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Remarks on the Isomorphism Theorems
for Weak Bernoulli Transformations
in General Case

By

S. Ito*, H. MuraTa®** and H. Toroki

§1. Intreduction

Recently D.S. Ornstein [ 4] proved that entropy is a complete in-
variant for Bernoulli shifts with finite generators. M. Smorodinsky [ 7]
generalized this important result to the case of Bernoulli shifts with
countable generators. Ornstein [ 5] also proved the above fact for Bernoulli
shifts with infinite entropy. On the other hand N.A. Friedman and
Ornstein [ 27] obtained the result that a weak Bernoulli transformation with
finite generator is isomorphic to a Bernoulli shift with the same entropy,
so that entropy is also a complete invariant for these transformations.

Moreover Ornstein [5] proved that if 7 is a mixing (or only
ergodic) transformation on a g-field & and & 1is an increasing union of
invariant sub-0-fields &#; such that each T|&; (restriction to &;) is a
Bernoulli shift with finite entropy, then T is itself a (generalized) Bernoulli
shift. Combining this theorem and the results mentioned above, the
isomorphism theorem for generalized weak Bernoulli transformation (see
Definition 1 in §2) is easily obtained, because these transformations res-
tricted to each approximating 0-fields are weak Bernoulli transformations
with finite generators and hence Bernoulli shifts. This argument, however,
make use of the results of [ 2], [4], 5] and [7]. Therefore it seems

to be significant to prove the isomorphism theorem in a straight way,
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unifying the above mentioned results.

The purpose of this note is to give a direct proof of the isomorphism
theorem for generalized weak Bernoulli transformations. Another proof of
this theorem was also obtained by G. Maruyama, which appears in this
issue, from another view point using a different way.

The proof of the theorem will be divided into two steps. Firstly we
will prove the theorem for weak Bernoulli transformations with countable
generators having finite entropy (Proposition 1) in §3. We do this without
using the isomorphism theorem for Bernoulli shifts. So this includes the
results of [4], [7] and [2], since Bernoulli shifts are weak Bernoulli as
a matter of course. Next in §4 we will prove the theorem in general
case, which includes the results of [5]. For this purpose we use the results
in §3, especially Lemma 11 which is a stronger form of Lemma 7 of [4].
Although the method of our proof is analogous to the ones in [ 2] and
[5], we will go into details to serve the purpose of this note.

In §5 we will give some examples of weak Bernoulli transformations
which contain mixing Markov shifts with countable generators. §2 is the
preliminary one where we will prepare notations and definitions, especially
the definition of generalized weak Bernoulli transformations.

We want to express our thanks to Professor D.S. Ornstein who

kindly sent us preprints of his papers.

§2. Notations and Definitions

Let (X, #, m) be a non-atomic Lebesgue probability space.l Trans-
formation T is always invertible and measure preserving. Let P, Q, R,...
denote measurable partitions of X, and when they are at most countable,
we always assume they are ordered partitions. We will define some nota-
tions for (ordered) partitions. Given a partition P=A{py, ps---}, N(P)

denotes the number of the atoms pi, ps,-.- of P and

1) cf. [6] for the notions of the Lebesgue space and measurable partitions.
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is the probability vector of the atoms of P. If N(P)>N(Q) then we
add ideal atoms ¢ to Q to make N(P)=N(Q), and then we define

d(P, Q)= ; |m(p;)—m(g;) ],
D(P, Q)= ; m(p; A g;).

Given a set F with positive measure and partitions P and Q, we will

write
m(A|F)=m(ANF)/m(F), Ac#,
P/F={pi:NF, p:NF,...},
D(P, Q| F)=D(P/F, Q/F)= ; m(p; N g;| F).

Given partitions P and Q, Q&P denotes that there exists a partition
P such that P is a refinement of P and D(P, Q)<e. We write QCP if
D(P, Q)=0. Note that P can be realized in the following way. Consider
a partition L=4{ly, l3,---} of the index set {1, 2,.-., N(P)} of P. Then
we can define a partition Lp of X as Lp={ \/ pi, j=1, 2,---}; hence
N(Lp)=N(L). Thus there is a partition L sucI;Echhat Lp=P. IfQisa
subfamily of the sub-o-field generated by P, then we will also write Q C P.
If P and Q are partitions of X, PVQ, \n/ TiP,... will denote the ordered
partitions with a canonical ordering. ’

Now we define several entropies as usual. Given countable partitions

P and Q, we have the following
H(P)=— z? m(p;) log m(p;),

H(P|Q)=— 125 m(g:)m(p;|g:) log m(p;|qs),
K(P, T)= lim %—H(P\/ -\ T*1P)

hT)= sgph(P, T

where the supremum is taken over all finite partitions of X. Note that
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H (P]i} TiP) decreases to A(P, T).

V\;Z will remark the following. Let £ and £, denote the collections
of all countable partitions and partitions with at most k£ atoms respectively.
Firstly, (£, d) and (£, D) are complete separable metric spaces. Next,
the entropy H(P) is continuous in (2, d) and (£, D). At last, the
entropy A(-, T) is continuous in (£, D), and it is only lower semi-
continuous in (£, D). These properties will be used in the proof of the
theorem.

Given count?ble partitions P and @, we say P and () are e-independent

and denote P Q if
2 Im(ping)—m(pim(q)| <e.

Although this definition is different from the one in [ 4], it is easy to see
that they are equivalent, and our deﬁn1t1on is convenient in the point that
if P_LQ and PCP, QCQ then P_LQ

Definition I. A countable partition P is called weak Bernoulli for
T if for each ¢>0 there exists K=K(e, P) such that \/ TP_JE_K\;nT‘P
for every n—=0. A measurable partition P is called generalzzed weak
Bernoulli for T if there exists an increasing sequence {P,} of finite parti-
tions such that \7P,, P and each P, is weak Bernoulli for 7. In this
case the mvarlant sub-0-fields generated by V T ‘P, (n=1) are called

-l il

approximating 0-fields. The transformation T is called (generalized) weak
Bernoulli if T has a (generalized) weak Bernoulli generator.
§3. Countable Case
In this section we will prove the following

Proposition 1. Two weak Bernoulli transformations with the same
entropy whose weak Bernoulli gemerators are at wmost countable and have

finite entropies are isomorphic.

For the proof of this proposition, we prepare some lemmas in which
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we are concerned only with countable partitions.

Lemma 1. Let e>0 and let Qi Q;, 0<i<n, Py, Py be partitions
such that

(1.1) on_ YQ

(1.2) Q(’,i }"/QE,

(1.3) d(V Qs ¥ 0D <s,
(1.4) d(Qo)=d(Py), d(Qg)=d(Py).

Then there exist partitions P;, P}, 1<i<n, such that

(L.5) AV QI=d(VP), d(VQ)=d(\ Py,
(1.6) é D(P,, P})<3ne.

Noting the difference of the definitions of e-independence, this lemma
is the same as Lemma 3 in [ 2], so we may omit the proof.

Similarly the following lemma is the same as Lemma 1 in [7], so
we also omit the proof.

Lemma 2. For each €>0 there exists {=C(e)>0 such that if the
partitions P and Q satisfy

2.1) H(P)—H(P|Q)<L,

&
then P1Q.

