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Remarks on the Isomorphism Theorems
for Weak Bernoulli Transformations

In General Case

By

S. ITO*, H. MURATA** and H, TOTOKI

§ 1. Introduction

Recently D. S. Ornstein Q4] proved that entropy is a complete in-

variant for Bernoulli shifts with finite generators. M. Smorodinsky Q7J

generalized this important result to the case of Bernoulli shifts with

countable generators. Ornstein T5] also proved the above fact for Bernoulli

shifts with infinite entropy. On the other hand N.A. Friedman and

Ornstein Q2] obtained the result that a weak Bernoulli transformation with

finite generator is isomorphic to a Bernoulli shift with the same entropy,

so that entropy is also a complete invariant for these transformations.

Moreover Ornstein Q5] proved that if T is a mixing (or only

ergodic) transformation on a (T-field ^ and & is an increasing union of

invariant sub-(7-fields 3F ',- such that each T ^ i (restriction to ^"/) is a

Bernoulli shift with finite entropy, then T is itself a (generalized) Bernoulli

shift. Combining this theorem and the results mentioned above, the

isomorphism theorem for generalized weak Bernoulli transformation (see

Definition 1 in §2) is easily obtained, because these transformations res-

tricted to each approximating (T-fields are weak Bernoulli transformations

with finite generators and hence Bernoulli shifts. This argument, however,

make use of the results of Q2], Q4], [_"5j anc^ CO Therefore it seems

to be significant to prove the isomorphism theorem in a straight way,
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unifying the above mentioned results.

The purpose of this note is to give a direct proof of the isomorphism

theorem for generalized weak Bernoulli transformations. Another proof of

this theorem was also obtained by G. Maruyama, which appears in this

issue, from another view point using a different way.

The proof of the theorem will be divided into two steps. Firstly we

will prove the theorem for weak Bernoulli transformations with countable

generators having finite entropy (Proposition 1) in §3. We do this without

using the isomorphism theorem for Bernoulli shifts. So this includes the

results of Q4], Q7] and Q2], since Bernoulli shifts are weak Bernoulli as

a matter of course. Next in §4 we will prove the theorem in general

case, which includes the results of [J5]. For this purpose we use the results

in §3, especially Lemma 11 which is a stronger form of Lemma 7 of Q4T].

Although the method of our proof is analogous to the ones in Q2] and

Q5], we will go into details to serve the purpose of this note.

In §5 we will give some examples of weak Bernoulli transformations

which contain mixing Markov shifts with countable generators. §2 is the

preliminary one where we will prepare notations and definitions, especially

the definition of generalized weak Bernoulli transformations.

We want to express our thanks to Professor D.S. Ornstein who

kindly sent us preprints of his papers.

§2. Notations and Definitions

Let (X, &) m) be a non-atomic Lebesgue probability space.1) Trans-

formation T is always invertible and measure preserving. Let P, @, /? , - • •

denote measurable partitions of X, and when they are at most countable,

we always assume they are ordered partitions. We will define some nota-

tions for (ordered) partitions. Given a partition P={pi, p2---}, N(P)

denotes the number of the atoms pi, p^-- of P and

1) cf. [6] for the notions of the Lebesgue space and measurable partitions.
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is the probability vector of the atoms of P. If N(P)>N(Q) then we

add ideal atoms 0 to Q to make N(P) = N(Q\ and then we define

J

D(P,Q)= Z

Given a set F with positive measure and partitions P and Q, we will

write

(F\ A

Given partitions P and (), (?dP denotes that there exists a partition

P such that P is a refinement of P and D(P, 0<£. We write (?CP if

^(P? (?) = 0- Note that P can be realized in the following way. Consider

a partition L={/i, Z2,-"} of the index set {1, 2,..., JV(P)} of P. Then

we can define a partition LP of JT as Lp^i \J p^ j = 1, 2,-..} ; hence
f e / j _

N(LP) = N(L). Thus there is a partition L such that £P=P. If Q is a

subfamily of the sub-tf-field generated by P, then we will also write QCP-

If P and Q are partitions of X, P\/Q, V PP,-- will denote the ordered
o

partitions with a canonical ordering.

Now we define several entropies as usual. Given countable partitions

P and Q, we have the following

H(P}=- E m(Pj) logm(pj\

H(P\Q)=- Z m(qi)m(pj\qi) log m(pj | ?,),
« , y

= lim — H(P V • - • V T"- 1P)
n-*ao n

, T)
p

where the supremum is taken over all finite partitions of X. Note that
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H(P | V T1P) decreases to h(P, T).
— n

We will remark the following. Let & and &% denote the collections

of all countable partitions and partitions with at most k atoms respectively.

Firstly, (^, d) and (^>, D) are complete separable metric spaces. Next,

the entropy H(P) is continuous in (^&, d) and (^, D}. At last, the

entropy h(* , T) is continuous in (^, D\ and it is only lower semi-

continuous in (^, D). These properties will be used in the proof of the

theorem.

Given countable partitions P and Q, we say P and Q are e-independent
s

and denote P±Q if

Although this definition is different from the one in [^4], it is easy to see

that they are equivalent, and our definition is convenient in the point that
8 _ _ __ 6 _

if P ±Q and PCP3 (?C<? then P±Q.

Definition I. A countable partition P is called weak Bernoulli for

T if for each £>0 there exists K=K(e, P) such that V T{P ± \/V'P
-» K

for every n^>Q. A measurable partition P is called generalized weak

Bernoulli for T if there exists an increasing sequence {Pn} of finite parti-
00

tions such that \/Pn = P and each Pn is weak Bernoulli for T. In this
i

case the invariant sub-(T-fields generated by V TlPn (rc^l) are called

approximating 6-fields. The transformation T is called {generalized) weak

Bernoulli if T has a (generalized) weak Bernoulli generator.

§3. Countable Case

In this section we will prove the following

Proposition I8 Two weak Bernoulli transformations with the same

entropy whose weak Bernoulli generators are at most countable and have

finite entropies are isomorphic.

For the proof of this proposition, we prepare some lemmas in which
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we are concerned only with countable partitions.

Lemma 1. Let e>0 and let Qiy Qf
i9 0<^<Jft, P0, -Po be partitions

such that

(1.1) (?o-LV(ki

(1.2) Q'0±\/Q'i,
I

(1.3)

(1.4)

partitions P,-, PJ, 1^ i^n, such that

(1.5) d(VO,)=rf
0 0 0 0

(1.6) S

Noting the difference of the definitions of s-independence, this lemma

is the same as Lemma 3 in Q2], so we may omit the proof.

