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Mixed Problem for a Hyperbolic System
of the First Order

By

Mitsuru IKAWA*

I. Introduction

The present paper is concerned with a mixed problem for a hyperbolic

system of the first order which is assumed symmetric only at the

boundary.

Let 5 be a sufficiently smooth compact hypersurface in Rn and Q be

the interior or exterior domain of S. Consider a hyperbolic operator of

the first order

(1.1)

=4—*dt

where Aj(t, x) (y = l3 2, ...,, n} and C(t, x) are mXm matrices. We will

assume that Aj(t, x} and C (t, x) are in 0((0, T) X Rn)^ We set a

boundary condition

(1.2) u(t, x) e B(t, x} on (0, T) X S

where the boundary space B(t, x} is a prescribed subspace of Cm depen-

ding smoothly on the point (t, x) 6 (0, T) X S.

We consider the following mixed (initial-boundary value) problem
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1) £8 ((o), a) being an open set, is the set of all C°° functions defined in a) such that

their all partial derivatives of any order are bounded.
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f £[»/(*,*) in (0, T)x£

(1.3) u(t, x)eB(t, x) on (0, T) X 5

( a(0, *) = £(*)

where u(t, #), f(t, x) and g(x) are column- vector of length m.

Let us set

J=i

We assume the following

CONDITION I. There exists a symmetric positive mXm matrix-valued

^-function @(t, x, f) defined in (0, T}xRnx{%\ \£ |=1} with the follow-

ing properties:

(i) ®(t, x, $)j*(t, x, £ ) w symmetric for (t, x, f) G (0, T) X Rn

(ii) ^(z, x, £) = ! when x £ S.

(iii) 2 d ® fa #3 fX-(#)vy(#) = 0 ow (0, T)x5

in}Vi0v0 11 ( /y- ) — i u -i f y i U o i ' V i u I ' y i i ?Q //7^ uwil' fiiftpy wnvwinl nf ^ /7/(A/il/tsr ts ]/\^J(s J ^*/^\^^/yj X 2\- /v/j • • • j ™ n \-*'J / "^ lifl/lu' W/fvltb Uwb&r tl/Ui iiVlAiif UJ >*J Urlr

xes.
CONDITION II.

J3^y(^5 x) = jtf(t, x, V(A;)) /5 ^o^ singular on (0, T}xS.

For two vectors IL={UI, u2,..., um}, v={v^ v2,..., vm} in Cw

we set u°v= 2 Ui'Vi.

CONDITION III. (Non-negativity of the boundary condition).

u*£#v(t, x) u

for any u 6 B(t, x).

Remark, (ii) of CONDITION I requires that Aj(t^ x) (j = l, 2, ..., n}

are symmetric on the boundary.

We will prove
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Theorem 1. Let CONDITIONS I, II and III be fulfilled. Then for a

solution M(^*)e^?(ff*(fl))n^K^*"Hfi))^-"^^K^2(-fl))2) (*' Positive
integer) of (1.3), if f(t, x) £g»(H\Q}}r\g}(Hk-\Q)} r\-
the energy inequality

(1.4) ||u(t, xWk.i'w + H - ( * > *)lli-i.z'<-> + ••• + 11 r

holds for t E QO, T1], w/*er0 £& ^^5 not depend on u or t.

? C2IL C3]5 Agranovic treated the mixed problem (1.3) with a

boundary condition

(1.5) U'jtfv(t, X)U^PQU*U for all u^B(t, x) ( />o- positive)

instead of CONDITION III without assuming (iii) of CONDITION I. He used

essentially the strict positivity of the boundary condition. As Agranovic

noted in j^l], when Aj(t, x) (/=!,..., ri) are symmetric not only at the

boundary but also near the boundary, the strict positive boundary condi-

tion can be replaced by a non-negative boundary condition, i.e., a boundary

condition satisfying CONDITION III. This fact follows from the results of

Lax-Phillips F7] on the dissipative boundary problem of symmetric opera-

tors and the considerations of Mizohata £8] and Yamaguti C^H on the

energy inequality for hyperbolic equations.