Using this lemma we can prove the following

Lemma 3. Let €¢>0 and {=C()>0 as in Lemma 2. If Py, P,(Q
and R are partitions such that

(8.1) Py CP,
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(3.2) P10,

(3.3) H(P|Q)—H(P|QVR)<EL,
then

(3.4) Py LQVR.

Proof. Note that
H(PIQ)—H(PIQVR):ng(q) {H(P/q)—H(P/q|R/q)}.

Put Q:={q€Q; H(P/q)—H(P/q|R/q)<{}. Because of (3.3), we have
&
m(\JQ1)>1—e. Lemma 2 implies P/g L R/q for all g€ Q. Therefore

|m(pNgNr)—m(p)m(gNr)|

p=Puicq.rer
= p%rm(q){Im(Pﬂrlq)-m(plq)m(rlq)l
+m(r|q)|m(plg)—m(p)|}
= 5. ™@ 2 lm(pNrig)—m(plgm(r|q)]
+ qév'e‘;, m(g) i{; |m(pNr|g)—m(plg)m(r|q)|
+ 2 |m(p Ng)—m(p)m(g)| Zm(r|g)

< A4e.

As we remarked in §2, the entropy of countable partitions is not
continuous in d-metric, we have to add one more condition on the entropy

to Lemmas 8, 9 and so on in [2]].

Lemma 4. Let P be weak Bernoulli for T with H(P)<oo, and let
e>0. Let K=K(e/4, P) be as in Definition 1. Let H be a positive integer.
Then there exist a positive integer ny and 7>0 such that if T’ and P’
satisfy
1) aCN' TP, K\:/H TP )<,

—n,
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(4'2) |h<P9 T)—'h(P,, T/)l <773
43)  H(V T'P)—H(V T"P)| <7, —ne<j<K+H,

then for each m=0,
K+H i, & 0 i,
(4.4) VvV T'P 1LV T"P.
K —m

K+H K+H 0 . -n-1
Proof. Let Pi,=V T'P, P,=VT'P, Q=V T'P, and R=V T'P.
1 K - -n—m

We define Pj, Pj, Q, and R’ in the same way for 7' and P". Since
0 R
H(P,|Q) decreases monotonically to H(P;| V T'P)=(K+H)h(P, T) as

n—>co, we can take ny=n so large that
1) (K+H)h(P, T)+e/4a—H(P,|Q)=a>0,
where £={(e/4) is as in Lemma 2. The choice of K implies
&l4
(2) P; L Q.
Now take 7>0 so small that (2) and (4.1) imply
e
(3) Pz L Q H
(4.2) implies
4) |(K+HhP, T)—(K+H)h(P', T | <a/2,
and (4.3) implies
(5) [HP|Q)—H(P{]|Q)| <a/2.
Then (1), (4) and (5) imply
(6) H(Pi|QH)<H(P{|Q'VR")+eL/4.
Therefore (3) and (6) imply (4.4) by Lemma 3.

Lemma 5. Let P be weak Bernoulli for T with H(P)<oco and let
€>0. There exist positive integers ny, ny, and >0 such that if T’ and
P’ satisfy
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(5.1) d(\ TP\ T"P)<y,
0 0
7 i j )
(5.3) \H(V T'P)—H(V T'P)| <7, 0<j<ni,
0 0

then there exist partitions P; and P; of X such that

(5.4) dV P)=d(V T'P), n=0,1,2,.,
0 0
(5.5) d(N P)=d(\ T"P"), n=0,1,2,..,
0 0
(5.6) 31 D(P, P))<en, n=>ns.
i=0

Proof. Let K=K(g/50, P) be as in Definition 1. Choose H so that
K/K+H<e/8. Apply Lemma 4 to H, K and ¢/12, then we have ny
and 7<e/12. Let n1=n4++ K-+ H. The choice of K and Lemma 4 implies

K+H+n . €/12 »n ) K+H+n iy €l12 = Vi,
¢9) v T'P L v T'P, Vv T'P" L. VTP
K+n 0 K+n 0
for all n=0.

We will define P;, P} inductively. Let P, and P be partitions of X
such that

(2) d(Po)=d(P), d(Pg)=d(P").

Let Qy=P, Q;=P’, and
(3) Q=T"%'P, Q;=T"""P, 1<i<K+H.

Because of (1) (in case of n=0), (2) and (5.1) we can apply Lemma 1
to get P;, P}, KXi<K+ H such that

K+H K+H .
(4) d(P,Vv \é P)=d(PV \If T:P),
K+H K+H .
(5) d(PyV }{/ PH=d(P'V >{/ T"P’),
K+H
(6) __ZKD(P,-,P;)<3(H+1)e/12=(H+1)s/4.

We may now define P; and P}, 1<i<K-—1, so that (5.4) and (5.5) hold
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for n<K+H Now (6) implies
K+H K-1
>, D(P;, P 2 D(P;, P+ (H+1)e/4
i=0 i=0
< 2K+ (H+1)e/4<(K+H)e/2.

Let n2=K+H
Assume we have already defined P; and P;, 0=Xi<_j(K+H), so that
(5.4-6) hold. Assume also

t(K+H)
(7 > D(P, PH<<(HA+1)e/4, 1=t<j.

HE+H)-H o

By (5.1) we have
n+K+H . n+K+H .
®) d( Vv TP, Vv T'P)<e/12.
n+K n+K

Let no=j(K+H). Because of (1), (5) and (5.4-6) (for n=;(K+H))

we can apply Lemma 1 (P, and Pj are replaced by \} P; and \D/ P; res-
0 0
pectively) to get P;, P}, no+K<i<no+ K+ H, such that

9) d(\/P\/ \/ P) d(\/TPV \/ TP),

no+K

(10) d(\/P\/ \/ P) d(\/T”P\/ \/ T”P),

nog+K no+K

11) Z D(P,, P <(H+1)e/4.

i=ng+K

We define P;, Pj, no<i<no+K, so that (5.4) and (5.5) hold for
n=_j+1)(K+H). For j(K+H)<n<(j+1)(K+H), (7) and (11) imply

i}oD(P,-, P)<2Kj + j(H+1)e/4+2K + (H +1)¢/4
<ne.

We will now prepare the following two lemmas which will be used
to prove the approximation lemma (Lemma 8). Since they are exactly
the same as Lemma 10 and 11 in [2], we will omit their proofs.

We consider a transformation 7, and a finite partition R={r;; 1<
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i<k} Let Q=\z; T{R. Note that an atom g€ Q has the form
0

%

QI/\T?%, lgsi

0

I
(74

i

A

k, 0

u.

Let I={lo, l1,---, l,_1} be a sequence of length n(>u), where 1<[;<
k, 0=<i<n. Let N(l,q) be the number of times that (s, Su—1,---, So)

appears as a consecutive subsequence in /; hence N(I, ¢)<n—u.
Definition 2. Let ¢>0. [ is called an e-sequence for Q if
IN(Z, q)/n_m(Q)I <59

for all g€Q.

