.e., grad|Pw(#, £)^0 whenever

Pm(x, ?) = 0 except in Theorem 2.6. Moreover we assume that Pm(x, ?)
m

has the form 2 am-j(x, $ ')£i with a0(*> £')=! *n tm's section except in
y = o

Theorem 2.8. We first construct the elementary solution for Cauchy prob-

lem when P(x, Dx) is strictly hyperbolic with respect to f = (1, 0, . - - 5 0)

near the origin. We mean by the elementary solution for Cauchy problem

the hyperfunctions {Ek(x^ x'9 yf}}™=i which depend real analytically on

x\ and yr respectively and satisfy the following Cauchy problem:

(2.1)

P(x,

(*, /) = SJk8(xf— y')> where 0<j, k^m — 1

(See Sato Ql] p. 424 about the notion of real analytic dependence on a

parameter of a hyperf unction. See also Sato Q5].)

Since a hyperf unction u(x} depending real analytically on x\ can be

specialized (or restricted) to a lower dimensional manifold {xi = s}, the

second condition in (2.1) is well defined. We also remark that the condi-

tion that the hypersurface {#i = 0} is non-characteristic with respect to

P(x, Dx) implies that Ek(x, yf) depends real analytically on xi by Sato's

fundamental theorem on regularity of hyperfunction solutions of linear dif-

ferential equations. (See Sato E^D'^E^IS- See also Kashiwara and Kawai

If such hyperfunctions Ek(x, j') are obtained, then we can solve the

Cauchy problem
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(2.2)

where Q<^j<^m—l and jUj(x') is a hyperfunction of (n — 1) variables with

compact support by the formula

w
«(*)=

£

The assumption of real analytic dependence on y' of Ek(x, y') makes the

above integration well-defined. Moreover we can prove that Ek(x, y'} has

a finite speed of propagation if P(x9 Dx} is strictly hyperbolic with res-

pect to (1, 0, • • • , 0) in the below (Corollary 2.5) using the precise version

of Holmgren's uniqueness theorem (Kawai [jT], ^5], see also Komatsu and

Kawai []!]) combined with the regularity properties of Ek(x, y'\ therefore

jUk(xf) need not have a compact support in this case.

Theorem 2.1. If P(x, D%) is a strictly hyperbolic linear differential

operator with respect to (1, 0, • • . , 0), then there exist elementary solutions

for Cauchy problem {E^}^ near the origin.

Proof. Consider in a complex domain near (z, yr, f') = (05 ^3 ^o)

following Cauchy problem :

(2.3)

i-l.

If the domain is sufficiently small, ^- Pm(z, £1, fO^O holds for f with

P(z, D,)u(z, y', f') =

Pm(z, ?) = 05 which follows by the assumption of strict hyperbolicity

of P(#, DS). Then Theorem 1.1' assures the existence of uk(z, y'\ £')>

which is expressed in the form (1.5). Moreover, as is remarked after
m

Theorem 1.1;, Uk is decomposed into 2 u(k\ so that P(z, Dz)u
(
k
J}(z, yf, £')

— 0 holds and u(^} are represented in the form -F=—L
(— /'e'\-\i +
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+ Gj(z, y', f') log <PJ(Z, y', £' ) + Hj(z, y', f') with holomorphic functions

Fj9 Gj and Hj. It is obvious that uj/^z, y', £ ') is uniform and analytic in

a simply connected complex domain {(*, y ',£')£ .Oiling/*, y', f')>0}5

where Q is a sufficiently small neighbourhood of (z, y', ?0 = (0, 0, fjj).

On the other hand we conclude that the phase function <pj(x, y' ', ?')

defined in Definition 1.2 is real valued if (#, y', f') is real, since we

can integrate the Hamilton-Jacobi equations in a real domain to obtain m

phase functions ^i, • • - , (pm by the assumption of strict hyperbolicity of

P(#, DX). Therefore the boundary value of u(
k
j)(z, y', f ') from the com-

plex domain {Im0>/*5 y', f')>0} defines a hyperfunction u(
k
j}(x, y', ?')

which depends real analytically on (y', £')• The word "boundary value of

u(k'}" means logically that the cohomology class defined by utf^z, y7, f7)

using some representation of relative cohomology group by a cohomology

group of coverings. (See for example Komatsu CO)

Generally for a hyperfunction ju(x) defined on M we denote by

S.S./*(#)(CS*Af) tne support of /?(/*(#)), where /9 means the cannonical

homomorphism : gg-^n^. Here TT*^ means the direct image of the

sheaf # by the projection S*M-^— >M, and Sato's fundamental theorem

on the sheaf ^ asserts that the mapping 0 defines a surjection with its

kernel the sheaf of germs of real analytic functions on M. Using this

notation we conclude from the definition of u(
k
j}(x, y', £') that

(2.4) S.S.ui"(*, r'» f')C {(*, j', f

Here we regard u(
k
j)(x, y\ f ') as a hyperfunction of (#, y7, £ ') G JV and

consider S.S.u]f} on 5*7V.
w P

The required £*(^5 yO is given by 2 \ u(
k
n(x, yf, fO^CfOj where

y=i J

O denotes the volume element on the (TI — 2) -dimensional unit sphere,

i.e.,
y = 2

In fact P(A;, Dx}u(
k
j](x, y\ f') = 0 by the definition of 4y)O, y', f)

and we have
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(re-2)! a(g')

by the initial condition imposed on u/,(z, y', £') in (2.3). On the other

hand we have the following well-known formula:

(Cf. Gel'fand and Shilov [1] p. 79.) Thus Ek(x, y') has all the properties

required.

