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The Principle of Limiting Absorption
for Second-order Differential Equations
with Operator-valued Coeflicients™

By

Yoshimi Sarro**

§0. Introduction

Let us consider differential operators of the form

dz

el

(0.1) L= +B(@r)+C(r) (0<r<oo),

where for each r€ (0, o) B(r) and C(r) are operators in a Hilbert space
X. L acts on X-valued funcitons on (0, oo).
The purpose of the present paper is to justify the principle of

limiting absorption for the equation
0.2) L—=QA+iw)u=f.

The essence of the above principle consists in the following: Let uy.i,
be the solution of (0.2), where f is a given X-valued function on (0, o).

Then a solution u, of the equation
(0.3) L—=Du=f

is given by u,=limu,,;,. The meaning of the limit is to be determined
suitably. For thep_i(i)terature of the principle of limiting absorption see, for
example, Eidus [17].

Jager [5] considers the differential operator L and gives, among

others, the following result: Let B(r) be a non-negative self-adjoint
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operator in X and let C(r) behave like O(r‘g‘é) (e>0) at infinity. Then
with some other conditions imposed on B(r) and C(r) the principle of

limiting absorption holds for equation (0.2) with boundary condition

0.4) u(0)=0

and the “radiation condition”
(05) [ 1w —izumtdr<es =a+in),

where | | means the norm of X. He uses the above results to con-
struct an eigenfunction expansion associated with L.

We shall extend Jdger’s results to L with C(r) which behaves like
0 '"%) (¢>0) at infinity. In our case the radiation condition (0.5) will
be replaced by

(0.6) S:(l+r)_1+5| w'(r)—iNzu(r)|2dr<oo,

which is weaker than (0.5).

As an application we shall prove the principle of limiting absorption
for the Schrodinger operator —A4+q(y) in R* (n=3) with ¢(y)
=0(|y|7'7%) at infinity. In this case X=L*(S"') and

[B<r>=—r17{—A,,+~_—_—<”"3>§"—1> !
0.7)
1C(r)=q(rw)>< (=151, 0=-2es7),
where S”! is (n—1)-sphere, and A, is the Laplace-Beltrami operator
on S"°1,

In §1 we state conditions imposed on B(r) and C(r) and prove some
inequalities which will be used to obtain various a priori estimates for the
solution of equation (0.2) in §3. §2 and §3 are devoted to showing the

existence and uniqueness of the solution u of the equation

(0.8) L—ku=f (Imk=0)
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which satisfies the boundary condition (0.4) and the radiation condition
(0.6). Moreover we show that the solution z continuously depends on
k. Thus the principle of limiting absorption is justified. We discuss in
§4 the dependency on C(r) of the solution of equation (0.8). In §5 we
apply these results to the Schrédinger operator in R” (n>3).

Using the results obtained in this paper we can develop a spectral
and scattering theory for the differential operator L with an application
to Schrédinger operators —4+gq(y) in R”, where q(y)=0(]y|™'7%) at
infinity. We shall discuss these elsewhere.l

Recently we have been informed by Prof. T. Ikebe that the follow-
ing very extensive results have been obtained by S. Agmon: Let

0.9) L= 2 a,D*=Ly+B

laj=m

be an elliptic operator in R” which has a unique self-adjoint extension in
L*(R"™), where Lo=), a%D* is an elliptic operator with constant coefficients,

lal=m

and B=) b, D" is a differential operator with b(x)=0(|x|"'7%) as |x]|
1exj=m

— oo, Assume that 4>0 does not belong to an exceptional set which is

discrete in (—oo, o0) and contains all the eigenvalues of L. Then the

principle of limiting absorption holds good for 4, i.e., we have

(Vrain—>Uaxio a5 # 40 in Ly(R*, (1+ |x|) 1 "%dx),

J

(0.10)
[ @+ 15D lon@ Pda =+ 121|702,

where 1J>¢,~,L=(L—(/Ii—ipz))“1 f- In his method any radiation condition is
unnecessary. These results are used to construct an eigenfunction ex-

pansion for L.

§1. Assumptions and Preliminary Lemmas

Let X be a Hilbert space with the norm | | and inner product ( , ).
For an open interval J in R® and B€R we denote by H?(J, X) the

1) See Y. Saito [7].
2) R is the set of all real numbers,
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Hilbert space of all (equivalence classes of) X-valued function on J with

the norm and inner product

1 flle =L f e 7

(1.1)
| (s @05.5=( (FO, g A+ 1) ar.

Let Y be a linear topological space, let m be a non-negative integer, and
let J=(ai1, az) be an open interval in R. C™(J, Y) denotes the set of all
Y-valued functions on J having m strong continuous derivatives. We
denote by C™(J, Y)3l) the set of all Y-valued functions f(r) such that

fecC™(J,Y) and %;j]i (j=0,1, ..., m) can be extended to continuous
functions on J. C7,(J, Y) (i=1, 2) denotes the set of all f€C™(J, Y)
satisfying f(r)=0 in some neighborhood of a;, We put C7(J, Y)
=C7,(J, )NCT(J, V). If Y=C* we omit C as in C"(J)=C"(J, C).