Lemma 6. Let R, T1, and Q be as above and ¢>0. Let T be a
transformation and let Bj, 1=j<J, be measurable sets such that T'B;,
0=i<n, 1<j<J, are disjoint. Assume u/n<e/4 and X1-\j0 \_/ TB
satisfies m (X1)>1—e/4. Let Li={l;;, 0<i<n}, 1<, be e/4k“+1
-sequences for Q. Let P=A{pi, .., pi} be a partition such that p,/X;=
\J T’B; and p,/X§ is arbitrary for 1<t=<k. Then

15:=t

(6.1) d(V TP, Q)<e.
0

If the sequences l;, 1<j<"J, are distinct, then

(6.2) V THPVA{B, B D{TB;: 0<i<n, 1<j<J},

J
where B=\J B;.
=1

Lemma 7 Let T be ergodzc Let R={ry,---, +} be a finite parti-
tion and Q= \/ TiR. Let L,= V T7*R and write = [—\ Ti'r, €L, as
L=, L1y Ln- 1) Let a>0 and b>0 be arbitrary. Then there exists
no such that for all n=n, we have a subfamily L,CL, such that

m(\JL,)>1—a, and I € L, implies | is a b-sequence for Q.

Now we can prove the following approximation lemma which is
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different from the Lemma 12 in [27]. Precisely speaking, the condition
that T is “Bernoulli” in [ 2] is only used in changing the partition P to
satisfy the condition 0<<A(T:)—h(P, T)<{ in the case A(T,)=h(P, T).

Noting this point, we can state this lemma in the following way.

Lemma 8. Let R be weak Bernoulli for T, with h(R, T1)=h(T})
and H(R)<oco. Let ni, ny, and 3 be as in Lemma 5 for R, T, and
¢?/3. Let T be an ergodic transformation with h(T)=h(T:). Let P' be a
partition such that

(8.1) d(N TiR, \ T*P)) <7,
0 0
J 7 A
(8.3) | H(Y T{R)—H(V T'P)| <7, 0=j<nu.

Then given 0>0 and a positive integer u, there exists a (finite) partition
P such that

(8.4) d(\:/ TiR, \({ TiP)<0,

(8.5) h(Ty)—h(P, T)<0,

(8.6) [HCY THR—H(Y T'P)| <6, 0<j=u,
(8.7) D(P', P)<6e.

Proof. We first assume A(T1)=h(R, T1)>h(P', T).Let R={ry, rs,---}
and define the k-section R(k)={ry, r2,---, re-1, \J i} of R. P’(k) is also

=k
difined in the same way. Then we can take k so large that

@ d(? TiR, \V TiR(k))<0/2,
0
i i
2) H(V TiR)—H(V TiR(E)<0/2, 0<j<u,
0 0

() A(Ty)—h(R(K), T1)<d/4,

4 AP, T)<WR(k), Ty,
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(5) D(P’, P'(k))<e.

Denote R=R(k), and also P=P’'(k). Take 0;<06/2 such that if Q; 0=C

i< u are partitions with %k atoms and if d(V TiR, VQ;)<0: then
i i 0 0

|H(V TiR)—H(VQ:)|<0/2, 0<j<u. Because of A(T:)=h(T), there
0 0

exists a finite refinement W of P such that
(6) O<A(R, T)—h(W, T)=8<0/4.
Cheoose 1 <min (01,2, ¢/3, 5/2) such that D(W’', W)<7 implies
W', TY>h(W, T)—0/4.

We will now choose n so large that the following conditions (7)-
(10) are satisfied.

(7) Applying Lemma 7 to Ti, R, and QZ\?T{R, we have a sub-
family ' CL,= n\_/l T7*R such that m(\U.#")>1—7/10, and [ € %’ implies
lis a 61,4ku+1-sequ0ence for Q.

(8) Applying the Shannon-McMillan-Breiman theorem to 7T and R,
we have a subfamily ¥ C L, such that m(\U¥")>1—71/10, and [€ 2"
implies m(l) is between 2 LMETDEAI3Iz

(9) Applying the Shannon-McMillan-Breiman theorem to 7 and W,
we have a subfamily %, C n\_/l T*W such that m(\U#",)>1—7/10, and
w€E W, implies m(w) is betwoeen 2~ CrW,T)xRI3]n

(10) n> max (n1, nz) such that u/n<04, nf>3, and m(A)<1/n
implies H({4, 4,°})<4.

Apply Lemma 5 to obtain partitions R}, P;, 0=i<n—1, such that

n—1 n—1 . n—1 n—1 .
d(VR)=d(V T{'R), d(\o/Pé)=d(\/ T-'pP’),
0 0 0
n-1
Y. D(R}, P})<ne%/3.
i=o
Let ¢ be an automorphism of X such that
n—1 n—1 .,
o(VP))=V TP
0 0

Putting R7=¢(R}), 0<i<n—1, we have
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n—1 n—1 X -1 .
dVRD=d(V T1'R), %, D(R}, T~P')<ne*/3.
0 0 izo
Hence there exist partitions R;=A{r;1,. rix}, 0=i=<n—1, such that
7n—1 n—1 L
11 d(\o/R;)= d(V T1*R),
0
_.1 L
(12) Y D(Ri, T-"P)<ne?/3.
i=o

n—1 _ n—1 .
Let Lf¥=VR; and P,=V T 'P. A sequence (sq, S1,---» Sp_1) 18
0 0

called the L}-name of x if xenf_\lr,-,sl, and we denote this by s*(x)=
(s¥(x),---, s¥_,(x)). Similarly (so, gl,---, sy_1) is called the P,-name of x
if xEnf\IT"'pst where P={p,---, ps}, and we denote this by 5(x)=
(So(x),-(-)., 5,-1(x)). Note that for each atom [€ L} s*(x) is the same
for all x€l. Hence we can talk about the L}-name s*(I) of l€L}.

_ -1
Analogously we denote the P,-name of w€ \V/ T 'W by 5(w). Define
0

o(s*(x), 5(x))= the number of {i;s%(x)7~=5;(x)},

G=Ax; 0(s*(%), 5(x))>ne}.

Then
nem(G)<E{o(s*(x), 5(x))}= nZ::Z mi{x; sT(x)7#35:(x)}
1 n—1 L 2
:—2—— 1-;0 -D(Ri, T"P)<n8 /6
and so

(13) m(G)<e/6.

Let Z*={l€L¥; s*(I) is a 0ysu--sequence for Q}, L*={lcL¥;
m(l) is between 2 CMETVEAIZIML ang @ = @*N\Z*  Then (7), (8) and
(11) imply

14) m(UL)>1—7/5.

Let ¢={we# ,; m(wN(\UL)NG) =m(w)/2}, then
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m(X\ V%)= éﬁ) m(w)

w

= 2 {mwN(ULING)+m(wN({(\JLING))}

weEE

1

< é}g m(w) + m(X\ \U.Z)+m(G)

|

and so
15) m(X\U®)<2{m(X\ VL) +m(G)}<e/2.
Note that (6) and (10) imply

max m(l) < 2 CHR.T)-AI3]n
ez T

<%- 9-Lh(W,T)+8[31n gé—min m(w).

WEY n

To each wE¥ we assign [€% such that INwNG°s~¢g. Then any ¢
elements in % correspond to at least ¢ elements in .¥. Hence, applying
the marriage lemma, each wE& % can be assigned an [(w)€.% such that

o(s*(l(w)), 5(w)) < ne and the mapping [ is one-to-one. Since
the number of elements of #7,
gzth(W,T)w/an
<(1_T/5)2[h(ﬁ.T1>—BIS]n
< the number of elements of %,

we can extend the map [ from %, into % in the one-to-one way. Thus

we obtain
(16) for any wE # ,, s*(l(w)) is 01,44u+1-sequence for Q,
(17) if we® then o(s*(I(w)), 5(w)) < ne.