We next investigate the singularity of Ek(x, yr) constructed in

Theorem 2.1. For that purpose the following fundamental lemma due to

Sato (Lemma 2.2) plays an essential role. As for the location of singu-

larities on M, not on 5*M, after the integration along fiber, Lemma 2.2

seems to be essentially well known to physicists and Lax Ql] applies it

to the study of the propagation of singularities in the C°°-category.

Hormander Q3] has contributed to these problems through the geometrical

study of phase functions. See also Kashiwara and Kawai Q2], where it

is shown that the real analytic version of Hormander's theory can be

developed in an analogous way.

Remark that Sato's theory treats the problems in real analytic category.

Lemma 2.2 (Sato [4] §6 and Sato [5] Corollary 6.5.3). Let

f:N—>M be a real analytic mapping from an (n + r}-dimensional real

analytic manifold N to an n-dimensional real analytic manifold M with

maximal rank. Denote by dy the fundamental r-form along the fiber.

Suppose that a hy erf unction ju(x) defined on N satisfies the following

condition:

(2.5) f is a proper mapping over S.S.ju(x).

Then the integration along fiber \ ju(x}dy is well-defined. (See Sato

\J>~] §6.5 about the integral along fiber on the sheaf ^3 which is compatible
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with that of hyper/unctions (Sato Ql] §10). See also Kashiwara and

Kawai Cl].) Moreover

.S\
J f ~ l M

where S*MxN denotes the fiber product of S*M and N over M and o~f
M

denotes the natural homomorphism from S*MxN to 5*M induced by the
M

mapping f.

We mention here the following Corollary 2.3, which is an immediate

consequence of Lemma 2.2 and useful in applications.

Corollary 2.3. Assume that a hyperfunction /t(x, j) satisfies the

following conditions (2.6) and (2.7).

(2.6) The projection f:N-+M defined by (x, y)\-+x is a proper mapping

over S.S./jt(x9 y).

(2.7) S.S./JL (x, y)C{(#5 j; grad(a;,J)^(^5 y))} for some real analytic

function <p(x, y).

Denoting by v(#) the integral along fiber \/i(x, y)dy, S.S.v(x) is

contained in the set of (x, f)(6 5*M) for which % = grad^^(^, j) and

grady(p(x, y) = 0 hold with (x, y, f, Q)€S.S.#(x, y) (C S*N) for some y.

As for Ek(x, jO constructed in Theorem 2.1 we have the following

Theorem 2.4. S.S.Ek(x, yf) is contained in the union of the bi-

characteristic strips passing through x = (Q, yf).

Proof. Let TV be a neighbourhood of (x, y') = (Q, 0) eR^xR11"1.

Combining Corollary 2.3 and the relation (2.4) about the location of

singularities of u(
k
j)(x, y', fO? we conclude that

5.5.

>/(#, y', fO and ^=

By the definition of <pj(x, y', f), it is obvious that
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and that grad^^;-(^3 y', £') XI=Q = X' — y'. This completes the proof by

the definition of bicharacteristic strips itself, since grad^ is invariant on

the bicharacteristic strip of P (x, Dx).

Corollary 2.5. The support of Ek(x, y') regarded as a hyper function

of x is contained in a conoid with its vertex, at y', whose boundary con-

sists of the bicharacteristic curve of P(x, DX) through y'.

Proof. By the above theorem Ek(x, y') is real analytic outside the

characteristic conoid, which is by definition a conoid formed by all the

bicharacteristic curves issuing from (0, y'). On the other hand all the

Cauchy data of Ek(x, y') on xi = Q vanish except for x' = yf. Thus

using the precise version of Holmgren's uniqueness theorem for hyperfunc-

tion solutions (Kawai £4], C^U? a little weaker form of Holmgren's

uniqueness theorem is also proved in Schapira Ql] by a different method),

we conclude that Ek(x, y') vanishes in an open set in W1 which contains

{xi = Q} —{x = (Q, yO}- Therefore Ek(x, y') vanishes identically outside

a conoid by the unique continuation theorem for analytic functions.

Remark. Up to now we have assumed that P(x, Dx} is strictly

hyperbolic with respect to (1,0, - - - j O ) near the origin. But using a result

of Hamada \J2T\ it is easy to extend our results to a linear hyperbolic

differential operator P(x, Dx) with constant multiplicity satisfying the Levi

condition. (See for example Mizohata and Ohya Ql] about the Levi con-

dition). The proof is just the same as what has been stated, especially

the real analyticity of Ek(x, y') outside the characteristic conoid can be

proved. We hope that the Levi condition is redundant in the theory of

hyperfunctions at least P(x, Dx) has constant multiplicity, though we have

not yet proved this fact. Hence we shall not discuss these any more in

this paper. Remark that a complete result is obtained for hyperbolic con-

volution operators in Kawai []4]. We also remark that an important

result of Atiyah, Bott and Garding Ql] that the elementary solution E(x}

of hyperbolic operator with constant coefficients P(DX} is real analytic

outside the wave front follows almost automatically from Lemma 2.2
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assuming no conditions on lower order terms of P(Dx). We hope that we

will treat these problems in the future.

