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1. Introduction

In this paper we consider the equation of the following form;

(1.1)

in SCR", where & is an interior or, an exterior of a smooth 'and com-

pact hypersurface, A is a complex number and p(x) is a real- valued func-

tion satisfying

(1) p(#) is continuous and 0<Jp(:*;)<JM on S

(2) pOO vanishes only on the boundary of J2, which we denote it

by T

(3) p(#) depends only on r = r(x\ the distance from x^S to F in

some neighbourhood of F

(4) for small r, there exist two constants A\ and A^ such that

(5) when J2 is unbounded, Q<K<^p(x} as

i(^, D) is an elliptic operator of the form

(1.2) £(*,£)= S
y,*=i cy

with a,jk(x) real symmetric and
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(1.3) d s 2^ s/.*=i
for any x E $ and for any ? = (fi, • •-, gn)€Rn.

For the regularity of the coefficients we assume that a/fc(s;)'s are all m

&l(&) and 6/#)'s, _p/^)'s5 c(#) and 9(3;) are all bounded and measurable.

We impose the Dirichlet or Neumann condition as boundary condition,

that is, we seek the solution satisfying

(1.4)

or

(1.5)

where

— —

with y = (vi, ..., vw) the unit outer normal at each boundary point.

The problem with homogeneous Dirichlet condition was treated in

under the slightly different conditions on p(#).

We study our problems through the Hilbert space methods. As was

remarked in Q7], it is much important to settle suitable function spaces

in treating the degenerate boundary value problems. In our case, the

following space will be fittable as a basic space.

Definition 1.1. We denote by L\&, p"1) the totality of the func-

tions on Q satisfying

Instead of usual Sobolev space Hm(@\ we introduce the weighted

Sobolev space Hm(Q, p) by

Definition 1.2. We denote by £Tm(J2, p) the totality of the functions

on ifi satisfying
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It can be easily seen that Z,2(£, p"1) and #m(J2, p) (711 = 0, 1, ...)

make Hilbert spaces by their norm.

Our main aim is to show

Theorem I.I. For any /O)e£2(£, p) 0wd /or awy ̂ G^CO, there

exists a real number /10 such that for all /IS^os the equation (1.1) has a

unique solution u(x) belonging to Hz(@, p), where

q _ Q,
(Dirichlet problem)

2

—-— (Neumann problem),
LJ

and o~££

From the point of view of mathematical physics, our equation will be

related with the following situation : for example, consider the wave equation

(1.6)

where ju(x) denotes the density of medium. Dividing both sides of (1.6)

by ju(x\ we obtain

(1.7) - -=pOOJ a + £(*,o

with p(#) = !//*(#) and g(x, t) = p(x)f(x, t). And our equation corresponds

to the case of steady state in (1.7) when ju(x) becomes infinitely large

on the boundary. The corresponding heat equation can also be treated.

Utilizing our results, we can show the well-posedness of the mixed

problems for (1.6) (of course for rather general equations) with Dirichlet

or Neumann condition (see Appendix).

2. Some Properties of Hm(fi, p) and Some Estimates

In this section we prepare a few theorems stating the properties of
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Hm(&, p) and some basic estimates. One of our interest is of the im-

bedding of Hm(Q, p) into a certain usual Sobolev space, which will be of

fractional order, and another is the trace of the member of Hm(Q, p) to a

submanifold of J2. For these questions we can refer many studies by

Soviet mathematicians, for example, S.V. Uspenskii £9], ElO]? an^ P.I.

Lizorkin [3], [4].

The following is a special case of the theorem due to Uspenskii and

Lizorkin (see S.M. Nikol'skii E8J also).

Theorem 2.1. The following continuous imbedding holds',

where the second arrow is the trace operator.

Corollary 2.1. Let u(x} be in Hm(@, p), then for any £>0 it holds

(2.1)

where r denotes the trace operator to F,\ |0 the L2(F) norm and \\ || the

L2(J2) norm.

The following theorem is much important for us to reduce our

problems to the case of homogeneous boundary condition.

Theorem 2.2. For any <f>eH(3~a}'2(F) there exists a function u(x}

in H2(&, p) such that

Proof. It will be sufficient to show the assertion when Q is

R+={(#, y)\ #>0 and y£.Rn~1} after localizing this problem by partition

of unity.

