
Publ. RIMS, Kyoto Univ.
7 (1971/72), 511-539

Some Aspects of Qrnstein's Theory
of Isomorphism Problems

in Ergodic Theory

By

Gishiro MARUYAMA*

0. Introduction

In a series of recent papers E^IhL^H, D. Ornstein and Friedman

carried out fundamentally important investigations about metrical isomor-

phism in ergodic theory. Motivated by the papers, the authors of [JQ

and the present paper were engaged in allied isomorphism problems,

especially those when generators are not finite and entropies are infinite.

Using Ornstein's ideas, the authors of the two papers independently have

arrived at similar results. However, the approaches and techniques in the

both papers are different.

In the present paper, basically we only assume several fundamental

results from F7]. In several respects we can simplify and refine the

techniques of Q7], thus not using the method in Q5], we prove in § 4

a generalized version of the main theorem of £5],

The basic probability measure space (£, m, <£) is isomorphic with

QO, 1] endowed with ordinary Lebesgue measure, the Lebesgue unit in-

terval. A partition of £ is a system of disjoint subsets of & whose

union is $. From now on partitions are measurable. Script capitals

fP, (2, ?<?, ••• will stand for measurable partitions; by writing @CQ it is

meant that Q refines ^), and by p£& that p is a generic element of fP

referred to as a cell of @>. A ^P-set is that which is represented as a
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union of fP-cells. To avoid notational complexity, fP will sometimes stand

for the (T-algebra consisting of all measurable fP-sets. For further de-

velopments we are requested to single out three classes of partitions, i.e.,

finite, countable, and general measurable ones, respectively denoted by

20, 2i, 22, so that SoCSiCSa. ^6^1 is written in the form $>

= (pi, /?25 • • • ) • As in Q7] every ^G^i is ordered, and \$>\ will stand

for the number of fP-cells p with ?7i(p)>0.

For $ £ ̂ 2 and an automorphism T, we frequently use the abbrevia-

tions

=^= v T1®
i =a

so that f% is different from fP? as ordered partitions; a generator ^€^2

for T is such that @-00 = d£. To generalize the notion of weak Bernoulli

automorphism Q7] we prepare several steps of definitions.

Definition, (i) Let T be an automorphism and fP^So, then

(T, #>) is called a weak Bernoulli pair (WBP) if

(0.1) l i m n \
k-~pepln

q^Pl+n

uniformly in n.

(ii) T is called a weak Bernoulli automorphism (WBA) if there exists

a generator (K. 6 2 2 for T1 such that we can find an increasing sequence

of partitions ^e20, rc^l, for which (T, <#„) are WBP's and V(£n = &.
nl>l

Such a generator of T is called a weak Bernoulli generator (WBG).

Especially, if T^, — O O < J < C X D J are independent, T is a Bernoulli

automorphism (BA), with Bernoulli generator (BG) (£..

Let @> € 20, Q G 22, then ^ is e-approximable by Q, in symbols

if for any /? 6 ^, there exists a measurable (2 -set ^4 such that
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§ 1. Classifications and Reductions

First of all, using the notations introduced in §0, we distinguish

three classes of automorphisms (a), (/9), (j) according as their WBG's

satisfy the conditions: (a)(& € 20 (£)65 € 2i (r)6? e 22. When T e (a),

&n = (£ for a sufficiently large TI, A(J r)<oo3 and in this case, the structure

problem of T from the isomorphism view point is settled in ]~7~}. As was

mentioned earlier this paper is a basis for our further developments.

To make reductions desired in the following arguments it is con-

venient to consider the class (d) of WBA's: Te(d) if 6?E@i is a WBG

for T and for any finite subpartition 650 of 65, (T, 6£0) is a WBP.

Clearly (£) is a subclass of (/?).

In each case of classifications

r if A(r,«o=A(r,«2) = ..., re (a).
00

Pra?/. Given positive numbers £1, £2? • • • ? with 2e,-<oo, then by a
*' = 1

repeated use of Lemma 14 Q7], we can successively assign partitions

(2i, Q2 j ••• and natural numbers A l 5 &23 ••• satisfying the following con-

ditions :

in general

(*) For the meaning of this expression cf. p. 367, [7].
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S(\) T'Qn, «2)<2-1, <J(V
-*1 -*J

Let <2«, = lim<2B , then

, a.), ff( V

and

*( V r'<2-, «») <2^+1 for
— oo

whence

(QTC)r»D«m for ro = l, 2, ...,

that is Qoo is a generator for T. This implies that

The remaining essential cases will be settled in the proposition after

Theorem 1 and Theorem 2.