The Cauchy problem in a real domain has been considered solely

from the view point of well-posedness since the famous book of Hadamard

Ql]. But using the theory of the sheaf ^ we can approach the Cauchy

problem in a different way, i.e., from the view point of regularity. Of

course such an approach is suggested in Hadamard Ql] (see for example

his discussions in p. 25 and p. 245), it seems to be difficult to have the

precise statement without the theory of the sheaf ^ and this may be the

reason why such an approach has not been fully developed.

We give some examples of such an approach in the sequel. They are

also important in studying the propagation of singularities of the solutions

for a linear differential operator, not necessarily hyperbolic. (See for ex-

ample Theorem 2.8 below). A much more general approach to the Cauchy

problem is indicated in Kashiwara and Kawai Q2] using the structure of

the sheaf ^ and the cannonical transformation on S*M essentially.

We first prove the following Theorem 2.6. Remark that we need not

assume that P(x, Dx} is of simple characteristics in this theorem.

Theorem 2.6. Let MQ be a hyper surf ace {xi = Q} and I be an open

set in S*MQ. Assume that the following Cauchy problem (2.8) is always

locally solvable near the origin for any hyper/unctions {/*/#')} ^o

P(x, JD*X*) = 0

= jUj(x'), where 0<y'<7?i —1.(2.8) </- , xv ' -u(x)
dx{

Then Pw(0, #', fi, f/) = 0 ^5s as an equation for fi, at least one real

solution for any (xf, f 0 6 /.

Proo/. By Sato's theorem on regularity of solutions of linear differ-

ential equations (Sato C^H^-CSH, see a*so Kashiwara and Kawai CO?

we have S.S.u(x)C {(x, f)6 S*M\Pm(x, f) = 0>. On the other hand we

have 5.5.ii(0, x')Cp(S.S.u(x)\ where p is the cannonical projection
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S*MxM0— S*M0M-»S*.Mo. Here S*M0M means the conormal sphere
M

bundle. (Sato Q5] Theorem 6.1.1.) Therefore the proof is immediate.

Remark. In the above proof we have used only the condition

u(#)Ui=o —Ao(^0j hence the above condition on fi is obviously far from

sufficient. We will give a sufficient condition in Theorem 2.7 below.

Kashiwara and Kawai Q2] give a necessary condition much closer to the

sufficient one for a linear differential operator with simple characteristics

employing the pseudo-differential operators of finite type (Kashiwara and

Kawai [1]).

We next state a generalization of Theorem 2.1. We hope this theorem

reveals the connection of the existence theorem of Cauchy-Kowalevsky

and the existence theorem for hyperbolic differential operators.

Theorem 2.7. Let the initial hypersurface MQ be a domain in

{%1 = Q}CRn, and let I be an open set in S*M0. Assume that Pm(x, f)

has real coefficients and the solutions of fi(0, x', £') (y = 1, • • • , m) of

Pm(0, xf
9 £1, £0 = 0 are att real and distinct whenever (x', £')€•!. Then

the following Cauchy problem (2.9) is locally solvable.

' P(x, />,)&(*) = 0

(2 9^ • 9*
^ ' } I -=—ru(x) = /ij(xf), where 0<J/<77i —1.

OXi X!=Q J

provided that Hj(xf) is a hyperfunction on M0 satisfying S.S.jUj(xf}(^.I.

Remark 1. Those differential operators P(x, Dx} which satisfies the

conditions posed in Theorem 2.7 are named /-hyperbolic operators in

Kawai [1].

Remark 2. This theorem is extended also to the linear differential

operators whose principal symbols are not necessarily real under suitable

conditions on phase functions in Kawai [3H (Theorem 3.3 and remarks

following it). The arguments employed there are closely related to

Theorem 1.4 and Theorem 1.6 in Kawai \JcT\.
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Proof of Theorem 2.7. We construct hyperfunctions u(
k
n(x, y', f )

which satisfy the following condition (2.10) as in the proof of Theorem

2.1, as far as (y', f ' )€E / by the assumption on Pm(x, ?).

/

(2.10)

Then we have

(2.11) S.S.up(x, y'

Using u ( / } ( x , y', £') which satisfies (2.10), we define #(#) by the

following formula:

^=0 /=!
(/,^)e/,l^i = l

Since grad^/a;, j7, fO= — f by the definition, the property of

S.S.u(
k
n(x, y', fO given in (2.11) secures the above multiplication

u>k\x, y', fO^*( jO- (See Sato [5] §6.4.) Therefore we can perform

the above integration as an integration on the sheaf ^ by the condition

S.S.j^k^L It is obvious by the condition (2.10) that v{x) satisfies the

following Cauchy problem (2.12) with some real analytic functions f(x)

and gj(x'). (Remark that the above integration, which defines v(x\ is

performed on the sheaf ^. Hence real analytic functions must appear as

remainder terms on the sheaf ^. Remember the following fundamental

exact sequence due to Sato 0-»j/->^— »7r*^->03 where jaf denotes the

sheaf of germs of real analytic functions on M.)

(2.12)

P(X, £>(*) =/(*)

9-
dx

-j-v(%) =&j(x')+ gj(x'\ where Q<=j<^m— 1
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By Cauchy-Kowalevsky theorem we can find some real analytic function

for which P(x, Dx)w(x^)=f(x} and hold.

Therefore subtracting w(x) from v(x) we obtain the required u(x).

d2 d2 d2

Example of I-hyperbolic operators. Let P— -^—^ — -^—^ + ^—^ and
dx\ dx\ *~2

Then the linear differential operator P

becomes /-hyperbolic. It seems that Volterra treated this example. (See

the footnote of Hadamard Ql] p. 254.)