Now let us define u(x, y) by

u(x, y)= i

then we can easily verify that u(x, y) gives a function satisfying the

assertion, where ~ means the tangential Fourier transformation. Q.E.D.
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For the Neumann problem, we have

Theorem 2.3. For any 0£E jy(1~Q:)/2(jr) and for any first order differ-

ential operator B(x, D) with smooth bounded coefficients, which is transversal

on F ', there exists a function u(x) in H2(@, p) such that

B(x,D)u\r = 4.

Proof. Assume J2 = R+ and then B(x, D} is of the form

Now define u(x, y) by

then it gives our demanded one. Q.E.D.

The following will be useful.

Proposition 2.1. Let u(x) be in Hm(@, p)3 then for any £>0 it

holds

(2<2)

with a \

Proof. It will be sufficient to show when £ = R+ and \a =m — l.

Moreover we may assume p(x} is a function of only normal argument.

Note

£(D*uXe> y) d£

for almost every y, then we have

\(D«u~)(X, j)|2^2(|(D<*u)(0, 7)|2+r-^-rpW Z \D"u\*dx\
\ JO P(?) Jo \a\=m J

Thus for any £>0, we obtain
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with K(d)-+Q as <?->(), and hence

On the other hand, we get by Theorem 2.1,

and hence

where e7 is an arbitrary positive number and

Hence we obtain

and using Corollary 2.1, (or rather Theorem 2.1 again), and choosing 5

and e' suitably, we can get (2.2). Q.E.D.

3. A priori Estimates of the Solutions

of the Special Cases in a Half-Space

Here we derive a priori estimates of the solutions of the boundary

value problem for the special equation in a half-space. We assume that

the weight function depends only on the normal argument x through this

section.

We consider first Dirichlet problem for the following equation;
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(3-D -^
with boundary condition

(3.2)

where a/s and 6^'s (bjk = bkj) are all real constants such that

*

for any (f, •?y)6R1xRK l. We assume moreover

f \f(x9 y)\
J R» P(X)

and 0(y) belongs to

Let us denote by u(x, f]} the tangential Fourier image of u(x, y)\

After the tangential Fourier transformation, the equation (3.1) turns

into

(3.4)

and the boundary condition into

(^ C^ ti( T vi\\^u.Dy U\X) 7/J\x=.Q

We shall seek a solution M(#, 97) (with parameter 77) belonging to £2(R+)

satisfying (3.4) and (3.5).

Now let 0(y) be the root with negative real part of the following

algebraic equation in 6

j=i J J j,k=i

is given by
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w-l / n-l

0(77) = J(S «/%•)-1/ Sy-i " /.*=i

Let us remark it follows

(3.6) "Z I

fi-i
In fact taking £= — ( 2 °y?7y) m (3.3), we can easily obtain (3.6).

y=i
Now in order to obtain # priori estimates of the solutions, we prepare

the following.

Proposition 3.1. Let us define an integral operator K8 by

(*V)00 =ff J V"-" (jL.}

(-Ka<l and

£/&0n ^s 15 « bounded operator from £2(0, c>o) ^ £2(0, oo)

tor norm is uniformly bounded in d.

Proof. It will suffices to show when 0<^2<1 and then to show for

any /(#) and g(x) in L2(0, oo)

(3.7) /=

Now let us divide the quarter plane {(x, y); x, j>0} into two parts;

2) \x-y\>(x

In the case of 1), since ^/j^3, it follows immediately

In the case of 2), since e-
s!*-^<e-

8*'2e-
s>'2, it follows

Te-8"2^0'2 1 g(x) | d* e- '" V""'2 1 /( j) I ̂  y
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Thus (3.7) is correct. Q.E.D.

