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Mixed Problem for a Hyperbolic System
of the First Order

By

Mitsuru Ixkawa*

1. Introduction

The present paper is concerned with a mixed problem for a hyperbolic
system of the first order which is assumed symmetric only at the
boundary.

Let S be a sufficiently smooth compact hypersurface in R” and £ be
the interior or exterior domain of S. Consider a hyperbolic operator of
the first order

(1.1) L=0 = 3 4, 05—, %)
12 i=1

0
axj
_0
=
where A;(¢, x) (j=1, 2, ..., n) and C(¢, x) are m X m matrices. We will

assume that A;(t, x) and C (¢, x) are in #((0, T)X R*).Y We set a
boundary condition

(1.2) u(t, x) € B(t, x) on (0, T)x S

where the boundary space B(z, x) is a prescribed subspace of C™ depen-
ding smoothly on the point (¢, x) € (0, T)x S.

We consider the following mixed (initial-boundary value) problem
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1) % (v), » being an open set, is the set of all C* functions defined in » such that
their all partial derivatives of any order are bounded.
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{ Ll u]=f(, x) in (0, T)x @2
(1.3) u(t, x) € B(t, x) on (0, T)x S
1 u(0, x)=g(x)

where u(t, x), f(¢, x) and g(x) are column-vector of length m.

Let us set
“Qé(ta X, E)—' il ‘41' (t, x) EJ'
i=

We assume the following

ConpiTiON 1. There exists a symmetric positive m X m matrix-valued
B-function A(t, x, &) defined in (0, T)x R*x {&; |&| =1} with the follow-
ing properties:

G 2@, x, &)A(t, x, &) is symmetric for (¢, x, &) €0, T) X R*

x {&; |€]=1}.
Gi) 2@, x, &)=1 when x € S.
QD) 3 02 (4w Om(an(x)=0  on (0, T)x S

i7=108; 0x;
where v(x)=Wwi(x), v2(x),..., v,(x)) is the unit outer normal of S at
x € S.

Conprtion II.
oL (t, x)=L(t, x, v(x)) is not singular on (0, T)x S.
For two vectors u={ui, uz,..., un}, v="{v1, v2,..., ¥y} in C™

m
we set uv= ), u;*v;.
i=1

ConprtioN III.  (Non-negativity of the boundary condition).
u-Z,(t, x) u>0
for any u € B(t, x).

Remark. (ii) of ConpiTion I requires that A;(z, x) (j=1, 2, ..., n)
are symmetric on the boundary.

We will prove
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Theorem 1. Let Conprrions I, II and 1II be fulfilled. Then for a
solution u(t, x) € EWH(Q)NEL(H* ()N ---NEL(L?(2))? (k: positive
integer) of (1.3), if f(t, x) €EY(H*(QNNEWH () N---N&X (LA D)),
the energy inequality

ak
1) lu DI e + 125G, DBy e+ 41| TG, )|
0t 0t
ak—lf
<Ck{||g(x)“§,mm+Hf(O, Ol -1, -+l W(Oa %)[[3200)

t 0 ok \
017G Do +HIGEG Dz o+ 155G i )ds)
holds for t €[ 0, T, where Cy does not depend on u or t.

In [17], [2], [3], Agranovic treated the mixed problem (1.3) with a

boundary condition

(1.5) uL (t, x)u>poui for all u € B(z, x) (po: positive)

instead of Conprrion III without assuming (iii) of Conprrion I. He used
essentially the strict positivity of the boundary condition. As Agranovic
noted in [1], when A;(¢, x) (j=1,..., n) are symmetric not only at the
boundary but also near the boundary, the strict positive boundary condi-
tion can be replaced by a non-negative boundary condition, i.e., a boundary
condition satisfying Conprrion III. This fact follows from the results of
Lax-Phillips [ 7] on the dissipative boundary problem of symmetric opera-
tors and the considerations of Mizohata [ 8] and Yamaguti [107] on the
energy inequality for hyperbolic equations.

Theorem 1 shows that the energy inequality also holds under a non-
negative boundary condition without assuming the symmetricity of A;(¢, x)
near the boundary. But we assume one additional condition on 4;(z, x),
i.e., (iii) of ConprrioN I, which is evidently a condition posed on A;(z, x)
only on the boundary.

Concerning Conprrion I we should like to remark that (ii) is necessary

2) u(t, x)eE%(E) means that u(¢,x) is k-times continuously differentiable as E-valued
function of &.
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if one want to treat the problem with a non-negative boundary condition.
M. Yamaguti pointed out that for a strictly hyperbolic operator with a

parameter ¢>0

‘”0 1 &:1 irl 0 0-‘
L=2—1 0 0|2 —o-1 0 |0
0t |0x1 ’ X2
Lo 0- Lo 0 1/2
0 0 9

ar ‘e 01 4 Oxz

there exists a non-negative boundary space B for 4, such that the mixed

problem

( Llu]=f in (0, T) x {(%1, %2); x2>0}
(1.6) ! ulim0€B
u(0, x)= g(x)

is not well posed for any &>0. This fact shows a typical difference of
the problems with a non-negative boundary condition from the problems
with a strictly positive boundary condition, namely, if B is strictly positive
(1.6) is well posed in L%-sense for sufficiently small ¢ (see Kreiss [4],
Rauch [97]). Then we state a sufficient condition for the existence of

2A(t, x, &) satisfying Conprrion I.