Similarly the following lemma is the same as Lemma 1 in Q7j, so

we also omit the proof.

Lemma 2. For each £>0 there exists C===C(£)>0 such that if the

partitions P and Q satisfy

(2.1)
then P±Q.

Using this lemma we can prove the following

Lemma 3. Let £>0 and Cr==C(£)>0 as in Lemma 2. // P0? P3 Q

and R are partitions such that

(3.1)
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(3.2) P0±Q,

(3.3) H(P\Q)-H(P \QyKXeC,

then

(3.4)

Proof. Note that

H(P\Q)-H(P\QVK) = Z m(q) {H(P/q)-H(P/q\R/q)\.
Q&Q

Put Q1={q£Q;H(P/q)-H(P/q\R/q)<Cf. Because of (3.3), we have
6

— £. Lemma 2 implies P/q±R/q for all q € Qi. Therefore

2 \
q^Q,re=R

2 77i(?){N(pAr|g) — 771(7? 1 5)/?i(r | gr) |
>,?,r

+ m(r | g) | m(p | gr) — 7n(p) | }

m(pr\r\q)-m(p\q)m(r\q)\
p,r

2 "»(?) 2 Tn(pr\r\q} — m(p\q}m(r\q)\
p,r

2

<4£.

As we remarked in §2, the entropy of countable partitions is not

continuous in d-metric, we have to add one more condition on the entropy

to Lemmas 8, 9 and so on in

Lemma 4. Let P be weak Bernoulli for T with #(P)<oo, and let

£>0. Let K=K(£/4, P) be as in Definition 1. Let H be a positive integer.

Then there exist a positive integer n* and 77 >0 such that if T' and Pf

satisfy

K+H K+H(4.1) d( v r'p, v rt



REMARKS ON THE ISOMORPHISM THEOREMS 547

(4.2) \h(P9 r)-

(4.3) \H( V

tf + H" . £ 0
(4.4) v r/lp' j_ v r"p'.

# -»

# + # # + # . 0 -«-l
Proo/. Let Pi- V T'P, P2=\/T1P, Q=VT*P, and 1Z= V Tf'P.

1 A" -n -n-m
We define P(, P^ Qf, and jR' in the same way for T and P'. Since

jff(Pi|(?) decreases monotonically to H(Pl \ V TlP) = (K+H)h(P, T) as

5 we can take n* = n so large that

(1) (K+H)h(P,

where C — C(s/4) is as in Lemma 2. The choice of K implies

£/4
(2) P2 ± Q.

Now take ^>0 so small that (2) and (4.1) imply

5/4

(3) P^-L<2' ,

(4.2) implies

(4) | (K+ H)h(P, D - (JT+ H)A(P', r ) |< a/2,

and (4.3) implies

(5) IJTCPil^-JTC

Then (1), (4) and (5) imply

(6) F(Pi|(?0<^(P(l<

Therefore (3) and (6) imply (4.4) by Lemma 3.

Lemma 5. Let P be weak Bernoulli for T with H(P) < oo and let

£>0. There exist positive integers n\^ n-2, and ^>0 such that if Tr and

P' satisfy
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(5.1) d( V T'P, V r"P')<1?,
0 0

(5.2) \h(P, T)-h(Pf, r

(5.3) \H( V TP)-H( V r'PO
o o

exist partitions P,- awd P,' of X such that

(5.4) d( V P,-) = 4 V r'P), 7i = 0, 1, 2,...,

(5.5) d( VPJ)=d( V r'P'), n = 0,l , 2,...,
0 0

(5.6) £
f =

Let jK:=K(£/50, P) be as in Definition 1. Choose £T so that

K/K+H<e/S. Apply Lemma 4 to H, K and e/12, then we have rc*

and ?7<£/12. Let 7Xi = 7i>(- + ^r+^. The choice of K and Lemma 4 implies

K + H+n £/12 » K + H+n . £112 n
(i) v T*P _L v rz'p, v r/lp7 _L v

.ff+n 0 K+n 0

for all

We will define P,-, P'{ inductively. Let P0 and PQ be partitions of X

such that

(2)

Let QQ = P,Q'Q = Pf, and

(3) Qi=T^K~lP, Q'~T

Because of (1) (in case of n = Q), (2) and (5.1) we can apply Lemma 1

to get Ph Pfi, K<,i<^K+H such that

K+H K+H
(4) d(p0v v Pd=d(py v r'p),

- -

(5) d(P'QV V Pf
i} = d(PfV V

-ff /r
.8- + ̂

(6) 2 Z?(P,, P{)<3(ff + l)e/12
Z=A"

We may now define Pt- and P,-5 l^i^^— 13 so that (5.4) and (5.5) hold
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for n<,K+H. Now (6) implies

K+H K-l
E D(PhP'i)< £

*=o « = o

<; 2K+ (H+ l)e

Let n2 = K+H.
Assume we have already defined Pz and P£, Q^i^j(K+H), so that

(5.4-6) hold. Assume also

(7)
t(K+m-n

By (5.1) we have

n + K + H n + K + H
(8) d( v r'p, v r/lp')<e/i2.

W + /T M + A"

Let nQ = j(K+H). Because of (1), (5) and (5.4-6) (for n=j(K+H»
«0 WQ

we can apply Lemma 1 (P0 and PQ are replaced by V P,- and V P/ res-
o o

pectively) to get P/, Pz-, 7i0 + ̂ ^^^o+^+^5 such that

(9) rf(vp,-v v p,)=d(vr'pv v
0 «o + ̂  0

HQ
(10) d(\/Pfi\/ V P.) = d(VT'lP'V V

0 wo-fA" 0

(11) °-L D(Pt, Pf

We define P/, P,', reoO'Oo + jK, so that (5.4) and (5.5) hold for

n = (j + lXK+ff). For j(K+ff)<n<,(j+lXK+H), (7) and (11) imply

6/4 + 2^+ (ff + l)e/4

We will now prepare the following two lemmas which will be used

to prove the approximation lemma (Lemma 8). Since they are exactly

the same as Lemma 10 and 11 in Q2], we will omit their proofs.

We consider a transformation TI and a finite partition jR = {r/; l<j
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i<:k}. Let Q=VT{R. Note that an atom q£Q has the form
o

Let l = {lo, / i , - - - , ln-i} be a sequence of length n(>u\ where 1 <C lf <

A, 0<Ji<7i. Let -/V(Z, 9) be the number of times that (s«, 5«_i,- . . , s0)

appears as a consecutive subsequence in /; hence 7V(Z, q)<:7i — u.