Now let us establish a priori estimates for u(x, y) satisfying (3.4)

and (3.5). We note that u(x, y) satisfying (3.4) and (3.5) can be ex-

pressed as

(3.8)

Theorem 3.1. For u(xy if) given by (3.8), we obtain

(3.9)

<,c(\ a+
VJR"-1 R»-UO

Proof. Since | ̂ (^)| ̂ const. — Re ^(77) holds by (3.6), we may assume

6(jf) is real. First consider

Now we may assume p(a;)^Ma;tt, we have

and this shows

(3.10) J^o

<:Mr(l + a)\ (1+ M)3""

Next set
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then we have

o Jo

'~ ~AI 2

Hence we have

t.|0(?)l1+B

•\:x

and then

(3.11) ( Tp(A;
jR^-Uo

.
JR^-UO p(x)

Together with (3.10) and (3.11), we obtain

Our next object is

Now let /3i(a;) and /?2(#) be the following functions;

and =
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and =0

and put

fi(x,ri = PiWf(x9ri and

then clearly

Define now 0i(a;, ^) and v2(#5 ^) by

••<-•'>-

For vi(x, T]) by the Hausdorff- Young inequality we can easily show

, ? ^ sup P . sup
^i *in

and hence

(3.13)

For v2(x, ̂ )5 since we may assume Aixa^p(x}^Azxa (Q^x<z\.\ it will

be sufficient to consider

in place of v2(x, 77). Our aim is to show

(3.14) (V 1 6(7)Yv(x, T?) 1 2^const.r \^X'7!^ dx,
Jo Jo x

then (3.12) (3.13) and (3.14) will lead us to (3.9).

Since /2(#, ff)x"al2> belongs to -Z^(0> °°^ and since
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by Proposition 3.1 we can obtain (3.14).

Though we investigated only tangential derivatives, the terms with

cross derivatives, involving a first order normal derivative, are estimated

as well as of tangential derivatives, and the term with second order nor-

mal derivative can be estimated from the equation (3.1). Q.E.D.

Next consider the Neumann problem for special case;

(3.15) -p(x

with boundary condition

a,.
(3.16)

dx x=Q

where ay's and 6;-^
3s are as same as given in Theorem 3.1, and 0" is a

constant number.

We assume 0(j) belongs to fir(1-fl:)/2(R^1) and

r (•IMy
JRM-UO p(«)

Repeating the similar argument as for Dirichlet problem, we can

prove the following theorem.

Theorem 3.2. // u(x, y) belonging to H2(Rn
+, p) satisfies (3.15)

and (3.16), then it follows

(3.17) ( (7000 Z
J R ^ - U O V a1 + a2=

where * denotes the tangential Fourier image,



BOUNDARY VALUE PROBLEMS 467

49 Estimates for the General Cases

The aim in this section is to establish a priori estimates for the solu-

tions of (1.1) which belong to H2(&, p), when Q is a half -spaces or a

general domain with smooth compact boundary.

The transition from cases with constant coefficients to cases with

variable coefficients is routine, through the localization by the partition of

unity.

Let L'(x, y\ Dx, Dy) be an elliptic operator defined in R+:

(*, y\

where 0/^(^5 j) (/, ^ = 0, 1, • • - , TI — 1)€^>1(R+) are all real valued sym-

metric and satisfy

*

We begin with the Lemma 4.1 below.

Let u(x, y)E#2(R+, p) be a solution of

(4.1) pW(x, y\ Dx, Dy}u=

satisfying the boundary condition

(4.2) u(X, j)U,0

or

(4.3) B(y- Dx, Dy}u(X, y)\x=0

where B(y; Dx, Dy) is given by

B(x;D,, ^,) = 00, ~
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and

Lemma 4.1. For a solution & E jy2(R+, p) of (4.1), suppose that the

support of u(x, y) lies in a hemi-sphere J?s;

2, and *

with sufficiently small 5>0. We obtain

(4.4) H«ll2.,^C(||/||o.,->+ |0|(3-«o,a + |k

when u(x, y) satisfies (4.1), and obtain also

(4.5) ll«ll2.,^C(||/||o.,-i + |0 | ( l -«) ,2+l l«

when u(x, y) satisfies (4.3). Here ||/||ofl»-i denotes

Proof. (I) The case when u(x, y) satisfies (4.2).