Propesition 1. When L is strictly hyperbolic, i.e., all the eigenvalues
2i(t, %, &) of (¢, x, €) are real and

inf |;‘J'(t3 X S)'—Zi(ts Xy E)|>CO>O
(t,2)€[0,T]xR™
1E1=1, i%j

Then when Ai(t, x) are symmetric on [0, T |x S and

.7 Im %‘=Cj(t, x)I  for j=1,..,n
or

0A4; .
(1.8) Im =c(t, x)4;(¢t, x) for j=1,...,n

oy

3) This was communicated by M. Yamaguti in the seminary on partial defferential
equations of Kyoto Univ. several years ago, but this is not published.
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hold on [0, T % S where ci(t, x) and c(t, x) are smooth scalar functions,
we can construct R (t, x, &) satisfying Conprrion I

To prove Theorem 1 we consider at first the case where the domain
is a half-space and the boundary space B (Z,x) is independent of ¢ and x.
We introduce a suitable norm attached to the given hyperbolic operator
which is equivalent to that of L?(R%”). The construction of this norm is
the essential part of the present paper.

The author wishes to express his sincere thanks to Mr. T. Sadamatsu.
He could not get the results presented here without the disscussions with
Mr. Sadamatsu.

2. The Case Where the Domain Is a Half-Space

In this section we show the energy inequality (1.4) under the assump-
tions that the domain is a half-space and the boundary space B (¢, x) is

independent of ¢ and x, namely
|( Llu]=f(¢, %) in (0, T) X R"
) u(t, «’, 0)€B

U u(0, x)=g(x)

(2.1)

where R%Z={(«x', x,); #’ €R"', x,>0} and B is a constant subspace of

c™.

Notations and preliminary lemmas.

Let 3 be £ or R%. Denote by &(k, 2) (k=0,1, 2,...) the space
ENHM )N H* 1 (Z)N - -NEXHLA(Z)) and for u(t, x) €E(k, X) define
Mz, 2)le,s by
3

"Iu(t: x)”l%,;= Z

i=0

0\ 2
I (E) u(ty, 2)|13-; 12 o
We state a simple lemma without proof.

Lemma 2.1. Let 0(t) and 7(t) be two non-negative functions defined
on [0, T). Suppose that 7(t) is summable on (0, T) and 0(t) is non-
decreasing. Then the inequality
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r(t)<cglr<s)ds+ o(0) for all t€ [0, T
implies
r()<eo(t) for all t€[0, T

Next we note some results on pseudo-differential operators. We
denote 9/0, by 0, and —id, by D,. Let 2(x, ) be m X m matrix-valued
C~(R"x R") function. Put

_=b+IBI
@2)  |2lu=_ sup [070f2)(x, A+ €1 2 | (=0,1,..)
VariB1<1

and 2 € S? means that |2|,,; <+oo for any integer [>0. Then |+|,;
(I=0,1, 2, ...) defines a topology of S?. For 2(x, £)€ \J S? we define
»

=—o0

a pseudo-differential operator 2(x, D,) by
(%, Dyu(w)=(2m) ("2 (x, a(e)de
for u(x) € L(R™Y where
ﬁ($)=ge"”‘5u(x) dx.
The following facts are well known (see, for example, Kumano-go

[4)).

Lemma 2.2, Let {2, (x, §)} be a bounded set of S?. Then the
point-wise convergence of P, (x, &) implies the convergence in S**¢ for any
e>0.

Lemma 2.3. (i) Let #(x, £)€ S? and 9(x, £) € S, then

P(x, Dy)+2(x, D,)

- %(6?3%D:,@)(x, D.)+%n(x, Dy)

lal<N

where Rn(x, &) € §P+47N,
(ii) For P(x, &) € S? there exists P*(x, &) € S? such that

(2(x, Du(x), v(x))=(u(x), 2*(x, D.)v(x))
holds for all u, v P(R"), and the following expansion

4) &(R™) is the set of all rapidly decreasing functions defined in R™.
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Pi(x, &)= % —0EDI'P (%, &) + An(x, &)
lal<N .

holds where 'P(x, &) denotes the adjoint matrix of P (x, &) and Rn(x, &)
€ SN,

(iii) For P(x, &) €SP, there exists C;>0 such that

”‘@(xs Dz)u(x)”s<cs||ullﬁ+s

holds for all u €% (R") and s€R, and C,< const|P|,,, where the con-
stant and 1y do not depend on 2.

(iv) Let #(x, &) € S® and |P(x, &)|>co for all x, & Then

|2 (2, D)u(@)||Zcollul|—Cllull-1

holds for any u € P(R").