Let I=(0, o) and let B(r) and C(r) be operator-valued functions on
I. For local properties of B(r) and C(r) we make the following

Assumption 1.1. (a) For each r€l B(r) is a non-negative, self-
adjoint operator in X such that its domain D(B(r))=D% does not depend
on r, and B(r)x € C°(I, X) for any x € D.

(b) Let x, y€D. Then (B(r)x, y)€C*(I) and for any compact
interval MC I there exists a constant c1(M)>0 satisfying

12 |- L B p|<an U]+ 1B O (31 + B Oy,

where r,s€EM and j=1, 2.

(c) For each re I C(r) is a symmetric operator in X with 2(C(r))
=D such that C(r)x € C*(I, X) for any x € D.

(d) Let M be a compact interval in I. Then there exists a constant
co(M)>0 such that

3) J means the closure of J.
4) C is all complex numbers.
5) 9(T) means the domain of T.
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1.3) |4 cox| (|21 + B0,

holds for any x €D and any r€ M.

We introduce the norm || ||g,; and inner product ((, ))s,s by

(1.4) A le.r=CCCfs Pz
@5 (s )ss=(f" gVost(Bfr ot ((fr &)os

We denote by C*2(J, X) (C%E(J, X), i=1, 2) the linear space spanned
by the set of all ¢ &€ C%J, X) having the form ¢=¢x, where x¢& D,
peCHJ) (peCi, (), i=1,2) and |lg||z,;<oo. We denote C§:Z2(J, X)
NC%B(J, X) by C%B(J, X). We define Hilbert spaces H5(J, X),
H}B(J, X) and H}:B(J, X) (i=1, 2), respectively, by the completion of
C*3(J, X), C¥B(J, X) and C%E(J,X) (i=1,2) in the norm || | 1
Let us denote by loc H°(I, X) the set of all X-valued functions f(@) on
I such that feH°((0, d), X) for any 5>0. In a similar way
loc H»B(I, X) and loc H}*B(I, X) are also defined.

Assumption 1.2. (a) There exist constants 01>0 and c,>1 such
that

(1.6) — 4 (BE) %, )= (BG)x, x)
dr r
holds for any x €D and any r = 0.
(b) For each finite b€ I the natural imbedding
(1.7) HYE((0, b), X)— H((0, b), X)

is compact.
(c) There exists c3>0 such that

2
6) Here and in the sequel u” and »’’ mean du and d*u
dr dr?

7) The conditions imposed on B(r) and C(r) are the same as in Jiger [5] except (c)
of Assumption 1.2. Jager [5] assumes that

, respectively.

IO x| < e+ T (1x1+|Bi(nx]), (rel, x€D)
instead of (1.8).
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18) €Oz ZcQ+r) (|5 +|BTMx]), (€L xeD)

with some 0<e<1.

For an open interval JC I #(J) denotes the set of all linear, con-
tinuous functionals on H}B(J, X). #(J) is a Banach space with the

norm

(1.9) 2l y=sup{| <I, 9> |; ¢ € C¥2(J, X), llpllz=1}.
For example, for g€ H°(J, X) we define [ g]e#(J) by
(1.10) <lLgl,o>=Ug ©)o.s (p€H}E(, X)).
Then we can easily see

(1.11) gl =llgllo.s

Definitien 1.3. Let [€#(I), uc H"5(I, X) and k€C* be given,
where
(1.12) C*={k|k€C,Imk>0 and Rek=+0}.2

Then v€locHVB(I, X) is called a radiative function for {L, k, [, u}, if

the following three conditions hold:
(a) v—u€ locHYB(I, X).
(b) v'—ikve H'**(I, X) (the “radiation condition”)®
(c) For all ¢ € C%3(I, X) we have

(1.13) (v, (L=E*)P))o,= <1, ¢>.

We shall give a lemma which will be used to prove the existence

theorem of the radiative fucntion.

Lemma 1.4.'° Let Iy,=(b, o), b>0. Eor each r€ I, B(r) is assumed

8) Imfk and Re k mean the imaginary and real, respectively.
9) In Jidger [5] the radiation condition is defined by v’ —ikve H(I, X).
10) Cf. Jager [3], Hilfssatz 4 (p. 68).
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to be a non-negative, self-adjoint operator in X with 2(B(r))=D constant
in r. Suppose that (B(r)x, x)€ C' (1) for any x €D and that we have

Wy~ B D=L B (5ED r=b))

with constants by>b and ey >1. Let C(r), r € Iy, be a symmetric operator

with 2(C(r))=D. Let v(r) be an X-valued function on I, which satisfies
the following (i)~ (iii):

(i) veC* I, D), Bv, CveC’(Iy, X), and

s (- j:z +B(r)—1—C(r)—k2>v(r)=g(r) rel)

with k€ C* and ge H* (I, X).
(i) v —ikve H (I, X) and veH '"¢(I,, X).
(iii) We have
(1.16)  |[CMv(n)|?Zerr 2 2(Jv'(n)|*+ ]B%(r)v(r)lz) (r=b)

with constants e; >0, 0<<e<1.