Rohlin’s theorem asserts that there exists a set F’ such that T°F’,
0<i<n-—1, are disjoint and
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n—1 .
18) m(\J T'F)>1—71/10.
0
Becaue of (15) we have

5 m(T F'AXN\U®))<e/2.

i=0

Therefore for more than half of indices i,
(19) m(T'FN(X\\U®)<e/n.
Analogously using (9) we have
(20) m(T'F'NX\\U#)<7/5n

for more than half of indices i. Hence there exists i=1i, such that (19)
and (20) hold together. Put F= T®F’. Then T'F, 0<i<n-—1, are dis-
joint and

(21) m("\;/1 THFAUB)>1—7/10—,
(22) m(’@1 THFENUW ) >1—37/10.

We will now define the partition P={p1, ps,---, px} as follows. Let
n—1 .
X,=\J T'"(FNU¥ ,) and A=FN\\U% ,, then
0

Define P on X; as

pi/ Xi=I{T'w; we#,/F, st(l(w)=j}, 1<j<k.

Obviously P/X,C W*= \/ T'(W\/{F, F°}). Extend P to X{ so that
PC W*. Then Lemma 6 implies

(24) d(\V T°P, V TiR)<0y,
0 0

(25) {T'w;wew,/F, 0=<i<n—1}CP*=\ Ti(PV{d, 47}

because s*(I(w)), wE W ,/F are distinct.
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We will now check the conclusions (8.4-7). By (1) and (24)
d(\:/ TiR, \0/ TiP)<0.
The choice of 0; and (24) imply
O TR —H(Y T'P)| <3/2, 0= <u,

which implies (8.6) by (2). Because of (25) and (23), there exists a
partition W' P* such that

D(W, W)=D(W, W'| X5) m(X5)<67/10
which implies
W', T)>hW, T)—0/4
by the choice of 7. Hence using (10), (23), (6) and (3) in turn
h(P, T)Z=h(PV {4, A°}, T)—H({4, A°})
> h(P*, T)—0/4
=h(W, T)—0/4
>hW, T)—0/2
> h(R, T1)—30/4>h(T1)—0.
On the other hand (10) and (6) imply
h(P, TYSH(WH*, T)
=h(W, T)+H{F, F°})
<MW, T)+BF=nR, T1) <h(T).

n—1 .
Thus (8.5) holds. Next, let X;= \/J T (FN\U%); hence m(X§)<e+7r/10.
. 0 )
Since piNXe=\U{T'w; we¥/F, sf(l(w))=j} and pNXz=\U{T w;
wEF/F, s(w)=j}, (17) implies

k

D(P, P|X2)TTL(X2)= ]§1m<(p]sz)A(P]ﬂX2))
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=2 2 mw)o(s*({(w)), 5(w))
wEENF
<2ne m(F)< 2e.

Therefore
D(P, P)=D(P, P| Xz)m(Xz)+ D(P, P| X§)m(X3)
<2e+2e+7/5<5e.

Thus (5) implies (8.7).

Finally, although we have assumed A(T:)>h(P’, T) at the beginning
of this proof, we can deduce to this case even if A(T1)=h(P’, T).
Indeed, in this case consider a product transformation S;= T;x T’ on the
product space Xx Y where T’ is a Bernoulli shift with generator R'=
{r{, r4} on Y. Consider partitions R=Rx R on Xx Y, ie. R=(Rxvy)
V(vxXR'), and P=P'\Vyx and R=RVvyx on X, where vx={X} and
yy={Y} are trivial partitions. Then by choosing the measure of r; so

small, we have
@ d(V TiR, VS{R)<Y,
® WT)H<7,
@ |HY TR~ H(Y SR <7, 0=j=v,

where v= max (u, n;) and %'< min (6/2, ). By choosing 7 so small,

we have

(8.1) d(\V SiR, N TiP) <4,
0 0
(8.2) 0<h(S1)—h(P, T)=h(T")<7,
i _ i
(8.3) IH(\({Si'R)-—H(\/ T"P)|<y, 0=j=n,
0

and A(S)=A(R, S))=h(T)+MT")Y=h(T)+h(T").
Now we must remark the following three facts. Firstly the proof of
this lemma in the case 0<A(T;)—h(P', T) (and A(T,)=h(T)) is also
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available even if the space on which T, acts is different from the space
of T. Secondly the conditions A(T1)=h(T) and 0<A(T,)—h(P’, T) are
only used in taking a partition W satisfying (6). Lastly ni, ns, and 7
which are defined in Lemma 5 for R, T; and 52/3 remain unaltered even
if we replace these by R, S; and ¢2/3. Noting these facts, we can apply
the previous argument to R, Sy, ni, ns, 7, T and P, because we can take
a partition W which satisfies a relation similar to (6) by choosing 7’
small enough even when A(S;)>A(T)=h(P’, T). Hence for every 0/2

we have a finite partition P such that

(8.4)' d(g‘/sgﬁ, })/ T'P)<5/2,

(8.5) 0<h(S)—h(P, T)<0/2,

(8.6 (Y SR—H(Y T'P)| <0/2, 0=j<u,
(8.7) D(P, P)<6e.

By changing the order of P we have a partition P with the same atoms
as P such that (8.4-7) are valid.

Remark. In Lemma 8, without assuming (8.1-3) there exists a parti-
tion P which satisfies only (8.4-6).

In the following, we denote (P, T)~(R, T,) if d( vV TiR)=d( v T'P)
0 0
for all u=0.

Lemma 9. Let R be weak Bernoulli for T, with h(R, T:)=h(T))
and H(R)<eoo. Given >0, there exist 0>0 and a positive integer u
such that if T is ergodic with h(T)=h(T,) and P’ satisfies

9.1) d(\:/ TiR, \/ T'P') <0,
0
9.2) KT —h(P', T)<,
(9.3) |H(V TiR)—H(V T'P)| <8, 0<,<u,
0 0

then there exists P such that
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(94) (P’ T)'\"(R, Tl)a

9.5) D(P’, P)<e.

Proof. Let ni(¢) and 7(¢) be as in Lemma 5 for R, T; and &2/3.
Let %'(e)= min (4(e), €) and ¢'=¢/12. Let 0=7%'(¢’) and u=n,(¢"). Apply-
ing Lemma 8 for %'(¢'/2) and u;> max (u, ni1(¢'/2)) we get P; such
that

d((;/’ TiR, \0/ TiP)<7/'(¢/2),
h(T)—h(Py, T)<7%'(€'/2),
(Y TIR) —H(Y T'P)| <7/, 0=jZu,
D(P', P)<6¢'.
Assume we have P,, 1 <k=<n, such that
® d(V TR,V T'P)<7/(E/2",
@) h(T)—h(Pi, T)<7(¢/2,
@ H THR—HC TR <1/6/2), 0=j<u,
(4) D(Py_1, Py)<6¢'/2F 1,

where u;> max (u;_1, n1(e’/25), k).