For a function u (x) defined in R%, denote by uo(x) the function in
R” defined as uo(x)=u(x) for x,>0 and u(x)=0 for x,<0.

Lemma 2.4. Let 2(x,£)€ S’ and P(x',0, €)=0 for all x'€ R**
and £E€R". Then for any u(x)€ H'(R%), 2(x,D,)uo(x)€H'(R") and
7+P (2, D) uo=0, where 7.(r_) denotes the trace operator to the
boundary x,=0 for an element in H’(R%)(H’(R™)) <6>—%—>.

Proof.” Let x(I) be C*(R') function such that

1 <2
0 1>3.

x(l) =

2 (%, &) =%(x,)P(x, &)+ (1 —2(x,))2(x, &)
=21(%, )+ 2P(x, &).
A—=2(22))2(x, D)uo=(1—2(xx+1))(1 —2(x,))P(x, Ds)uo
=1 —x(x,+1){2(%, D)1 —2(xs)uo+[2(x, D), x(xx) Juo}.
Evidently (1—x(x,))uo € H'(R") and

(A —2(xn))uolis, L2rm<Cllull1, L2rn),

5) The proof given here is due to H. Kumano-go.



434 MirTsuru Ikawa
then
P(%, D)1 —2(x))uo+[ (%, Ds); 2(%)Juo € H'(RY),
therefore it follows immediately
(2.3) 7+Ps(%, D)uy=0.

By using the assumption £(x’, 0, £)=0, we have

1
P(x, $)=xngogx‘2—(x’, L%, §)dt=x%,P3(%, £),

where 2;(x, €)=SO P

1
02 (%', tx,, €)dt € S°.

Then
21(x, D)uy
=%(%2)%2P3(2, D)o
=23(%, D)t(%n) atho+ [ P3(%, Da), 2(%0) %5 Juo.

Since %(%n)%nuo€ H'(R™) and [Ps(x, D), x(x,)x,]1€ S™Y, 21(x, D)u,
€ H'(R").
Let x%;(I) be a function in C5(R') such that
1 211

0 11| >2.

()=

For any N>0
21(%, D)u,
=21(%, D)21(A+ | D |®)/N)uo+21(x, D)1 —2:(A+ | D+ |*)/N))u,.
Then
21(%, )21 ((1+]£&|%)/N)ES™ and 2,(«/, 0, £)=0,
it follows that

(2.4) 7+21(%, D)21((1+ | D2 ?)/N)u,=0.
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21(%, D)1 —u1((1+ | D] *)/N))uo
=23(x, D)1 —x1((1+ | D2 | *)/N)) max(xn)uo
+[23(x, D)A—21((A1+ | D:|%)/N)), xu2(n) o

Since {23(x, )(1—x%1((1+|€]%)/N))} (W>1) is a bounded set in S°
and converges to zero pointwisely when NN tends to oo, it follows that
23(x, )(1—x%.((1+ |£]2)/N)) tends to zero in S® (g0>0) when N increases
infinitely by applying Lemma 2.2, Then (iii) of Lemma 2.3 shows that

125(x, D) —22((L+ | D2 | )/ N )t ) % nteoll 1 -e4, 227
<O0A/M)llully, z2rny-
By the same reasoning we can see
IL23(x, D)L —22(A+ | D] *)/N)), 2t (o6n) Jtsoll1- e, 2R
<0(1/N)||uo||L2<R")-
Thus we have, if 1—g>1/2,
l7221(2s D)1 —2:((1+ | D21 *)/N))uo| 2crn-1y
< Cl|21(x, D)A—2:((1+ | D2 | 2)/N)wwoll1- e, 2R
<O/ M)llully, 22z,

this shows that

(2.5) 7+21(%, D)1 —2:((1+ | Dz |%)/N))uo—0.

Thus (2.3), (2.4) and (2.5) imply that 7+2(x, D,)u,=0.
Q.E.D.

Construction of an operator .

Let #(x, &) be a function in B(R"x (R"— {0})) with the following

properties:

R(xy AE)=R(x, &) for 2>0
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(2.6) A(x, £) is symmetric and  2(x, &) >c, >0
2.7 A(x'y 0, 8)=1 for all (x', §)€R" 1x {&:|€|=1}
0’ , .
(2.8) W(x , 0, §)=0.
Let us put

N o(x, §)=2A(x, 5)”27‘2(5)
KAy )= 1,0, o, 0, &)

N (x, E):‘/V‘O(x: E)"{'-/Vl(x’ £)

where %;(€)=0 for |£|<{1l and =1 for |£|>2. Evidently 47 (x, &)
(i=0, 1) are symmetric and 4 4€ S° 41 €S2 By using (i) and (ii) of
Lemma 2.3 we have

N (2, D)* N (%, D)
=(N 00N 0)(%, D)
+ 33 4@ N o0 Dae ), D)+ (@ Dah o0H ), Do}
[, X, A@FN 0o DZN o), D)+ OFDEN voH o), D)}
+ 3 006, DeH 00 D1, M 0), DY+ (A10H 0)(a, D)
+ (W oo 1)z, D)+ Y%, D)
= (%, D.)+ i, D)+ A%, Do)+ R, Ds)
where Z{(x, £)€ S~ (i=0,1, 2, 3). Remark that
Ay, 0, =1 for  |§]>2
2}(%, 0, £)=0 for  |&]>2 i=1,2.