Definition 2. Let £>0. / is called an e-sequence for Q if

for all

Lemma 6. Let R, TI, and Q be as above and e>0. Let T be a

transformation and let J?/, l^S/SS/, be measurable sets such that TlBj,

Q<:i<n, l^/<J/5 are disjoint. Assume u/n<e/^ and Xi=\J \J TlEi
1=0 y=i

satisfies m (Jfi)>l-e/4. L^ lj = {lj,i, 0<*i<n}9 l^j^J, be e/4F+1

-sequences for Q. Let P={pi^--^pk} be a partition such that pt/Xi =

\J TlBj and pt/Xi is arbitrary for 1<^<;&. Then

(6.1) d(V T{P, (?)<£.
o

If the sequences Z/, l^/^/5 are distinct ,

(6.2) V
w

where B= \J B*.
j=i

Lemma 7. Let 7\ ^ ergodic. Let R = { r i , - - - , rk} be a finite parti-

tion and Q= V T[R. Let Ln= ^ T^R and write 1= *f\ T^r^^Ln as
o o o l

Z = (/o3 Z i 3 - - - 5 ln-i). Let a>0 and 6>0 fe arbitrary. Then there exists

nQ such that for all n^n0 we have a subfamily Lf
nC_Ln such that

— a, and l&L'n implies I is a b- sequence for Q.

Now we can prove the following approximation lemma which is
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different from the Lemma 12 in [_2~]. Precisely speaking, the condition

that T is "Bernoulli" in [_2~] is only used in changing the partition P to

satisfy the condition 0<A(Z\)-A(P, T)<d in the case h(Tl} = h(P, T}.

Noting this point, we can state this lemma in the following way.

Lemma 8. Let R be weak Bernoulli for TI with h(R,

and H(R)<&o. Let HI, n^ and f] be as in Lemma 5 for J?, 7\, and

e2/3. Let T be an ergodic transformation with h(T) = h(Ti). Let P' be a

partition such that

(8.1) d(\/T{R, v '
o o

(8.2) /KZ-O-

(8.3)
o o

Then given <J>0 and a positive integer u, there exists a (finite) partition

P such that

(8.4) d(\/T[R, V
0 0

(8.5) A(ro-

(8.6)
o o

(8.7) D(Pf, P)<6£.

Proof. We first assume h(T1) = h(R, TJ>h(P\ T). Let R = {rl9 r 2 , - - - }

and define the ^-section R(K) = {ri5 r 2 ? - - - 5 r&_i, \J ry} of 7?. P'(^) is also
yg*

difined in the same way. Then we can take k so large that

(1) d(\/T{R, VT[R(k}}<S/2,
o o

(2) H(VT[R)-H(VTiR(ky)<8/2,
0 0

(3) h(Tl)-h(R(k), n

(4) A(P', T)<h(R(k),
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(5) D(P',P'(k»<£.

Denote R = R(k\ and also F=P'(k). Take dt<d/2 such that if Qf, 0<[
U _ U

i^u are partitions with k atoms and if d(V T[R, VQi)<di then

\H(VT{R)-H(\/Qd <d/2,0<^j<su. Because of h(TJ = h(T\ there
o o

exists a finite refinement W of P such that

(6)

Choose r<min(<yi / 2 , e/3, 5/2) such that D(JF, JF)<r implies

We will now choose 71 so large that the following conditions (7)-

(10) are satisfied.
n

(7) Applying Lemma 7 to TI, K, and Q=V T{R, we have a sub-
o

family g"CLn= V TV/? such that ire(W^f /)>l-r/105 and le&' implies
o

Z is a (Ji/^u+i-sequence for Q.

(8) Applying the Shannon-McMillan-Breiman theorem to T1 and R,

we have a subfamily &" ' CLn such that m(\J£>")>l-r/10, and Z € J5f7/

implies 77i(0 is between 2-c/z(^'ri)±/9/3D;z.

(9) Applying the Shannon-McMillan-Breiman theorem to T and W,

we have a subfamily TTnCV r~''JF such that i7i(W)rB)>l-r/10, and

,, implies 7/1(11;) is between

(10) ra> max (711, 7i 2) such that u/n<8i/^ 7i^>3, and m(A)<;l/n

implies ff(-M, ^,c})</9.

Apply Lemma 5 to obtain partitions Rj, Pf
{J Q^i^n — 1, such that

Let cp be an automorphism of X such that

n-l n-l
(p(\/P'i)= V T~1P

o o

Putting R1=<p(R& 0<s i<s7& —1, we have
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0 0 i = 0

Hence there exist partitions Ri = {riiii...i ri>k}, Q^i^n — 1, such that

(ii) d(vRj=d(vT[*R),
o o

(12) "J:D(Ri, T-!F)<ns2/3.
i = 0

71-1 _ W-l _._

Let L*=V.Rj and P n=V T~1P. A sequence (s05 s i , - - -, sw_i) is
o o «-i

called the Z,*-name of ^ if # €E/°\ r,-fS , and we denote this by 5*(^) =
o _

(sJCtf), . .- , 5*_i(^)). Similarly (50, 5 i , - - - 5 5B_i) is called the Pw-name of #
w-l

if A; € f\T~lpSti where P={pi,---, p^}5 and we denote this by s(x} =

( S Q ( X \ - - - , s«_i(^)). Note that for each atom I € L* 5*(^c) is the same

for all x G I. Hence we can talk about the L*-name s*(Z) of ZGjL*.
_ »-i

Analogously we denote the PK-name of w£ V T~1W by s(w;). Define
o

p(5*(^), s(^))= the number of {i; 5*(^

Then

= - i f

and so

(13) 77l(G)<c/6.

Let ^* = {Zei*; 5*(Z) is a *i/4*u+i-sequence for

77i(Z) is between 2-[/z(^Tl)±/9/3>} and ^f-^*^^*. Then (7), (8) and

(11) imply

(14)

Let &={wei^n; Tn(wr\(\J&}r\Gc}:>m(w)/2}, then
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= 2 m(w)

and so

(15)

Note that (6) and (10) imply

_
2 2

To each w;E^ we assign I e & such that lr\wr\G°^0. Then any t

elements in ^ correspond to at least t elements in £?. Hence, applying

the marriage lemma, each w E ̂  can be assigned an l(w) G & such that

p(s*(/(w/)), S(^))^TI£ and the mapping / is one-to-one. Since

the number of elements of

< the number of elements of JSf,

we can extend the map I from i^n into & in the one-to-one way. Thus

we obtain

(16) for any w^W^ s*(Z(t<;)) is (Ji/^M+i-sequence for (),

(17) if wetf then p(5*(/(w)), s

Rohlin's theorem asserts that there exists a set F' such that T1F',

^i^n-— 1, are disjoint and
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(is)
0

Becaue of (15) we have

»=0

Therefore for more than half of indices z,

(19) m(Ti

Analogously using (9) we have

(20) m( TiF'

for more than half of indices i. Hence there exists i = iQ such that (19)

and (20) hold together. Put F=Tl*F'. Then T*F, Q^i<,n — l, are dis-

joint and

(21) m(\jr(Fr\w»>i-r/iQ-e,
o

(22) m( \J Tl(Fr\ \JWn)} > 1 - 3r/10.
0

We will now define the partition P= {pi, p2->- • - , />*} as follows. Let

Xi=\jTi(Ff\\JiTn) and A = FC\\JWn, then
o

(23)

Define P on Xi as

n/F, s?(l(w))=j}9 l^j^k.

