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Construction of Local Elementary Solutions
for Linear Partial Differential Operators

with Real Analytic Coefficients (II)

The case with complex principal symbols

By

Takahiro KAWAI

§0. Introduction

In this paper the coefficients of a linear differential operator P(x, Dx}

under consideration are assumed to be real analytic functions defined on

an open set M in Rw containing the origin. We denote by S*M the

cotangential sphere bundle of M. The purpose of this paper is to construct

locally on S*M an elementary solution for P(x, DX) under the assumption

that P(#, DX) is of simple characteristics. When the principal symbol

Pm(x, £) is real, we have constructed an elementary solution locally for

linear differential operator P(x, DX) and investigated its regularity proper-

ties in detail in Kawai \J2T\. (In this paper we use the same notations as

in Kawai £2] for the principal symbol of P(x, Dx) etc., and will not

repeat their definitions if there is no fear of confusions). However the

celebrated counterexample due to H. Lewy Q2] (cf. Schapira ri] concerning

the hyperfunction solutions) shows that the construction is possible only

under some additional conditions when the principal symbol Pm(x, £) is not

assumed to be real. Therefore in §1 we construct an elementary solution

for P(x, DX) near (x0, f°) in 5*M, assuming that P(x, DX) satisfies con-

dition CP)(*0>f°)5 which is given in Definition 1.3. In the sequel we assume

that #o — 0 for the sake of simplicity. The method of constructing a local

elementary solution employed in §1 is called the complex method in Kawai
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in contrast with the real method employed in §2 of this paper. On

the other hand, the condition for the local existence of (distribution)

solutions has been recently investigated by Nirenberg and Treves [_2~], \jf]

using a priori estimate for pseudo-differential operators (in the sense of

Hormander). Also the same condition is announced by Egorov Ql]. Fol-

lowing their way of stating the condition of the solvability of linear dif-

ferential equations we define condition (JVT)/^,^), which is more

restrictive than that given by Nirenberg and Treves £2], Q3] and Egorov

Ql^3 and prove that condition (A rr)/>(0 jfo ) implies condition (P)(0,|o). In

fact condition (J/VT)/j(o,|o) is much more restrictive than condition (P)(o,i°)

and we can prove that any hyperf unction solution u(x) of P(x, Dx}u(x) = §

is real analytic near x = Q if (JVT)/^,^) holds for any non-zero cotangent

vector ?° at 0. This regularity theorem immediately follows from the

regularity properties of the elementary solutions constructed under condition

Though condition (NT)fi(Q>^ is easier to verify than condition

<u°)5 it clearly does not cover all the possibilities of the solvable cases

in hyperf unction category (Sato fl]) or rather in the framework of Sato's

sheaf # denned on S*M (Sato [2]— [5]). Hence in §2 we investigate

other two extreme cases where we can construct a local elementary solu-

tion of P(x, DX), though condition (JVT)/,(o,f°) cannot be applied. In the

course of the construction of local elementary solutions we give under

some moderate conditions on P(x, DX) an affirmative answer to Sato's con-

jecture that there should exist an exact sequence:

for some pseudo-differential operator Q (in the sense of Sato). Sato

proved this fact when P(x, DX) is the example of H. Lewy £2], i.e.,

P(x, Dx) = -~-+i-— — 2i(xi + ix2)-—. We refer the reader to Sato
OXi OX2 9x^

about the notion of pseudo-differential operators in the sense of Sato.

See also Kashiwara and Kawai Ql].

When P(x9 Dx) is a first order linear partial differential operator,

Schapira [_2~^\ has obtained the complete result for the local existence of
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hyperfunction solutions using the theory of locally convex spaces combined

with the results of Nirenberg and Treves Ql]. (Cf. Suzuki Ql] in the

special case that P(x, Dx) is a first order linear differential operator in two

independent variables. He treats there the problem of local existence and

regularity of hyperfunction solutions for such an operator).

The results of this paper have been announced in Kawai Ql], Q3].

About the notion of the sheaf ^, which is essential in this paper, we

refer the reader to the precise and extensive exposition by Kashiwara

based on Sato's lectures (Sato [JT]). Notes of Sato C2j^OH and Kashi-

wara and Kawai [[1] are also available.

The author expresses his hearty gratitude to Professor M. Sato, Pro-

fessor H. Komatsu and Mr. M. Kashiwara for their advices and constant

encouregement.

§1. Construction of Local Elementary Solutions

- Complex Method -

In this section we define condition GWTO/.co.f0) and construct a local

elementary solution for a linear differential operator P(#, D%) satisfying

this condition using an existence theorem for Cauchy problems with singular

initial data in the complex domain.

As we remarked in the introduction, condition OVT)/,^,*0) is too res-

trictive as far as we are concerned with the local existence of solutions

for a linear differential operator P(x, D^). In order to make up for this

defect we first give a less restrictive condition, called condition (P)(o ff°)>

which assures the local existence of elementary solutions for P(x, Dx).

Condition (P)(o,f°) is concerned rather with the behaviour of characteristic

surfaces of P(x, Dx) than with the operator P(x, DX) itself.

Before discussing the local existence of solutions for P(x, Dx~) in the

real domain, we quote from Kawai [_2T\ §1 an existence theorem in the

complex domain for Cauchy problems with singular initial data. Since we

have assumed that the coefficients of P(x, Dx} are real analytic functions,

we may consider that the differential operator P(x, Dx) is defined on a

complex domain and we denote the operator by P(z, D2). Until the end
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of this section we assume that the hypersurface {zi = Q} (hence {zi = s}

with s|«O) is non-characteristic with respect to P(z, Dg) and that

Pm(z. f) = 0 implies (d/df^Pm(z. f)^=0 near (*, f) = (0, £°).

Tkecrem 1.1. Consider the following Cauchy problem (1.1) under

the condition (1.2) on the linear differential operator Q(z, Dz, Ds), holo-

morphic functions J(z, w, f ) and x(z, w, ?).

, w, I)

Z zs <2 positive integer, Q(z, D23 Ds), /(z, w, ?)

satisfy the following

' (i) The holomorphic function J(z, w, f ) is defined near (z, w, £)

= (0, 0, f°) and homogeneous of order 0 with respect to f.