These follow directly from the assumption on £(x, §) and the definition
of #(x,&). Put
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g?i(xa 5):'@;(-’”3 E)—‘%:(x” 0, S) i=0,1,2

2
R3(x, €)=R3(%, §)+(Ro(x, 0, §)— )+ _;1'@;(36,9 0, )

and we have

Ri(x, E) €S} for 1=0,1,2,3
(2.9) 2:(x', 0, £)=0 for i=0, 1, 2,
and
3
(2.10) N (x, D) N (%, Dy)=1+ Y R:i(x, Dy).
izo

Then it follows from (2.9) and (2.10) by using Lemma 2.4
Lemma 2.5. For any u & H'(R%), we have
N (%, Dp)*e N (2, Dp)uo € H'(RY),
N (%, D)*e N (%, D)uo € H'(R)
and
(2.11) TN (%, D)* N (%, D)uo=7400+7:%3(2, Dy)uy.

Denote by k(x; ) the distribution kernel of the operator 4 (x, D,)*:
N (%, D;)—1. It is well knwon that k(x; y)EC~(R*"XR"— {x=y})
and for x==y

(2.12) Kxs 9)=F (5 Aix, )= ).

By taking account that (#*-4#"—1I) is a self-adjoint operator it follows
that for any x=+y

(2.13) k(x; y)="k(y; %),
where ‘k(y; x) denotes the adjoint matrix of £(y; x). (2.9) implies that

k(x/) 0: _y):grgl('@l%(x/) 0: 5))(.76/— y)’

where (x'—y) means the point (#'—y’, ¥,). Then we can easily see
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that when n_>3

(2.14) |k, 05 1) |<Cla'— y|
(2.15) 0. k(' 05 P |<Cla'—y |2 (=1, 2,.., n—1)
(2.16) 10, k(x", 0; )| <C|x'— y| ™% (i=1,2,..,n)

and when n=2

(2.14) |k(s", 05 )| <C
(2.15) 0:,k(x", 05 ) [ <Clog(|x'—y|™")
(2.16)' 10,k(x", 05 y)[<Clog(|x'—y|™) (=1, 2).

Let 6(s, t) be a real-valued function in C=(R*—{0}) with the follow-

ing properties:

() 0, t)=0(2s, At) 2>0, s*+1%=40.

) 6(s, £)>0 when |z(z%2+s%)712 >1/2
0(s, £)=0 when |[2(¢2+s%) V2| <1/4

Gii) 0(Cs, £)+0(, s)=1 when s2+ ¢%=40.

We define K(x, y) by

( 0(% yn)k(x,: 0; }’/: _}’n)+0(}’na xn)tk(_)’/: 0; x', x,)
K(x, y)= | when xi+ yZ70
[ &(x',0; ¥’y 0) for x,= y,=0.

Evidently it holds that
K(x, y)="K(y, x)
and
|K(x, y)|<C|x'—y'|"*2

Lemma 2.6. [t holds that when n_>3
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(2.17) 10K (%, y)|<Clax'—y'| "2 for i=1,2,3,...,n
and when n=2
(2.17) 10, K (%, y)|<Clog(|x'—y'| ") Sor i=1, 2.

Proof. For i=1, 2,..., n—1, (2.17)((2.17)") follows immediately from
(2.15) and (2.16) ((2.15)" and (2.16)"). We show (2.17) ((2.17")) for i=n.
At first assume that xZ-+ y2=<0, then

04, K(x, ¥)=04,0(xn, y)k(x', 05 ¥’y y2)
+02,0(yn 2)'k(y’s 05 &' %)
+0(yns £2)0,,'k(y', 05 2", x,)
=I+11.
|1I|<C| %' — y'| ™% (log| '— | %) follows from (2.16) ((2.16)').
Since 0,,(0(xu, yn)+0(yn, 2))=0
I=0;,0(x yu)k(x', 05 y', ya)—k(x', 05 y', 0))
+02,0(yny x0) CE(y', 05 x2)—"k(y’", 05 5/, 0)),

here we used ‘k(x’, 0; y', 0)=Ek(y’, 0; ', 0). From the homogeneity of
0(s, t) we have

102,000, yu) | <C(af+ y2)~H2

And
[&(%", 05 y/s yu)—k(x’, 05 ¥/, 0)]

1
SO(Oynk)(x', 0; v/, tyn)dt
by using (2.16)((2.16)")

KC-lyul-la'=y' |72 (C] yul-log(|x = y'| 7).

The second term of I can be estimated in the same way. Thus we get
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[ I|<C|x'—y'| "% (Clog|x'—y'| ™).
Next let us consider the case x,= y,=0. We have from the definition
K(x’ y/> 0)=tk(y/3 03 x/: xn)a

then (2.17) ((2.17)") follows immediately from (2.16) ((2.16)").
E.D.