Obviously P/XiC W*-= V T\W\/{F, Fc». Extend P to X{ so that
-»

PC W*. Then Lemma 6 implies

(24) d(\/rP, \/T{R)<8l9
o o

(25) {T

because s*(l(w)\ w£ifn/F are distinct.
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We will now check the conclusions (8.4-7). By (1) and (24)

d(\/T[R, V
o o

The choice of di and (24) imply

tf(vri/Z)-flXvr'p)
0 0

which implies (8.6) by (2). Because of (25) and (23), there exists a

partition JF'CP* such that

, W XD m(Xc
1)<6r/W

which implies

by the choice of T- Hence using (10), (23), (6) and (3) in turn

, T}-8/2

>h(R, r1)-

On the other hand (10) and (6) imply

h(P, zo^cr*, r)

<A(r,

Thus (8.5) holds. Next, let X2 = \J Tl(Fr\\J^)\ hence m(Xc
2)<e

o
Since pjr\X2=\j{Tlw, wZztf/F, 5*(Z(ti;))=y} and pj

) = /}, (17) implies

^P\X2)m(X2)= L
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= 2 £ m(uOp(s*(/(nO), !(«;))

Therefore

D(P, P) = D(P, P\X2)m(X2} + D(P, P\Xc
2)m(Xc

2)

Thus (5) implies (8.7).

Finally, although we have assumed h(Ti)>h(P\ T) at the beginning

of this proof, we can deduce to this case even if h(Ti) = h(Pf, T).

Indeed, in this case consider a product transformation Si = T\ X T' on the

product space XxY where Tr is a Bernoulli shift with generator R' =

iri> rz} on Y. Consider partitions R = RxRf on XxY, i.e. R = (Rxvy)

V C v ^ X j R ' X and P=P'\/Vx and R = RVvx on X, where »X = {X} and

VY — { Y} are trivial partitions. Then by choosing the measure of rr
2 so

small, we have

(a)

(c) |#(vri£)-#(vsi£)|<v, o^/^D,
0 0

where v— max (z^, HI) and ??'< min (d/2, 97). By choosing ?/ so small,

we have

(8.1)' d(\/S{R, vrzP)<77,
0 0

o o

and

Now we must remark the following three facts. Firstly the proof of

this lemma in the case 0<A(Ti)-A(P', T) (and h(Tl) = h(T)') is also
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available even if the space on which T\ acts is different from the space

of r. Secondly the conditions h(T^ = h(T) and Q<h(Tl}-h(Pf, T) are

only used in taking a partition W satisfying (6). Lastly n^ n^ and 7]

which are defined in Lemma 5 for R, 7\ and £2/3 remain unaltered even

if we replace these by 5, Si and £2/3. Noting these facts, we can apply

the previous argument to R, Si, HI, n^ y> T and P, because we can take

a partition W which satisfies a relation similar to (6) by choosing 7]'

small enough even when h(Sl)>h(T) = h(P\ T). Hence for every 8/2

we have a finite partition P such that

(8.4)' d(VS{R, vr'P)<<V2,
o o

(8.5)' 0<A(Si)-&(£ T)<8/2,

(8.6)' |#(VSi£)-#(vrP)|<<V2, O^y^ii,
o o

(8.7)' £(P,P)<6s.

By changing the order of P we have a partition P with the same atoms

as P such that (8.4-7) are valid.

Remark. In Lemma 8, without assuming (8.1-3) there exists a parti-

tion P which satisfies only (8.4-6).

In the following, we denote (P, r)~CR, 7\) if d( V T{R) = d(V T'P)
o o

for all i£^>0.

Lemma 9. L^ ^? 6g K;^£ Bernoulli for Tl with h(R, Ti) =

and jfiT(-R)<cxD. Given e>0, there exist £>0 «^6/ « positive integer u

such that if T is ergodic with h(T) = h(Ti) and P' satisfies

(9.1)

(9.2)

(9.3) \H(VT[R)-H(\/TiP')\<d, Q^j^u,
o o

exists P such that
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(9.4) (P, T^(R, rO,

(9.5) 0(P',P)<e.

Proof. Let HI(S) and ^(e) be as in Lemma 5 for R, 7\ and £2/3.

Let ?/(£)=min (•?(£), e) and e' = e/12. Let ff = y(e') and u = 7ii(e'). Apply-

ing Lemma 8 for y'(ef/2) and MI> max (u, 7&i(s'/2)) we get PI such

that

[R, vr''PO<i/(e'/2),
o

r^-^cv
0 0

Assume we have Pj, l^A^/i, such that

Uk Uk

(1) d( V T[R, V
0 0

y . y

o o

(4) i)(P*_1,P»)<6e//2y/o*-i

where LtA> max (w^_i , n\(e'/2k\ k).

Applying Lemma 8 for yf(£f/2n+l) and uM+i>max(i^5 7ii(£72w+1)3 TI

we get Pn+i which satisfies (1-4) for k = n + l. Thus we have a sequence

of partitions PA, k = l, 2,.-., each of which satisfies (1-4). Since the space

(^, D) is complete, (4) implies there exists a partition P such that

^5 P)-»0 as £-»oo.

For each pair fc, TI such that uk^>n, (1) implies

{iz, v r'
0
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Letting &— >°o we obtain (9.4). By (4)

D(P', P)^ E D(Ph, Pk+1) + D(P', P1)<12£
/ =

Remark. In Lemma 9, without assuming (9.1-3) we have a parti-

tion P which satisfies only (9.4).

Thus we have the following

Extended Sinai's Theorem. Let R be a weak Bernoulli generator

for Ti with H(R)<°o and T be ergodic with h(T^<,h(T}. Then there

exists a partition P such that

(p, T}^(R, z\).