(ii) T/2^ holomorphic function x(z, w, f) zs defined near (z, w, f)

= (0, 0, f°), homogeneous of order 1 wzY/z respect to

the form <z — w,g>+0(\z — w;

^ (iii) 77z£ relation Qp(z,

principal part Qp of Q, where the holomorphic function

(p(z, w, f 5 5) denotes the phase function of P(z, D^) with the

initial condition on {2:1 = 5} given by %(*, w;, f), e.c.5

/?^ Cauchy problem (1.1) admits a solution u(z, w, f, 5) which has

the form

( u(z, w, ^, s) = F(z, w, f,
(1.3)

I +G(z, w, f,

where k is a positive integer and F, G and H are holomorphic near

About the proof of this theorem see Kawai £2j §1 Theorem 1.3 and
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the corollary and remarks following the theorem. Note that this theorem

is a variant of the result of Hamada Ql] modified to be suitable for our

purpose.

Using the phase function (p(z, w, £, 5), which is used to represent the

solution u(z, W, f, s) as in (1.3), we give the definition of condition

Definition 1.2. (Sato). A real analytic function f(x} is said to be

of positive type if the following condition (1.4) holds.

f (i) Im/ (*)220 whenever Re/00 = 0.
(1-4)

I (ii) grad,/^0.

Definition 1.3. (Condition (P)(0,fO)). Choosing a suitable initial da-

tum %(#, y, £) used in Theorem 1.1, which is a real analytic function of

positive type in (#, y, f), we can find a phase function (p(x^ y, f, 5) of P

which satisfies the following condition (1.5) for \x , |y|, |s|<O-

(1.5)

» Jj ?> -5)2SO on {(%y J5 ?j 0 real, #i^s, ? € /+ and

, y, f, s) = 0} and {(#, y, ?, 5) real, xi<*s, $ 6 7~ and

, y, f, s) = 0}, where J"1" and /~ denote some locally closed

sets in an (n — l)-dimensional unit co-sphere S""1 such that

. I=I+\Jl~ is a neighbourhood of ^° in Sn~l.

Remark 1. Afterwards we sometimes omit the subscript (0, f °) and

denote this condition by condition (P) for the simplicity of notations.

Remark 2. As in Definition 1.2, condition (P) may be said as follows:

the phase function q> can be taken to be of half positive type for a

suitable choice of the initial condition % which is homogeneous of order 1

with respect to $ and is of positive type.

Remark 3. Since the coefficients of Pm(x, f) are complex valued, we

cannot integrate the Hamilton-Jacobi equations in the real domain to obtain

the phase function q> even when the initial datum %(#, y, f) is real va-
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lued. This is the reason why we cannot use the plane waves < x — y, $ >

for the initial data in general but must use the curvilinear waves

%(#, y, £), which we use to represent d(x — y) by Sato's formula:

(16)( } ~ (-2*0" =1 (%(*, J,

where o>(?) denotes the volume element on S""1, i.e.,

and J(x, j, f) and %(^5 y, ?) satisfy the following conditions:

(i) The real analytic function x(x, y, ?) is of positive type and

is positively homogeneous of order 1 with respect to f .

(ii) There are some real analytic functions {%/(#, Jj ?)}/ = ! which

are positively homogeneous of order 1 with respect to ? and
(1.7) I n

satisfy 2 (xs— yfrfa y, f) = x(«, j, f).

(iii) Using these functions PCy we define /(^, j, f) by

.^n9 which neVer vanishes.

The expansion of S'-function by the complex valued curvilinear waves

given in (1.6) is due to Sato. Note that the ambiguity in the choice of

*X^> y> f ) does not affect the result since the effect of the ambiguity is

absorbed into the coboundary part.

Remak 4. We consider that the notion of the half positivity of the

phase function would be a key to the local solvability of linear differential

equations. Compare the fact that a linear differential operator

P(#, DX) with real prinicipal symbol has a local elementary solution

E(x, y) whose "singular support on S*M" is contained in the union of

half of the bicharacterstic strips of P(#3 Dx). (See Kawai £2]

Theorem 3.2 for the precise statement of the above fact). There the

notation of half positivity is effectively used to prove the above statement

on the singularity of elementary solutions,
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Theorem 1.4. Assume that P(x, DX) satisfies condition (P)(o, £«)•

Then we can construct a local elementary solution E(x9 y) for which

P(x, Dx)E(x, y) = S(x — y) holds as sections of the sheaf *% near (.T, y; ?, fj}

= (0, 0; f°, — f°). Here (f , 97) denotes the cotangent vector at (x, y) G

MxM.

Proof. If POT(0, f °)^0, then the existence of £"(#, y) is proved by

Sato (Sato E^H'^ESH. See also Kashiwara and Kawai Qlj Theorem 6.)

Hence we assume Pw(0, c°)::=0. We first define a linear differential

operator Q(x, Dx, Ds} by giving its symbol by Q(x, £, (?) =

= {P(x, fi + 0", £') — P(x, f)}/(T3 where (T stands for Ds. Then we proceed

just as in the proof of Theorem 3.1 in Kawai \J2T\ and obtain E(z, w, ?, 5)

by Theorem 1.1 for which the following relation (1.8) holds.

(1.8) Q(z, D2, Ds)E(z, w,

where /(z, w, ?) and %(z, w, f) are chosen so that the condition (P)(o,f°)

is satisfied for the operator P(#3 Dx). (Cf. Definition 1.3 and Remarks 1

and 2 after the definition).

Then the required elementary solution E(x, y) for P(x, Dx} is given

by taking the boundary value of the integral (*) defined below from the

domain {Im^>0}. This integral is real analytic in x\ and holomorphic

in z* '.

where x = Rez and y=Rew. About the precise notion of taking the

boundary values, i.e., its formulation using the representation of relative

cohomology group by some Leray coverings, we refer the reader to Koma-

tsu Ql]. The half positivity of the phase function <p(x, y, ?9 5) required

in the definition of condition (P)(o,f°) assures that the hyperfunction E(x, y)

is well defined by the above procedure. It immediately follows from the

relation (1.8) and the definition of Q(x, Dx, Ds) that



406 TAKAHIRO KAWAI

holds near (0, 0; ?°, — £°). The last equality is a corollary of Sato's

curvilinear wave expansion of d-f unction. (Cf. Remark 2 after

Definition 1.3.)