Let 7(x) be C=(R") such that %(x) is equal to 1 for |x|<{l and
to 0 for |x|>>2. Define an operator - from L%(R") into L%*(R") by

u))= 1K ) W u(pdy  ulx) LR,
Lemma 2.7. ¢ is a self-adjoint operator and
(2.18) | w1, L2@my<C ||| L2¢rm

(219) rifu:'”(xla O)ri'%f‘w(xs Dx)(ﬂu)

Proof. Let us put A (x; y)=7(x)K(x; y)7(y), then we cun see
that

up Slf(x; Pldy,  sup glé’xi%’(x; yldy

sup {10, (x5 7)1 d
YER™

are bounded with the aid of Lemma 2.6. The above estimates assure
(2.18). And

redtu={ 70, OK (@, 05 yn(pu(y)dy
=, 0f k&', 05 57, ya(yIu(n)dy
=, 0 FFH @R, 0, NG — Yr(pIu()dy
—7(, 0) (@s(x, DI7)('s 0)
=7(x", 07+23(%, D2)yu,

this shows (2.19). Q.E.D.
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Proposition 2.8. Define an operator #, by
Ho=1(x)* N (%, Du)* N (%, D)y(x)—A".
Then for any u € H*(R%), #u,€ H'(R%),€ H'(R") and
(2.20) Tedtouo=7(x’, 0)’rsu,.

Proof. #ouo€ HY(RL) follows immediately from lemma 2.5 and
(2.18) since 7(x)u€ H'(RZ) and 7(x)uo=(n(x)u)o. From (2.11) and
(2.19) we have

Teoo=7(x', 0){re(yuo) +r+23(x, D.)(qu)o}
—7(x’y 0)7+23(x, D,)(qu)o
=y(x’, 0)%rstto.

This proves (2.20). Q.E.D.

Energy inequality.

Let us suppose that there exists (i, x, &) satisfying ConbprTION I
taking S as {x; x,=0}. Since 2(z, x, €) satisfies (2.6), (2.7) and (2.8)
for each ¢, we can construct for each t€[0, T°] the operator s#,(t) by

the method prescribed in the previous paragraph.
Deﬁne ( N )g(;) by

(2-21) (U, U)Z/’(t)=(=%”o(t)uo, Uo)LZ(Rn)“l“ C((1+ lelz)_luo, 'UO)L?(R")

for u, v€L*(R%) and ||ullewn=_(u, w)eu)"'?. Suppose that supp u is
contained in {x; x,>0, |x|<C1}, then

Null% o =lA woll3zzm — (Hwo, wo)+ Clluol|?1, 22ms
and from (iv) of Lemma 2.3 and (2.18)
>co(llwoll> = C'lluoll2 ) — o woll1lluwoll—1 + Clluol|2,.

Therefore if we fix C sufficiently large it follows
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Lemma 2.9. For any u(x)€ L*(R%) whose support is contained in
{x; x,>0, | x| <1} it holds that

(2.22) ||u”L’(R2)<CO||u”2’(t)-

Lemma 2.10. For any u(x) € H'(R") with the support contained in
{x; 2,0, | x| <1}, the estimate

(228)  2Re((UuD)os #o(O)uo)
<Cllullbrn— | 4, 0, Dut, 01, 0) d’

holds where C is independent of u.
Proof. For the simplicity we omit the parameter ;. Let us denote

the principal part of .# by .#,.
F (M u])0) ()
=F (i (%, D)uo(%))(&) — F ,(Au(x’, 0)ula’, +0))(&).9

We should like to remark that (o[ u]), is in L3(R") but ieZ(x, D,)uy(x)
is not in L?(R"), it is an element of H '(R"). From the Parseval’s

identity it follows that
(A8 Doy #ot0)
— (F (w0 (-7 o) @ de
= lim {2(2,/0)* & (AoLuD0) () - F o F o) (&) de
= lim {g 2(84/)? F (it (%, Do) (€) + F (Houo) (6) dé

— | Hen/e? Foalw, Ouls', +0)-FAFu)® dé |

= lim (I.—II,),

E=+(0

where x(l) € C~(R) such that

6) 5 .(u(x))) denotes the Fourier image of u(x).
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1 111<1
x(l) = {
0 |1]>2.
I.=(x(Dn/e)?it (%, Dy)uo, #otio)
=(W*H2(D,/€)? it (%, Dy)uo, wo)
—(x(Dy,/e)?%ist (%, D)o, Huo).
(N * W 2(Dy/e) it (x, D)o, wo)
=i(N* N+ (%, D)A(Dn/e)u0, 2(Dn/e)0)
+i(W* N [2(Dn/€), (2, D) Juo, 2(Dn/€)1r0)
+iCA* AN, 2(Dy/e) ]t (2, D)o, 2(Dn/E)0).