Theorem 1 shows that the energy inequality also holds under a non-

negative boundary condition without assuming the symmetricity of Aj(t, oc)

near the boundary. But we assume one additional condition on Aj(t, x\

i.e., (iii) of CONDITION I, which is evidently a condition posed on Aj(t, x)

only on the boundary.

Concerning CONDITION I we should like to remark that (ii) is necessary

2) u(t, x)^#k
t(E) means that u(t>x} is &-times continuously differentiate as .E-valued

function of t.
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if one want to treat the problem with a non-negative boundary condition.

M. Yamaguti pointed out that for a strictly hyperbolic operator with a

parameter s>0

ddt
-o

-0

1
0

0

3
0-

ddxl 0

-0

0
1

0

o -
0

1/2-

Q

dx2

there exists a non-negative boundary space B for A2 such that the mixed

problem

( L£\ji]=f in (0, r)x

(1-6) J

is not well posed for any s>0.3) This fact shows a typical difference of

the problems with a non-negative boundary condition from the problems

with a strictly positive boundary condition, namely, if B is strictly positive

(1.6) is well posed in Z,2-sense for sufficiently small £ (see Kreiss Q4T],

Rauch C9]). Then we state a sufficient condition for the existence of

t, x, ?) satisfying CONDITION I.

Proposition 1. When L is strictly hyperbolic, i.e., all the eigenvalues

, x, £) of jtf(t, x, f) are real and

^, ^) are symmetric on Q), T] x 5

(1.7) Im - = Cj(t, x)I for /=!,...,

u
(1.8) im_L=c(«> «)^y(«, *) for j =

3) This was communicated by M. Yamaguti in the seminary on partial differential
equations of Kyoto Univ. several years ago, but this is not published.
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hold on [J)5 T^\ x S where Cj(t, x) and c(t, x) are smooth scalar functions,

we can construct &(t, x, f) satisfying CONDITION I.

To prove Theorem 1 we consider at first the case where the domain

is a half -space and the boundary space B(t,x) is independent of t and x.

We introduce a suitable norm attached to the given hyperbolic operator

which is equivalent to that of L2(Rn
+). The construction of this norm is

the essential part of the present paper.

The author wishes to express his sincere thanks to Mr. T. Sadamatsu.

He could not get the results presented here without the disscussions with

Mr. Sadamatsu.

2. The Case Where the Domain Is a Half-Space

In this section we show the energy inequality (1.4) under the assump-

tions that the domain is a half -space and the boundary space B(t, x) is

independent of t and x, namely

( ZOO =/(*>*) in (0,

(2.1)

ii(0, *) = #(*)

where J??. = {(#', #„); x1 ^.Rn~1^ xn>0} and B is a constant subspace of

Cm.

Notations and preliminary lemmas.

Let I be J2 or Rn
+. Denote by £(k, I) (£ = 0,1,2,...) the space

^t(H\2}}r\^}(Hk-\2}}r\-''r\^(L\2}') and for u(t, x}£g(k, 2} define

UK*, *)||Ufj by

o

We state a simple lemma without proof.

Lemma 2.1. Let p ( t ) and i[(t) be two non-negative functions defined

on QO, T1]. Suppose that f(f) is summable on (0, T1) and p(t) is non-

decreasing. Then the inequality
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rt
r(0<c\ r(s)ds+p(t) for ail t e [o, r]

Jo

implies

for all t

Next we note some results on pseudo-differential operators. We

denote 9/9* by dx and — idx by Dx. Let «^(#, f ) be mXm matrix-valued

C°°(RnxRn) function. Put

(2.2) \P\P.,= sup K

and 0>eSp means that |^|/,,/ < + °° for any integer Z>0. Then \ * \ p i l

(7 = 0, 1, 23 ...) defines a topology of S^. For 0>(x, $ ) € 0 5* we define
^=-00

a pseudo-differential operator «^(^3 Dx) by

for u(x}e^(RnY} where

The following facts are well known (see, for example, Kumano-go

M).

Lemma 2.2. L^ {^*4 (#,?)} fe « bounded set of Sp. Then the

point-wise convergence of £Pt (x, g ) implies the convergence in Sp+6 for any

Lemma 2.3. (i) Let 0>(x, f ) G S^ a^J £(x, f ) G 5?,

- Z -(dfffioDZsXxi
\a\<N OL\

where &N(x, f ) 6 S*+«-*.