Though Theorem 1.4 is satisfactory from the logical view point, it is

not clear a priori whether a given linear differential operator P(x, Dx)

satisfies condition CP)(o,£°) or not (unless its principal symbol Pm(x, ?)

is real). (Cf. Kawai PQ). Hence we give the definition of condition

(TVlO/^o.fo-) and prove that condition C?VT)/,(off
0) implies condition CP)(o,£°)-

From now on we denote by Am(x, f) and Bm(x, ?) the real part and

the imaginary part of Pm(x, f), respectively, i.e., we write Pm(oc^ ?) as

Am(x, S) + iBm(x3 f). Moreover we assume, without loss of generality,

that grade Am(x, f)=j£0 whenever Pm(x, ?) = 0.

Definition 1.5. (Condition (JVT)/^,^, cf. condition (^) given in

Nirenberg and Treves Q2] p. 460. and the introduction of Treves HlJ).

Along every bicharactrristic strip of Am(x, ^) = RePw(^;, f) which passes

through (*, f) with | ̂  |<1 and |f-£°|<l, the function Bm(x, $) =

ImPm(x, f ) has only zeros of finite even order.

Remark. Since the notation of condition (JVT1)/^,^ seems clumsy,

we sometimes omit the subscript (0, f °) in the below.

Theorem 1.6. Condition (-Arr)/j(0,|0) implies condition (-P)(o ff°)«

If we denote ^1 — 5 by x\ and (^2, • • • , xn) by A;', then the

phase function <p(x, j, f , 5) is obtained by solving the first order differen-

tial equation PM(XI + S, x\ grad(^ls s')f(xi, xf, j, f, 5)) = 0 with the initial

condition on {xi = 0} is given by %(^i+5, x1 r, j, f). Note that d$/dxi =

= dcp/dxi holds. Since |s|<O3
 we ca nassume that condition (NT)f holds

for Pm(xi, x\ f). Hence we abbreviate xi and ^ to ^i and q>^ respectively,

for the simplicity of notations. Now we will choose a suitable initial datum

% so that the half positivity of cp follows. To prove the half positivity of
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#>, we shall first decompose Pm(x, £) into the from Rm_i(x, £)(?i — a(x, f)

— ib(x, ?')) near (0> f°)- Here ^»i-iG&5 f) is a complex valued real analy-

tic function which never vanishes near (0, f °) and is positively homo-

geneous of order m — 1 with respect to f, and a(x, f) and ^(A;, ?') are

real valued real analytic functions which are positively homogeneous of

order 1 with respect to £' = (£2, • • • > £ » ) • Then by the method of the

proof of invariance of condition (^) under the contact transformation

given in Nirenberg and Treves Q2] §2, we can assume that the condition

(NT)/ holds for fi — a(x, gf) — ib(x, f) with Am replaced by Si — a(x, ?')

and Bm by —b(x, ?'). (Note that the problem of local existence and

regularty of solutions of linear (pseudo) -differential equations can be trea-

ted in the most natural way by the contact transformation on S*M. This

is remarked by Egorov Ql]. The relation between the contact transforma-

tion and the theory of sheaf ^ will be explained in a forthcoming paper

of Kashiwara and Kawai Q2]. See also Kawai [14]). It is obvious from

condition (NT)f that either b(x, O^O holds in a neighbourhood V

of (0, £0/) or b(x, Oi£0 holds in F, hence we assume in the sequel that

b(x, $ 0^0 holds in V. Now we define the initial datum x(x', j, f , 5) by

(1.9) %(^5 y,^s) = (s-yl}{=l+<x'-yr^'>+i\xf-yr\! 2

In order to prove that the phase function <p(x^ j, f3 s) with the initial

datum on {xi = Q} given by %(^'5 j, f, 5) is of half positive type, we

follow the method of estimation given in Nirenberg and Treves Qlj

Lemma 4.2. It is well known that the phase function (p(x, y, f, s) uniquely

exists, since a(x, gf) and b(x, £') are real analytic function in (x, £') and

can be extended to a complex neighborhood. Therefore it is sufficient to

prove Im<2?^>0 in {^i^O} fixing (j, f) to (y, £Q). Moreover we can

assume without loss of generality that y' = Q since condition C/YT)/ holds

on an open neighbourhood of (0, £°). Thus we are reduced to the estima-

tion of imaginary part of (p(x, y, f 05 s) which satisfies

<p(0, x', yi, 0, £05 s) = (s— yi)(?0)i-
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Subtraction of (5— yi)(fo)i from cp does not affect the results as far as

we are concerned only with the imaginary part of (p, hence we assume

that the initial condition of <p is < x\ <? Q> +i I x'\ 2 and denote (p = (p(x}

for the simplicity of notations. Thus we need to consider

(1.10') ^ — a(x, gradx'<p) — ib(x, grad^) = 0 with

Following Nirenberg and Treves Q2] we straighten out the bicharacteristic

strip through (x, f) = (0, a(0, £Q)> ?o) °f fi — a(#9 ?')• It is achieved by

a change of variables from (x) to (£) in the neighbourhood of the origin

in Rw. The change of variables is defined by solving the following Cauchy

problem for first order differential equations (1.11). There we denote

(£2> • • • 5 Xn) by (£)' by /( — — ) the Jacobian matrix of the £
\ x / , (xY\

with respect to xk(2<Ji<;n) and by *J f , • ) its transpose.
\ x /

Thus

(1.12) ^1 = ^1 and (*)' = (£(*))'

is a real analytic change of variables with non -singular Jacobian matrix

j( — J near the origin in Rw. By this coordinate transformation (1.12)

f 1 — 0(^5 ?') turns into the form |i — a(^, (|)03 where a(53 (|)0 =

From this representation of a(x, (1)0 we easily conclude that

(1.13) gradr*(£, ?o) = 05 hence a(^3 ^^) = 0

and cosequently we have

(1.14) gradX5E,^) = 0.

(Cf. Nirenberg and Treves Q2] p. 22.) Thus we have straightened out the
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bicharacteristic strip through (0, a(0, fJX ?o) of £1 —«(#, ?0- Note tnat

the hyperplanes {£i = 0} and {#1 = 0} are identical and that #' = (£)' holds

on this hyperplane. In the rest of the proof of this theorem we abbreviate

x, |, a and I to #, f, a and & respectively for the sake of simplicity of

notations.