Applying Lemma 8 for 7'(¢'/2"*!) and u,,,>max(u,, n1(e’/2"*1), n+1)
we get P,,; which satisfies (1-4) for k=n-+1. Thus we have a sequence
of partitions Py, k=1, 2,..., each of which satisfies (1-4). Since the space
(2, D) is complete, (4) implies there exists a partition P such that

D(P,, P)—>0 as k— co.
For each pair k, n such that u,=>n, (1) implies

d(\;} TiR, V TPy <7'(¢/2".
0
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Letting k—occ we obtain (9.4). By (4)
D(P', P) 3. D(Py, Por) +D(P', P1)<12¢ =e.
E=1

Remark. In Lemma 9, without assuming (9.1-3) we have a parti-

tion P which satisfies only (9.4).
Thus we have the following

Extended Sinai’s Theorem. Let R be a weak Bernoulli generator
for Ty with H(R)<oo and T be ergodic with h(T,)<h(T). Then there

exists a partition P such that

(P9 T)N(R’ Tl)-

Proof. Choose a partition Q such that A(Q, T)=h(T;) and H(Q)< oo.
Then we can apply Lemma 9 to T acting on VV T‘Q and T, so obtain a
partition P which satisfies the conclusion.

Using Lemma 8 we have

Lemma 10. Let P and Q be weak Bernoulli for T respectively and
H(P)< oo, H(Q)<eoo. Assume there exists 7v>0 such that

(10.1) (P, T)=h(Q, T),
(10.2) QC SZ TP,
(10.3) P 7(_&2 7.

Then given ¢>0 and € >0 there exists a partition P,C V T'Q and a
positive integer K such that

(10.4) (P1, T)~(P, T),
(10.5) QEC_\Z TPy,

(10.6) D(P, P))<2r+¢,
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(10.7) D(Q, (@) <e,
where ¢ is the canonical map from (P, T) to (Py, T).

Proof. Let 0<e;<min(e/6,¢’). By (10.2) there exists K; such
& K1 .
that Q<1 \/IT’P. Lemma 9 implies there exists 0 >0 and u such that
—K1
if P'CV TQ satisfies

(1) d(\V TP,V T'P") <0,
0 0
(2) mP, T)—h(P', T)<0,

j . j .
3) |H(\0/ T’P)—H(\o/ T'P)| <o, 0<j

<u,

then there exists P;C \7 T'Q such that
(4) (Pl’ T)N<Pa T)s
(5) D(P, Py)<eijzk,+1-

Let 0<0:;<0/2. Choose 0<e;<e; so that D(Q, Q)<3e, implies
h(Q, T)—0:<h(Q, T). Choose K,> max (K;, u) such that Q&g/z T'P.
Define the k-section P(k)={pi,---, pr-1, \Jp;} of P. Then there e—)fizsts k
such that P=P(k) satisfies =

(6) D(P, P)<ey,

285 Kj L
M Qv TP j=1,2,

(8) d(V TP, \O/ TiP)< 0y,
0
i . i
@) |H TP)—H(V T'P)| <8, 0=j=<u.
0
Choose 0<02< min (01, €2) so that if P’ is a partition with k& atoms and

u L u ) 7 - 7 .
satisfies d(V T'P, Vv T'P")<0, then |H(VT'P)—H(V T'P)|<0d,,
0 0 0 0
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Choose n so large that K;/n<0,/10. Rohlin’s theorem says that
there exists a set F & \/ TiQ such that T'F, —n<i<n, are disjoint and
Xl—UTF satisfies m(X1)>1 02/10. Define the partition R={T"F,
T'”“F,---, T*F, X;}. By (10.3) we have a partition PC(}T"Q such
that D(P, P)<r. -

Consider now the partitions VT (PVQ)IVPVR(C {Z T‘P) and

v T"Q\/POR(C VT Q). Since V T?Q has no atom, there exist partitions
P C D T'Q, —n<i<n, satisfying
(10) d(VTH(PVQVPVR)= d(Y(P;V T'Q)VPVR),
T'P,/T*'F=P;/ T*"F,

-K .
for —n<i<n, —n<k+i<n. Hence putting X,= n\jo‘F we have

—n¥ K,
11) _I\Z TiBy/X,= _5/2 P/ X,
(12) m(Xz)>1—0,/5.
Thus we have
(13) d(v TP, \/ TiPy)= d(\:/ \:/Tfﬁo)
< 2m(X5) < 204/5.
Let P;=P;(k) be the k-section of P;, —n<<i<n. Then (13) implies
19 AV TP,V T'P)<3,,
and so the choice of 0, implies
(15) |H(\Z/ T"P)—H(\;)Tfpo)|<al, 0<j<u.

Because of (7) we have a partition L’ of the set of all sequences
(n-&; n_ge155 nx,), 1Sni=<k, —K;<i<Kj, such that D(L‘” Q)<25,,

j=1, 2 (see §2). Let L”’ and L‘”(] 1, 2) be defined as in §2 by \/P~
-K;
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and \/ TP, respectively and LY). Then (10) implies D(LY’, Q)< 2¢;,
j=1, 2 and (11) implies L”’/Xz LY/X,, j=1,2. Thus (12) implies

(16) D(LY), Q)<2e+2m(X5)<3e;, j=1, 2.
In particular D(L{), Q)<3e; which implies
(A7) wQ, T)—0:1<A(LE, T)=h(Po, T).

Put P'=P,, then P’ satisfies (1-3). Indeed (8) and (14) imply (1);
(17) and (10.1) imply (2); (9) and (15) imply (3). Hence Lemma 9
implies there exists a partition P;C 4 T'Q satisfying (4) and (5). Let
P*-—Pl(k) the k-section of P; and let L% be defined in the way of §2
by \/ T:P* and LY. Then by (5)

-K;
(18) D(LE, L¥) < D( Y TiPE N TPy
-k, —K1
= (2K, +1)D(P*, Py)<ey,
and so (16) implies
D(Q, L)< 4e:<e
which implies (10.5) for K=K;. Since (10) and (6) we have
D(P, Pl)éD(P, P)+D(P3 p0)+D(P09 po)
=2D(P, P)+D(P, P)<2r+¢1,

which implies (10.6). Finally note ¢(L@)=L%. Then (16), (18) and
the choice of LY imply

DQ, @) =D, L3)+D(LS), LB+ D(¢(LP), Q)

< 351+€1+2€1<5.

Lemma 11. Let R and P be weak Bernoulli generators for T. and
T respectively and h(T)=h(T) and H(R)<oo, H(P)<eo. Let(Q be a
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partition such that
(11.1) @ T)~(R, Tv).

Given >0, there exist a partition Q1 and a positive integer K such that

(11°2) (Ql, T)’\'(R, Tl))
(11.3) PC VT,
(11.4) D(Q, Q<e.

Proof. Let 0<e;<e/4. Because of (11.1) we can apply Lemma 10
to obtain P; C \VV T7Q such that

(1) (Ph T)’\"(P: T):
@ VTP,
(3) D(Q’ ¢(Q))<81:

where ¢ is the canonical map from (P, T) to (P, T). Now (1) implies
h(Q, T)=h(P, T)=h(P;, T). We can again apply Lemma 10 to obtain

Q'C V TPy and K>0 such that
@ (@, D~@Q, T)~(R, T,
® PV,

(6) D, Q)<3er.

Let Q1=¢ *(Q"). Then (4) implies (11.2), (5) implies (11.3), and (3)
and (6) imply

D(Q, Q)=D($@), Q=D (Q), O)+DQ, Q)<4e1<e.

Now we can prove Proposition 1.

Proof of Proposition 1. Let R and P be weak Bernoulli generators
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for T, and T respectively with A(T,)=h(T) and H(R)< oo, H(P)< oo.
By the Extended Sinai’s Theorem there exists a partition @ such that
(Q, T)~(R, T,). Then Lemma 11 implies that for &;<27! we can find
a partition @7 and K; such that

(D Q1 TH~(R, T,
(2) D(Q> Ql)<813
21 K .
(3) P(_\l/{ T°Qs.
Choose €;<27? so small that (3) and
(4) D(Q1, Q2)<e2

imply

2714272

K, i
G P C V. TQ.