Proof. Choose a partition Q such that h(Q, T) = h(T^ and #(<?)< °o.

Then we can apply Lemma 9 to T acting on V T*Q and TI, so obtain a
— 00

partition P which satisfies the conclusion.

Using Lemma 8 we have

Lemma 10. Let P and Q be weak Bernoulli for T respectively and

3 jET(0<oo. Assume there exists r>0 such that

(10.2)

oo

Then given s>0 and £7>0 there exists a partition PiC V T*Q and a
— OO

positive integer K such that

(10.5) <?Cv r'Pi,
-K

(10.6)



REMARKS ON THE ISOMORPHISM THEOREMS 561

(10.7) D(Q, 0(0))<e,

where 0 is the canonical map from (P, T) to (Pi, T).

Proof. Let 0<£i< min(e/6, e'). By (10.2) there exists KI such
£i #1

that Q(^\f T1P. Lemma 9 implies there exists £>0 and u such that
-KI

if P'CVT*Q satisfies
— 00

(1) d(vr'P, v
0 0

(2)

(3) \H(vrP}-H(VTiP')\<8, Q^j^u,
o o

then there exists PI C V T'Q such that
— oo

(4) (Pl5 r)~(p, r),

(5)

Let 0 < ff i < 5/2. Choose 0 < e2 < sl so that D(Q, Q'} < 3e2 implies

h(Q, T) — di<h(Q', T). Choose K2 > max (Ki, u) such that Q(^\} T1P.

Define the ^-section P(k) = {pi,-», pk-i,\Jpj} of P. Then there exists k
j^k

such that P=P(k} satisfies

(6) D(P,P}<e1,

ZSj Kj
(7) Q C V r'P, y = l , 2 ,

-^Ty

(8) d(\/T*P, vr f'P)<ffi,
0 0

(9) |#(vrp)-#(vrp)i<<y l 5 O^/^M.
0 0

Choose 0<£2< min (5i, e2) so that if P' is a partition with k atoms and

satisfies d(\J TP, V TlP'}<d2 then |^T(V T1P}-H(\/ TP') | <<Jl3
0 0 0 0
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Choose n so large that K2/n<S2/lQ' Rohlin's theorem says that
00

there exists a set F£ V T*Q such that T*F, — n<:i<;n, are disjoint and
n — °°

Xl = \jTiF satisfies m(Xi)>l—d2/lO. Define the partition R = {T~nF,

T~n+lF,..., TnF,Xl}. By (10.3) we have a partition PCV T*Q such

that D(P,P}<r.

Consider now the partitions V Tl(PVQ}VP\/R(C V T*P) and
—n —°°

V T*Q\/P\/R(C V T1Q). SinceV T*Q has no atom, there exist partitions
—n —°° — °° — °°

P{C V r''(), -n^i^n, satisfying

n
V

n
(10) d(V r;(

-n

rPQ/Tk+iF=Pi/Tk+iF,

for —n<^i<^n, —n<^k + i<^n. Hence putting X2= \J T1F we have

(11) V T'Po/X2= V
-^2 -K2

(12) m(JT2)> l-52/5.

Thus we have

(is) d(v rp, v rPQ)=d(\/Ph v rTo)
0 0 0 0

<2m(Xc
2)< 28 2/5.

Let P{ = Pi(k) be the ^-section of Pf-3 —n^i^n. Then (13) implies

(14) d(vT{p, vrp0)<fl2,
o o

and so the choice of 5 2 implies

(is) |#(vr<p)-#(vrp0)|<£i, o^/^.
0 0

Because of (7) we have a partition L(;) of the set of all sequences

,..., nKj), l^m<*k, -K^i^Kh such that D(L$}
9 Q)<2ej9

; = 1, 2 (see §2). Let Lf and L%(j=l9 2) be defined as in §2 by V Pi
-Kj
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Kj _
and V rfP0 respectively and L(j\ Then (10) implies D(L(!\ 0)<2e/,

-^
y = l,2, and (11) implies L/X2 = L^/X2, / = !, 2. Thus (12) implies

(16)

In particular D(L(^ Q)<3£2 which implies

(17)

Put P' = PQ, then P' satisfies (1-3). Indeed (8) and (14) imply (1);

(17) and (10.1) imply (2); (9) and (15) imply (3). Hence Lemma 9

implies there exists a partition PI C V T1Q satisfying (4) and (5). Let

P* = Pi(A) the A;-section of PI and let L($ be defined in the way of §2

by V r'"P* and L(1). Then by (5)
-K!

(18) D(L$, L^^D( V rz'P*, V TT0)
^°

and so (16) implies

which implies (10.5) for K=Ki. Since (10) and (6) we have

which implies (10.6). Finally note 4>(L™) = L($. Then (16), (18) and

the choice of L(1) imply

Lemma 11. Le^ ^ 0nd P 6e w^a^ Bernoulli generators for 2\

T respectively and h(T^ = h(T) and H(R)<°o, H(P)<oo. Let Q be a
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partition such that

(11.1) (Q, T)^(R, TO-

Given £>0, there exist a partition Qi and a positive integer K such that

(ii-2) (0i, r)~(/z, ro,

(ii.3) PCvr'd,

(11.4) D(Q, 00<e.

Prao/. Let 0<£i<e/4. Because of (11.1) we can apply Lemma 10
00

to obtain PI C V T*Q such that
— OO

(1) (Pl5 70-CP, T),

(2) Q(tvTiPl,
- 00

(3) D(Q, 0(«)<£i,

where 0 is the canonical map from (P, T) to (Pi, T). Now (1) implies

T) = h(P, r) = A(Pi, T). We can again apply Lemma 10 to obtain

Q'C V T'Pi and J^>0 such that
— oo

(4) (<?', r)-«?, r)-(^, ro,

(5) PiCvrp',

(6) D(Q,Q')<3e1.

Let <?i = 0~1(<?')- Then (4) implies (11.2), (5) implies (11.3), and (3)
and (6) imply

D(Q, eo=

Now we can prove Proposition 1.

Proof of Proposition 1. Let ,R and P be weak Bernoulli generators
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for TI and T respectively with h(TJ = h(T) and H(R)<°o, H(P)<oo.

By the Extended Sinai's Theorem there exists a partition Q such that

((?, r)~CR, TI). Then Lemma 11 implies that for sl<2~1 we can find

a partition Qi and KI such that

(1) «?!, T)~~(R, I\),

(2)

(3)
~^K"i

Choose £ 2 <2~ 2 so small that (3) and

(4) D(Ql,Q2)<ez

imply

2~1 + 2~2 ^"i
(5) P c v r'02.--ffi

Apply Lemma 11 to obtain Q% and K2 satisfying (4),

(6) (Q2, T)~~(R, TO,

2~2 JTz
(7) P C V 2"^2.