Now we begin the estimation of Im0?(#) in xi^>Q. We want to prove

(1.15) |?(*)-<*', S'0>-i\x'12-i6'*}«+1|
2+ ^l*"*1) for

where C is a constant, bf is a positive number and k0 is the order of

zero of &(#!, 0, f Q) with respect to #1, which is an even number by the

assumption on b. We first expand <p(jx) in the form

(1.16) ?(*)=<*', £i>+i|*' 2 + *X>*0*0,
k = 0

where uk(oc) is a homogeneous polynomial of order k with respect to xr.

By the initial condition on <p imposed in (1.10'), we conclude that

^(0, #') = 0 holds for every k. Similarly we expand T(x, ?') = a(x, f;) +

+ ib(x, f) into the following form

where T^(x^ £' ) is homogeneous of order A with respect to x and

homogeneous of order 1 with respect to gf. Substituting (1.16) and (1.17)

into (1.100, we compare both sides according to the order with respect to

x and obtain

(1.18)

and

(1.19)

Now we proceed just as in Nirenberg and Treves [_2~] pp. 23^-25.
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From (1.19) we have

where $1 depends only on x and on the coefficients u^ of HI= 2
y=2

Note that $1 is real analytic and t5i(#, 0) = 0. Therefore we have from

(1.13) and (1.14),

On the other hand we have \grad^x^^b \ 2^CQ\b\ by condition (7VJ1)/

using Lemma 1.1 on real valued C2 -functions of Nirenberg and Treves

]. Taking this fact into account we see that

d
1=2

since 0i(#, 0) = 0. Therefore we have, for s\ sufficiently small.

(1.20) |uv ^C z |6 (*{, 0, fi
Jo

Noting that the bicharacteristic strip through (0, a(0, ££), ?o) of ?i—a(x, f)

is parallel to A; i -axis by the choice of local coordinate, we use condition

(NT)/ and obtain

(1.21) 6(*i, 0, fJ) = 6o*i*° + 0(Ui|*0+1), where & 0 >0

and &o is an even number. Combining (1.20) and (1.21) we see that

(1.22)

hence we have

(1.23) |

Now we expand the left side of (1.18) according to the powers of

z/i^i and obtain by (1.13) and (1.14)

<; | <gradf/6(*is 0, $£), grad^m> 1 + C
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Using (1.22) and the fact |grad(^,r)& 12^C01 6 |, we have

duQ _L/ n *'

Combining this estimate with (1.21) we conclude that

(1.24) Mo_1Ar,1*o-

On the other hand we have

(1.25) \u2\<*C9 *i| |*T

by the definition of u^(x).
2

Noting that <p(x)= <xf, g'Q>+ i\x'\2 + i 2 Uk + 0( xr 3), we obtain

the required estimate (1.15) from (1.16), (1.23), (1.24) and (1.25) and

conclude that Im(p(x)^>Q in xi^>Q for the solution q> of (1.100- This

ends the proof of the theorem.

Remark. It is obvious from the above proof that Im0>(#)>0 if xi>s.

This fact implies that condition (NT)/ is much stronger than condition

(P). In fact we can prove the following theorem by this fact.

Theorem 1.7. Let a linear differential operator P(xy Dx) satisfy

condition (NT)/, (o,f°). Then the elementary solution constructed in

Theorem 1.4 defines a kernel function of a pseudo- differential operator (in

the sense of Sato) near (x, y\ g, y) = (Q, 0; $°, — f°). (We refer the reader

to Sato C^H^^CSl! about the definition of pseudo-differential operators in

the sense of Sato).

Proof. It is sufficient to prove S.S.E(x, y)d{(#? y\ f, ^)^

S*(Mx M) \x = y, £=—y}. By the method of the construction of the phase

function given in Theorem 1.6 we conclude that Im<p(x, y, $, s)>Q if xi>s

or xi<s under the condition (NT)/^^, i.e., that q> is of strictly half

positive type, so to speak. We assume without loss of generality that

Im<j?>0 holds if #i>s in the below. We see also from the definition of <p
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that <p(s, #', y, f, 5) = (5— yi)fi + <#' — y, ? '>+&| # '—y' 2. Here the

norm |f| of £ is assumed to be 1. Now we regard E(x, y, £, 5) con-

structed in Theorem 1.4 as a hyperfunction in (#, y, ?, 5) 6E JV and consider

S.S.E(x, y, f, 5). Let C denote the cotangent vector at (x, y, f, 5). Let

(Ci5 • • • } Cs) be the components of a cotangent vector C relative to the

dual basis of f ——, grad*/, grad-y, grad^, -^— J. Then using the strict half

positivity of the phase function q> we have

, _ _ . , „ _ %S.S.E(x, y, f,

and Cs^

Note that
ds

= ?l and

hold by the definition of the phase function <p. Now we apply to the

integration\a)(?)\ E(x, j, f, 5)c?5 a lemma due to Sato concerning the

regularity property of the integration along fibre (Sato Q5] Corollary 6.5.3.

Cf. Kawai Q2] Lemma 2.2 and Corollary 2.3) and conclude that

S.S.E (x, y)C{(*5 J\ ?? ^)e5*(MxM) A; = J and f=-^} near

(^3 J5 £9 ̂ ^(Oj Oj £o5 — ?o) by just the same reasoning as in our previous

paper Kawai Q2], (Cf. Kawai Q2] Theorem 3.2 especially the properties

of the phase function <p (3.4)">^(3.8). The proof is easier in this case,

since the propagation of the singularities does not occur).

From this theorem we immediately obtain the following theorem.

Theorem 1.8. Let a linear differential operator P(#3 Dx) satisfy

condition (JVT)/f(o -f<>) . Then denoting the solution sheaf of P(x, D%) by

Vp, we have (0, ?°)$supp^p.

Proof. We consider the formal adjoint operator of P(x, Dx) and de-

note it by P*(^5 DX). Then it is clear that condition (JVT)/ f(0f-fO) holds

for P*(A;, Dx). In fact condition (NT)f concerns only with the principal

part of a linear differential operator and the principal symbol of P*(#3 Dx)

is the same as that of P(x9 Dx) except for the signature. Therefore we

have E(x, y) for which P*(j, Dy)E(x, y) = d(x-y) holds near (0, 0, f°,

— f°). Now consider u(y) for which P(y, Dy)u(y) = 0 holds near (0, f°).
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Then using the flabbiness of the sheaf ^ (Kashiwara Li]) we can assume

that P*(y, Dy)u(y) = /jt(y) with S.S.u(y) compact and u(y)=u(y) near

(0, f °). Then we have in a neighbourhood of (0, ?°)

>,)£(*, y)dy=

= u(x) = u(x). This ends the proof of the theorem.