Remark. Dr. Morimoto has recently applied the existence theorem for

J-hyperbolic operators for the investigation of the relation between the

support and the singular support of hyperfunctions motivated by some

physical considerations. (Morimoto

We close this section by proving Theorem 2.8, which extends

considerably a result of Zerner £l] and Hormander Q2] using the sheaf

^. It is proved in §3 (Theorem 3.4) that the following result is the best

possible of that sort.

Theorem 2.8. Consider one of real bicharacteristic strips of a linear

differential operator P(x, Dx) with the real principal symbol and simple

characteristics. Donate the bicharacteristic strip by /, which defines a non-

singular curve in S*M by the definition. Then there exists locally a hyper-

function u(x} which satisfies P(x, Dx)u(x) = Q and has non-void S.S.u(x)

contained in /.

Proof. Choose a point po = (x, f) = (0, f°) in /. Since the operator

P(x, D%) is of simple characteristics, we can assume without loss of gen-

erality, after a suitable choice of the local coordinate system on M, that

P(x, DX) is non-characteristic with respect to {^i^O} and that the solution

fi(#j ?') of the equation Pm(x, fi, g') = Q is non-singular near po = (Q, f°).

Then we can apply Theorem 1.2 with jp = l and VQ = !. (Cf. Remark after

Theorem 1.3.) Hence we obtain some u(z, y', f') which satisfies

P(z, Dz}u(z, y'9 f') = 0 and has the form C1-8) with some <Pi(*iy'*£'\

say <pi(z, y', g'\ for which the characteristic surface {(pi(z> 0, f') = 0}
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contains the bi characteristic curve corresponding to the bicharacteristic

strip /. The solution u(z, y\ f ') defines a hyperfunction u(x, y', f ') as

in the proof of Theorem 2.1. We also have S.S.u(x, yf, f') C {(#5 J^ ?';

grad^^^iO, /, ?'))|$?iO, y', f) =0} regarding u(x, y', f) as a hy-

perfunction in (#, y', f '). On the other hand for any co-vector £Q, we

can find a hyperfunction My'; ?o) m 7' ^or which S.S.//(y'; So) =

= {(03 <fo)^5*^o}. For example we can take v(yf \ So) =

= l/{<y^^> + ^ ( l 7 / l 2 - < 7 /
3 f o > 2 ) + ^} with 1^1 normalized to 1.

Taking f£ = (f°)' we define v(^) by

where F is a sufficiently small neighbourfood of (y'9 g') = (Q, CQ)- Applying

Corollary 2.3 as in the proof of Theorem 2.43 we see that S.S.v(x)C_/.

It is obvious from the definition of u(x, y', ?0 and that of /*(y7; So) that

S.S.v(x}=^$. (Moreover it is known from Theorem 3.4 in the next sec-

tion that S.S.v(x) coincides with /.) It is also trivial by the definition

of v(x) that P(x, Dx)v(x^)=f(x) is a real analytic function. Of course

we can find some real analytic function w(x) which satisfies P(x, Dx)w(x}

=f(x) near the origin by the Cauchy-Kowalevsky theorem. Hence, sub-

tracting w(x) from v(x\ we obtain the required solution u(x) near the

origin.

Remark. Modifying #(7'; £Q) given in the proof suitably, Kashiwara

[1] has given another short proof of his theorem that the sheaf ^ is

flabby.

§3. Construction of Local Elementary Solutions for Linear

Differential Operators of Real Principal Symbols

with Simple Characteristics

In this section we construct local elementary solutions and investigate

their properties for linear differential operator P(x, Dx) with real analytic

coefficients defined near the origin of Rn satisfying the following condition:
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(3.1) The principal symbol Pm(x, ?) is real and satisfies gradfPw(^5 1)^0

whenever Pm(x, g) = Q.

Theorem 3.1. For a linear differential operator P(x, Dx} satisfying

(3.1), we can construct in a neighbourhood of (x, y, £) — (0, 0, £°) a hyper-

function E(x, y, f ) in (x, y, f) for which the following relation (3.2)

holds.

(3.2) P(x, D,W*> y, V=

Proof. If Pw(0, ?°)=^=0, then the existence of E(x, j, f ) is proved

by Sato. (Sato EXl^EA]- See also Kashiwara and Kawai Ql] Theorem 6.)

Hence it is sufficient to construct E(x, y, £) near (0, 0, f °) for which

Pm(0, f°) = 0 holds.

By the assumption (3.1) we can choose a local coordinate system on

M so that the hypersurface {#i = 0}, (hence {^1 = 5} with |s|<Jl) is non-

characteristic with respect to P(x, Dx) and m =^=0. Next we

apply Corollary 1.4 defining Q(x, Dx, Ds} by giving its symbol by Q(x, $ , <T)

= {P(^, £i + tf, $') — P(x, f)}/tr, where (T stands for Z>s. As in

Corollary 1.4 we consider the phase function <p(z, y, f 3 5) which satisfies

z, y,
(3.3)

Note that the differential operator P(A;, D^), « posteriori Q(x, Dx, Ds)

also, has real analytic coefficients, hence can be analytically extended to a

complex domain.

It is obvious from the definition of <p(z, y, f , s) that the following

relations (3.4)~(3.8) hold.