Then there exist constants 0o>0 and ro=bo+1 which do not depend
on v(r) and g(r) such that

(1.17) S” @) k() P+ (BOR(), o)} dr

<o) O 4 g0 D

To—

Moreover 0y and ro, as functions of k, are bounded on any bounded set in

C*.

For the proof of this lemma we need the following lemma due to
Jdager [5] (Lemma 4.1).

Lemma 1.5. Let —o0 <a;<a:1<b1<b; <o and put I;=(a;, b;),

11) C*(I,, D) is the set of all ¢(r)eC%(l,, X) such that ¢(r)eD for any rel,.
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i=1,2. Let B(r) be a non-negative, self-adjoint operator in X for each
re I, with 2(B(r))=D constant in r. Let C(r) be a symmetric operator
in X with 2(C(r))=D for each r€ I,. Suppose that v& H"E(I,, X)
satisfies for any ¢ € C3B(I;, X)

dZ
e ((o(—2+ BO+C)=k)p)), =<bo>,
where k€ C* and | € %(1;). Suppose, further, that v satisfies
(1.19) [Cr) o) | < c2(|v'() | + IB%(T) oM+ v, (El)

with a constant cz=c3(I,)>0. Then there exists a constant K=K(Iy, I, k)
>0 such that

(1.20) [|vliz,, < K(||v|lo,z,+ 1Ll )

holds. Further if we assume v€ Hy:B(I,, X) and a;>—co then the con-

clusion is valid for a; < a,.

Proof of Lemma 1.4. Take ro=bo+1, where b, is given in (1.14).
Let ¢ € C'(I,) such that 0<{¢ <1, ¢'(r)=0, and

0 for r€ (b, o,

(1.21) p(r)=
1 for r€[rp+1, o).

Then we have for r=r,

w22) L) vk
=er () |0/ () — ikv(r) | 2+ 19" (1) |0/ (1) — kv () | *
+2r8 () Re (0" (1) — ikv'(r), v'(r)— ikv(r))
=er o) | v —ikv|*+2rf ¢(r)Re (v —ikv', v/ —ikv),
since we have assumed that ¢’(r)==0. Noting that Im k=0 we have

(1.23) Re (" (r)—ikv'(r), v'(r) —ikv(r))



PrincIPLE OF LIMITING ABSORPTION 589
=Re(v"(r) — B(r) v(r) + k> v(r), v'(r) —ikv(r))
+Amk){|o'(r) —iko(®) |2+ (B() o), v(r)}
+Re (B(r) v(r), v'(r))
>Re(v"'(r)— B(r) v(r) + k> v(r), v'(r)— ikv(r))
+Re (B(r) v(r), v'(r)).
We estimate 2r°Re(v''— Bv+k%v, v'—ikv) as follows:
(1.24) 2rfRe (v (r)— B(r) v(r) + k> v(r), v'(r) — ikv(r))

=>—2r¢|v"(r)— B v(r) + k2 v(@) | |v'(r) —iko(r)|

v

) = B ur) o) = o ()= o)
(>0, B+7n=¢)
= B [t ) |4 /() — ko) | P+ (B u(r), ()}
128 g (1) [T ar® |0/ (r) — k(1) |,
since we have by (1.15) and (1.16)
(125)  [0()— B@) o)+ o) [P S0.Lr2 24 [o() |2+ 0/(7) — o) |
+ (BOY @), v} + 8017

with a constant §;=0,(k)>0. We obtain from (1.14)

(1.26) 2Re(BO)v(), v(r) =2 (B@)v(r), o) =5 (BOIx )|

=L (B@) o), () +-52 (B@) (), o).
(1.22), (1.23), (1.24) and (1.26) are combined to give

@z Lol O— k)]

>4 {(er—w—%r—Z-ZHZH—ar27>|v'(r)—ikv(r) |2
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+(eortre— 01 po22628) (B o(r), v(r)

@

+r€% (B(r)v(r), v(r))‘%l“ roA R ()| ®

_ 0 28 2
P IGIRY

Putting 77=—:12~(~—1+e), B=%(1+e) and az—é—s, we inte-

grate (1.27) from ry to R (R=r,+2) to obtain
(1.28) Ré|v'(R)—ikv(R)|®

ng o) (% plve_ 201 —1oey |v'(r) —ikv(r) | *dr

&

0 90 (== 2 ) B u), v dr
=B g o) P g O dr

[ B, v d,

where we have made use of the estimate

R d
@29) | o)L B0 ), o) dr
Rr d
= RABR v(R), o(R)— | [-L 400D [(BOv@), v dr
R
= a5 BO ), o) dr

(O B, v dr.