Rewrite (4.1) as

(4.6) p(*)£'(0, 0; DX9 Dy)u=f(x9 y)-p(x}(L'(x, y' DX9 Dy

Of course ligllo^-^ + °°3 and using Theorem 3.1, we obtain

Hence by an obvious estimate

)(L\x, y\ Dx, Dy)u — L'(Q, 0; Dx, Dy)u)\\,

and by the continuity and the boundedness of first derivatives of the

coefficients, we have
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where e->0 as <J->0. Thus taking S sufficiently small and noticing

Proposition 2.1, we can obtain (4.4) easily.

(II) The case when u(x, y) satisfies (4.3).

Rewrite (4.3) as

; Dx, Dy}u(x, y) U0-

Using (4.6) and applying Theorem 3.2, we have

+ \(B(y; Dx; Dy~)u-B(0; Dx, £»

On the other hand, according to Theorem 2.1, it follows

\(B(y; Dx, Dy-)u-B(0; Dn />»|(i-a),2^

; Dx, Dy~)-B(0; Dx, D,y)u\\ltf}

and hence

where e'— >0 as d— >0 (because of the continuity of the coefficients). Thus

we can obtain (4.5) as well as (4.4). Q.E.D.

Next consider the case when the support of u(x, y) extends over R+.

The following proposition follows from Lemma 4.1.

Proposition 4.1. Suppose that u(x, j)Efi r2(R+3p) satisfies (4.1)

and (4.2) or (4.3). It follows

(4.7) lkll2

when u(x, y) satisfies (4.2), and

(4.8) lkll2.^C(||/||of

when u(x, y) satisfies (4.3).

Proof. Let us notice that we can take a locally finite partition of
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unity {(t>p(x9 j)} of R* as follows;

(1) ZX(*, y) = l and 0<^(t>p(x

(2) inf diam. of support CDP(X, y)=d>0
P

(3) the number of the supports which intersect mutually is limited

by a suitable integer N

(4) each of the diameter of support of cop(x, y) sufficiently small

such as Lemma 4.1 is applicable.

Localizing (4.1) and (4.2) or (4.3) by the above partition of unity,

and applying Lemma 4.1, we can establish our assertion. Q.E.D.

To end this section let us consider the case of general domain &.

Since the interior estimates are well known and the essential parts for

the estimates near the boundary were carried out in Lemma 4.1, we

state only results.

Theorem 4.1. Let @ be a domain in W whose boundary is a smooth

compact hypersurface, then, if u(x} belonging to ,H"2(J2, p) satisfies (1.1)

with f(x)£L2(@, p"1) and satisfies the boundary condition (1.4) or (1.5),

it holds

(4.9) IHl2

or

(4.10) IH

corresponding to each boundary condition.

5. Weak Solutions

As for the existence of solution, it will be essentially based on the

well-known Riesz3 representation theorem. In this section we define the

weak solution of (homogeneous) Dirichlet problem and (homogeneous)

Neumann problem, and we show there exists a unique weak solution.

Definition 5.1. u{x)£.@\i{&) is called a weak solution of (1.1)

with boundary condition
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if and only if u(x) satisfies

(5.1) fl[u>,
j,k=i\ oxk vxj/ \y=i

x)Ui v),,-! = (/, t;),,-!

for all v(x) G @i2( ̂ )? where ( , ) denotes the inner product of JL2($)

( , )/J-i if/xg inner product of Z,2(£5 p"1).

The well-definedness of (5.1) follows from

Lemma 5.1. For any u(x) and v(x) in &£2(@\ it follows

(5.2)

where D is an arbitrary first order differential operator with bounded

coefficients and s is an arbitrary positive number.

And

Lemma 5.2. If f(x) is in L2(@, p"1) and v(x) in Hl(@}, then it

follows

for any £>0.

Proof of Lemma 5.1. It will be sufficient to prove when Q is R+

and p depends only on normal variable x.

Since v(x, y) belongs to ^^(R"), we have for almost every y

2
ir- dx,ax

and hence for any £>0 we get

x
dx<const.

~ dx

2
dx.
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On the other hand, we have

f-K*. y) l 2

Thus we obtain

I f 0

7-N2-\(xY Jo

and using Schwarz' inequality we can have (5.2) easily. Q.E.D.

Proof of Lemma 5.2. By similar technique used in the proof of

Lemma 5.1, we can obtain for any v(x} in jfiT1(R+)

then this and Schwarz5 inequality yield (5.3).