_Kl

Apply Lemma 11 to obtain Q, and K, satisfying (4),
(6) (Q2> T)'\’(R, Tl);
272 K, .
(7 PV TQ:
..KZ

Suppose now we have got Q, and Kj,.-., K, such that

(8) (Qm T)N(Ra Tl))

27427 K

9 P C V TQ, 1<j<n.
Choose €,,1<27 "' so small that (9) and

(10) D(Qm Qn+1)<5n4-1

imply
“Iteet2Tnl g

2 .
an PV T, 1=j=n

Apply Lemma 11 to obtain Q,,; and K,,; satisfying (10),
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(12) (Qn+1: T)'\’(Rs Tl)’

a3 pP’'C

n+

V 1 TiQn+1-

—Knpa1

Thus by induction we have the sequence of partitions Q,, n=1, 2,..., which
satisfy (8), (9) and (10). Then (10) implies there exists a countable
partition Q.. such that

D(Qy, Q=)0 as n—>co.
Then (8) implies
(14) Qw, T)~(R, Th),
and (9) implies
(15) PCVTQ..

Since P is a generator, the proposition follows from (14) and (15).

§4. General Case

In this section, using the results of the preceding section, we will

prove the following theorem of Ornstein.

Theorem. Two generalized weak Bernoulli transformations with the

same entropy (including the case o) are isomorphic.

To prove this theorem, we must prepare some lemmas. The essential
one is Lemma 14 which is similar to Lemma 4’ in [5] and is proved by
some modified argument. Using this lemma and Lemma 11 we can get
Lemma 15 and 16 respectively, which prove our theorem. For com-

pleteness we will state the proofs of these lemmas.

Lemma 12. Let ¢>0 and £=&(c) as in Lemma 2. If countable
partitions P and R satisfy

H(P)+ H(R)—h(PVR, T)E,
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then

. € n N i—1 .
TP 1LV T'RV V TP, 0<i<n.
0 0

& n )
Remark. This conclusion implies P 1. V TR when =0.
0

Proof. Noting the following relations

n 3 ” . ” . i—1 .
KPVR, T)= lim —L _[H(\ T'R)+ . H(T'P| v T'RV V T'P)],
now 41 0 0 0 0

K(R, T)= lim i H(\/ T'R),
0

e n+1
H(T*P| ”io/ TRV "\071 TIPYS H(T'P| \/ TRV io;leP),
for m>0, i<k<i+m, we have
WPV R, T)SKR, T)+H(T'P| ¥ T'RV .-\-0/1 TiP)

. . i-1
<H(R)+H(T'P| v T'RV \V T?P),
0 0

for any n=0, 0=<i<n. Then the assumption and the above inequality
imply

X n . i-1
H(P)—H(T'P| v T’RVv v T’P)&, 0Zi<n.
0 0
Therefore the lemma follows from Lemma 2.

Lemma 13. Let €0 and ¢>0. Let {P;}, {R;}, 0<i<n, be the
sequences of countable partitions and m be a probability vector such that

& n i-1

(13.1) P;LVRVVP 0<i<n,
0 0

(13.2) {R;}, 0<i<n, are independent,

(13.3) d(P, m)<e, 0<i<n.
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Then there exists a sequence of partitions {P;}, 0 i< n, satisfying

(13.4) 1P;, R;}, 04, j<n, are independent,
(13.5) dP)=rn, 0<i<n,
(13.6) D(P, P)<e+e, 0Zi<n.

Proof. Note that the following statement is useful for the proof; if

&
P1Q and d(P, n)<¢’, then there exists a partition P such that P and Q
are independent, d(P)=m, and D(P, P)<e+¢'. Using this fact we can

easily prove this lemma by induction.

Lemma 14. Let T be an ergodic transformation and h(T)<oo. Let
>0, C=C(e) be as in Lemma 2, and 0(c)= min ((*/2), €%/2)/2. If a
probability vector m={m;;i=1} and countable partitions P and R satisfy

(14.1) {T'R}, —o<i< oo, are independent,
(14.2) H(m)=h(T)—H(R),

(14,3) d(P, m)<6(e),

(14.4) H(P)+H(R)—h(PVR, T)<0(e),

then given 0>0 there exists a (finite) partition P such that

(14.5) d(P, 7)<,
(14.6) H(P)+H(R)—h(PVR, T)<0,
(14.7) D(P, P)< 15e.

Proof. We may assume 0<6(e). Let #'={x}; 1<¢<I} be a (finite)

probability vector such that the following two conditions are satisfied;

W dm, )= 3 |m-mil <,
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) H(z)=H()+a, 0<a<%.

By the assumption (14.4) we can apply Lemma 12 and we get, for every
n=>0,

. €2 . i-1
3 T'PL VvV TRV vV TP, 0Zi<n,

0 0

and using (14.3) and (1), we get
(4) d(T'P, n")<e?/2.

So by (3), (14.1) and (4) we can apply Lemma 13 to get a sequence of
partitions {P;; 0<i<n} such that

(5) {Pi, T'R; 0=i,j=<n} are independent,
(6) dP)=n', 0=i=n,
(@) DB, T'P)<el, 0<i<n.

By the ergodicity, 7 has a countable generator, so that we have a

refinement Q of PV R satisfying
(8) mQ, T)=h(T).

Choose 0<¢&’< min (1/2, ¢/2, 6/12) so small that the following two con-
ditions are valid;

(9) D(Q, Q)< 10¢' implies h(Q, T)—0/4<h(Q’, T),
(10) d(P, n')<10¢’ and N(P)<! imply
|H(P)—H(z")| <0/4.

Choose 7 >3/a so large that the following three statements are valid:
_ n—1
(A) By Shannon-McMillan-Breiman theorem setting Q= \ T*Q there
0

exists a Q-measurable set Y such that

11) m(y)>1-—¢,
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(12) 2—n(h(T)+a/3)< m(B) < 2—n(h(T)-—a/3)’ Be Q/ Y,

(B) we will denote the PV R-name of x€X as 5(x)={((x), tx(x));
0<k<n—1} when x€ nf—\lpsk(x)ﬂ Thr, (x) for By={p%; 1<i <1} and
R={r;; i=1}. Let N(j; P, x) be the number of k whlch satisfies 5,(x)=j].
Then N(j; P, G) is defined naturally for G€& \/ (Pk\/ T*R). Using the
law of large numbers, by (5) and (6), setting P \/ (P, T*R), there

exists a P-measurable set Y such that
13) m(Y¥)>1-¢,
(14) 2—n(H(,r')+H(R)+ a/3) < m(G) < 2-n(H(n’)+H(R)—a/3), Ge P‘/ Y,
(15) |N(j; P, G)/n—m}|<e/l, GEP/Y,

(©) m(4)<1/n implies H({A4, A°})<0/4. By the choice of n in (A)

and (B), we can estimate
(16) N(Q/Y)<2”(h(T)+a/3),
17) N(P/ Y)>2”(h(T)+a/3).