(ii) For ^(«, f ) e Sp there exists 0>*(x, $ ) € S^ 5^c/z that

holds for all u, v £ «$^(jRw), <2^J /te following expansion

4) ^(Rn) is the set of all rapidly decreasing functions defined in 72".
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*>*(*, £)= 2 ?/>r^ (I«KJV a!

^(#, £) denotes the adjoint matrix of &(x, £) «^J &N(x, f)

-N.

(iii) For ^O, f ) 6 S*, f/wre awste Cs>0 swc/z

holds for all u££f(Rn) and s£R, and Cs<^ const \&\p,iQ where the con-
stant and IQ do not depend on &.

(iv) Let &(x,£)eS° and \&(x, ?)|>c0 for al1 %> £• Then

AoWs /or

For a function w, (jc) defined in Rn
+, denote by UQ(X) the function in

Rn defined as u0(x) = u(x} for ^cw>0 and uQ(x} = Q for ^^^0.

Lemma 2.4. Let 0>(x, f) G 5° awd ^(^', 0, f) = 0 /or

and £€Rn. Then for any u(x}eH\Rn
+}, 0>(x, Dx}u^(x} eH\Rn) and

Y±0*(x, Dx) UQ = 0, w;/z^rg r+(j-) denotes the trace operator to the

boundary xn = 0 for an element in H\Rn
+} (H\Rn^}

Proo/.5) Let %(Z) be C™(R1} function such that

( 1 Z<2
«(0 =

I 0 Z>3.

, f)

Evidently (l-%(^?z))^o eHl(Rn) and

' 111,

5) The proof given here is due to H. Kumano-go.
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then

therefore it follows immediately

(2.3) r±^2(*,#:>o = 0.

By using the assumption &(x', 0, ?) — 0, we have

Cl

where ^3(^ f) = \ -Jo

Then

Since x(Xn)xnuQeHl(Rn) and [>3(*, ^)5 xC*,,)

\Rn).

Let %i(Z) be a function in CQ(RI) such that

0 |Z|>2.

For any

Then

^i(

it follows that

(2.4)
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*, DX}(1 -

Since {«^3(*, f)(l-Xi((l + |f 1 2)/AO)} CN>1) is a bounded set in SQ

and converges to zero pointwisely when N tends to co, it follows that

«^3O3 f )(1 — %i((l + | f | 2)/^V)) tends to zero in 5£° (e0 > 0) when JV increases

infinitely by applying Lemma 2.2. Then (iii) of Lemma 2.3 shows that

By the same reasoning we can see

Thus we have, if 1 — £0>l/2,

this shows that

(2.5) r±^i(*, D,)(l-%i((l+ |D,|2)/^))Wo— 0.

Thus (2.3), (2.4) and (2.5) imply that r±<^X />*)HO = ().

Q.E.D.

Construction of an operator Jf 0-

Let &(x9$) be a function in ^(IT X (#w — {0} )) with the following

properties :

0(x,lfi = & ( x , f ) for
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(2.6) &(x, £) is symmetric and @(x, ?)>c0>0

(2.7) «(*', 0, £ ) = / for all (*', f ) £ 1Z"-1 X {£ : | £ | = 1}

(2.8) /'f (*', 0, £) = 0.
9#«9fii

Let us put

where X 2 ( f ) = 0 for |?|<1 and =1 for |f|>2. Evidently ^T,-(a;, f)

(z = 0, 1) are symmetric and ^0 6 5°, J^i 6 S~2. By using (i) and (ii) of

Lemma 2.3 we have

x, Dx}

where ^-(^) f ) € 5~'' (z = 0, 1, 2, 3). Remark that

!X'a(x',0,fi = I for

«{(*', O . f ) = 0 for

These follow directly from the assumption on &(x, f) and the definition

of J f ( x , ?). Put



MIXED PROBLEM FOR A HYPERBOLIC SYSTEM 437

, ?)=««(*, £)-«5(*', o= 0 *=o> 1, 2

, £)=«£(*, £) +(#£(*', o, £)-/)+ E «{(*', o, £)
i = l

and we have

&i(x, £) € S"1' for i = 03 1, 2, 3

(2.9) &i(x', 0, f) = 0 for t = 0, 1, 2,

and

(2.10) ^(^3 ^)*.^T(^5 />,) = /+ E ^-(A;, /),).
<=o

Then it follows from (2.9) and (2.10) by using Lemma 2.4

Lemma 2.5.