Now we take ro (=by+1) so large that we have with a constant 03>0

(_5__ —l+e__ 261 rrlme >, pol+e
2

(1.30) J ,
1(80 8) —-1+&__ 261 r—l-ézazr—la—e
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for all r==r,. On the other hand, using Lemma 1.5 with I;=(ro, ro+1)
and I,=(ro—1,r;+2), we obtain the following estimate with constants

K>0 and 03;>0:
a3 (" OB, ) dr

<o+ D*Cmax ¢ OBV, v ar

roSr=ro+1

<ot D max ¢OK[" (041 60) 1 dr
R
<os )| g ()| Dy

where we used (1.11). It follows from (1.28), (1.30) and (1.31) that
R
(1.32) azg Y@ = k() P+ (BE) o), v )} dr

ot

<R[ (R)—iko(R)|®

(B0 )" o) P g () .
Since r~}*¢|v'(r)—ikv(r)|? is integrable on I,, we have

(1.33) R;|v'(R)—ikv(R;)|*—0, jooo

for some sequence R;—co. Thus we obtain (1.17) from (1.32). Q.E.D.

Lemma 1.6. Let us assume Assumption 1.1 and (2) and (c) of
Assumption 1.2. Let k€C* and let v(r) be a radiative function for
{L, k, 1[ g], 0} with v€loc HyB(I, X)NH *~*(I, X) and g€ loc H-B(I, X)
NHY™e(I, X). Then there exists a constant 0 >0 such that

L 1
(1.34) 0" —ikoll-1e + 1| B2v[[-10e <O(llvll-1-e+ [ gll11e),"?

where 0 depends only on k and is bounded on any bounded set in C*.

12) Here and in the sequel we put | [;;=| s and | |5,:=]| |z for the sake of
simplicity.
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Proof. 1t follows from Assumption 1.1 that we can apply the
regularity theorem of Jiger [5] (Satz 3.1, p. 76) to see that v €& C2(I, D),
Bv, CveC’(I, X), and v satisfies (1.15) for all r€ I. From Lemma 1.4

we obtain

(1.35) S: +1(1 +r) ' (r) —iko(r) | 2+ (B(r) v(7), v(r))}dr
<K {a+0 o0 4+ g @)Y ar

with constants ro=>p,+1 and K;>0. Since v€loc H}B(I, X), we can
use the last statement of Lemma 1.5 with I,=(0,r,+1) and I,
=(0, r¢+2) to obtain

(1.36) S:“(l 1) | () — k() |2+ (BG) (), o))} dr

<KD T 1 ) g () P dr

with a constant K;>0. (1.34) follows from (1.35) and (1.36). Q.E.D.

§2. The Uniqueness Theorem

We shall show the wuniqueness of the radiative function using

arguments due to Jiger [5].

Lemma 2.1. Let B(r) satisfy (a) and (b) of Assumption 1.1. Let
C(r) be a symmetric operator in X for each r € I such that C(r) satisfies
(c) and (Q) of Assumption 1.1. and

@.1) €)%< (x| +|BEP)x]), (s€D,rel)
with a constant ¢>0. Let vElocHYB(I, X) satisfy

(2.2) (v, L=EN@))o=((g )0 (9 €C}E(, X))
with g€loc HVB(1, X) and k€ C*, where

dZ

—=7

(2.3) L= + B@@)+ C(r).
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Then we have for all re I,
(2.4) |v'(r)—ikv(r)|*
= [v' () +Amk) () | *+ Rek)*|v(r) | *
+4(Re B)*(Im k) }v][5, 0, -+ 2(Re &) Im (g, 2))o,c0,1)-

Proof. As we have seen in the proof of Lemma 1.6, it follows from
the regularity theorem of Jiger [ 5] (p. 76) that
v€C?(I, D) and Bw, CveCI, X)
(2.5)
(L= v(r)=g() (rel).
On the other hand we obtain from the fact that » € loc H}-2(I, X)'®
ve C'I, X)
(2.6)
v(0)=0.

From (2.5) and (2.6) we see that

en (o, owyd
=( (@=# 0, o) de

= | 1@ ®, ¢+ (BO+CO—F)@), @)} dt

— @' (), ¢()

holds for any ¢ € C2B(I, X). Since v €loc H}*B(I, X), for any r>0 there
is a sequence {¢,} in C%E(I, X) such that

{H(Pn_ 7-’||B,(o,r+1) —0,
(2.8)

@(t) > v(t) in X (te[0,r+17])

as n—>oo. Replacing ¢ by ¢, in (2.7) and letting n — o, we have

13) Note that H'.3(I, X) is continuously imbedded in C°(I, X). See Jiger [5], p. 69.
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@9 | (2@, v@)di={ {1v©) 1+ (BO+ 00—, v(0), v@)}de
— @), o).