Corollary 1.9. Let P(x9 Dx) satisfy condition (JVT)/, ( 0 f f ° ) for any

f°(f°=^=0). Then any hyperfunction solution u(x) of P(x, Dx)u(x) = § is

real analytic near the origin.

The proof is immediate from Sato's fundamental exact sequence:

0 - >J2/ - >^ - >n*<g- - >0, where $0 and ̂  denote the sheaf of germs

of real analytic functions and hyperfunctions on M, respectively, and n

denotes the projection from 5*M to M. (Cf. Sato [2]~-[5l).

Remark 1. The result of Treves Ql] shows that Corrollary 1.9 is

the best possible one as far as we consider the problem of regularity in

the framework of hyperfunctions (or rather distributions in Treves Hi]).

But in the framework of the sheaf ^ Corollary 1.9 (or even Theorem 1.8)

is not the best possible one. See for example Theorem 2.3 in the next

section. These subjects will be discussed in our forthcoming paper with

the aid of the theory of integral operator of finite type developed in

Kashiwara and Kawai

Remark 2. If the space dimension n is equal to 2, we can prove

Theorem 1.8 by a more elementary method. We refer the reader to

Kawai \Jf] about it.

Remark 3. All the results of this section hold for a linear pseudo-

differential operator of finite type P(x, Dx} with its princcipal part a usual

partial differential operator, i.e., P(x, Dx} = Pm(x, Dx) + Q(x> Dx), where

Pm(x, DX) is a linear differential operator of order m and Q(x, Dx) is a

pseudo-differential operator of finite type of order at most m-~l. This is

a trivial corollary of Kashiwara and Kawai {_2~} Theorem 1. (Cf. Kashiwara

and Kawai [\~] Theorem 7). We refer the reader to Kashiwara and Kawai

for the notion of pseudo-differential operator of finite type.
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This remark holds also for the results of the next section.

Remark 4. Since a penetrating study on the local existence and reg-

ularity of solutions is given by Suzuki Ql] for first order linear differen-

tial operators in two independent variables, we can give a complete result

on these problems for linear differential operators in two independent

variables using the above quoted result of Kashiwara and Kawai [[1], [_2~].

This will be discussed somewhere else, because the method of the proof is

rather different from the one given in this paper, i.e., via the construction

of elementary solutions.

§2. Construction of Local Elementary Solutions

- Real Method -

In this section we consider two cases where condition (JVT)/ cannot

be applied but the construction of local elementary solutions is possible.

The method is close to that employed by Hormander \J2T\ in the C°°-

category under the assumtion that Pm(x, £) is real. Until the end of this

section we always assume that

(2.1) grad^^O, f) and grad^^O, f) are linearly

independent whenever Pm(x, ?) = Am(x, g) + iBm(x, ?) = 0.

The attempt to weaken this condition will be given in our forthcoming

paper using the theory of integral operator of finite type developed in

Kashiwara and Kawai \J2T\.

We first give an existence theorem under the conditions expressed in

terms of phase functions (Theorem 2.1). Afterwards we investigate the

conditions concerning the differential operator itself which imply the con-

ditions used in Theorem 2.1. (Theorems 2.3 and 2.5). We hope that the

two cases covered by Theorem 1.4 and Theorem 2.1 are complementary

unless Pm(x, f) is real and that Theorem 1.6, Theorem 2.3 and

Theorem 2.5 deal with three typical cases of solvable linear differential

equations in the framework of the sheaf <#. Remark that the behaviour of the

phase functions used to construct local elementary solutions are different from
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each other: the phase function used in Theorem 1.6 is of strictly half

positive type, that in Theorem 2.3 is of strictly positive type, and that in

Theorem 2.5 is real.

Theorem 2.1. Assume that there exists a phase function <p(x, j, £)

of P(x, DX) satisfying the following conditions (2.2)~~(2.5) near (#, j, f )

= (0, 0, ?°). Then we can construct E(x, y) which satisfies

P(x,Dx)E(x, y) = 5(x—y) as sections of the sheaf %.

(2.2) Pm(x,

(2.3) <p(x,

(2.4) <p(x, y, $ ) is real analytic near (0, 0, ?°) a^J positively homo-

geneous of order 1 wzY/z respect to f .

(2.5) ^(A;, y, ? ) is of positive type. (Cf. Definition 1.2).

Proof. We proceed just as in the proof of Theorem 3.2' in our pre-

vious paper Kawai {J2T\.

We first define $y(r) as follows.

(2.6) 0/r) =

On the other hand ^(^, y, f) can be analytically extended to a com-

plex domain by its real analyticity and we denote the holomorphic function

by <p(z, w, C). Using these functions 0/(r) and <p(z^ w, C)3 we want to

construct a holomorphic function G(*, ̂ , C) in (^, w, C) defined in the

complex domain {(*, tc;, C) I V— 1 (p(z, w, C) is not a real non-positive num-

ber}, which satisfies

(2.7) P(z, Dz}G(z, w, 0 = Pm(w, C){ £ ry(*,

with r0(-2r, w;, C)=^0 near (0, 0, f °) and ry(,2r, t<;, C) being homogeneous of

order (— /) with respect to C For that purpose we assume that G(^, w, C)
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has the form

(2.8) £ fi(z, w, O*/K*, ™, O),
j*o

where //(*, w> C) is a holomorphic function in (z9 w, C) near (0, 0, £°) and

homogeneous of order (— y) with respect to C. Then using the condition

(2.2) on the phase function (p(x, y, ?), we can determine fj(z, w, C) for-

mally so that fo(wy w, C) = r0(^3 w, C) = l and (2.7) holds by solving trans-

port equations suitably as in the proof of Theorem 3.2' in Kawai pQ.

(Cf. Kawai [2] (1.13) and (1.14)). Then it is easy to see that the

following estimate (2.9) holds just as in the proof of the above quoted

theorem in Kawai Q2] (or rather in the proof of Theorem 1.3 in Kawai

[2]).