(3.4)

(3.5)
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d(p(3.6)

(3.8)

Since we consider near (*, j, f) = (0, 0, £°), we have lo^/SsK^l by

(3.4). Therefore we have Qm-\(z, grad(0jS)^)| 2i=s=^0 by the definition of

Q(z, Dz, Ds}. Hence we can apply Corollary 1.4 and obtain a holomorphic

function E(z, y, £5 s) defined in {lm(p(z, j, ^, s)>0}5 which satisfies the

following singular Cauchy problem (3.9).

(3.9)

P(z,Dz)E(z, y,?,s) = (

Q(z, Dz, Ds) u(z, y, f, s

By the assumption (3.1) we can integrate the Hamilton -Jacobi equa-

tions in a real domain to obtain cp satisfying (3.3) for real ( j, f, 5).

Therefore E(z, j, ^, 5) defines a hyperf unction ^(A;, j, £3 5) in STI variables

(x, y, ^, 5) satisfying

(3.10) S.S.E(x, y, f, 5)C {(*, j, f, 5; grad(^^,|j5)^(^5 j, f? 5))]

if we take the boundary values of E(z, y, f , 5) from the complex domain

{Im^(2r5 j, f, 5)>0} as in Theorem 2.1.

By this regularity property of E(x, j, f , 5) we can consider the

multiplication of ^(^j, j, ^3 5) by ^ca.^C^), which is by definition equal

to 1 on fa, #1] and vanishes outside that interval. Therefore we can

$*i
£"(^5 j, f , 5)c?5 for some fixed constant

a
a(|a|<^l). It is obvious from the definition of the differential operator

Q(x9 Dx, Ds) that we have
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Thus the construction of E(x, y, f) is completed.

Errata in Kawai [_2~]. The operator Q(x, Dx) defined in Theorem 2

in Kawai [_2~] should be replaced Q(x, Dx, Ds) defined above.

Now we investigate the regularity properties of

£(*» J>

n
where o)(?) denotes the volume element 2 ("~ l)"7^/^! A A dfj-i A

dgj+i/\---/\d£n
 an(i U is a closed neighbourhood of f° in the unit sphere

S*-1.

Thoerem 3.2. About the location of singularities of E(x, y) defined

above, the following relation (3.11) holds.

(3.11) In a neighbourhood of (0, 0, f°, — £°) w S*(MxM), w;g

/ww0 S.S.E(x, y)C{(*, y, <?, ??) 6 5*(M x M ) i ^ = j, f = — 7]} \J

{(x, j, £, 7]) £E 5*(MxM) | (jc, f) <2^<^ (y, —?y) /^ m ^^ s«w^

bicharacteristic strip with xi > YI} .

Proof. We combine the properties (3.4)^(3.8) of the phase function

^7(^5 j, £, 5) with Lemma 2.2. Remark that the effect of the boundary of

U and the lower bound a used in the definition of E(x, y) does not appear

near (0, 0, f°, — f°), which is also clear from the proof below. Since we

perform the integration in 5 and in £ to obtain E(x, y), it is important

to know the singularities of E(x, y, £, s)0(#i —s). (0 denotes the step

function of Heaviside.) Using (3.10) we have the following relation (3.12).

There we denote by N a neighbourhood of (x, j, ?, s)=(0, 0, f°, 0) and

by C the cotangent vector at (#, j, f, 5). Moreover we denote by (Ci, C2? Cs)

its components relative to the dual basis of (d/dxi, grad^/^^j, d/ds).

and £l = a-Q — ±b, £2 = a grad(x'>yi^(p and £z = a-^r-Ifb for some

(3.12) 5.5.£'(^, y,f, 5)^1 -5) C-4W5, where ^=

£l = a-Q — ±b, £2 = a grad(x'>yi^(p and

a, &;>0 with a+6>0} and B = {(x, j, f, 5; C)|*i=^=s and C =

= grad (^ f, f f fS)^}.

We first consider the set J. By (3.4)^(3.8) we have on A
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=— f and. . - - .

Therefore the contribution of the points in A to S.S.E(x, y) is the

following A.

A = {(x, y? f, T))\X = y and f=— 77} 3 i.e., the antidiagonal set of

S*(MxM). In fact it is sufficient to consider those points in A
dcp

which satisfy -— = Q and grad^ = 05 hence we obtain the set A by (3.12)^.

In the same way we consider the contribution from the set B. By (3.7)
d<p

we have -^ = 5— ji, and we have only to consider those points satisfying

—¥- = Q thus s=yi. Therefore we can conclude that xi>s = ji holds in
9$i ~~
S.S.E(x, y) by the definition of E(x, y). To decide the contribution to

S.S.E(x, y) of the points belonging to J5, we consider the bicharacteristic

strip / of P(x, Dx} issuing from (x, y, f , s, grad(x>y^iS^(x, y, f, s)). Let

/ meet the surface {#i = s} at pQ = (x, |). Combining Corollary 2.3 with

(3. 4)^(3. 8) we conclude that x = y and | = f =— ̂ . Thus we have proved

(3.11).

Remark. An important fact contained in (3.11) is that S.S.E(x, y)

is contained in the union of half of the bicharacteristic strips. From this

fact it is obvious that for the solution u(x) of P(x, Dx)u(x) = Q, S.S.u(x)

is contained in the set of bicharacteristic strips. More precisely we have

Theorem 3.3. Assume that the hyper surf ace {xi = 0} is non-

characteristic with respect to P(x, Dx) and that dPm/d£i^Q near (0, f °).