So that from now on without loss of generality we may assume that

(1.1) h(T,(&i)>Q and h(T, &n) is strictly increasing with n.

It is easy to show that a direct product of a finite or countable

number of WBA's is a WBA. By using the fact that for WBA's in (a)

the entropy is a complete invariant it is straightforward to show :

2° Automorphisms 5, T represented as direct products of the same

finite or countable number of WBA's from (a) are isomorphic if h(S)

The second step of reduction is to show the following proposition.

3° To every jT6(rt, there is an S €(5) which is isomorphic with T.

Proof, By the above observations we may assume that (1. 1) holds true.
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Divide the Lebesgue unit interval QO, 1] into disjoint intervals /n, - • - ,

Iis1+i so that we have a partition $i with H(j4i) = J^—pj logpj=h(T, ^i),

PJ = meas. (/iy), !<[/<Jsi + l. Subdivide /iSl+i into disjoint subintervals

/2i? • • • > ^2s2+i so that they together with /n, • • • , /iSl form a partition ^?2

with £[($2) = h(T, (Rz). Continuing this procedure we have a sequence of

partitions ^W51^7i<co, in which j4n+i is obtained by subdividing the

last cell of &n, and H(j4n) = h(T, (£n). Write

then /? is a countable partition with

On the basis of this fact and making use of a shift transformation

on a direct product measure space one can define a BA S with BG Q

— (#15 <?25 • • • ) such that there exists a sequence of natural numbers nk^

and Qk = (ql, ..., grW f c , ^ f t + iW^ f ca.2U- ••) satisfies

By means of the proof of Theorem 2 in §4 T is isomorphic with S.

Then obviously 5 is the desired automorphism of type ($).

§2. Terminologies and Preliminary Lemmas

I owe several concepts, terminologies and notations to Friedman-

Ornstein Q7]. For details I refer the reader to this paper. All partitions

from <2o, 2i are ordered. Given a partition & and a set £*, there is its

induced partition 9\E on E. 2\ becomes a complete metric space by the

distance

@ = (pi,p2, • • • ) , Q = (?i, 92, »

where J is the symmetric difference. Writing (pi, •-, pn, <f>, <f>, •••) for

the partition @Q = (pi, ••• , /?„)€So, 20 is imbedded in 2i. The size of
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is defined to be the number of fP-cells p with m(p)>0 and

denoted by \$>\. We write d(&\ d(@,Q) for the distribution of ^G^i,

the distance between the distributions of 5P, Q 6 2i respectively. The
distance d(a, 6) between probability vectors a = (ai, 02, - - O s b = (b^ 62, • • • )

is likewise defined by

1=1

V &n
 c^n be considered as a member of 2\ according to the lexico-

graphical ordering. The equality V!jPn = VQn means that the both sides,
n=l ii=l

when ordered in this way, are equal in 2\. On the other hand the

equality ^VQ — (K. means that the both members are equal in reference

to suitable orderings of the cells on the both sides.

Let $>CQ be partitions from 2i. q€Q, 7n(g)>0, is a proper (3 -cell

if there exists p £ !jP, with jO<?3 m(p)>m(q\ while p G ̂ , 7?i(p) > 0, is

a proper ^)-cell, if p contains no proper Q-cell. Improper 5^-cells and the

union of the proper ^-cells, when ordered together, form a partition ^03

such that fPV <&^ — ̂ \ proper (2-cells and the union of proper ^-cells,

when ordered together, form a partition &i such that fPV^i^Q. A

proper 5^-cell is an improper (2-cell and vice versa. In this case, fP, Q

are said to be properly ordered, if they are ordered in such a way that a

proper 5P-cell corresponds to itself as an improper Q-cell, every improper

p^:^ to one of (2-cells contained in p, while $GfP to every Q-cell

remained in p. D(^P, Q) can be minimized when they are properly ordered.