(2.9) sup \fj(z, w, C)|^C'/! holds for a constant C and

a complex neighbourhood V of (0, 0, £ °).

It is obvious from (2.9) that the summation (2.8) converges absolutely

and uniformly in &={(z, w, C)| V— 1 <p(z, w, Q is not a real non-positive

number and 1 0>0*, w, C) 1 5SC" for some C'/(>0)}. Therefore G(z, w, C)

can be represented in the form

(2.10) G(z, w, 0= go*' "'. +giO, w, Olog^(«, w, C)+ ftU, ̂  O

for an integer I and holomorphic functions g"/*, w, C) (y = 0, 1, 2).

On the other hand — ? — - — ̂ -— r, gi(z, w, Qlog(p(z, w, C) and g2(z, w, C)l

define hyperfunctions , * . n v , f f i C * , J , £ ) l o g (?(*, Jvv^v^s y? s j ^ i v )
and ^2(^5 J5 f ) respectively, if we take their boundary values from the

complex domain J2? since the phase function <p(x, y, f) is of positive type

by (2.5). That is, G(z, w, 0 defines a hyperfunction g(x, y, ?) = &o(#5 J5

J , f ) , where AO(A;, y , $}= o > _ . n v ? and
v^v^j y, gj-r JU;

y, ?) = g"i(#, j, f)log(^(^, j, ?) + iO). Moreover we see from (2.7)

and (2.9) that
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(2.11) p(x, D,WX, y, &=

= Pm(y, £){ L rj(X, y, Wj(<p(x, J,

holds. Here the symbol 2 rj(x> y-> £)®j(<P(xi J? f) + l'0) denotes a hyper-
j^O

function defined as the boundary value of holomorphic function

2 rj(z,w,Q (Dj(y>(z, w, C)) from the domain {(*, w, C) | V— 1<K*5 w, C) is
j*o
not a real non-positive number}.

Now we want to define a hyperfunction G(#3 y, £)/Pw( y, £), multiply-

ing G(#, y, f) by l/Pm(y, £)• Since grad^w(y, f) and gradf£w( y, f ) are

linearly independent whenever Pm(y, f) = 0 by assumption (2.1), the hy-

perfunction l/Pm(y, £) is well-defined. If we regard G(^3 j, f) and

l/Pw(y, f) as hyperf unctions in (x, j, £)£N9 it immediately follows from

(2.3) ~ (2.5) and the definition of G(x, j, ?) and l/Pm(y, f) that

5.5.G(A;5 j, f)n{5.S.(l/Pw(j5 f))}a = ̂  where « denotes the antipodal

mapping of 5*JV, which maps (Z; C) e 5*7V to (jf ; -C) e 5*7V. Therefore

the hyperfunction F(x, j, g) = G(x9 j, f)/Pw(y, f) is well defined (cf. Sato

[5] §6.4) and satisfies by (2.11):

(2.12) P(*, D,)F(X, y, f)= S r/^, j, O«X^(^, J, f) + fO).
yso

On the other hand it is seen from the conditions (2.3)^^(2.5) on

(p(x, j, f) combined with Sato's formula (1.6) on the curvilinear wave

expansions of ^-functions that the right side of (2.12) defines a

kernel function of an elliptic pseudo-differential operator of finite type,

since r0(^3 j, f )^0 near (0, 0, £°). (Cf. Kashiwara and Kawai CO-

Therefore applying Theorem 6 on the invertibleness of elliptic pseudo-

differential oprators of finite type in Kashiwara and Kawai Ql] we con-

clude that there exists E(x> y) for which P(A;, Dx)E(x, y) = d(x — y) holds

near (0, 03 f°, — f°). This ends the proof of the theorem.

Now we consider the case where the phase function cp(x, y, $ ) used

in the above theorem can be chosen so that the singularity of the local

elementary solution E(x, y) is described explicitly.

We first consider the case where E(x, y), or more precisely E(x, y)dy,

defines a kernel function of a pseudo-differential operator (in the sense of
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Sato) near (0, 0, f°, -?°).

In the sequel we use the symbol f to represent —rDx and denote by

P(x, DX) the differential operator whose coefficients are the complex con-

jugate of those of P(x, Dx\ i.e., we define P(x> Dx) by giving its symbol

as £ aa(x)£a if P(x, f) = H aa(x}£a. We also denote by C2m-i(x, f)
| a i&n \a\^m _

the imaginary part of the Poisson bracket of Pm and Pm, i.e.,

Im '

Definition 2.2. (Condition (#)«>, fo}) (Cf. Hormander [1] §6)

linear differential operator P(#, Dx) is said to satisfy condition

C2«-i(a;, O>0 near (0, f°)65*M whenever Pw(^3 £) = 0.

Theorem 2.3. Asswm^ ^a^ ^(^5 J5*) satisfies condition

Then the elementary solution constructed in Theorem 2.1 defines a kernel

function of a pseudo-differential operator near (0, 0, f0, — f°)

We first construct a suitable phase function y>(x, j, f ) satisfy-

ing (2.2)^(2.4) and the following condition (2.50 near (x, j, f) = (0> °5 f °)-

(2.50 ImK^3 J3 f )>0 if

We say in the below that a phase function q> is of strictly positive type

if it satisfies (2.50- To construct such a phase function <p we solve the

following non-linear first order partial differential equation (2.13) in the

complex domain using the real analyticity of the coefficients of P(^5 Dx\

(2.13) Pm(oc, gradxp(x, j, £)) = Pm(y, f) with <p(x, y, f) =

ajk(y,

where <%jk(y, ?) is a suitable symmetric matrix which depends real analyt-

ically on ( j, ?) and has a positive definite imaginary part. Using the

assumption (H\0f^ combined with the assumption (2.1) of the linear in-

dependence of gY2idgAm and grad^jB^, we can choose the matrix ctjk(y, f)

so that (2.13) has a solution, Note that C2m-i(*? 0>° holds near (°? f°)
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by condition (H\Qi^. In fact it is obvious from the method of the proof

of the famous lemmas due to Hormander on the existence of symmetric

matrix with a positive definite imaginary part. (Hormander Ql] Lemmas

6.1.3 and 6.1.4). Therefore using the classical integration theorem of first

order differential equations of Hamilton and Jacobi we have a phase func-

tion <p(x, y, $ ) which is of strictly positive type.