Hence we obtain
(2.10) Im (v'(r), v(r))

=—Im((g; )o,0,n—2Rek) AmE)||v[[3, .-
Using (2.10), we calculate |v'(r)—ikv(r)|? as follows:
(2.11) |0/ (9) — k() |2

=|v'(")+Am&) v(r) |*+ Rek)*|v(r) |?

—2Rek)Im (v'(r), v(r))
=|v'(")+Amk)v(r) |*+ (Rek)* | v(r) |?
+4(Rek)*(Imk)l[v][F, 0, +2(Re k) Im ((g, v))o,c0,n)-
Q.E.D.

Theorem 2.2. Let us assume Assumption 1.1 and (a) and (c) of
Assumption 1.2. Let l€ew(I), k€C* and u€ H"B(I, X) be given. Then
the radiative function for {L, k, I, u} is unique.

Proof. Let v be a radiative function for {L, k, 0, 0}, where ke C".
What we want to show is that » is identically zero.

We start with the relation
2.12) [v'(r)—ikv(r)|*= |v'(r)+ (AmE) v(r) | ®
+(Rek)?[v(r)|*+ 4(Rek)*(Am E)|[v]13, 0,

which follows from Lemma 2.1.
If Imk>0, then we obtain from (2.12) and the fact that v'—ikv
e H (I, X)

1

2.13) 0=|vllZ,0.,p §W2(Imk)

[v'(r;) —ikv(r;) |2 — 0, j—> oo,
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for some sequence r;—>co. Hence we have ||v][2=0, i.e., v=0.

Next let us assume that Imk=0. Then we have from (2.12) and
the radiation condition v'—ikve H*+4(I, X)

(2.14) lim (]v'(r) |+ & o()]*)

700

=lim|v'(r) —ikv(r)| 2=0.

r
By the regularity theorem of Jdger [5] (p. 76) and (1.8) we have

ve C*1, D)
|0 (N — B v(r)+E o) |*=| C{(r)v(r)|®

(2.15)

=2a(L+n) 7" { oM P+ (BO)v(@), v} (EeD),

where ¢, >0 is given in (1.8). (2.14) and (2.15) enable us to apply
Hilfssatz 1 of Jiger [ 3] (p. 66) on the growth property of solutions of
the equation (L—k%)v=0 to show that the carrier of v is compact in I
Hence, using Satz 3 of Jiger [4] (p. 32), a unique continuation theorem
for solutions of the equation (L—k%)v=0, we see that v=0 on I.

Q.E.D.

§3. The Existence Theorems

This section is devoted to showing the existence of the radiative
function v for {L, k, I, u}, where k€ C, u€ H"3(I, X), and I belongs
to a subspace %1..(I) of #(I). We shall first prove a priori estimates
for radiative functions v for {L, k, [, 0}, k€C* and [€%,..(I) (Lemma
3.1 and Lemma 3.4). This corresponds to Satz 5.3 of Jiger [5]. But
it seems that we have to modify its proof in order to obtain the a priori
estimates needed in our case. Lemma 3.2 is necessary for this modifica-
tion. Next we shall prove the existence theorems using our a priori
estimates (Theorem 3.7 and Theorem 3.8). At the same time we shall
see that the radiative function v for {L, k, I, u} depends continuously on
k,l and u.
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Lemma 3.1. Let us assume Assumptions 1.1 and 1.2. Let K be a
compact set in C*. Let k€K and g€ H' (I, X)Nloc H"5(I, X). Let
v be a radiative function for {L, k, L[ g], 0} such that

(3.1) v€loc HYB(I, X)NH*~¢(I, X).
Then we have
32 lollaet ' —ikollse BTl 1 S0l gl
with a constant 01>0, where 01 depends only on K and L.
To prove this lemma we prepare

Lemma 3.2. Let K, g,k and v be as in Lemma 3.1. Then there

exists a positive number oy such that
@3 [a+n o P SablzetHglkoe " (02D,
P

where oy depends only on K and L.

Proof. From Lemma 2.1 we obtain
(3.4) (Rek)?|v(r)|*+2(Re k) Im ((g, v))o,0.n=|v'(r)—ikv(r)|?,

whence we have

(35) 190" S gl VO =ik @1+ 2160101 ds

= ey VO~ k()]

gl ator et aro ot

gﬁhﬂ(r)—ikv(r)l2+—I—R(23—k‘[|g||1+el|v||_l_€,

Multiplying both sides of (3.5) by r~!7¢ and integrating from o to oo,

we have
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(3.6) S‘”r—l—e |v()| 2drg(_Ri_l§§S:,~1_e v () — k() | 2dr
p =
2 | .
+m“glll+5!lvll_l_€p
<=z§§—k? "‘“S:r*”|v'(r>—ikv(,>|zd,

2 .
t ¢|Rek] lgllisellv]|l-1-c 075,

(3.3) follows from (3.6) and Lemma 1.6. QE.D.