Obviously ^oC^i, and if fP, Q, <^03 &i are properly ordered, it holds that

For instance, consider (R = (r^ r^ • • • ) and its subpartitions @ = (pi,
00

, • • • ) ? Q = (qi, q2, • • • ) » witn /?i = ''f (1^^7ii)3 Pn1+i=\j rk9 pi = $(ni + l
k = ni + l

)5 and
Jfe = »2 + l

^7i2. Then ^CQ5 and if we put

(2.1) *o = ( r f t n, #,...),
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1=1 l=» 2 +l

one obtains

The following elementary inequality is useful for evaluating | A( T,

0° Let j4 = (ai, . - - , a/), (8 = (ci, - • - , c^eSo, and T be an arbitrary
automorphism, then

(2.2)

where

, &)=-D(74, fylogDW, ty + DW, fi)0og|^| + log | (g | +2)

Proof. If e,->0, l^i<7i, a well-known inequality for entropy gives
us

(2.3) 2 -£,- loge,- <- 5 log5+ 5 logra,
i

where

Now by the definition of conditional entropy

I GI) = 2 — m(aj I c/) log m(aJ I c,-)

(2.4)

= S. ~ ^(ay I c,-) log 7n(ay | c,-)

— m(di | c,-) log m(af-1 c,-).

Since (1 — ̂ c) + A; log A; ^ 0 for 0<Ia;<Cl9
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(2.5) — m(ai\ci)logm(ai\ci)<;m(a(i | c,-) (a J = complement of a/).

Applying (2.3), (2.5) to the right-hand member of (2.4), it is easy to

show that

(a? | cf-) + m(ac
i \ c/) log Z + 7n(a J | cf-),

S-mCajOlogmCafcO + CSm
1=1 1=1

^ - (2 m(af c,)) log (E 77i(af c,))
1 = 1 1 = 1

(2.6)

and similarly with

A fundamental inequality estimating discrepancy between entropies is

given by

where

(2.7)

Inserting (2.6) and a corresponding inequality for H(@\$) into (2.7) and

using (2.3) again

) fg - E w(af ci) + E m(c J ay))
f = i y = i

& /
log ( E ^(af c/) + L ^(^5 ay))

1=1 y=i

Remarks. Since — (A; + y)log(# + j)^ — jclogA; — y log y for 0<^#,

j<oo, it is easy to show that the function E ( f 3 , @ ) t i s dominated by a

metric on 2o-

We now turn to summarize several lemmas from Q7J, rephrasing and

sometimes refining them.
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Suppose that we have a certain naming system which let to every

a) G J2 correspond a finite or infinite sequence of non-negative integers, the

name of a). Such a system is often connected with a partition.

Suppose we are given a superposition of partitions ^ = ^° V^1 V • • - ,

#>' = (/>{, /4 • • • ) • The ^P-name of a) 6 £ is the vector (ft0, &i, • • • ) so

determined that

i = 0

k{ is a to -function, written as A,-(o)). Then we can speak of the

(kQ(p\ ki(p), • • • ) of a 5P-cell />, what is the same thing as the

of an a) contained in p.

1° Suppose we are given a superposition of partitions Q besides &

in the above, Q = Q° VQ1 V - - - , and let the Q-name of a) be (Z0, /i, • • • ) >

then

(2.8) 77i(ft> : fP, (2-names of a) differ at more than e places)

Define indeed, a function 5" on non-negative integers, so that 5(0)

= 0, <y(i) = l for z = V O , then the left-hand side of (2.8) being equal to
00

m(a) : 2 <J( | ki (ft)) — Zy(ft)) | ) I> e), (2.8) is a version of Tchebychev's in-
o

equality.

ll
I 2

2 Let I™=\ • be an 771-fold product space, q = (qQ,

\k
be a i^ + 1-dimensional vector with integer entries, 7r = (7T?, gG/|+1),

a probability vector. Let S be an automorphism, J5 6 ^ be such that

5, S5, • • - , S"-1^ are disjoint, and put Sl = \jSiB. There is given a finite
o

partition Q9 on 5 and to each w E Q$ there corresponds its name / (w;)

= (Z0(ti;), • • - , ln-i(w))eln
k. Define a partition $> so that 5)^! = ^!, ...,

pk) and ^|fii-cells are determined by

P*=\J( \J
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and & is arbitrary on fif. Define next the frequency of q in l(w) to be