Using this phase function (p(x, y, f ) we construct E(x, y) near

(0, 0, f°, — f°) as in Theorem 2.1. We shall now prove that E(x, y)dy

defines a kernel function of a pseudo-differential operator near (0, 0, $ °,

— £°). For that purpose it is sufficient to prove that

(2.14) S.S.E(x, y)C{(*, y; f,

near (0, 0, £°, -f°)

by the definitition of pseudo-differential operators. (Cf. Sato D

To prove (2.14) we investigate the regularity property of E(x, y, £),

regarded as a hyperfunction in (#, y, £), and apply Sato's fundamental

lemma on regularity to the integration \ E(x, y, ?)o)(?) (Sato £4] and Q5].

See also Kawai []2j Lemma 2.2). We denote by C the cotangent vector

at (x, j, f ). Moreover we denote its component relative to the dual

basis of (grad*, grad^ grad|) by (Ci, C2, Cs). By the definition of

E(x, y, ?) we have

(2.15) S.S.E(x, y,

and ^ = a

, f) = 0, Ci = 0 and

(C2, C3) = a/grad(,if)^m(y, f) + /9/gradaf)5w(y, f)}W{(^, j, f ; C)|

x = y, Pm(y, f)^=0, Ci = f, C2= -£, Ca = 0}

where a, &^0, a + 6>0 and a, a', /? and /?' are real numbers with

Noting that grad^^(js y, ?) = 0 we have by (2.15) and Lemma 2.2 in

Kawai [2] x = y and ba grad^Am + b0 grad^Bm = 0 on 5.5. E(x, y). There-

fore we have 6 = 0 by the condition (2.1). On the other hand we have

(gradx<p(x, y, f )U=y, grady<p(x, y, f )U=^) = (f, -f) by the definition of the
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phase function cp(x, j, f). Thus we have proved that SS.E(x, j)C

{(x, y, f,ri\x = y, ?=— ?} near (0, 0, £°, -f°). This ends the proof of

the theorem.

Remark 1. It should be possible to weaken the condition

using Nirenberg and Treves pT]5 but it seems that we must overcome

some technical difficulties and we have proved Theorem 2.3 under this

restrictive condition.

Remark 2. We can prove that under the condition

(#, ?) = (Q, — ?°)$Ker^7jp by the same reasoning employed in the proof of

Theorem 1.8. Dr. Naruki has kindly remarked to the author that this

fact plays an essential role in studying the problem of imbedding a real

manifold into a complex manifold. (Cf. Lewy

Now we give an affirmative answer to Sato's conjecture that the sheaf

of the image of P(x, Dx} can be characterized locally on S*M as a solu-

tion sheaf of some other pseudo-differential operator Q(x, Dx) if

Theorem 2.4. Assume that a linear differential operator P(x, Dx)

satisfies condition (2.1) and condition (H\0> _^. Then we can find some

non-trivial pseudo- differential operator Q(x, Dx) defined near (0, 0, ? °, — ?°)

such that the sequence #-£-»<r_Mf is exact near (0, f °), i.e., Im<gP=Ker<zQ.

Proof. Let P* be the formal adjoint operator of P. It is obvious

by the definition that condition (H)(0i_^ holds for P*. Therefore apply-

ing Theorem 2.3 to P*( j, Dy) we can find some pseudo -differential operator

¥ defined near (0, 0, f°, -f°) such that WP=Id holds near (0, 0, £°, -£°).

(The symbol Id denotes the identity operator, i.e., the pseudo -differential

operator with its kernel function given by d(x — y)dy). (Cf. the proof of

Theorem 1.8.) We define the pseudo-differential operator Q(x, Dx} by PW

-Id=Q. Thus we have QP=(P¥-Id)P=P-P=0, since WP=Id. It

is also obvious that Pu=f is locally solvable on 5*M if Qf=Q. In fact it

is sufficient to define u by Wf, since Pu = P¥f=f+Qf=f holds by the

assumption. Thus Im^P^Ker^ holds near (0, f°). Morecover it is easy

to see that Q(x, Dx) defines a non-trivial pseudo -differential operator. We
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shall give the proof of this fact following Sato's idea. (The author's

original proof was more complicated and close to Hormander [1] §6). The

author expresses his hearty thankes to Professor Sato for his suggestions.

In fact using condition (H\0i_^ as in Hormander Ql] Lemma 6.1.3

we can choose <p{y\ — f°) so that

and
(2.16)

if

holds. We define </)(x, y\ — f°) to be <p{y\ — ?°) — (f>(x\ — £°), where <p

means the complex conjugate of <p(x). Using this function <p(x, y\ — £°)

we can construct W(x, y)= 2 Q>j(x, y)<0/0 + &0) so that it satisfies
y^o

P*(y,Dy}W(x, y) = 0. (The function 0y(r) is defined in (2.6)). The

summation 2 aj(x> y)0y(0 + &0) can be endowed with the same meaning
y^o

as in the right side of (2.11), if we prove the estimate sup \a,j(z, w) \ <
(z,w)*=V

<zCJjl for a constant C and a complex neighbourhood V of (#, y) = (0, 0).

This estimation is possible as in the proof of Theorem 1.3 in Kawai \J2T].

(Cf. Mizohata [1]). Note that S.S.W(x, y) C {(x, j, f, y) \ x = j=0,

? — ?°j ^=— f°} holds by the definition of </>(x, y). Now assume that the

pseudo-differential operator Q reduces to zero, i.e., P(j, Dy}u=f is locally

solvable near (0, f°) for any /. Choosing /=5(y) we have P(j, Dy)u =

= d + /JL, where 5.5.w and 5.5./^ are compact in S*M and that u = u near

(0, f °). We have used here the fact that the sheaf ^ is flabby. (Cf.

Kashiwara HID). Then we have

near (0, f°) since /^(y) = 0 near (0, f°). Therefore the assumption that

Pu=f is locally solvable near (0, £°) has given rise to a contradiction.

This proves that the pseudo-differential operator Q is non-trivial.

Remark 1. It is obvious from the method of the proof that we can

find under conditions (2.1) and #(o,£°) a pseudo -differential operator R(x, Dx)

defined near (0, 0, f°, — f°) such that the sequence ^-^^-^^ is exact

near (0, f °). In fact we define the pseudo-differential operator R to be
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®P—Id, where & is a pseudo -differential operator for which P&=Id holds.