Denote by £i = A(x, f7) a real analytic solution of the characteristic equation

Pm(x? fij ?0 — 0. Then for each point on the hyper surf ace N={(x, ?)|fi =

= A(x, £')} we can find an open neighbourhood & which satisfies the follow-

ing'. if a hyper function solution u(x) of P(x, Dx)u(x} = 0 vanishes as a

section of the sheaf <% outside N and on a set V in N^ then u(x) vanishes

as a section of the sheaf ^ on Q C\ V^ where V is the set of all points

connected to a point in V by a bicharacteristic strip of P(x, Dx).

Proof. Let P*( y, Dy) be the formal adjoint operator of P( y, Dy\

By the preceding theorems we can construct a local elementary solution
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E(x, y) for P*( y, Dy) which satisfies (3.11). We chose an open set CD

so small that E(x, y) is defined in CD X o)a. (o)a denotes the antidiagonal

set of co.) Using the flabbiness of the sheaf ¥> (Kashiwara Hi]) we can

assume P(j, Dy)u(y) = /i(y) holds with S.S.&(y) compact and S(j) = w(j)

on a). By the assumption on u(y), A( j) vanishes on an open neighbourhood

of V. Therefore using (3.11) and Lemma 2.2 we have on &C\V

y, Dy)E(x9 y)dy=u(x') = u(x\

where the integration is performed as a section of the sheaf ^. Note that

we can take as Q the union of all CD used in the above so that &C\V~^)V

holds.

Since Sato's fundamental theorem on regularity of hyperfunction

solutions of linear differential equations (Sato C2]~C5]) implies that

S.S.u(*)C {(x, f)e S*M\Pm(x, £) = 0} if Pu = Q, we can restate

Theorem 3.3 in the following way.

Theorem 3.3'. Let u(x) satisfy P(x, Dx)u(x) = Q as a section of the

sheaf <$ in an open set Q in S*M. Suppose that two points (#, f ) and

( j3 7]} are connected by a bichar act eristic strip of P(x, Dx} entirely lying in

& and that u(x) vanishes at (#, f ) as a section of sheaf tf. Then u(x)

vanishes at (y, -rj) as a section of sheaf %.

Corollary 3.4. Assume that P(x, Dx) is defined in a neighbourhood

M of x0 and that 0(jc) be a real valued function in C2(M) such that

gradjc0(^;)|^=^0=^=0 and the level surface {</>(X) = (/>(XQ)} is pseudo-convex

at xQ in the sense of Hormander (Hormander [1] Definition 8.6.1).

Then there exists a neighbourhood V of XQ such that every u

satisfying the conditions that P(x, D}u=f€.jtf(M} and that

where M+= {x eM| 0(^)>0(^0)}5 is in

The proof follows immediately from Theorem 3.3' if we calculate

the second derivative of 0G&) along the bicharacteristic curve.

Remark. Corollary 3.4 improves Theorem 8.8.1 of Hormander

under assumption (3.1) in two points. The first is that we allow u(x)
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to be a hyperfunction, not merely a distribution, and the second is that

we treat the propagation of real analyticity, not merely infinite differen-

tiability. Observe that Corollary 3.4 trivially follows from Theorem 3.3'

and that we can also consider higher order derivatives of </)(x) along the

bicharacteristics in the same way if we want. These observations will

show the effectiveness of Theorem 3.3' in investigating the propagation

of analyticity of the solutions of linear differential equations.

Moreover Mr. Kashiwara suggested to the author that we may im-

prove Theorem 3.3 to the form given below (Theorem 3.5) in an analogous

way to the precise version of Holmgren's uniqueness theorem (Kawai Q4]

and []5]). In fact the proof of Theorem 3.5 is immediate from Theorem

3.3 combined with the theory of pseudo-differential operators of finite type

developed in Kashiwara and Kawai QlT]. The author expresses his sincere

gratitude to Mr. Kashiwara for this suggestion.

Theorem 3.5. Take the local coordinate system as in the preceding

theorem and denote by M0 the hypersurface {%i = 0} CM. Then the assump-

tion in Theorem 3.3 that u vanishes on V can be weakened to the assump-

tion that the restriction of u to 5*M0nF vanishes.

Proof. We apply a proposition on factorization of polynomial due to

Hormander Q4H to P(x, £). (Hormander [Jf] Proposition 6.1). The proposi-

tion asserts that P(x, Dx} can be written near (0, f °) as a composite of

two pseudo-differential operators of finite type Q(x, Dx) and PI(X, Dx) such

that Q(x, Dx} is elliptic near (0, f °) and Pi(x9 Dx) has the form

d/dxi — r(x, DX') with some pseudo-differential operator r(x, Dx>} of finite

type of order 1. Since an elliptic pseudo-differential operator of finite type

is invertible (Kashiwara and Kawai Ql] Theorem 6), we are allowed to

consider PI(X, Dx}u(x) — Q holds near (05 f°). On the other hand

PI(X, DxXu(x)0(—xi)) = Q holds by the assumption on the initial condition

of u(x\ hence Theorem 3.5 follows from Theorem 3.3.

Remark 1. It may be possible to prove Theorem 3.5 by modifying

the elementary solution E(x, y) constructed above for the adjoint operator
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P*( j, Dy) using the result of §2, but the proof employed here is more

straightforward .

Remark 2. It is clear that we can restate Theorem 3.5 in the

analogous form to Theorem 3.3'.

Remark 3. Theorems 3.2 and 3.3 hold for a linear pseudo-differential

operator of finite type, if its principal symbol Pm(x, £) is a polynomial in

£ satisfying the assumption (3.1). It is obvious from Theorem 1 of

Kashiwara and Kawai Q2]. Moreover we can develop an analogous theory

for a general linear pseudo-differential operator satisfying the following

condition (3. 1').