Since N/ *H#' L€ S, Re iV (x, &) L(x,&)ES® and 2(D,/e)u,< H'(R"),
we have

Re G/ * N ALx(Dy/)ug, x(Dy/e)ug)
< const |[x(Dn/e)uol|32zm
<L const ||u]|32ze
where the constant is independent of e. And we see easily
/¥4 [t (%, D), 2(Da/) Juol| < const [[uol
ICA* A, 2(Dy/e) 1 (6, Da)uol| <comst|[uoll.
Therefore we get
Re (i * W %(D,/e)* A (%, D,)uo, uy) < const||u||?

By taking account of {x(D,/e)’Z(x, D,)}o<e<1 is bounded in S' we
have from (iii) of Lemma 2.3

l%(Dy/€)* o (2, Dp)usol|-1 < Clluol|

then by using (2.18)
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| e(Dy/€)%i52 (2, Di)uo, Huso) |
<|12(Dn/e)?io (2, DYoll-1]l# ullx
< const ||u||%
Thus the estimate

(2.24) Re I, < Cllu,|?

holds with a constant independent of e.

Recall Proposition 2.8 and we see
Sx((fn/e)zfx(fouo)(f)dén tends to
F o (1/2(r s H oo+ 1 0ue))(E)=1/2F (1. u)(E)
in L2(R™') when ¢ tends to zero. Therefore we have

@25) I — | F e, 01,0 ) F ) EVE

=%SAn(x,’ 0)riu-r.udx'.

Then (2.24) and (2.25) prove (2.23) since it is evident that
[((C(z, x)u)o, #0uo) | < const ||uo]|? holds. Q.E.D.

Proposition 2.11. Suppose that there exists #(t, x, &) salisfying
Conprtion I taking S as {x; x,=0}. Then for any solution u(t, x) €
&(k, R%) whose support is contained in {x; x,>0, |x| <1}, if f(z, x) €
H*((0, T) x R"), the energy inequality

t
(2.26) e, 2, o< Ca{ 10, s+ { £, ), nle}

holds for t€[0, T |, where C, is independent of u.

Proof. At first let us consider the case k=1. Assume that Ou/0t
and 0u/0x; (j=1, 2,..., n—1) are also in &£(1, R%). The differentiation in
t of (2.1) gives
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(2.27) D (0o [ 22 4Ll L, 2
- ,/z[g_t”]Jr £ty ).

Then we have

d, ou’ ,
@28) L, Dl =2Re (3E-G, 2, WG, 2 e

+(w'(, x), u'(¢, 2)zq)

=2 Re ((A[ 1], s#:(t)u})

ay-1 0’ ’ ’ dsto(t)
+2Re (U4 D972 )4 (@, 20,200 0 )

+2Re (fl(ta x)a fo(t)u'(t, x))-

Since the boundary space is independent of #, 0u/0t also satisfies
the boundary condition, therefore we have by using Lemma 2.10 and the

non-negativity of the boundary condition
2 Re ((#[u"T)o, #0(t)ug) < const||u'||Zzgzm.
Since d#¢(t)/dt is a bounded operator in L*(R") it holds
| (e, %), dato(2)/de ug(e, x))| < const |[w||3zgs -
It is evident that
[(fae, %), w'(2y %)) arey| <comst {||w'(2, ©)llZ2re + 1 f1llizem}
2Re || (1 D20, #), uils, 2)ds

= |lug(s, )21 —Ilug(0, 212,

and

7) A, (#;) is the differential operator obtained by differentiating the corresponding
coefficients of .# in ¢ (in x,).
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llug(t, 21 ML Doll-1+1] foll-1.
Remark that
1CaLuDoll-1 <comst ([[uollz2ry+ < Au(t, %75 O)1ule, 2)>)

where <> the norm of L*(R"!).
Thus we get by integration of (2.27) from 0 to ¢

ey )= 110, )
<cff 106, Ml ds+ § 117265, 2 Bscens s
Hllue, 2liren + <7oult, )>2
Inserting the estimate
lesCer e <27( (107G, ) Bacands+ 160, )3, )
1 f1(s, 2)|132ermy <comst (J|u(s, I3, 22y + 11 fGs, 2)|132zm)

and by taking account of (2.22) it follows

(2.29)  [lw/(z, 2)||32zm
t
<c{gomu(s, 12 grds -+ 12 (0, )12 g
t
(s, DM rds+ <7, 9> for tel0, T

Differentiate (2.1) in x; (1 <{i<n—1) and we have

o (0u\_ [ ou f
(2.30) 2 W)_“”[ o ]+4, [u]+52G, 2).