Now we will also define the PV R-name s(x)={(s;(%), ts(x)); 0=
E<n—1} of x€ X by the same way as above. Note that this name is
the same in every atom ofn\_/1 T*). Let E, denote the set of all points
x such that 5,(x)5=sx(x) ando D, denote the set of all points x for which
5:(x) ard sp(x) are distinct in at least e places, then we have "fm(Ek)g
em(D,). On the other hand, for P={p;; i=1} and P,={pt; 1<i<1},
we have D(T*(PVR), P,/ T*R)=2m(E,). Then setting W=Dj we

have
(18) m(W)>1—-c.

Let & be the collection of atoms B in Q/Y which satisfy m(BAWNY)=>
m(B)/2 and let Z=\UZ# the union of sets in #. Then we can estimate

(19) m(Z°)<2(e+¢)< 3e.

Now we can assign to each atom BEZ# an atom G=¢(B)eP/Y
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such that BNGN\ W =g in a 1-1 manner. This can be done by the same
way as in the proof of Lemma 8 using the marriage lemma because of
(16) and (17). Note that two names s(B) and 5(¢(B)) are the same in
the second component and are distinct in at most ne places in the first
component. We can extend ¢ to a 1-1 mapping from Q/Y into P/Y
by (16) and (17).

Using Rohlin’s theorem and the same argument as in the proof of
Lemma 8, we get a measurable set F such that T7*F, 0<k<n—1, are
disjoint, m(”\—oj1 T*F)>1—¢ and

(20) m(”\;jl T-HFNZ)>1—¢ —6e,

(21) m("\;j T-HFAY))>1—3¢.

We will now define the partition P={p1, P2+ piy as follows. Let
Xlzn\-/l T*(FNY) and A=FNY. For simplicity we denote the PV R
-name of ¢(B), BEQ/Y as 5(B)={(5:(B), tx(B)); 0<k<n—1}. Define
P on T*4, 0<k<n—1, by

hNT*A=U{THFNB); BEQ/Y, su(B)=j}, 1=j=lI.

And extend P to X% so that X$Cp;. Then this partition P satisfies
(14.5-7). Indeed

m(B) = 3, (5O T D)+ (30 X))

n-1 —

=2L 2 mFENB)+m(p;NX])]

k=1 BeQ|Yy
se(B)=j

= 2. N(j: P, Bym(FNB)+m(X%),

BeQ!Y

by (15) and (21) we have

22 dB, )= 3 Im(t)—rj]

l —
< 2 nm(FNB) 2 |N(j; P, B)/n—m;| +2m(X%)
BEQIY i=1
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<7< 3,
so by (1) we have (14.5);
d(P, m;)<d(P, n")+d(x’, 1)<0.
Secondly the choice (C) of n implies
H({4, 4°})<0d/4.

On the other hand putting P¥=1\/ T*(P\v {4, A°}VVR) we have
-n

{T"*FNB); 0=k=n-—1, BEQ/Y} P,

so we have a subpartition Q' of P* which coincides with Q on X; so
that D(Q, Q) <2m(X5)<8¢. Therefore by (8) and (9), these relations
imply

MT)=hQ, T)<WQ', T)+d/4
<h(P*, T)+0/4
<hPVR, T)+H({4, 4°})+06/4
<WPVR, T)+0/2,
and (22) implies
|H(P)—H(z")| <d8/4,
so by (2) we have (14.6); -
H(P)+H(R)—h(PVR, T)<0.
Finally noting the similarity of the following two relations

T-HBNF), si(B)=j
6, sB#),

biN T*BNF)=
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T-*(BNF), si(B)=j

[} ) Sk(B)#]

piN T BNF)=

and noting the estimation by (20)
m(Xs) <& 466 where Xp=X\ SZT"*(FF\Z),
we have
D, P= 3 3wl (T BAF)S (BN T HBAF)]

+D(P, P| Xy)m(X>)

IN

§ 2 2m(T*(BNF))+13¢

kiSg(B)Fsk(B)

< 2ne 2, m(BNF)+13e<15e.
BEa

Remark. 1f we only assume (14.1) and (14.2), we obtain P which
satisfies (14.5) and (14.6).

Using this lemma we can prove the following

Lemma 15. Let T be an ergodic transformation and h(T)<co. If
a partition R satisfies

(15.1) {T'R}, —o<i< oo, are independent,
(15.2) H(R)=h(T),

then there is a (finite) partition P such that

(15.3) H(P)+H(R)=h(T),

(15.4) {TI(PVR)}, —oco<i< oo, are independent and P and R are
independent.

Proof. Take a (finite) probability vector w={m;; 1=i<I} such that
H(n)=h(T)—H(R). Then, by the previous remark we can apply Lemma
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14 to get a (fiinite) partition P, for every 0, such that
(1) d(Po, m)<0(d0),
(2) H(Py)+H(R)—h(PyVR, T)<0(dy),

where 0(0,) is defined in Lemma 14. Choose 0,0, n =1, we can apply
Lemma 14 to get a partition P; for 6(0;) such that

(3 d(Py, m)<O(01),
(4) H(P)+H(R)—h(P.VR, T)<0(01),
(5) D(Py, P1)<150,.

Then we obtain a sequence of partitions {P;}, i==0, by induction such
that

(6) d(Pj: 7I)<0(6]), ]=03 13"'9 .-
(7) H(Pj)+H(R)_h(PJVRa T)<6(6j>a ]:03 1, myee

(8) D(Pj_l, Pj)<156j—1, ]=19 29"‘9 n,:---

Choosing 0, so small that (8) implies the existence of a partition P
such that D(P,, P)—>0 as n—>oco. Then d(P)=n and P is a finite par-
tition and satisfies (15.3). On the other hand for every n=0 we will take
A€ T(PVR) and Be ";7 Ti(PVR), and take A€ T"(Py\V/R) and By €

”\;/1 T(PyV R) corresponding to 4 and B respectively for every k=>0. Then
|m(ANB)—m(A,N\By) | < (n+1)D(P, P,) >0, k—>co,
|m(4)—m(4p)|—>0,  |[m(B)—m(B)|—0, k—>co,

and by (7) Lemma 12 says

52 n 582 n

n—1 n—1
TP, I Vv T'RV V TP,, T"R 1 V TP,V V T'R.
0 0 0 0

Therefore we have
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3842 n—-1
T*(P,VR) L \o/ T'(P,V R)
and then

|m(Ak/\Bk)—m(Ak)m(Bk)|<%6,2,—+0 as k—» oo

o -1

Hence T"(PVR) and n\/ T'(PVR) are independent. Similarly we can
0 .

prove the independence of P and R. Thus we have (15.4).

Remark. 1f H(R)=h(T), then we take the trivial partition as P.

For proving our theorem it is convenient to state a special case of

Lemma 11 in the following

Lemma 16. Let P be a weak Bernoulli gemerator for T and H(P)
<oo. Let Q be weak Bernoulli for T such that h(Q, T)=h(T) and
H(Q)<oo. Given €>0, there exist a partition Q. and a positive integer
K such that

(16.2) PC _\2 T°Q,,
(16.3) D, Qv)<e.