(3.1') The principal symbol P^m(x, f) is real and grad.(Xig)P-m(x, f) is

not parallel to (£, 0) whenever P_m(x, f) = 0.

This case is treated using the real analytic version of the deep theory

of Hormander \J2T\ concerning the equivalence of phase functions. It will

be treated in a forthcoming paper of Kashiwara and Kawai. See also

Kashiwara and Kawai Q2], where the summary is given.

As a corollary of the above uniqueness theorem we have the local

representation of the solution sheaf <gp as an integral of solutions of

Cauchy problems for P(#3 DX) in the below if P(x, Dx} satisfies the

assumption (3.1).

Taking a local coordinate system as in Theorem 3.3, we consider the

problem near (0, f °). Using the same notations as in Theorem 3.3,

we denote by K(y', f ') the characteristic surface of P(x, Dx) which

passes through the intersection of two hypersurfaces {%i = Q} and

{<xf~ y', £'> =0} with its normal direction at (0, y') being

U(05 /, fO, f ')• Employing Theorem 1.2 with p = l and Ki = K, we

obtain E(x, y', f ;) for which

(x, DX~)E(X, y', f') = 0

( x , y ' , f ')U1=o= _ - - i ' - '
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hold. (Cf. the proof of Theorem 2.8.) Choosing /*<>(*') so that

is compact in S*({#i = 0}) and w(0, xf} = ̂ (xr) holds near (0, (f°)')j we

define /JL(X^ f ') by

Then we have near (0, f °)

by Theorem 3.5. By the definition of /t(x, $') we have

P(#, DX)JU(X, $') =0 and \ju(x, £') o)(?f) = ^(0, x'}

near (0, (f °)0-

Moreover if we can take the local coordinate system so that

s~\

for any g with POT(0, f) = Q,

then we can represent U(A;) as

near the origin by giving p Cauchy data {#o(#')> •••j^-i(^ /)} on {^i = 0},

where p is the number of real roots of the characteristic equation

Pw(03 ?i, fO = 0 with respect to £1- In fact Theorem 1.2 proves it just in

the same way as above.

These remarks may be regarded as a very partial extension of the so

called fundamental principle of Ehrenpreis Ql] for linear differential opera-

tors with constant coefficients. We will also discuss the representation of

the solution sheaf %p by the integral of boundary values of holomorphic

solutions of P(<2T5 DZ) in a forthcoming paper.

Up to now we have developed the local theory of linear differential

equations mainly by a complex method, so to speak. We can also develop

it using the theory of pseudo -differential operators of finite type (Kashiwara
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and Kawai TlH). We call such a method the real method in contrast to

the name of complex method. Though the complex method is more con-

venient than the real method in treating the linear differential operators

with complex coefficients (Kawai pT]), the real method seems a little

simpler as far as the phase function can be taken real valued. Hence we

sketch the real method in the below. This method is due to Hormander

Q2j and the author expresses his hearty gratitude to Professor Carding

and Professor Kotake for their kind suggestions that the author should

also try to employ Hormander's method.

In the sequel we take the local coordinate system so that the

hypersurface {xi — 0} is non-characteristic with respect to P(x, Dx} and
d n£>£ Pm^Q holds near (x, £) = (03 f ).

Theorem 3*2'. We can construct E(x, y) for which P(x, Dx)E(x, y)

= S(x-y) holds near (0, 0, £°, -£°)e S*(M xM) and S.S.E(x, y)C

and (y, — 97) belong to the same bicharacteristic strip of P(x, DX) with

Proof. We first consider a phase function <p(x, y, f ) which satisfies

the following condition (3.15).

(ii) <p(x, y, f) is real analytic near (0? 0, f°) and is positively

(3.15) >, homogeneous of order 1 with respect to £.

(iii) (p(x, j, f) is real valued for real (x, y, ?).

(iv) (p(x, y^}

The existence of such a function <p(x^ y, g ) is well-known by the classical

theory of differential equations of first order. The analyticity of the

coefficients of P(#5 Dx} and that of cp(x, y, £) required in (3.15) (ii) allow

us to consider them in a complex neighbourhood of (0, 0, f °). In an

analogous way to the proof of Theorem 1.2 we define 0/r) as follows.
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(3.16)

, „ . - r T - - - - -(2m) "(; — re)! I V 2 7 — re

We want to construct a holomorphic function F(z, w, C) in (z, w, C) defined

in {Im^(^, w, Q>0}, which satisfies

(3.17) P(z, Dz)F(z, w, C)= L 0(*, ", O«y(?(*, ^3 O)
yg=o

with r0 (^5 i^, C)¥::0 near (0, 0, £°) and r/ being homogeneous of order

(— y) with respect to C- For that purpose we assume F(z, w> C) has the

form

(31g)

, C)

where //.z, z<;, C) is some holomophic function in (z, w, C) near (0, 0, f °)

and homogeneous of order (— y) with respect to C- Then noting that

^PmC^, grad2^(z, w;, Q) = Pm(w, C) we can formally determine //£, w, C) so

that /o(w, w, C) = l and

(3.19) P(z5 D2)F(z5 w, C)= L rX^r, w, C)0/?(*, ^5 O)
y^o

hold. In fact we solve successively the transport equations, i.e., the first

order differential equations given in §1,

(1.13)

m
(i.u) &W=- X

with its Cauchy data equal to 1 for f0 and to 0 for /}(/^>l) on a hyper-

surface S={xi = ji}, which is non-characteristic with respect to &. Thus

the relation (3.19) holds formally. We also prove the following estimate

(3.20) just as in the proof of Theorem 1.3. (In fact the estimation is

much easier in this case.)
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(3.20) sup \fj(z, w, Q\^c3j\ for a complex neighbourhood V of
(z,w,f)ev
(0, 0, f °) and for a constant c.