71 Z£

Then if max d(f(q \ l(w)\ 7r)<Jei, 77i(^f)^£25 we have

3° Let 5, 5 and 0$ be as in 2°. Suppose that we have two

naming systems, (1) w E Q9 -> &(«;) = (&0> • • • ? &»-i) E /J, (2) ^6QS->Z(w;)

= (^o, • • • ? / w _ i )6 / f . Consider two partitions ^1,^2 constructed as in 2°

by the systems (1), (2) respectively. If

n-l
max 2 I ^i'(w) — /i(^) | ̂  n-e,

then

In the following arguments, if fP is a partition, its subfamily of

is denoted by a script capital like © C ̂ 3 whereas the correspond-

ing ^S -measurable set V/P is denoted by C.

4° Let 5, ^4 play the same role as 5, B in 2°, OS 6 2o, and
n-l

Q9W= V S~'Q<9. Suppose that to every tt; E Qflw | -^ there corresponds a
o

name (lo(w)9 • • - , Zw_i(w)) in a 1-1 way.

Define a partition ^ on J?i as in 2°, whereas in this case J2f is

classified into a cell of ^. Then

(2.9) |/i(5, 5>)-A(5, ̂ ^^(^{L^^ + LCmCflf))},

where L(^) = ^ — xlogx and K{(Q&) (O^i^l) are constants depending

only on |Qfl|.

Proof. The uniqueness of the name of w implies that w is a cell of

the partition {A, A^vCvS'1^}. Therefore
o

<2 = {fl and S'w;
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Then by 0°

\h(S, Q0)-A(S, Q0')|^

Thus

, <2)-£(X>0)

On the other hand, since

1=0

, 5>) ̂  A(5, OS V {^3

(2.9) holds with K0(
c^)=

In the following arguments by ? we denote a non-negative constant

which can be made arbitrarily small, dependently on adjustable parameters.

5° Let f^ESo with |^) |=A;5 S be an ergodic automorphism, If be

as in 2°, ^^Vs""^ and f(p) = (f0, • • - , fn-i) be the ^-name of
o

. Let 9? = G?0, • • - , ?y«)e/ j+ 1 and define

Then for an arbitrary ^>0, if ra is large we have
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§3. Sinai's Theorem

Theorem 1 (Sinai), Let S 6 (7*) and T be an ergodic automorphism

with h(S)<^h(T)<zO°. Then S is a factor of T.

Proof. By 3° of §1, without loss of generality, we will assume that

6(5). Let $J = (n, r2, • • • ) be its WBG, and increasing natural numbers

iy s2, ••• be taken so sparsely that

satisfies

where

Let £1, £2, ••• be a sequence of positive numbers with

and let us put »A = 7ii(eJ, ^*, 5), nf
k = n2(e

2
k, (Rk, S\ ?7* = ??(ei, <£*, S),

where TZi, 7i2, 97 are the functions of e, &, 5, ni = ni(e2, &, 5), etc. in

Lemma 12, [7].

We will first choose ^iE20 such that

(3.1)

For this purpose let A = 1 6?i | , and choose Qi90 6 20 satisfying

(3.2)

and write ^i=v
o

As in 5°, denote by |(r) the ^J-name of r€(^^, define r, for
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l9 and put

(3.3) F={

e n(b -

where iv(a)), r(o)), are the QS°-, 65*-cells containing a), f>0 is arbitrarily

fixed and

then by 5° and Shannon-Mcmillan-Breiman's theorem, if 72, is large

(3.4)

Define

(3.5) G = {w: m(

then (3.4) implies

7?i(C)5 m(C /)>l-r-

Thus

to every W€L& we can let correspond a ^(r)3 r E (8'5 in a 1-1 way.

Take an / such that (*) Tll, O^i^n — 1, are disjoint, 77z(G)>l — r,

where G=?\J T{L There exists i'0 satisfying m(TioIr\Cc)<r/n, and
o

hence 7?i(ro/nC)>(l-2r)A. Set A=T\Ir\C, Qi = \jT*A, then
o

— 2r, and T^, O ^ J ^ T Z — 1, are disjoint; to every wZOS-^A

there is assigned a f(r) in a 1-1 way. Define ^i as in 2°, then if n

is large

(3.6) dtVS-'&i, VT-i

o o

Also by 4°, if 7, I/TI are small
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(3.7) i h( T, Q90) - h( T, 90 1 ^ £0(

and the right-hand member can be made arbitrarily small. Collecting

(3.2), (3.6), (3.7) we get (3.1).