Proof of Lemma 3.1. It follows from Lemma 1.6 that it is enough
to show

3.7 lollci—e=allgllie

with a constant >0 depending only on K and L. Let us assume that
(3.7) is false. Then for each positive integer n we can find k,€K,
h,E€loc H*B(I, X), and radiative functions u, for {L, k,, [[h,], 0} such
that

(3.8) Hun”—1—€>n”hn“1+s-

Since we see ||unl|l-1_¢>0 from (3.8), we obtain radiative functions v,

u .
="  for Lk, [ g.], 0}, gn= ud , with
[ Ly Eny L gn, O3 o=y s W

[loal-s-e=1,
(3.9) 1
l”gn”1+e<”n—-

Let {k., } be a subsequence of {k,} satisfying

(3.10) kn,— ko, m— oo

with ko€ K. Without loss of generality we can assume
(3.11) kn— ko, n— o0,

In view of (3.9) we have for any Re I
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J( sup ||vallo,0,2+1)< 0,
n

(3.12)
1 5171;p 1 gnllo,co,R+1y < o0

Therefore it follows from Lemma 1.5 that

(3.13) sup ||vallz,0,R) < o0

for all R>0. Since for all 0<R< oo the imbedding H}B((0, R), X)—
H°((0, R), X) is compact by (b) of Assumption 1.2, we obtain a
subsequence of {v,} which is a Cauchy sequence in H°((0, R), X) for
all Re€l. Without loss of generality we can assume that {v,} itself is
a Cauchy sequence in H°((0, R), X) for all R€I. The sequence {v,} is
a Cauchy sequence in H¥B((0, R), X) for all R€ I, too. In fact for
each pair (n, m) v,—vn is the radiative function for {L, k, I[ gum], 0},

where

and ko is given as in (3.11). From (3.9) and (3.11) we obtain gum— 0,
n, m—oo in H°((0, R+1), X) for any R>0. Hence, noting that {v,}
is a Cauchy sequence in H°((0, R+1), X), we can apply Lemma 1.5 to
show

(3.15) Nou—vmllB,0,8) = BUlve—vmllo,c0.2+1yF || gn.mll0,c0, R+ 1))

—0 n, m— oo,

b

where #>0 depends only on R, k& and L. Therefore there exists
v€loc HYB(I, X) satisfying

(3.16) Vp— 0, n—sco

both in H{'B((0, R), X) and in H°((0, R), X) for any Re L.

Letting n— oo in the relation

(3.17) ((ns (L=ED ©))o=(gns D)o, (P €CFE(, X))

we obtain from (3.16), (3.9) and (3.11)
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(3.18) (v, (L—k3) 9))0=0.
Using (3.9), (3.16) and Lemma 1.6 we estimate ||v'—ikov||-146,0,8) as
follows:
(319) i|’l}/—ikov||_1+£,(o’R)=liln[!U,’,—ikol7n||_1+5,(o,R)
-~

<<sup |lv,—ikovall11e
= 0sup {l[vall-1-e+ | gnll1se}
g(?sup<1+%>§26,

where 0 >0 is as in Lemma 1.6. Since the last member of (3.19) does
not depend on n and R, we have v'—ikove€ H '*4(I, X), i.e., v satisfies
the radiation condition. Thus v is a radiative function for {L, ko, 0, 0,},
and hence v=0 by Theorem 2.2.

From Lemma 3.2 we obtain for p=1
(3.20) l_i—r—nllvnllz—l—t‘;/ﬁm anH-Z—l—E,(O,p)"’ sup an|\31—e,(p,=e>
n—oo n—oo n
S|l -e, 0. T 07¢ SLlP {llvn||31—6+l|gnii"{+e}

=0(0"%,

where we have noted (3.9) and the fact v=0. Since p=>1 is arbitrary,

we obtain lim ||v,||_1_e=0, which contradicts the assumption that [lv,||_1_¢

7n—>o0

=1. Q.E.D.

Now we introduce a subspace of #([).

Definition 3.3. Let #;,..(I) be the set of all [€#(I) such that

(3.21) Wille=sup{|<l, 1+0)'z ¢>|; € CF3(, X), llells=1} <oo.

%,.¢(I) is a Banach space with the norm || |l;.e.
It is easy to see that we have

(3.22) Nl <aollilllyce (L€ e(I))
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with a constant ay>0.
We shall show that the inequality (3.2) also holds for the radiative
function for {L, k, I, 0}, where I €%, .(I).

Lemma 3.4. Let us assume Assumptions 1.1 and 1.2. Let K be as
in Lemma 3.1. Let k€K and |€U,..(I). Let v be a radiative function
for {L, k, 1, 0} such that ve€ H*~¢(I, X)Nloc H}B(I, X).

Then there exists a constant 03 >0 such that

1
(3.23) ivll-1—e+ 10" — ko]l -1, e+ B20][ o116 < Oalllll e,
where 02 depends only on K and L.