The existence of & follows from Theorem 2.3 and the non-triviality of

R(x,Dx) follows immeditely from the existence of <p(x\ f°) which satisfies:

(*; ?°) l*=o = £° and
(2.160

I lm<p(x\ £°)>0 if x^Q.

(Cf. Mizohata [1]).

Remark 2. The above proof shows that the non-surjectivity of

P(#3 DX) follows from the existence of a suitable characteristic function

(p. Thus we can treat the problem of non-existence of local (hyperf unc-

tion) solutions in general cases treated by Nirenberg and Treves QT|- We

have only to use the analysis of Nirenberg and Treves Q2] on the charac-

teristic function q>. Hence we leave the details to the reader. We also

hope that we will construct the pseudo-differential Q, the compatibility

condition for P3 under a less restrictive condition that H(0i-gO).

Remark 3. Since the advent of Lewy's example (Lewy Q2]) it has

been believed that the image of the space of generalized functions (or

even C°° -functions) under a linear differential operator P(#3 D%) has no

"analytical structure" if P(x, DX) is a differential operator without solu-

tions. (See for example Hormander Ql] §6.13 especially Theorem 6.1.2.

Note that Pu=f is locally solvable by the Cauchy-Kowalevsky theorem if

f is a real analytic function). And this fact has been used as an excuse

for restricting the class of linear dfferential operators in the consideration

of overdetermined systems and the resolutions of their solution sheaves.

However Sato's conjecture proved above seems to throw light on these

problems.

Now we study another extreme case where Theorem 2.1 can be

applied.

Theorem 2.5. Suppose that C2m-i(x, £) = Q holds on {(x, f)

9 f) = 0}. We also assume that Pm(x, £*) = Am(x, ?) + iJ5(^3 f) satis-
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fies condition (2.1) on the linear independence of grad %Am and grad %Bm.

Then we can apply Theorem 2.1 and obtain a local elementary solution

for P(x, Dx} near (0, 0, f°, -f°).

Proof. By the assumption on £2^-1(^5 ?) we can choose real valued

real anarytic functions a(x9 f ) and /?(#, £) defined near (0, ?°), which are

positively homogeneous of order 0 with respect to f and never vanishes

near (0, $ °), so that the Poisson bracket (a(x, $)Am(x, £ ), #(*, S)Bm(x, £ ))

vanishes identically near {Pw(#, £) = 0}. In fact it is sufficient to choose

a<>, ?) and £(*,£) so that a0(Am, Bm) + aBm(Am, 0) + Am0(a, Bm) +

+ AmBm(a, /?) = 0. On the other hand by the condition on C2w-i(^, f)

we can find some real valued ^(A;, f ) and d(x, £ ) which are positively

homogeneous of order zra — 1 with respect to f and satisfies (Am,Bm) = YAm +

-i-dBm. Then the assumption (2.1) ensures the existence of the required

a(x, ?) and $(#, f ). Using these functions a(x, ?) and /?(#, f ) we can

find by the Hamilton-Jacobi theory a real valued phase function <p(x, j, f )

for which (2.3), (2.4) and the following (2.20 hold:

(2.2')

Since neither a(^3 grad-,;^(^5 j, f )) nor /?(#, grad^^(^3 j3 f)) vanishes near

(x, J3 O = (0, 03 f°), we can determine G(z3 w;, C) = Z //*, ^5 C)x

9 w, C)) so that

a(x,

= a( j, f)Am(y, f) and

(2.7) P(^3 Dz}G(z, w, Q = Pm(w, C){ S 0(*, w, C)«y(^(^, ^5 C))}
yso

holds in a complex neighbourhood of (03 03 f °). (The conditions on /}

and TJ are the same as in the proof of Theorem 2.1.) Since the phase

function (p(x, j3 £ ) is real valued, we can proceed as in the proof of

Theorem 2.1 and obtain the required local elementary solution E(x, y).

This ends the proof of the theorem.

Remark. We can also prove that S.S.E(x, y) is contained in the
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union of bicharacteristic strips, which is by definition the 2 -dimensional

manifold in S*M with the vector fields

„ _ ^ (dAm d _dAm d\ H _A~ B~ d

as tangents. The proof is just the same as that of Theorem 3.2' of

Kawai [JT]. A corollary of this remark is proved by Andersson Ql] when

P(x, Dx} is a differential operator with constant coefficients. But

in this case we cannot use this remark to study the propagation of

regularities of the solutions of Pu = Q as we have done for P(#, Dx} with

a real principal symbol in Theorem 3.3 of Kawai \J2T\, since S.S.E(x, j)

is not contained in the union of "half" of the bicharacteristic strips, which

is the case of Kawai pT]. This is because S.5.(l/Pw(y, f )) is rather large

in this case, i.e., we can only assert that S.S.(l/Pm( j, f))C {( j, f ; C)

Pm(y, ?) = 0 and £ = agrad(yit:)Am(y, f) + jffgrad(^f)5w(jj f), where a and

j9 are real numbers with jo: +|j9|=^0}.

Hence the problem of propagation of regularities of solutions for the

linear differential operator P(x, Dx) satisfying the conditions in

Theorem 2.5 will be studied in a forthcoming paper of Kashiwara and

Kawai [2] by a different method, i.e., by the use of the theory of integral

operators of finite type.
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Notes Added in Proof on November 26, 1971:

1° Recently Professor Frangois Treves has proved Corollary 1.9 for distribution

solutions. (Cf. his lecture at A.M.S. Summer Institute on partial differential equations

held in August, 1971: On the existence and regularity of solutions of linear partial

differential equations. See also Treves, F.: Analytic hypoelliptic partial differential

equations of principal type, Comm. Pure Appl. Math. 24 (1971), 537-570.)

2° Concerning the resolution of solution sheaves of general overdetermined

systems which is touched in Remark 3 in p. 422, a rather complete result is given in

Sato, M., T. Kawai and M. Kashiwara: On pseudo-differential equations in hyperfunc-

tion theory (in preparation), whose summary will appear in Proc. A.M.S. Summer

Institute on Partial Differential Equations (1971).

3° Recently Professor Karl Gustav Andersson informed the author that he has

proved the analogue of the remark announced in p. 424 of this paper. (See Andersson,

K.G.: Propagation of analyticity of solutions of differential equations of principal

type, to appear in Bull. Amer. Math. Soc.)