Next choose Q9O^>i such that

By Lemma 9, ^7j, (3.1) implies that there exist partitions Q,-,

^ n- — 1, such that

(3.8)

w-1
Now engrave each V Q»-cell to have Q/, 0 <^ j <i n- — 1 so that

o

n-l ~ n-l

Then

(3.9) ^
0

Let |^2|=/=52 + l; as in the first step, write f(g) for the (3w-name
»-i

of f eQw, Q n = V Q f ; define gf, for ^e/J2+1 , and put
o

Write Q£>i = Vr-f'Qfi1, ^^VV-^i, and define F after (3.3) with

(*) In [7], use was made of conclusions somewhat different from (3.8). For the
present use we prefer (3.8) to those; (3.8) itself easily derives from (9.3)-(9.5),
[7] after a simple application of an isomorphism.
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E, OS*, g, A(T, Q90, A(S, «2) in place of £, Q9°3 r, a, b, then

Setting H={o)i Qn-name of a) differs from ^J-name at less than

places}, by (3.9) and 1°

setting

6 = {w e Q9^ :

one has

Take / as in (*) in the above, then since m(Gr\Cc)<r, m(Gr\Dc)

)3 there is an iQ such that IQ=TioI satisfies

m

so that

77l(/0AC)> 1~"4r , 77l(/0AD)>-

As in pp. 384-385, Q7]3 to a tc; € ©, we can let correspond f (g) of a

^6©', with m(wr\q)>Q, and to a we@\Q) that of a remaining § € 2)'

in a 1-1 way; w has the same f^-name as JD€^ with p^)W, we apply

3° and 4° to B = IQr\D, A = IQr\C, to have a partition fP2 satisfying

(3.10) \h(T, &2)-

(3.11) D(^i5

Apply 2° to ^4, then
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ni . nz
CZ 19^ fl(\/ %lfP \/ Tl ^D } <T^O.J-^y Us\ V *J L^Zj V J- ^r2) ^^"

0 0

The right-hand members of (3.10), (3.12) being able to be made arbitrarily

small, we have shown that there exists a ^2 such that

(3.13) 0<A(S, 6£2)-

«2 #2

(3.14) VS'6?2, V
0 0

(3.15)

Continuing in this way, we obtain partitions fPi, ^2? • • • such that

(3.16)

(3.17) d(VS'^*, V
0 0

(3.18)

Then &m->ZP£<£i, TTI->CXD, and for an arbitrary a and

On making TTI

i.e.

which proves the theorem.

Remarks. Obviously we can apply the same method to the case

when (£l = (K.2 = --'9 thus having the proof of Lemma 13, T7]. Doing so,

the presence of the first inequality sign in (3.16) which rests on the

estimates (2.2), (2.9) simplify the final steps in the proof of Lemma 12,

[7].
Using the proof of Theorem 1 we can prove the following proposition.
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Proposition. For WBA's with finite entropies entropy is a complete

invariant.

Proof. Let 2\, T2 be WBA's with h(Tl)=h(T2}<^. To show

TI ~ T2, the case when T^ T2 €E (a) is settled in Q7], whereas the case

when Tf € (5) and the defining generators &i of T1,- (i = l, 2) satisfy

($ie2i, |6?i| = j^ 2 | ̂ ^ is included in Theorem 2. So that, in view

of reductions in §1, we are sufficed to deal with the case where TI G (a),

r2G(5) with \&2\=oo.

A key to the proof of this case is the following lemma.

Lemma. Let (Z\, (R) be a WBP. Let T be a BA with BG fp

= (pi,p2, • • • ) > 1^1 =°° and h(Ti, (K) = h(T). Let Q be a partition such

that

(3.19)
Given £>0, there exist Qi.^P.k such that

(3.20) (7\,«)~(r,Q)

(3.21)

(3.22)

Lemma 14, Q7] is modified to the above, adapted to the present

situation, with the notations preserved.

Let us write TQ for the automorphism T reduced to 0.°!^.

To prove our lemma, we need a slight change in Ornstein's proof as

will be mentioned below.