and

Denote by k(x; j) the distribution kernel of the operator ^K(^3 ^)*'

(xtDx) — !. It is well knwon that &(#; j) e C°°(Rnx Rn — {x = j})

and for

(2.12) k(x; y) = y-f\ L
f = 0

By taking account that C/T*-./r— /) is a self -adjoint operator it follows

that for any x

(2.13) K*;y)

where *A(j; A;) denotes the adjoint matrix of k(y, x). (2.9) implies that

k(X', 0; y) = ̂ (a3(x', 0, £))(*'- j),

where (x'—y) means the point (x'— y', yn~). Then we can easily see
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that when n

(2.H)

(2.15) \

(2.16) |

and when ra =

(2.14)'

(2.15)'

(2.16)'

Let ^(5, f) be a real-valued function in C°°(R2— {0}) with the follow-

ing properties:

(i) 0(s, t) = 0(^, AO

(ii) fl(s, 0>0 when |i(f2 + 5
2)-1/2|>l/2

d(s,t) = Q when U(«2 + s2)-1/2|<l/4

(iii) 0(s, t~) + d(t,s) = l when

We define K(x, y) by

r e(*» >)*(*', 0; /,

X(«, y)= when

i k(x',0; /, 0) for ̂ =^ =

Evidently it holds that

•£(*> y) = 'K(y, x)

and

Lemma 2.6. It holds that when
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(2.17) \dxK(X, y)|<C|*'-/|-B+2 for i = l, 2, 3,..-, n

and when n = 2

(2.17)' \dXtK(x, y)|<Clog(|*'-y' -1) for i = l, 2.

Proof. For i = l, 2,..., re-1, (2.17) ((2.17)') follows immediately from

(2.15) and (2.16) ((2.15)' and (2.16)'). We show (2.17) ((2.17')) for i = n.

At first assume that x%+ yjj=/=0, then

9XnK(x, y) = dXn6(xn, yn~)k(x', 0; y', JB)

*«)'*(/, o ;*',*»)

= /+//.

' |-K-2 (logl^'-j'l-1) follows from (2.16) ((2.16)').

Since dXn(0(xn, yn) + 6(yn, xn~)) = 0

I = dxJ(Xn, y»)(k(x', 0; j', >)-*(*', 0; j', 0))

', 0; A;B)-(Kj', 0; *', 0)),

here we used *k(x', 0; y', 0) — A(j', 0; a;', 0). From the homogeneity of

d(s, t) we have

And

- j

by using (2.16) ((2.16)')

The second term of / can be estimated in the same way. Thus we get
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I/KCI*'-/!-"2 (ciog I*'- /I-1).

Next let us consider the case xn = yn = Q. We have from the definition

then (2.17) ((2.17)0 follows immediately from (2.16) ((2.16)0-
Q.E.D.

Let i](x) be C°°(Rn) such that ??(#) is equal to 1 for |#Kl and

to 0 for |#|>2. Define an operator tf from L2(Rn) into L2(Rn) by

Lemma 2.7. JT w « self-adjoint operator and

(2.18)

(2.19)

Proof. Let us put JT(^; J) = ^(A;)^(A;; j)^(j), then we can see

that

sup j | JH> ; j) | rf j, sup^ j 1 9^.JT(^ ; j) \d y

sup \ |9a;.jr(A;; y)| C?A;
*

are bounded with the aid of Lemma 2.6. The above estimates assure

(2.18). And

*', 0;

a?', 0; j', >Mj

jiMx', 0, £))(*'-

this shows (2.19). Q.E.D.
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Proposition 2.8. Define an operator 3? 0 by

Then for any u eHl(Rn
+\ ^0^o eHl(Rn

+\ ^.Hl(Rn_^ and

(2.20)

Proof. j^0uQ^Hl(R^) follows immediately from lemma 2.5 and

(2.18) since y(x}u 6 H\Rn
+) and y(x}u0 = (y(x}u\. From (2.11) and

(2.19) we have

This proves (2.20). Q.E.D.