Remark 0u/0x; also satisfies the boundary condition. Then

( ’ x)H:(t)

_ZR((/[ D #, )>+ 2Re<(1+lpxlz)_ 5 ax

ou
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+(( ) d #o(2)/ dt- (au

+ 2Re(u¢i[u]+”g-£i > %0(%-;)0> '

If we use the estimate

(ar125:(52), (52),)

Ou |)?
0t

<

0 |
—|(a+1D.5 02, B2, e

LTI

L%RD
it follows by the same reasoning as that of (2.29)

Ou
axi(t3 x)

(2.32)

2 t
LZ(R2)<C{Solllu(s, 2, gads+ 11u(0, £)IZ gn

i
+S0n|f(s, e ds}  for 1€[0, T

Since A, is not singular

ou "C
_1 . —
(2.33) ax,, ( Z —Cu—f(2, x)>,
and
2 2
(2.34) Ha—u(t, <const(“a—u(t, x) ( x) ’
0%, LY%RD 0t qum i=1 LY%R™Y

s D+ G 2l )
inserting (2.29) and (2.32)
t t
< const {Somu(s, 212 gz ds +§0u|f(s, W2 ge ds

(0, )Z ot <7oult, x)>2} .

Therefore we have

t
lu (e, ) gl C’ {mu(o, 22 g + Somu<s, )2 pe ds
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t
o+ 17y M r ds+ <702, 1) >2)
Insert the well known estimate
<7.eu(t, ) > <e6llu@, DI L2en+ CEIult, 2)l32mn

and take ¢>0 as C'e<1/2, then we have
1
sy M << € {0, ) Ws + W, I, s

t
+{ 1 G M p s}

The application of Lemma 2.1 by taking
t
o) =C"({ NF (s, 2 prds+ (0, ). x1)

7@)=MNu(t, )N gz

leads (2.26).

The energy inequalities of higher order (the case £ >2) are derived
step by step. Let k=2. Assume that 0u/0t and 0u/0x; (=1, 2,...,
n—1) are also in &(2, R%). Apply the just obtained result to (2.27), then

0u(

t
5 + SO s Lul+f i, S)III%,R’:dt}

<ol

1 R?
c{u0, M s+ | Hue, )0, gpds

! 2
+ 0rGs, wgpeds |

Similarly it holds that for i=1, 2,..., n—1

e,

t
< C{mu(o, )13 25 + S lu(s, )13 gxds
Ry 0

t
+ 1f G e s}

By using (2.33) we have

(t x)

Wz, )5, ze << const m—(t x)

+3

L.R? 1,R?



Mixep ProBLEM FOR A HypeErBoLIC SysTEM 449

£ e .+ Wty )0 s}
t
< c{iu(o, x)l!l%,m—i-golllu(s, )13, ze ds
+St £ Gs» ) 13,z ds |
0 b 2,R? .

The application of Lemma 2.2 derives (2.26) for k=2. Repeating
this reasoning step by step, (2.26) is proved for any k.

In order to complete the proof we have to remove the additional
assumption that 0u/0¢t and 0u/0x; (i=1, 2,..., n—1) are also in &(k, R%).
So we make use of a mollifier with respect to x’ and ¢. Since the
boundary condition is independent of x" and ¢ we can achieve the reasoning

by the method used in [5]. Then we omit the proof.

3. Proof of Theorem 1

Proposition 3.1.Y For any (to, s0) €[0, T X S, there exist a neigh-
borhood U of (to, so) in (—0, T+0)x S (6>0) and a smooth unitary matrix-
valued function T(t, x) defined in U such that u € B(t, x) is equivalent
to T(t, x)u € B for (¢, x) €U where B is a subspace of C™ independent of
(z, x).

Proof. Let the dimension of B(¢z, x) be p and et x)
={en(t, %), ej2(t, x),---, eim(t, )} (=1, 2,..., p) be a smooth orthogonal
base of B(¢, x) in U. This is possible when U is sufficiently small.
Choose ei(t, x) (i=p+1,..., m) as elt, x) (i=1, 2,..., m) form a smooth
orthonormal base of C™. Define T(¢, x) by

T(t’ x):[eij(ts x):li,j=1, 2,0, Mo

Evidently T(¢, x) is unitary and a smooth function. And if we put
v=T(t, x) u, uw€B(t, x) is equivalent to v;=0 (C=p+1, p+2,..., m).
This proves Proposition. Q.E.D.

Let {(ﬂj(x)}?’:l be a partition of unity in a neighborhood of S, namely
@i(x) € C5(R™) such that

8) This fact is already pointed out in Lax-Phillips [7].
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N
> i(x)?=1 in a neighborhood of S.
=1

Assume that the support of ¢; is contained in a sufficiently small neighbor-

hood of s;=(sj1, Sj2,+--5 Sjn) such that S is represented by an equation
xio=¢)f(x1:"', Xig—1s Xig+1s: "y Xn) in U.
Define a transformation ¥; (x) by
Yi= %i—Sji 1<ig
Yi= X1 Sjis1 1>
Yn=2%i;— 0i( X155 Xip—1, Xipr1ye--y Xn)

and assume that T (Up=V;{y; | yI<1} and ¥(UNL2)=V;N\R%.
From Proposition 3.1, we can assume that, if U; is sufficiently
small, there exists a smooth unitary matrix-valued function T7;(z, ¥')
defined in [0, zo] % (V;N\{y»=0}) (¢o is some positive constant) such that
T;(¢, ¥i(x)) B(¢, x) is independent of (¢, x) €[0, to]X(SNU;). For a
function w(x) defined in U;N\£2 we denote by @;(y) a function defined
in V;NRE by @;(y)=w;(Z (%)) =w(x).
Let us put u;(¢, y)=T;(t, y)(&?i)j(t, y), then we have