It is obvious that this estimate (3.20) implies that the summation

(3.18) absolutely converges in & — {(*, w, C) £ F |Im0?(2, w, C) > 0,

ImP^ttf, C)>0 and |0? |<c ' for some c'>0}. Therefore the relation

(3.17) holds in Q as an equality for holomorphic functions in (z, w, C).

Taking the boundary values of both sides of (3.17) as in the proof of

Theorem 2.1, we have

(3.21) P(x, DJF(x, y, f)= E rj(x, y,
yi=o

On the other hand the right side of (3.21) defines an elliptic pseudo-

differential operator of finite type, hence we can find its invese near

(0, 0, f°, — f°) as a pseudo-differential operator of finite type. (See Kashi-

wara and Kawai Ql]] Theorem 6). Thus we have E(x, y) for which

P(x9Dx)E(x9 y) = d(x-y) holds near (0, 0, f°, -f°), by integrating

both sides of (3.21) locally with respect to the volume element on unit

sphere o>(?).

Now we investigate the regularity property of E(x, y). It is sufficient

to consider \F(x, j, f )ft)(f) instead of £(#5 j) ^or tnat purpose. By the

definition of F(x, j, ?), we have the following relation (3.22). There we

use C to denote the cotangent vector at (x, y, f ). Moreover we denote

by (Ci5 C2, Cs) its components relative to the dual basis of (grad.r, grad^,,

gradf).

(3.22) 5.5.£(^y,f)C{(^j,f;C)k(^^f) = ^»(j,f)=0 and Ci =

d3,^(A;, j, g) + bgradyPm( j, f) and Cs^

(^, j, f) + 6grad|Pw( y, f) with some a, 6^0, a + 6=^0}W

y, e-9 C)|Pm(y, f) = o, K^3 j, «^0, Ci = o, (C25 Cs) =
y, f

Applying Lemma 2.2 to the integral F(x, y) = \F(x, y, f)o)(f) we con-

clude that Cs^O holds on S.S.F(x, y) near (0, 0, f°, — f°). It obviously

follows from the definition of the phase function <p(x, y, ?) given in
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(3.15) and the relation C3 = 0 that (x, Ci) and (y, — £2) belongs to the

same bicharacteristic strip with xi^yi* Thus we have proved

Theorem 3.27 by a real method.

Remark 1. The above proof of Theorem 3.2' is very close to

Hormander Q2], pT|. (Cf. the method of energy inequalities employed in

Hormander Ql] and Shirota Hi].) There he treats an operator with C°°-

coefficients and investigate the regularity of distribution solutions in the

C°° -category. Since we have assumed that P(#, DX) has real analytic

coefficients in this paper, many technical difficulties are by-passed. We

hope that the employment of the theory of the sheaf ^ has made the

situation clear.

Remark 2. Recently Hormander Q4] has succeeded in defining an

analogue of S.S.u(x) for a distribution u(x} by the aid of his theory

of pseudo-differential operators, and has obtained results concerning distribu-

tion solutions, which correspond to Theorem 3.3'.

Remark 3. The extension of our theory to a linear differential opera-

tor with complex coefficients will be given in our forthcoming paper

Kawai [JT]. See also Kawai Q3], [JT|.
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Notes Added in Proof on November 25, 1971:

1° Theorem 3.2 of this paper, hence Theorem 3.3, Corollary 3.4

and Theorem 3.5, have been extended recently to the case where the

prinicpal symbol Pm(x^ f) has the form \jQq(x, £)j^5 where Qq(x, £) is

real and of simple characteristics and p is a positive integer. The proof

of this statement uses an asymptotic expansion which is a modification of

that used in the proof of Theorem 3.2'. The details will be published

somewhere else. We also note that Professor Jean-Michel Bony and

Professor Pierre Schapira have recently obtained a rather complete result

on the existence of hyperfunction solutions for weakly hyperbolic opera-

tors in their joint report at the A.M.S. Summer Institute on partial

differential equations held in August 1971. (Prolongement et existence

des solutions des systemes hyperboliques non-stricts a coefficient analyti-

ques). Their results combined with the above remarked improvement of

Theorem 3.3 complete the remark in p. 377. See also Sato, M., T. Kawai

and M. Kashiwara: On pseudo-differential equations in hyperfunction

theory (in preparation).

2° Professor Takeshi Kotake reported the construction of elemen-

tary solutions in the framework of distributions analogous to that given

in Theorem 3.2' at the occasion of the general meeting of the Mathe-

matical Society of Japan held in October 1971, though he does not

investigate the cotangential component of the singularities of elementary

solutions as we have done in this paper. His result seems to be a rather

complete one in order to investigate the propagation of analyticity of
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distribution solutions and is an extension of the recent result of Professor

Karl Gustav Andersson to the case of linear differential operators with

variable coefficients. (Cf. Andersson, K.G.: Propagation of analiticity of

solutions of partial differential equations with constant coefficients. Ark.

Mat. 8 (1971), 277-302.)