Energy inequality.

Let us suppose that there exists ^(£, x, ?) satisfying CONDITION I

taking S as {x\ xn = Q}. Since @(t, x, f) satisfies (2.6), (2.7) and (2.8)

for each t, we can construct for each t E []0, TJ tne operator ^f 0 (^) by

the method prescribed in the previous paragraph.

Define ( , )^(0 by

(2.21) (u, t>);r(o = (-^o(OHo, VO)L^») + C((!+ l^l^tto, v0)z»(iz»)

for M, i; 6l/2(jR+) and ||a||^(/) = ((w, w)^(^)1/2. Suppose that supp & is

contained in {#; #rc>0, |^Kl}3 then

and from (iv) of Lemma 2.3 and (2.18)

Therefore if we fix C sufficiently large it follows
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Lemma 2.9. For any u(x^^L2(R^ whose support is contained in

{x; *„>(), |#|<1} it holds that

(2.22) l|H|UlCR?)<Col|H||;r(o-

Lemma 2.10. For any u(x)€Hl(R^) with the support contained in

{x\ xn^>Q, |#Kl}, the estimate

(2.23) 2 Re((uf[>:])o, ^o

u\\2
L2(Rn}-An(x', 0, t)u(x', Q)-u(x', 0) dx'

holds where C is independent of u.

Proof. For the simplicity we omit the parameter t. Let us denote

the principal part of ^ by

We should like to remark that (ufoC«H)o is in L2CR") but fW(a;, /?,,)« 0(»

is not in L2(R"), it is an element of H~l(R"). From the Parse val's

identity it follows that

((Xo[>Do,

= lim
£-»+0

= lim

- lim (IS-II£\
S-+ + Q

where %(/) e C°°(^) such that

6) ^-x(u(x))(%) denotes the Fourier image of u(x).
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f i m<i
i 0 |Z |>2.

Since ^*^j/6S1, Re iJf(x, f)V(«, f) G S° and

we have

<^ const \\u\\2
L2(Rn}

where the constant is independent of e. And we see easily

(x, Dx\ %(DM/£):^o||<const||Mo||

n/e)1jtf(x, Dx}uQ\ < const 1 1 M0 | | .

Therefore we get

Re (i^*jrx(Dn/e)2*?(x, D^UQ, MO)< const \\u0\\
2.

By taking account of {%(/}w/£)2J2/(^, D^)}0<e^i is bounded in Sl we

have from (iii) of Lemma 2.3

then by using (2.18)
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<const||z*0||
2.

Thus the estimate

(2.24) Re

holds with a constant independent of e.

Recall Proposition 2.8 and we see

n tends to

in L2(Rn~1) when £ tends to zero. Therefore we have

(2.25) ne — > -

Then (2.24) and (2.25) prove (2.23) since it is evident that

*, *»o, e^o^o)l<const||iio||2 holds. Q.E.D.

Proposition 2. II. Suppose that there exists &(t, x, f) satisfying

CONDITION I taking S as {x', xn = Q}. Then for any solution u(t, x) G

#(k, J??.) ^/205g support is contained in {x', xn^Q, \x\ <^1}3 if f(t, X)€L

H\(Q, r)xj?t), the energy inequality

(2.26)

holds for ZGQ), T^ where Ck is independent of u.

Proof. At first let us consider the case k=l. Assume that du/dt

and du/dxj (j=l, 2,..., n — V) are also in (^(l, -R+). The differentiation in

t of (2.1) gives
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KffMlf ^i7)

Then we have

(2.28) - l l B ' f o *)H™> = 2 Re

= 2Re((uf[V;])o,

+ 2 Re (/i(£, A;), jr*(t)u'(t, x}}.

Since the boundary space is independent of t, du/dt also satisfies

the boundary condition, therefore we have by using Lemma 2.10 and the

non-negativity of the boundary condition

Since dJ^0(t)/dt is a bounded operator in L2(R"~) it holds

\(u'0(t, x), d3f0(t)/dt u'Q(t, a;)) | < const Hzi ' l

It is evident that

| (/!(*, x\ u'(t, *)),(0| < const {||B'(t, *)||i.jz(.,

and

7) JCt (Jti) is the differential operator obtained by differentiating the corresponding
coefficients of Jf in t (in xt).
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Remark that

where <•> the norm of L2(Rn~l).