As a corollary of Lemma 5.2, we have

Lemma 5.3. If u(x) belongs to ®\i{Q\ then it follows

(5.4) ia>K,«0,-'l^e||u||i+C(e)||a||2,

for any £>0, here D is as same as given in Lemma 5.1.

The following theorem stating the existence of weak solution of

homogeneous Dirichlet problem is an immediate consequence of Lemma

5.2, Lemma 5.3 and the well-known Riesz' representation theorem or

Lax-Milgram lemma.

Theorem 5.1. For any f(x} in £2(J2, p"1), there exists a real num-

ber ^0 such that for any ^^A0 the equation

, D)u+ Xpj(x}-
/=!
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has a unique weak solution.

Proof. It will suffices to notice that it follows

(1) I D x H B . t f U ^ C I i u l l i l H l i

(2) ReD^u, uD^CHull?

for any u(x) and v(x) in Sj^j?), where D-^JJL^ v~^ = D\ji, v^\ + A(u9 v)p-\9

and that (/, •) gives a linear bounded functional on ^^(fi) when f(x)

belongs to L2(Q, p'1). Q.E.D.

Now let us define a weak solution of Neumann problem with homoge-

neous boundary condition. For general equation it is difficult to define the

weak solution with good nature, so we define it for rather special equation,

more precisely we assume here

Definition 5.2. u(x) in Hl(Q) is said to be a weak solution of the

equation

du-^—
dv

if and only if u(x} satisfies

j,k=i\ vxk vxj/ j=i

for all v(x) in Hl(®}, where < , >r denotes the inner product of

Well-definedness of N[_u, v~} follows from

Lemma 5.4. If u(x} is in Hl(&), then it holds

(5.5) INIo,p-^£|

for any s>0.
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Proof. It will be sufficient to show (5.7) when $ = R+ and p de-

pends only on the normal variable x.

Noticing that

S x

o

we have

hence for any

where iT(ff)->0 when 0->0.

On the other hand we have

r |tt(*'
Js P(A;) x) o

Thus we obtain

1"^
and taking 5 sufficiently small, we can obtain (5.7). Q.E.D.

The existence of the weak solution can be established through the

same manner as the case of Dirichlet problem.

Theorem 5.2, For any /(#) in £2(J2, p"1), there exists a real

number /10 such that for any 1^>A0 the equation

\ *
w+<ru
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has a unique weak solution.

6. Proof of Theorem 1.1 (I)

Now that the existence of weak solution has been established for each

equation, our main aim is to show the regularity of weak solution, more

precisely to show that the weak solution obtained in the previous section

belongs to ./J2(J2, p) in each case, then it will prove Theorem 1.1. In

this section we shall give a proof of Theorem 1.1 for special equation,

where p j ( x ) = § in (1.1), that is to say,

with homogeneous Dirichlet or Neumann condition.

The main tool to our aim is the tangential mollifier of Friedrichs, so

we describe a few lemmas of mollifier.

Let us denote by #?e* the tangential mollifier:

x, y)=\ Ve(y—riu(x,

where <p£(y) = £1~n<p(y/£) with ^eQCR""1) such that \y(y)dy=l.

We shall write u£(x, y) = <p£*u(x, y) in what follows.

Lemma 6.1. If u(x, y) belongs to Z,2(R+, p~1),1) then u6(x, y) goes

to u(x, y) in £2(R+, p'1) as e->0.

Lemma 6.2. (Friedrichs) Let u(x, y) be in ^T1(R+) and a(x, y) be

in J(1(R+), then \jp6*> a(x, y}D~]u converges to 0 in JfiT
1(R+) as £— »0,

where D stands for d/dx or d/djj ( /—I, • • - , n — 1).

Lemma 6.3. Let v(y) be in Hll\Wl) and b(y) be in

then C^6*5 ^(y)H^ converges to 0 in Hll2(E.n~l) as £->0.