To prove this lemma we need

Lemma 3.5.'Y Let B(r) satisfy (a) of Assumption 1.1 and let C(r)
(rel) be a symmetric operator in X with the domain 2(C(tr))=D such
that

(3.24) ICx|<c(|x|+|Bi(x]) (eI xeD)

with a constant ¢>0. Let ky€C' and Imk,>0. Let |€U(I). Then

the equation

(3.25) ((u, =D P)o=<L, 9> (€ CFPU, X))
has a unique solution u in HYB(I, X) with the estimate
(3.26) llulls < Ballil,

where B1=PB81(ko)>0 is a constant. Further, if 1€ U, (1), then we have
u€ H'™¥(I, X) and

(327) Hu”1+e§ﬁ’zﬂllllh+s

with a constant B2=F2(ko)>0.

Proof. Let us define a bilinear form %#;_,:[-, -] on H}E(I, X)

14) Cf. Jdger [5], Lemma 2.3 (p. 75) and the proof of Satz 5.3 (p. 86).
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< HyB(I, X) by
(3.28) B 112 [w1, wa )= (w1, w2))p+ (((C(r) —k§ — 1) w1, w2))o.
Then we shall show
(3.29)  dillwllp=1Br-wlw, wl|=dsllwllz  (we HyP(I, X)),

where d;=d;(ko)>0 (j=1, 2) are constants. Since CZ5(l, X) is dense
in H{8(I, X), and we have by integration by parts

(330) gl—ké [¢1: (DZ]:(((pl, (L"_E%) (/72))0 (¢15 (026 C%(I) X))’
it is sufficient to show (3.29) that we show

{dﬂiﬂi%;l((cp, L=k e)ol,
(3.31) i (¢ € CEE, X)).
dollellz= e, (L=kB Dol

Let us prove (3.31). From (3.24) we see that

332 NIClB=( e + | BOem D <zclol,
whence follows for all ¢ € C3E(I, X)
(3.33) | (o, (L—=ED @))o|=llollz +V2cllgllsll@llo+ | kol *[lelld

<A+v2c+ | koD lloli3

Thus we have shown the first inequality of (3.31) with di=(1+V2¢
+ |ko|%). On the other hand we have

(3.34) (g, L=k @) |?=Allell3+(((C—2—1) @, p))o}+ 12| 0]l3,
where A=Rek? and #=Imk2=~0. Hence, using (3.32) again, we have
(3.35)  [((¢, L=ED)@))o|* Zlleils—2ll0ll31 ((C—2—1)g, @))o|

+(((C—2—=D) o, ©))*+ 2ol

=-liels—(-L-—1)(C—2=Dg, eD5+22lolls



602 YosuiMi Sartd

with a>0. Take 0<a<1 in (3.35). Then, noting that we obtain
from (3.32)

(3.36) ((€C=21=Do, p)F=[(C—2—Dollfll#lIf

=2{2c*+ (2] +D*}HlellZ el

<t2c ([ (Bllells+5llells)  (E>0),

we arrive at

@30 (@ A= ool = {1—a— 1% ge ol
=2 F il 0<a<i, £>0),

where we put ¢;=2c¢?+(|4]| +1)%. Putting = 262

and taking 1—a>0
1

small enough, we obtain from (3.37)

(3.38) | (e, <L—/22>¢>>olzzé—<1—a>||<onfg,

whence follows the second inequality of (3.31) with dy= (L—:C—Q

Since (3.29) has been justified, we can make use of the Lax-Milgram
theorem'® to show that there exists a unique solution of u in H}B(I, X)

of the equation
(3.39) Brwlu, wl=<l,w> (we Hy?(I, X))

for lea(I). Since #i_i[u, ¢]=(u, L—Ek})¢)) for & C¥B(I, X),
it follows from (3.38) that uz is a unique solution of (3.25). (3.29)

and (3.39) are combined to give

(3.40)  lullp <121 2lu, ul| = | <l u>| < Ll ||ull5,
ds ds ds

which implies (3.26) with f;= \/%
2

15) See, for example, Yosida [6], p. 92.
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Next let us show (3.27). Let ¢ € C'(R) such that 0<¢(r) <1,
0=]¢'(r)|=1 and

0 for r=2,
(3.41) o(r)= 1
l 1 for réT .

For each m=1, 2, ... we define

(3.42) J Oa(r)=Q1 +r)_12ﬁ gb<_;7> ,
L Un=Pml,

where u is the solution of the equation (3.38). Then we obtain from (3.39)
and (3.28)

(343) o il wn]=llunil+ (€)= K= 1) iy wn)o
= (@Y up)o+ (B2, B2 g u))o
+((CO)= kD) 1, Pmtin)o
= B0 2Tty Gt 1+ (B, ) (G's un)y
= <y i+ (B ty 12— (Bt um).