Lilu;]=f; in [0, ¢0]x R%

(3.1) {
u’f(ts _’)”, 0) € BJ'

where, if iy=n,

=0 ¥4 9 ¢
LJ - at kgl AJk(ts y)ayk Cl(ti 3’)

Ajk(ta y)= Tj(ta y,>(Ak);(t> y) Tj(t’ y,)* (k':l:, n—l)
nlts =T 70 (=5 AL + 4y) (6 DT, )

Cj(t, y)= Tj(t, y,)éf(t, y) Tf(t, y,)*
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T; ,
alty)

— Tyt ) 3 A, ¥) T, 250

e, P=T, X E AgPut oif e 5)

and B; is a p-dimensional subspace of C™ independent of ¢ and y'.
For %(t, x, §) satisfying Conprrion I given in Introduction, let us
define

Bt 3, =Tt 5 )2(8, T, ) Tty 5%

n

It is evident that #;(¢, v, %) is symmetric positive, 2;(¢, vy, 7) 2. 4;x(t, ¥)7
E=1

is symmetric and £;(¢, ', 0, 7)=1. It follows from (ii) of CoNDITION I

21 (t x, E)p;(x)=0 on S

P
if ﬁ] #;(x)+v;(x)=0. Therefore
i=1

J§1 agt

(ili) of ConprTiON I means that

( Z a (t X, S) Ui (x)>V (x) 0 on S.

=1

i= 1351( (t > S)y’(x))’ (x)=0 on S.
Therefore we have
(3.2) i 0 a@ (t %, S)9i(x)=0 s
i= 165,

By taking account of the definition of ¥; we can see

0% ’
= 1) =Tt ) 5 52 w) Tt 3%,

i=1

thus from (3.2) we have
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Therefore Proposition 2.11 is applicable to (3.1) for each j. Suppose
u(t, x) €&k, 2), then u;(¢, y) €€(k, R%), and we have

t
(B3l PILe< c{iuuj(o, y)m%,Rnggomﬁ(s, IIE s ds}
for t€[0, o). And it holds that

N
(3.4) (1— _Z:l o) Pu(t, %),
=

t 13
< {0, D+ 176, Do dst{ Muts, 30 ds}
since supp((1— 5 ¢H"?*u)NS=¢. And we have

N
(3.5) Mz, %)% e << const { Zl Nu;Ct, P n
p

N
U= X o) e, 20+ 1ule, 21,0}
Then it follows from (3.3), (3.4) and (3.5) that
t
(3.6) Nty I, o< const{nlu(o, x)lll%,g—l-gomu(s, Dz ds

t
+ Som fGss o ds}
with the aid of the estimates

t
Nu(t, 2) 1,0 < const{g0 lu(s, 2)IZ, ads+ N1 (0, x)mz_l,g}

Il £, 2)ME, gn < const {ll f(z, £)NF, o+ Nulz, 27,2}

The application of Lemma 2.2 to (3.6) proves Theorem 1. Q.E.D.

4. Proof of Proposition 1

In the previous section we saw that ConprTion I is invariant with a
change of variables of the type ¥;. Therefore we may restrict ourselves
to the case where the domain is a half-space. Remark that it suffices to
construct 2(¢, x, &) locally in x and &  Let e;(z, x, &)={ei, -, €im}
be an eigenvector of (¢, x, &) for an eigenvalue A;(¢, x, §) such that
|ei(t,x, £)| =1. Define %(t, x, £) by
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(4'1) '@(t’ Xy E):I_—_ez(ta Xy 6)'61'(1:; X 5)]i,j=l,...,m-
Evidently 2(t, x, &) satisfies (i) and (ii) of ConpITION I. Then it suffices
to show
82
(4.2) Wei(t, %, &) ej(t, x, €)|z,-0=0.

For i=j, (4.2) is trivial. Suppose that i=j.

A= Byerey =LAt (e, 2, €)'l 1, 5, E))er)
_a(v‘?{_t-ﬂ) A _t Oe; o
— x. e;r e+ (L d)axn e+
(A — e D%
0%,
Put x,=0 and take account of the symmetricity of &/(x’,0,¢) and we
have
0 — 1 e S aAl 4 0T
(4.3) 5;;{(/11 A)e; eJ} xn=0:i IZ=:1Im0x,,(t’ x'y 0)€e;°€;.

Therefore when (1.7) holds

an Im_aAl_(é’ic_’__o)_glei.e—j
I=1 Xn

= (2 eig)(es ) =0.
=1

When (1.8) holds we see also the right-hand side of (4.3) vanishes. Thus

0 _ .
a—xne,-.ej rr0=0 for i=~j.
This proves Proposition. Q.E.D.
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