Now back to show the regularity of our weak solutions. Since the

interior regularity is well known, we shall show only the regularity near

the boundary. Noticing that the problem is completely local, it suffices to

1) When we use the notation L2(R^, /o"1), we assume p depends only on x.
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show it when S is a half -space after a local transformation of independent

variables. Let our concerning equation be

^^(6.1) -

and

(6.2)

or

(6.3)

where ajk(x, y) (j, k = 0, 1, ..., n-l)eal(Rl\ and &/*, j) (y = 0, 1, • • - ,

7i — 1), c(^3 j) and q(x, y) are all bounded and measurable, and

Now since our weak solution belongs to £T1(]R+) and 1T1(R+) can be

imbedded continuously into Z,2(R+5 p"1) (see the proof of Lemma 5.2),

we may neglect the lower order term

j=i

by transferring it to the right hand side, and we treat the following

equation

f * A \ ( \ av ,(6.4) - p W" + f +

in place of (6.1).
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Theorem 6.1. Let u(x9 y) be a weak solution of (6.4) with satisfy-

ing (6.2) or (6.3), then u(x, y) belongs to #2(R+, p), where f(x, y) is

in L2(R+, p"1) and p depends only on x.

Proof. Consider the case of Neumann problem, because the Dirichlet

case will be slightly easier, though the essential part is the same.

Now let u(x, y) be a weak solution of (6.4) with boundary condition

(6.3), then u(x, y) satisfies for all v(x, y) in Hl(Rn
+)

dv\,n^1( du dv\,n^/ du du\

O, y>(0, y)dy=(f, i;),-i,

and satisfies (6.4) as a distribution. Put here v(x9 y) = w(x, y)/a0o(#5 y)

with w(x9 y)G#1(R+) (notice here aQQ(x, y)^>c>0 by uniform ellipticity),

then (6.5) turns into

fa a\ fdu dw\ , n^( A du dw\ , n^( A du dw\ . n^ ( A du du \ ,(6.6) (-—,__)+ 2(^0y^— ,-^-)+ Sl^yo-^— 5^— )+ Zi (AJk^— 3^— ) +Vo1^; ^A; / y=i\ oyjOx/ y= i \ O'A; 9yy/ y , j f e = i \ uykvyj/

, ( da du , n^1 da du . ^ da du , n^1 da du \
-j- f — aoo^ — ' 2_i -7S - «0;7S - + 2li o - a/0 -TS - + Zj "n — a/^ n - ' w I\dx dx j^idx 3d j=id J dx j f e i d dk' /

where ^(A;, y) = ajk(x, y)/a00(x, y) (;", A = 0, 1, • • - , n — l\ F(x, y) =

f(x, y)/aQQ(x, y) and a(x9 y) = l/aOQ(x, y). Hence, we may assume

«oo(^3 y) = l identically in (6.5), since the second line of (6.6) can be

transferred to the right hand side. We are now going to consider, instead

of (6.5), the following

fa^ (du dv\,n^(( du dv\.f du dv \\ , ^ / du du\(6.7) f -^— ,^— )+ 2 ( ( o o y — - ,_-J + f a . 0 __ ?__ ))+ 2 (ay*o— >«— )-
Vo1^ a^ / y=i\ \ ay; dx J \ dx d x j / / j,k=i\ d y k d y j /

^(0, y)v(Q, y)dy=(f, v\-i.

Now insert v£ in place of v in (6.7), then we have by simple

calculus
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fa Q\ f9u€ ®v ^ r "fi1/? du£ dv \ , ( du£ 9v \\ , n^1 ( dus $V \(6-8) (w>w)+£((^>^

«-i
Ey=i

-] dv\, "f,1 /f 91 dv\
^ ^— )+ E ( Ve*> \a>jk-;r- M, ̂ — )/J O>A; / y f * = i \ L ^j/feJ 9yy/

and this shows that u£(#, j) satisfies

^Q^ / \(Q2uB_^n^( 9 ( due\, d ( du£\\,
 n^1 d ( du(6.9) ^p(x

in the sense of distribution. On the other hand, since u(x, y) belongs to

^1(R+), the terms involving the commutators in (6.9) belongs to L2(R+3

p"1) (cf. Lemma 6.2), and since u£(x, y) is smooth in y, we can see

that u£(x, y) belongs to £T2(R+5 p) from the equation (6.9). Hence using

the integration by parts, we can see that u€(x, y) satisfies (6.9) in

£2(R^., p-1) and

3 = 1

n-l[

x=0

x=0

Thus applying Proposition 4.1 (a priori estimate) and noticing Lemma 6.1,

Lemma 6.2 and Lemma 6.3, we can see that u£(x, y) converges in ZT2(R+, p)

as e tends to 0. On the other hand u£(x, y) tends to u(x, y) in Hl(Rn
+}

clearly. Hence u(x, y) has to lie in £T2(R+, p) and this establishes
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the Theorem 1.1 in the case where pj(x}^0. Q.E.D.