Proof of the theorem. Let P be a generalized weak Bernoulli genera-
tor for T. Take an increasing sequence of finite partitions {P,}, n=>1,
such that each P, is weak Bernoulli for T and C P,=P (hence h(P,, T),
WP, T)=h(T)). "

Since P, is weak Bernoulli for T and H(P;)< oo, there exists a finite
partition ;Q; by Proposition 1 such that

1) 10:.C }{. TP,
(2) {TiQ,}, —=o<i< oo, are independent

3V T{Q,=V TP (Hence H(Q)=h(Py, T).)
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Applying Lemma 15 for P; and 7, we have a finite partition 1Q,C
\/ TP, such that

(4) HGQ)+HGQ)=h(P,, T)
(5) {T'(101V1Q2)}, —o0<i< oo, are independent and ;Q; and Q,

are independent.
Let 0<e; <2 ! and take K;>0 such that
& K, A
(6) P C V TiQ.
-k
Choosing 0<e;< 272 so small that the following statement holds.
21 K

(7) D(:1Q1, 20Q1)<ep implies P; C —\1/{ T30;.

Applying Lemma 16 for P,, T and 10,V 102, we have partitions
201, 20: C V TP, and K;>0 such that

(8) {T(30:1V2Q2)}, —o0<i< oo, are independent and ,Q; and ;Q,

are independent,
(9)  d(201V2Q2)=d(:1Q1V10Q2),
& K .
(10) Pz < \{{ T (ZQIVZQZ)a
—482
(11) D01V 2Q2, 101V 10Q2)<es.
Hence by the choice of &;, (11) implies
27! g, )
(12) PV ThHO

Applying Lemma 15 for Ps;, T and ,Q:V 202, we have a partition
20sC V T'P; such that

(13) H(:Q1)+H(:Q:)+ H(:Q3)=h(Ps, T),

3
(14) {T'(V 209}, —=<i<oo, are independent and {,Q;}, 1 <7 <3,
1

are independent.

Similarly we get a sequence of partitions {;Q;; 1<j<<i+1, i=1} and
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a sequence of positive integers {K;}, i=>1, by induction such that
(15) Y"QJC y Ti ns nQn+1< y TiPn-rl,
. n+l
(16) {T'(V .Q;)}, —o0<i< oo, are independent,
1
17) {.Qj}, 1=<j<n+1, are independent,

m>a§@ﬁa§mw,

2" M et 2T

Kn . om

(19) Pm < V T1( Vv an)a lgmgn,
—Kn 1

(20) D( \1/ ﬂQJ') \1/ n—loi)<2-n,

n+1
@) X HGQ)=h(Par, T).
By (20) we obtain partitions ..Qj, j=1, such that
D(:Qjs mQj)_’O, as n—» oo,

Then d(.Q)=d(;0)=d(;-107), {-Q;}, j=1, are independent by (17),

{T(V .Q,)}, —o0<i<oo, are independent by (16), and by (19) we
1

have

9=k+l o 2

p, < y Tt( \1/ wQJ’)> k=1, 2,
and so
VTV @)=V T'P.

Thus R=<°/.,Q,- is a Bernoulli generator for T and so (R, T) is a
Bernoulli shift.

Now we will prove the isomorphism between the generalized weak
Bernoulli transformations T and T, with A(T;)=h(Ts) < oo. Using the
above argument there exist two partitions R; and R; such that (R, T1)
and (R, T,) are Bernoulli shifts. If A(T;)=h(T;)<oo, then H(R,\)=
H(R;)< oo and therefore R; and R, are at most countable partitions. So
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that T; and T, are isomorphic by Proposition 1.

When A(T;)=h(T;)=oco, we will prove that they are isomorphic to
the Bernoulli shift on the product space H X;, X;=[0,1]. Let P be a
generalized weak Bernoulli generator for T znd h(T)=h(P, T)=co. Then
we can also assume in the above argument that A(P,, T)<h(P,.1, T)
—log 2, n =1 (by choosing subsequence of P,). Noting that the condition
for the choice of 7 in the proof of Lemma 15 is only H(x)=h(T)— H(R),
we can assume that all atoms of ,Q,.; have measures less than 1/2.
Hence for the partition R taken for P and T in the above argument, the
factor space X/R is isomorphic to the space [0, 1] with the ordinary

Lebesgue measure. Thus the proof of the theorem is complete.

§5. Examples

We will now give some examples of weak Bernoulli transformations.
Firstly we will discuss Markov shifts. Let X, be {1, 2,-.., N} or {1, 2,...}
the set of all positive integers. Let X= ﬁ X, where X,=X, for all n.
Let M =(mij)ijex, be a transition matri_; with stationary probability
{m;; i€ Xo};

‘_EZ)I{O mimi=mj, € Xo.
We assume m;>0 for all i€ X,. The pair of M and {m;} gives a
Markov measure m on &, where & is the complete 0-field generated by
cylinders. The shift T on X defined by

(Tx)n=2p_1, n=0, £1,..., x=(-, %o, ¥1,---)EX,

preserves the measure m; T on (X, &, m) is called a Markov shift. We
assume T is ergodic. Thus M is assumed to be irreducible, recurrent
and of positive type. Let M*=(m{¥) be the k-step transition matrix. It

is easy to see that T is mixing if and only if
1) hm m¥=m;, i,jE X,.

Note (1) holds if and only if M is aperiodic.
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Let P={p;; j€ X,} be the partition of X defined as p;={x; xo=j},
n .
j€Xo. Denote Pt= V T'P for j=<n. We will prove the following
J

Proposition 2. P is weak Bernoulli for T if and only if (1) holds.

First we will see that P is a K-partition for T, i.e. [\ P’. is trivial,
if and only if (1) holds. Indeed P is a K-partition for 7' if and only if

@ lim 31T Sl = 5 f(Gms mi=0

for every bounded function f on X, (cf. [8]), and it is easy to see that

(2) is equivalent to (1). On the other hand the Markov property implies
for each n =0

®) pEP‘ln,%Pli_m | m(qu) - m(P)m( 9) |

=,y mnty—n

=2 2, m; sup | 2 m¥— 3 m;|.
i€Xy JCXo jET jeJ

Since k-step transition probabilities of the time reversed chain are m{¥ =

m;m¥/m;, i, j€ Xy, if (1) holds then P is also a K-partition for 7'
and hence

(4) lim sup |m(4ANB)—m(A)m(B)|=0
k- BEP

for each A€ #. Take A={xo=i} and B={x,€ J}, then (4) implies
(3) converges to 0 uniformly in n as k—>oo. Thus mixing Markov shifts
with countable states are weak Bernoulli transformations.

We will now consider the continued-fraction transformation T on X=
[0, 1] defined by

{ {1/%}‘, x#o,
Tx =

0 , x2=0,

with the invariant measure



580 S. Ito, H. MuraTa anp H. Torok1

m(A) = de&.

1 S dx

log 2 al+x’

We will assert that 7T is weak Bernoulli, although it is not invertible.

Consider the partition P={[1/(j+1), 1/j]; j=1, 2,...} of X. Let
n

P?=\/ TP for 0<j<n. It is easy to see that P is a generator. Let

j -
4, be the generic atom of P%. Then it is known that
m(T~ %M 4| 4,)=m(A4) 1+60%), AcZF,

where |6|< M, o<1 and M and p are constants independent of 4, k, n,
and 4, (cf. [1], p. 50). This implies

| m(dpN\4)— m(d,)m(4) | < Mo*.

4,EPF, 4€P2ntk

Thus T is weak Bernoulli with the generator P, and hence each natural

extension of 7T is a Bernoulli transformation.

We remark that Y. Takahashi and one of the authors [ 3] showed
that [-expansion transformations are also weak Bernoulli, while they are

not invertible.
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