-A~2

Suppose now we have got Qn and ^i,---, ̂ « such that

(8) (QH, r)~(*, ro,
2~'+--t-2~B ^Ty

(9) P C V r'0», l̂ ;̂ n.
-^Ty

Choose en+i<2~"-1 so small that (9) and

(10) D(QH9 QH+l)<en^

imply

2-/+... + 2-*-1 ^Ty
(ii) P c v r^+1, i^/^i*.

-A"y

Apply Lemma 11 to obtain Qn+i and ^»+i satisfying (10),
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(12) (Qn+l, r)-CR, Z\),

2-"-1 Kn + l(is) p c v rQn+l.
-Kn±l

Thus by induction we have the sequence of partitions Qn, n = l, 2 , - - - , which

satisfy (8), (9) and (10). Then (10) implies there exists a countable

partition Q» such that

D(Qn, (?~)-»0 as n-*°o.

Then (8) implies

(14) «?.., T)~~(R, JO,

and (9) implies

(is) pcyr'e-

Since P is a generator, the proposition follows from (14) and (15).

§4e General Case

In this section, using the results of the preceding section, we will

prove the following theorem of Ornstein.

Theorem. Two generalized weak Bernoulli transformations with the

same entropy (including the case oo) are isomorphic.

To prove this theorem, we must prepare some lemmas. The essential

one is Lemma 14 which is similar to Lemma 47 in Q5] and is proved by

some modified argument. Using this lemma and Lemma 11 we can get

Lemma 15 and 16 respectively, which prove our theorem. For com-

pleteness we will state the proofs of these lemmas.

Lemma 12. Let e>0 and £=£(e) as in Lemma 2. If countable

partitions P and R satisfy
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then

£ n i-l
T1P ± V T3R\f V T3P, 0<;i<;7i.

0 0

6 »
Remark. This conclusion implies P J_ V T '̂/? when j = 0.

o

Proof. Noting the following relations

k(p\/R, T)= nm — - — [#( v TJR)+ £ #(rp| v ry/?v V
w-»«> 71 + 1 0 0 0 0

h(R, T) = lim — ~H( V
0

m+n i-1
H(TkP\ V TSRV V

0 0

for 7?i>03 i^A;^f + r?i5 we have

\ V F'RV 'v TJP)
o o

V TjR\/*\/1 TjP\
o o

for any ra^jO, O ^ f ^ n . Then the assumption and the above inequality

imply

H(P)-~H(T1P\ V r'Ry'v T*P)<Z, Q^i^n.
o o

Therefore the lemma follows from Lemma 2.

Lemma 13. Let e>0 and £'>0. Let {Pi}, {#,-}, Q<,i<,n, be the

sequences of countable partitions and n be a probability vector such that

(13.1) Pi I V RjV VP/, 0^ i<,n,
o o

(13.2) {Ri}, O^j^n , are independent,

(13.3) d(Pi, TfXe', O^i^n.
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Then there exists a sequence of partitions {Pi}, 0<^<J?i3 satisfying

(13.4) {Pi, RJ}, Q<:i,j<:n, are independent,

(13.5)

(13.6)

Proof. Note that the following statement is useful for the proof; if
£ _ _

P±Q and d(P, 7r)<e/, then there exists a partition P such that P and Q

are independent, d(P) = n, and D(P, P)<e + e'. Using this fact we can

easily prove this lemma by induction.

Lemma 14. Let T be an ergodic transformation and h(T)<oo. Let

e>0, C = C(e) be as in Lemma 2, and 0(e) = min (C(e 2/2), £2/2)/2. // a

probability vector 7t = {Ui', i^>l} and countable partitions P and R satisfy

(14.1) { T1R}, — oo<j<oo5 are independent,

(14.2) H

(14,3)

(14.4) H(P)+H(R)-h(PvR, T)<d(e),

then given <J>0 there exists a (finite) partition P such that

(14.5) d(P, n)<d,

(14.6) H(P)+H(R)-h(PyR, T)<8,

(14.7) D(P, P)<15s.

f. We may assume d<6(e). Let nf={nr
i', 1< '̂<^} be a (finite)

probability vector such that the following two conditions are satisfied;

/i \ j/— «/\ v1 i — ^/ ^- 0
(I) d(TC, n )= 2j |ff —7T f - <-T3
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(2) H(nf)

By the assumption (14.4) we can apply Lemma 12 and we get, for every

£ 2 /2 n i-l
(3) T*P ± V TJRV V TJP,

0 0

and using (14.3) and (1), we get

(4) d(T{P, 7r')<£2/2.

So by (3), (14.1) and (4) we can apply Lemma 13 to get a sequence of

partitions {Pi ; 0 <J i <^ n } such that

(5) {Pi, TJR; 0<^i,j<:n} are independent,

(6) d(Pd = 7Cf, 0<,i<,n,

(7) D(Pi9 r'P)<e2, Q^i^n.

By the ergodicity, J1 has a countable generator, so that we have a

refinement Q of P\/ R satisfying

(8) h(Q, T) = h(T).

Choose 0<£ ;< min (1/2, e/2, ff/12) so small that the following two con-

ditions are valid;

(9) D(Q, Q')<We implies h(Q, T}-d/±<h(Q\ T\

(10) d(P, 7r/)<10e/ and N(P)<,1 imply

Choose n>3/a so large that the following three statements are valid:
n-l

(A) By Shannon-McMillan-Breiman theorem setting Q= V T Q there
o

exists a Q-measurable set Y such that

(11)
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(12) 2-n(hm+al^<m(B)<2-n(h^-a'3\ BeQ/Y,

(B) we will denote the PV^-name of x€X as s(x} = { ( s k ( x ) , **(#));

0<,k<,n-l} when x <E nf\pk
Sk(x}r\ Tkrtjc(x) for Pk = {p\\ l^i^l} and

__o
7? = {r,-; i^>l}. Let N(jm, P, x) be the number of k which satisfies Sk(x)=j.

Then Mi; P, G) is defined naturally for G<E V (PkV TkK). Using the
0 ^ w-l _

law of large numbers, by (5) and (6), setting P= V (P*V T*R\ there
o

exists a P-measurable set F such that

(13)

(14)

(15)

(C) 77i(^)<l/^ implies ^({^ ^c})<5/4. By the choice of n in (A)

and (B), we can estimate

(16)

(17)

Now we will also define the PV^-name s(x) = {(sk(x),

k<zn — 1 } of x^X by the same way as above. Note that this name is
n~l

the same in every atom of V T Q. Let E* denote the set of all points
o

x such that sk(x)=^Sk(x) and De denote the set of all points x for which
n-l

s k ( x ) and sk(x} are distinct in at least e places, then we have ^m(Ek}^
_ o

em(De}. On the other hand, for P= {/?,-; i^l} and Pk = {pk
i\ l<,i<^l},

we have D(Tk(PyR), Pk V TkR} = 2m(Ek). Then setting W=Dc
n£ we

have

(18) 77i(r)>l-£.