Let fp = (pl,p2, ...) and define a partition ^'CQ-- as in p. 388,

Define

and similarly &f
k from 3^f = (p[9p

f
29 • • • ) > & = 1, 2, ..., so that
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HI is taken so large that

for z^>

Obviously 62;C<2-oo and by the above h(T, <%$

h(T, 6?i). Moreover #>' can be defined so close to & that

r'«i, v
0 0

where in = in(e?, «i, T), ?i = ?(e?, «i, T\

Apply the method of the proof of Theorem 1 with ( T, (kk, 8k} in

place of (5, $!*, dk\ and with ro? ^( in place of T, ̂ i, then one obtains

-~ such that

where e,-, l^^"^00, are positive numbers which can be chosen as in the

proof of Theorem 1 so small that

Now

which can be made arbitrarily small.

The remaining arguments in the proof of Lemma 14, £7] are available

without essential change. Then along the same line as in the proof of

Lemma 15, Q7], we are led to the conclusion of the proposition.
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§4. Isomorphism Theorem

Finally we will prove the following theorem of Ornstein in a different

way from his own proof, but using results in

Theorem 2 (Ornstein). Entropy is a complete characteristic for

WBA's.

Let S, T be such two automorphisms. In view of 3° of §1, the only

case we have to deal with is that S€(8\ h(S) = h(T)<,°o, h(S, &„)

= h(T,<Un\ I<^<oo5 where (kn, Un e 20, &, U are WBG's for S, T,

(S, &n\ ( r, Un} are WBP's, &n \ &, Un^ U. With this remark in mind,

we will begin by proving

Lemma. Let fPiC^, ^iC^2 be finite partitions and 6^1, &2 be

properly ordered (like 9>,Q preceding (2.1)), (S, <#,•) (1 <;*'<; 2), (T, $>i\

(T, &} be WBP'5 with 0<&(S, ^!)<A(5, &2} = h(T, ty\ and let (5, ^0

Then for any 77 >0, natural number u, we can find a

-~ subject to

(4.1) dtVS'&z, \/
0 0

(4.2) 0<h(S, &2)-

(4.3)

Piroo/. After p. 516, choose ^0C^i with ^1 =

and define ^?, ^eSo such that

d( vs -' («x v ̂ 0)=d( "vCQ, v ^
0 0

where Q,=
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Let \Q{\ = \&i\=k, 1^11 = 1^1=^, d, = VVW^),
0

take Q9€2o subject to the conditions

From the representations of gr €E Q«, q^0n

n-l n-l , n~l

?=
0 0

write £(?) = (£0(g), -, f«-i(?)), (f(g), C(?)) = tfo(g), • • - , f»-i(?); Co(?), -,
C»-i(g)) for the names of ?,§;?,•(?) = ?,<§) for g^)g. For (a, #) = (a0,

-,a«;/So, ..-^Je/r'x/r1, let

1=0

and put

write a = h(T,^l\ b = h(T,^\ c = h(S,&2\ Wn = \/T-iC%, take 0<e
o

^ . / b — a c — b \ j j £<min(a, — - — , — - — ), and define

cs(6 - e),

w(c - e)} , w(a>) 6 Q9W ;

put

Then if n is large

(4.4) m(E\ m(F\ TO(C/) > 1 - r/4 (i = 1, 2, 3).

If we drop a subset of measure zero from F, and pick an a) from the

rest, we have always 7n(gf(o))r\ti;(a))r\-F)>0.
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Define

and write ©IQ = @I\@II, then if n is large

(4.5) x$(iv:we@2,

^r/4+e«(c-6

In accordance with the representation of q£zQn as

0

where a?,, are ^?-cells, we will write (?<>(?), •••,?»-!(?);

for the name of q. Define

H = {a) : Qw-name of a) differs from its (2w-name at less than n Si

places},

n : m(wr\Fr\H) > o},

put C=C2ACio, C=C2nCio, where ®i0 = ®i\@u. Since obviously

CSn, SioC^io, we have
Recall

and use 1° of §2 to get

whence
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notice that

from (4.4), (4.5). From this, correspondingly to (4.5) we have

Therefore

ro(Cio) ^ *i(Ci) - m(Cii) > 1 - 3r/4 - ff x,

From these observations, if g€@io , to every w£E(§2, ^C^5 we can assign

the name (?(g), C(gO) of a g€E(93 , whereas if 96^10X^105 to every w€(§23

wC^ 5 that of a gG(83 , in a 1-1 way.