7. Proof of Theorem 1.1 (II)

In this section, we shall finish the proof of the Theorem 1.1 by

treating the general case where pj(x)^Q in (1.1). We shall carry out

this by a successive approximation with the aid of Proposition 4.1,

Theorem 6.1 and the following

Lemma 7.1. Let u(x} be a solution in H2(@, p) of

satisfying the homogeneous Dirichlet or Neumann condition, then if A is

sufficiently large, we obtain

(7.1)

with some constant

Proof of Theorem 1.1. According to Theorem 2.2 and Theorem

2.3, it is sufficient to consider only the case of homogeneous boundary

condition. But the Dirichlet case is already finished by Lemma 5.1, there-

fore we restrict ourselves to the condition (4.3) (with 0 = 0).

Now let us define uk(x} successively by

(7.2) -p(*)L(*, D)uk + P(x, D)uk-i + q(x)uk + luk=f(x) (a0 = 0)

n
with satisfying homogeneous boundary condition, where P(x, D) = ^PJ(X)

d j=l

- — and is assumed sufficiently large so that (7.2) has a weak solution for
OXj
4 = 1.

Let us note, by Theorem 6.1, that each Uk(x) lies in j£T2(J2, p), and

hence our aim is to show that Uk(x} converges in H2(Q, p) if we take

A sufficiently large.

Now set vk(x} = uk(x)— uk-i(x\ then Vk(x} satisfies

(7.3) -p(
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and homogeneous boundary condition. Hence applying Theorem 4.1 to

(7.3), and noticing Lemma 7.1, we obtain

(7.4) \\vk\\2.P^C\\P(X, DK-iHo.,-1 (* = 2, 3, ..-),

where C=C(A) is uniformly bounded in A. On the other hand owing to

Proposition 2.1, we have

(7.5) IW

and

(7.6) ||t,4||0 ,^
A — C

Now multiplying C(e)/e to both sides of (7.6) and then adding it to (7.5),

we have

(7.7) ||t,i||2i, +

Fix an e<l and take a ^ large enough so that (e + , £' )<1 also, then
\ A — c /

ZI ( ||v*||2 I /B + — ̂ -Ikftllo,/,-1) converges and this yields the convergency of
&=2\ ' £ /

uk(x) in H2(Q, p) and completes the proof. Q.E.D.

Appendix

As was announced in the Introduction, we state here about mixed

problems for hyperbolic equations.

Let us consider

j_

(Z^y(*)

u(x, Q) = uQ(x\

u(x, t)
r

= 0,
r
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where Ay(*)6 ®\G) (j =1, • • - , n) and ffe^l(F) are all real-valued.
We assume that the rests of the coefficients satisfy the conditions

stated in Introduction, then we can show the well-posedness of (A.I) in

the following sense:

Theorem A.I. For any f(x, f)€£}(L\S9 p"1)) and for any (UQ, HI)

£jfy2(J2, p)n^i2($)x^2(J2) (for Dirichlet boundary condition) or for any

(&05 W I ) G H2(@, p^r^jV* X Hl(&) (for Neumann boundary condition), there

exists a unique solution u(x, t) of (A.I) such that

u(X, *)6 W2(S, p))n«fKW))A«f?CW, p-1)),

with satisfying each boundary condition respectively. Moreover the following

energy estimate holds in each case

(A.2)

for any t E £0, T^]. Here Jf denotes

JT= u; u€H\S, p\-

The proof of Theorem A.I is carried out by the semi-group theory

due to Hille-Yosida, and even for the equations with time dependent co-

efficients, the similar results will be valid.
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