Let ^ be the collection of atoms B in Q/F which satisfy tfi(£n JFA F)^

m(B)/2 and let Z=\J& the union of sets in ^. Then we can estimate

(19)

Now we can assign to each atom 56 ^ an atom G = </>(B)£P/Y
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such that BC\Gr\W^0 in a 1-1 manner. This can be done by the same

way as in the proof of Lemma 8 using the marriage lemma because of

(16) and (17). Note that two names s(B) and $(0(jB)) are the same in

the second component and are distinct in at most ne places in the first

component. We can extend 0 to a 1-1 mapping from Q/Y into P/Y

by (16) and (17).

Using Rohlin's theorem and the same argument as in the proof of

Lemma 8, we get a measurable set F such that T~kF, 0<^&<^ra —1, are
n-l

disjoint, m( \J T~kF)>l—e and
o

n-l
(20) 77i( \J T1 (FnZ))>l—e' —6e,

o

(21) m( \J T-\Fr\ F)) > 1 - 3e'.
o

We will now define the partition P={pl9 p2,'-, pi} as follows. Let

JTi= W T~k(Fr\Y) and A = Fr\Y. For simplicity we denote the PVR
o

-name of 0(B\ B^O/Y as s(B) = {(Sk(B\ tb(B)}' Q<^k<n — I}. Define

P on T~kA, Q^k^n-l, by

And extend P to X{ so that ZfC^i- Then this partition P satisfies

(14.5-7). Indeed

k=o

by (15) and (21) we have

(22) d(P, TrO^i \m

nm(Fr\B) 2 |7V(y; P,
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so by (1) we have (14.5);

d(P, n)<,d(P, nf) + d ( n f ,

Secondly the choice (C) of n implies

H({A, Ac})<d/4.

On the other hand putting P*= V T\P\/ {A, AC}V ' K) we have
-n

; O^k^n-l, B&Q/Y}CP*,

so we have a subpartition Q' of P* which coincides with Q on Xi so

that £>((?,<?')<; 2m(ZO<8e'. Therefore by (8) and (9), these relations

imply

T) + H({A,

<h(PVR,

and (22) implies

\H(P)-H(x")\<8/4,

so by (2) we have (14.6);

Finally noting the similarity of the following two relations

0 , sk(B)i=j,
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0

and noting the estimation by (20)

where Xz = X\\JTk(Fr\Z\

we have

Remark. If we only assume (14.1) and (14.2), we obtain P which

satisfies (14.5) and (14.6).

Using this lemma we can prove the following

Lemma 15. Let T be an ergodic transformation and /z,(jT)<ooo If

a partition R satisfies

(15.1) {T*R}9 — oo<j<oo5 are independent,

(15.2) H(R)<*h(T\

then there is a {finite) partition P such that

(15.3)

(15.4) {Tf(PV^)}3 -oo<;<oo3 are independent and P and R are

independent.

Proof. Take a (finite) probability vector if={iti\ I<;i<^l} such that

). Then, by the previous remark we can apply Lemma
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14 to get a (fiinite) partition P0 for every S0 such that

(1) d(P0, K)

(2)

where 0(<J0) is denned in Lemma 14. Choose 8n\0, «]>!, we can apply

Lemma 14 to get a partition PI for d(Si) such that

(3) d(Plt TT

(4) ffC

(5) Z>(P0,

Then we obtain a sequence of partitions {Pi}, z'SiO, by induction such

that

(6) d(Pj,

(7) H(Pj-) + H(K)-KPjVR,T)<0(dj-), ; = 0, I,--, n,...

(8) i>(Py_1,Py)<15^_1, ; = 1, 2,. . . , / » , . . .

Choosing dn so small that (8) implies the existence of a partition P

such that D(Pn, P)— >0 as TI->OO. Then d(P) = n and P is a finite par-

tition and satisfies (15.3). On the other hand for every ra^>0 we will take

A€ Tn(P\/K) and Be V T*(P\/R), and take ^E Tn(PkV K) and £* G
«-i
V Tl(Pk\/ R) corresponding to A and B respectively for every A;^0. Then
o

| m(A) - m(Ak) | -> 0, | m(B) - m(Bk) | -> 0, A -> oo,

and by (7) Lemma 12 says

Si/2 n n-l Si/2 w w-1

TnPk ± V ry/ZV V TjPk, TnR ± V TyP^V V TjR.
o o o o

Therefore we have
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n-l
J_ V Tj(Pk\/K)

0

and then

as

Hence Tn(P\/ K) andV T*(P\/K) are independent. Similarly we can
o _

prove the independence of P and R. Thus we have (15.4).

Remark. If H(R) = h(T), then we take the trivial partition as P.

For proving our theorem it is convenient to state a special case of

Lemma 11 in the following

Lemma 16. Let P be a weak Bernoulli generator for T and H(P)

<oo. Let Q be weak Bernoulli for T such that h(Q, T} — h(T) and

£T(0)<oo. Given £>0, there exist a partition Qi and a positive integer

K such that

(le.i) (0i, r)~(0, T\

(16.2) PC v r'0i,
— K

(16.3) D(Q,Ql)<e.

Proof of the theorem. Let P be a generalized weak Bernoulli genera-

tor for T. Take an increasing sequence of finite partitions {P«}5 n > 1,
00

such that each Pw is weak Bernoulli for T and V Pn = P (hence A(Pn, T)/
w = l

Since PI is weak Bernoulli for T and jy(Pi)<oo? there exists a finite

partition iQi by Proposition 1 such that

(1) id C V TiPl
— OO

(2) {ri(>i}, — oo<j<°°, are independent

(3) V r{^i= V T'Pi. (Hence #000 =*(/»!,
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Applying Lemma 15 for P2 and T, we have a finite partition iQ2 C
00

V T*P2 such that

(4)

(5) {T\iQi\/ iQz)}, — oo<j<°°5 are independent and iQi and i(?2

are independent.