Take / as in (*) of §3, then likewise we have A= T*° Ir\C, B

= TiQ Ir\ C subject to the conditions that m(A) 2> (1 — 4r)//i, 771(5)

2^(1 — 4<Ji — 47')/7&, J"1^, O^J^TI — 1, are disjoint, and the same with

B.

Now turn to define a partition ® = (d0j • • • ? ^) as follows: let

if the assigned name for w€L&2\A is (?0, • • • , Sn-il Co? - - - 5 C»-i)5 and let

Since (f0j - - - j f»-i) is nothing but the name of q^>w, one obtains

or

Since the naming for w is a 1-1 map, as in 4° we can easily check
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that the last inclusion is actually an equality, then T1 w (0<^'<^ — 1,

w£&2\A) are cells of T({A, Ac}nyT~i(^1 V2))). In this case the
o

partition {$f, Tlw : w G ©2 \ A, Q<^i<^n — 1} playing the same role as Q

in the proof of 4°, by the same argument as there, we obtain

\h(T, Q8)-

and hence if n is large

(4.6)

Applying 2° to ^4 and 3° to 5 we obtain

(4.7) d(v
0

(4.8)

where ^0 = 7^8- (4.7), (4.8) imply (4.1), (4.3).

Proof of the theorem. Take positive numbers £1, £25 ••• such that

Let T be a given WBA with WBG U G 22, Un e 20 such that Un\U

and (T, #„), 0^^<co? are WBP's. Then according to 3°, §1, there is a

BA S with BG «e2i, ^We20 such that &n f 6? and &(5, &J =

Without loss of generality we may assume that

Obviously ££(<?). For the proof it is sufficient to show that S is

isomorphic with T.

By the isomorphism theorem in Q7], we can find fPi^So such that

(4.9) (S, «0-(T, 00, (5>0-- = (5>D^ = (^i)--,

hence an integer k\ with
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At this stage apply the above lemma to have (4.1)-(4.3) with z£ = /ii(£?,

6£2, S\ y = ^(^ij ^23 S\ where r&i, 77 are the functions introduced in the

proof of Theorem 1. Next apply Lemma 12, Q7] to (4.1), (4.2) and find

such that

(4.10) (5,
(4.11)

whence &2 with

(4,12)

£1 being made arbitrarily small we may assume that

(4.13) <J(«i,(5>2)*1*1)<2-1 + 2-2.

With (4.10) as a starting condition in place of (4.9), apply the same

procedure as above and find out 2)2 = 2)£2,

(4.14) (S,«3)-(7;3>3), (5>s)=.= («3)!:.,

(4.15) £>(^3, ^2 V ©2) < 6£2, D(&,, 5>3) < 6(£2 + d2\

(4.16) 5(^/3, (^3)^3) <2-3

(4.17)

(4.18)

Proceeding in this way, we conclude that there exist

ki, k2, ••• satisfying

(4.19) (

for any p<n. On making TI— >oo5 and writing fP = li
»-»

5(^5 ^>_.) ^ <J(^, 5>*Ji,) ̂  2 X 2-*

for any p. This implies that

(4.20)
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On the other hand from (4.19) we have

(4.21) (S,#)~(r,3>).

Combination of (4.20), (4.21) proves the theorem.

§5. Remarks Related to Stationary Processes

In this concluding section we will discuss about applications of iso-

morphism theorems to stationary processes. Introduce a measurable space

(E, 3), with (T-algebra 3 on an abstract space E, as the state space of

stochastic processes which will appear in the following considerations.

Suppose it is separable in the sense that there is a sequence of increasing

finite subalgebras Qp, l^/?<°°, and c?=v3> Consider a strictly
P>I

stationary sequence X={xn(a)\ — oo<^<oo} on a probability space

(J2, 7^5 P) with state space (£,£?); denote by j4b
a the subalgebra of -fl

generated by xn(a)\ a<^n<^b, and Pj4b
a that generated by the sets like

{xn(a))ern, a^n<*b}, A^; write j4*.. = lim^J, $-«,= lim &b
a.

a-» — oo a-> —oo &-»oo

We are concerned with the measure preserving transformation T acting

on ;<?!!«, produced by X\ ^g is a generator of T.