Thus we get by integration of (2.27) from 0 to t

Ik'O, *)ill*<n-!k'(o, *)

Inserting the estimate

and by taking account of (2.22) it follows

(2.29) \\u'(t, *)||i.(a.,

for ?

Differentiate (2.1) in a;(- (l^i^re — 1) and we have

Remark du/dxi also satisfies the boundary condition. Then

(2.31) d
dt

du
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If we use the estimate

dt

it follows by the same reasoning as that of (2.29)

du ,.(2.32)
2

^_ .\\u(s, aOllli,*?
L2(R^} UO

+ ^ |||/(s, *)|||f >Rn ds J for t 6 [0, T].

Since An is not singular

/n oo\(2.33)
dxn

 n \dt y = i'

and

(2.34) du 2 /
< const (

£2(j??) \
du 2 i

+
du

inserting (2.29) and (2.32)

<const If ||k(5, «)|||fflz? d5
Uo Jo

+ IHO, x~)\\\tRn+
Therefore we have
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Insert the well known estimate

and take £>0 as C/e<l/2, then we have

The application of Lemma 2.1 by taking

p(0 =C"

leads (2.26).

The energy inequalities of higher order (the case &>2) are derived

step by step. Let k = 2. Assume that du/dt and dii/dx; (i^l, 2,...,

Ti — 1) are also in ^(2, Rl). Apply the just obtained result to (2.27), then

du f N
 2 ( du p ("'

i,*?"^ I 9i 9 l l i . jz? Jo # /' » i-*?'

Similarly it holds that for £ = 1, 2,..., TI —!

2
t, x)

2 f f *

<CJIBu(0, ^)IIIi,K? + \ |Hu(a, ^)Ii,fl?i,x+ I Jo

By using (2.33) we have

const du 2 -

+ S
R? »

2

l .-R?
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The application of Lemma 2.2 derives (2.26) for 4 = 2. Repeating

this reasoning step by step, (2.26) is proved for any k.

In order to complete the proof we have to remove the additional

assumption that du/dt and du/dxi (z = l, 2 , - - - 5 n — 1) are also in ^(k^ U+).

So we make use of a mollifier with respect to xr and £. Since the

boundary condition is independent of x and t we can achieve the reasoning

by the method used in [J5]- Then we omit the proof.

3. Proof of Theorem 1

Proposition 3.1. 8) For any (£0, s0)£[l05 ^ x ^' ^e^ ^5^ « neigh-

borhood U of (£03 s0) m ( — d, T+d) X 5 ((J>0) ^md 0 smooth unitary matrix-

valued function T(t, x} defined in U such that u G B(t^ x) is equivalent

to T(t, x}u£.B for (t, x}€.U where B is a subspace of Cm independent of

(*, *)•
Proof. Let the dimension of B(t, x} be p and e f c , x}

= {eii(.t, x\ ej2(t, x\-», eim(t, x}} (i = l, 2 , - . . , p) be a smooth orthogonal

base of B(t, x) in U. This is possible when U is sufficiently small.

Choose e/(z, x} ( i=p+l,---5 m) as efo, x) (^ = 1, 2,..., TTI) form a smooth

orthonormal base of Cm. Define T(t, x) by

Evidently r(£3 ̂ ;) is unitary and a smooth function. And if we put

v=T(t,x)u, u£.B(t,x} is equivalent to v,- = 0 (j =/?+!, jo + 2,. .- , TTI).

This proves Proposition. Q.E.D.

Let {^X^)}^=i ^e a partition of unity in a neighborhood of 5, namely

}€Ct(Rn} such that

8) This fact is already pointed out in Lax-Phillips [7].
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N
S <Pi(x) — 1 in a neighborhood of S.

y=i

Assume that the support of <PJ is contained in a sufficiently small neighbor-

hood of Sj = (sji, s^,--- , sjn) such that S is represented by an equation

xio = fa(xi,...9 xio-i, #,-0+i,..., Xn) in U.