Let 0<£i<2~1 and take ^i>0 such that

(6) Pi C V Tid-
-*i

Choosing 0<£ 2 <2~ 2 so small that the following statement holds.

(7) D(i<?i, 2Qi)<e2 implies Pl C V T^.
— KI

Applying Lemma 16 for P2? T and iQiV iQ2l> we have partitions

2<2i, 2^2 C V T*P2 and ^2>0 such that

(8) {T'(zQi\/ 'zQz)}, — oo<j'<oo, are independent and 2(?i and 2(?2

are independent,

(9) d

(10) P2C V r (2<?iV2&),
— ^"2

(11) D(2Q1V 2Q2, iQiV iQ2)<^

Hence by the choice of £23 (H) implies

(12) PiC V r'2Ci-
-^i

Applying Lemma 15 for P3, T1 and 2(?iV2^2, we have a partition

2(?s C V T*P3 such that
— OO

(13) H(2Q1) + H(2Q2) + H(2Q3) = h(P3, T\

(14) { T'"( V 2ft-)}? - oo < f < oo, are independent and {2ft-}, 1 <;/ ^ 3,

are independent.

Similarly we get a sequence of partitions {,•(?/; l^y^z + 1, z"2il} and
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a sequence of positive integers {£;}, £^1, by induction such that

(15) VnQjC v T*PH\ nQn+iC vr'p^l5i

n + l
(16) {!"( V nQj}}, — °o<j<°o, are independent,

i

are independent,

. m

(19) pm c v

(20) /?( VB(?y, V ,_
1 1

(21) if H(nQj}=h(Pn^, D.
1

By (20) we obtain partitions ^y, /2S15 such that

as

(^y) = d(^y) = dCy-iOA Uftl, 7^1, are independent by (17),

{rf'( V -(?/)}, -oo<t<oo, are independent by (16), and by (19) we
i

have

P/cf v r( v .ft-), *=i,2,...,
-00 1

and so

v T'( v 00^0= v rz'p.
-00 1 -00

00

Thus R=\/ ^Qj is a Bernoulli generator for T and so (R, 3T) is a
i

Bernoulli shift.

Now we will prove the isomorphism between the generalized weak

Bernoulli transformations 2\ and T2 with h(Ti} = h(T2}^^^ Using the

above argument there exist two partitions RI and jR2 such that (Ri, TI)

and (R2, T2) are Bernoulli shifts. If h(Ti) = h(T2)<o°9 then H(Ri) =

°° and therefore .Ri and J?2 are at most countable partitions. So
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that TI and T2 are isomorphic by Proposition 1.

When A(7\) = A(72) = oo, we will prove that they are isomorphic to

the Bernoulli shift on the product space II X^ Z/ = [J), 1]. Let P be a
-oo</<=o

generalized weak Bernoulli generator for T and h(T) = h(P, T) = cx=>. Then

we can also assume in the above argument that h(Pn, T)<h(Pn+i, T)

— log 2, n^>l (by choosing subsequence of Pw). Noting that the condition

for the choice of n in the proof of Lemma 15 is only H(n} = h(T) — H(R\

we can assume that all atoms of nQn-\ have measures less than 1/2.

Hence for the partition R taken for P and T in the above argument, the

factor space X/R is isomorphic to the space []0, 1] with the ordinary

Lebesgue measure. Thus the proof of the theorem is complete.

§5. Examples

We will now give some examples of weak Bernoulli transformations.

Firstly we will discuss Markov shifts. Let XQ be {1, 2,..-, N} or {1, 2,-..}
00

the set of all positive integers. Let X= II Xn where Xn = XQ for all n.
— OO

Let M = (mij)ijexQ
 De a transition matrix with stationary probability

mj, j £ XQ.
e = Q

We assume wi,->0 for all i€:XQ. The pair of M and {wi/} gives a

Markov measure m on J5", where & is the complete ff- field generated by

cylinders. The shift T on X defined by

preserves the measure m\ T on (X, J5", m) is called a Markov shift. We

assume T is ergodic. Thus M is assumed to be irreducible, recurrent

and of positive type. Let Mk = (m(
i
kj) be the &-step transition matrix. It

is easy to see that T is mixing if and only if

(1) Hm 771$ = TTly, J, j
k-+°°

Note (1) holds if and only if M is aperiodic.
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Let P={pj', j€XQ} be the partition of X defined as PJ = {X\ x0=j},

jeXQ. Denote Pnj= V T*P for j<^n. We will prove the following

Proposition 2. P is weak Bernoulli for T if and only if (1) holds.

First we will see that P is a K-partition for T, i.e. /^\P!!oo is trivial,
n

if and only if (1) holds. Indeed P is a K-partition for T if and only if

(2) lim L | 2 /(/X# - E /0>/|m< = 0
£-»oo i j j

for every bounded function / on XQ (cf. £8]), and it is easy to see that

(2) is equivalent to (1). On the other hand the Markov property implies

for each n >0

/ON „ 2 \m(pr\q)-Tn(p)m(q)\
\6) P^P°-n, ffSP*+n

771/771 W — 77ly |

— 2 2 77i,- sup I 2 m(fj— 2 ^;l-
ye/ /e/

Since A:-step transition probabilities of the time reversed chain are m(
i
kj =

mjjn(jkj/mi, i,j€:XQ, if (1) holds then P is also a K-partition for T1"1

and hence

(4) lim sup | m(A A B) — m(A)m(B)\ =0

for each ^GJ5". Take A = {xQ = i} and ^^{^^G/}, then (4) implies

(3) converges to 0 uniformly in n as k-*&o. Thus mixing Markov shifts

with countable states are weak Bernoulli transformations.

We will now consider the continued-fraction transformation T on X=

[0, 1] defined by

{I/*}, *^0,

0 , x = Q,

with the invariant measure
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dx--—- ,
log 2 )A l + x '

We will assert that T is weak Bernoulli, although it is not invertible.

Consider the partition P={[l/(y + l), I//]; /=!, 2,...} of X. Let

P"=\/T~1P for 0<^/<Jtt. It is easy to see that P is a generator. Let
y

Jw be the generic atom of Pg. Then it is known that

m.( T~(k+n^A | An) = m(A) (1 + 6pk\ A£&,

where \6\<^M, p<l and M and p are constants independent of A, k, n^

and An (cf. £l], p. 50). This implies

Z \m(Anr\A)-m(An)m(A)\ <,

Thus J1 is weak Bernoulli with the generator P5 and hence each natural

extension of T is a Bernoulli transformation.

We remark that Y. Takahashi and one of the authors Q3j showed

that 0-expansion transformations are also weak Bernoulli, while they are

not invertible.
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