In several papers has been dealt with the representation problem:

Under what conditions is it possible that xn(a)) is representable as a

function of the shift of a sequence of independent identically distributed

random variables fn, —^o<^<oo, (Bernoulli sequence), thus xn = f ( - - - ,

6nf^i, 6ng0, 6
n£i, • • • ) ? 6n£k = ?n+k ? Except for Gaussian processes, no

effective answer has been brought out. X is regular if

(5.1) lim -fl-^ is trivial.
W_>_00

If this is the case, T is a Kolmogorov automorphism. According to \Jo}

and Ornstein's recent result that there exists a Kolmogorov automorphism

which is not a BA, a necessary and sufficient condition that xn should

admit the specified representation is that T is a WBA, whereas the

condition (5.1) is neither necessary nor sufficient. Strengthening (5.1)

Rosenblatt proposed the condition
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(5.2) lim sup\P(A/^B)-P(A)P(B)\=Q

Up to now, notwithstanding its intimate connection with central limit

theorem Q2]3 no relation between this and the representation problem

has been revealed. Ibragimov strengthened Rosenblatt's condition to the

following :

(5.3) ^(A)=supess.sup|P(5|^00) — P(-B)|->0. as
Be=4J?

Take F \ E 3~p and consider

(5.4) Jw= sup 2 \p(x-ner-H9 ..., xQer0, xkeFk, • • - ,

where J1^ runs over all 9^-atoms. After an elementary reflection An is

shown to be equal to

= 2 ( max \P(A\#°.n-)-P(A)\P(da>)
J A^Af"

= 2 f max \P(A\ft-^h)-P(A)\P(du>\
J

where » = ^».

Now

being submartingale in the obvious ordering, there holds
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whence

(5.5) sup An
n

= lim lim 2 \QlmP(d(d) = 2 (lim lim QlmP(dco)'9
/-»«> 7w-»°° J J /-»«» w-*°°

lim lim Qlm = \i

The probability space (J2, ^~oo, P) being separable, with no loss of gener-

ality it may be considered as a Lebesgue space, then Rohlin's Lebesgue

space theory [8] applies to the set function A->Q(A) = P(A\

considered as a "canonical system of signed measures"; thus

2 lim

and for £>0, there exist Z, Aej4l
Q, Be^ such that

o>) -£<2\Q(B)\<2\Q(A)\+e

Therefore

(5.6)

each member existing with probability 1.

Let us write

(5.7) pal*(fi>)

and in the same spirit, define

(5.8) 2al»

where
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then

By martingale property, there exist the limits lim^ali, lim all with
£-»«, £-»00

probability 1.

1° There holds:

(5.9) lim^oCi^O a.e. iff

k~-*°° J

(5.10) limoCi^O a.e. iff

and the implications

(5.11) (5.3) =» (5.10)=^ (5.9).

Either of the above three conditions is sufficient for X to admit the

specified representation by a Bernoulli sequence.

It is possible that (5.3) is not true but (5.9) is true.

Now we turn our attention to stationary Markov sequences. Let

{xn(a)\ — oo<ra<oo} be such a sequence with state space (£", 3),

determined by the stationary probability measure p(dx) on E and &-step

transition probability p(k}(oc, dy). An easy calculation shows that

2 aliP(da>) = Ep(dxE\p(k\x, dy)-P(dy)\.

It is known [2] that <p(k)-+Q, &->oo, iff

(*) This condition is what the authors of [3] call absolute regularity. They derived
interesting results for Gaussian stationary processes, which rest on this notion.
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(5.12) sup( \pw(x,dy)-p(dy)\=0(pk\
x JE

where p is a constant with 0<p<l. As is well-known this condition is

certainly assured by Doeblin's condition. When X is a mixing stationary

sequence constructed by the ra-step transition matrix pW and its stationary

probability measure {/?/}, using the sole fact that p("j-+pj as ft->00
3 it

is straightforward to show that

i 3

as &-»oo.

Summarizing the above arguments we have the following criterion.

2° If the transition probability has the stationary probability measure

p(dx) and satisfies

lim }Ep(dx)}E\p(k\x, dy)-p(dy)\=Q,

then the generated stationary process X is representable by the shifts of

a Bernoulli sequence of random variables. It is the case when X is

generated by a transition probability measure satisfying Doeblin's condition

or by a mixing transition matrix pW which has the stationary probability

measure.
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