Define a transformation Wj (x) by

and assume that Wj(Uj}= V^{y\ | j|<l} and ¥j(

From Proposition 3.1, we can assume that, if £// is sufficiently

small, there exists a smooth unitary matrix-valued function Tj(t9 y')

defined in Q), ^0H X (^n{j» = 0}) (tQ is some positive constant) such that

Tj(t, Wj(x)) B(t9 x} is independent of (t, x) € [0, i0] X (Sr\ Uj), For a

function w(x) defined in UjC\^ we denote by Wj(y) a function defined

in FjC\Rn
+ by t5y(y) = «)XsryW) = w(^).

Let us put Uj(t, y)=Tj(t, y)(q>ju)j(t, y), then we have

f L£ujl=fj in lQ,tolxRl
(3.1)

I uj(t,y'9WGBj

where, if iQ = n,

Ajh(t, j)= T j ( t , y')(^)(f»

, 7)=r/t, 7')CA 7)2-X«» 7')



MIXED PROBLEM FOR A HYPERBOLIC SYSTEM 451

-Tfr, /) % AJt(t, y'}Tj(t,

fj(t, y)=Tj(t, /)( 4--U+ Vift, y)
/ = 1

and Bj is a jo-dimensional subspace of Cm independent of t and y' '.

For ^(z, X, f) satisfying CONDITION I given in Introduction, let us

define

It is evident that ^/(£, y, TJ) is symmetric positive, t%j(t, J> v) 2 -^y*0

is symmetric and ^/(z, J^ 0? y} = I- ^ follows from (ii) of CONDITION I

on 5

if 2 Aj(^)'V/(^) = 0. Therefore

2 - 2 -(*, ̂ , f ) *y (*)vi(*) - 0 on 5.y=i u?i\j=i(/Xj /

(iii) of CONDITION I means that

^ d / ^,d@ , ^ f ^\ , , A2 ^-( 2 ^— (^ ^, £>/(*) )J>.-00 = 0 on 5.
« = l< / f» \j = lUXj /

Therefore we have

(3-2) 2ig|_^.(t, *, f)v<(*) = 0 on 5.

By taking account of the definition of W j we can see

thus from (3.2) we have
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Therefore Proposition 2.11 is applicable to (3.1) for each j. Suppose

u(t, x)€#(k, Q\ then Uj(t, y)€#(k, R%), and we have

(3.3) HI u/*, y)\n.Ri<c{l\uj(0, y)llll,*? + £ Ill/A x)\\\iRn ds}

for t e [0, ioD- And it holds that

(3.4) ma- z;^?)1'̂ , *)«.*

<CJIKO, *)lll|,£ + Jjll/(s, *)IIIJ.* <fc+ J'o III it

since supp((l— 2^y)1/2i^)nS=0. And we have

(3.5) IK*, x)\\\ia < const { E

Then it follows from (3.3), (3.4) and (3.5) that

(3.6) IK*, *)!&„< const{|||it(0, xM.a + fyu(s,

with the aid of the estimates

IK*, A0llll-i,s< const

^)I1H,^< const

The application of Lemma 2.2 to (3.6) proves Theorem 1. Q.E.D.

4. Proof of Proposition 1

In the previous section we saw that CONDITION I is invariant with a

change of variables of the type Fy. Therefore we may restrict ourselves

to the case where the domain is a half-space. Remark that it suffices to

construct #(*,#,£) locally in x and f. Let efa, x9 ?)= {e/i ,--- , c,-w}

be an eigenvector of j*(f, ̂ , f) for an eigenvalue ^,-(^, #, f) such that

I efax, f) | = 1. Define #(*, A;, f) by
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Evidently ^?(z5 x, ?) satisfies (i) and (ii) of CONDITION I. Then it suffices

to show

(4.2)
C/AJwC/g-^

For i=/5 (4.2) is trivial. Suppose that i^y.

9

Put xn = 0 and take account of the symmetricity of jtf(x'', 0, f) and we

have

(AV\ ® sfji. l?\p-.-p-
\ / ~^\ l\ Z 'v /^i ^j

Therefore when (1.7) holds

.

When (1.8) holds we see also the right-hand side of (4.3) vanishes. Thus

9 _

This proves Proposition. Q.E. D.
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