It follows from (3.43) and (3.29)

(3.44) ilumugg%%_kg[um, ]|

dy i () ”’">’

g mllo llwallo+ 1 @aullo ualof

b)),

dy
é—;—{#lllllme-i-<1+5 s)liulls}numlla,

!I/\

= {l”l||1+e

+ (lgnullo+ 165"l [2alaf

where we note

|_~ ’ ]<1 and
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(3.45) PHGIESSS S
for any r€l and for any m=1, 2, .... Taking account of (3.26)

and (3.22), we obtain from (3.44)

(3.46) [l 5 gd%{mzumﬁ (Fe+ 3)81 o
gé—{w( ) o

which implies with dl(l +( 1;8 +3>51a0): 8,
2

@4n)  [o(L)a| =Nl =llmllo=unlls= B Ml e

1

Thus, letting m — oo in (3.47), we obtain (3.27). Q.E.D.

Proof of Lemma 3.4. Since [E€%,..(I), it follows from Lemma 3.5
that the equation

(3.48) (& L+De)e=<l 9> (peC}?, X))

has a solution g€ Hy2(I, X)NH'**(1, X). Put w=g—v, where v is a

radiative function for {L, &, [, 0}, i.e., v satisfies
IE] ’

(3.49) (v, L=E) @))o=<1, 9> (pe CHE(L, X))
and
(3.50) o' —ikv||_1 e < oo

From (3.48) and (3.49) we see that

(3.51) ((w, (L—E*) ¢))o=(k*—) ((g, #))o-
Noting g€ HyB(1, X) and (3.50), we have

(3.52) W' —ikwl||_1.e S[lv' —ikvli1 et il g — kgl 1se

=o' =ikl _1eF11g llo+ [ ]l gllo < oo



PrinciPLE OF LIMITING ABSORPTION 605

Hence w is a radiative function for {L, k, (k*—i)I[ g]}. We make use

of Lemma 3.1 to obtain
(353)  llwll-1oe+ 1w’ — ikwl|_rse+ || BEwll_1.e <011+ &l gll1ees

where 0;=0,(K) is given in (3.2). It is implied by (3.26) and (3.22)
that

1
350 llglioretllg'—ikgllroetlIBigl1.e
1
=@+ 1EDIgllo+ g llo+ 1182 gllo
=@+ 1kDlglls =@+ EDII=G+ kD aolilll-e.
Since v=g+w, (3.23) follows from (3.53), (3.54) and (3.27). Q.E.D.
Lemma 3.6. Let us assume Assumptions 1.1 and 1.2. Let k,€C*,

In€%.,.(I) for each m=1, 2, .... Let v,, m=1, 2, ... be radiative func-
tions for {L, kmy lm, 0} such that

(3.55) vm€ H 1741, X) (m=1, 2, ...).
Let us assume

Jlimk,,,zk,
(3.56) "
[nm =Ll 1, e =0

m—roo

with k€C* and 1€ U,..(I). Then there exists the radiative function v
for {L, k, L, 0} satisfying

(3.57)  vm— v both in H'"(I, X) and in loc H}B(I, X) as m—> oo,
Proof. As in the proof of Lemma 3.4 we put v,= gu+wm, where

gn€ HYB(I, X)NH" (I, X) is the solution of the equation

(3.58) ((gm (LA eNo=<lm 9>  (p€CFE, X)),

and w, is the radiative function for {L, km, (k3—2)I[ gm], 0} for each

m=1, 2, .... For each pair (m, n) we have
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(3.59) ((gm—gm L+ @))e=<lp—1s 0>,
and hence we obtain, using Lemma 3.5,

lgn— &nlla < B1(Vi) llln—L,ll—0

(3.60)
lgm— gallire < B2(Ni) Nlw—Lall1oe — 0

as m,n—>oco. We put g=limg, Then g€ H}?(I, X)NH"" (I, X),
and g is the solution of equa‘;ni;; (3.48).

Now we turn to the sequence {w,}. Since the sequence {l,} is
uniformly bounded in #;..(I), it follows from Lemma 3.4 and Lemma

1
3.5 that the sequence {||vm||-1-¢+||vy—ikvml|-1.e +1B2vmll_1:c}, {llgnlls}
and {||gmll1+¢} are also uniformly bounded. Therefore, noting that w,=

Um— 8m, We obtain the uniform estimate

1
(3.61) ||wm[|—1—s’|"”wrln—ikmwm||—1+6+HBzme—lJrega (m=1,2,...)
with a constant & >0. From (3.61) we have

(3.62) ,Sup llwalla,0,7 < oo

for any R€ I. Hence, proceeding as in the proof of Lemma 3.1, we obtain
a subsequence {w,} of {w,} which converges to w in loc H}B(I, X).
On the other hand, using Lemma 3.2 and the uniform boundedness of

llglli+¢}, we have uniformly with respect to m

063 (") ) dr San(lonl e K1l gl )0~
=0(0_€) (p——)co),

where we have noted that {k,} is uniformly bounded and w, is a radia-
tive function for {L, k, (k3 —:)I[gnl, 0}. It is implied by (3.63) and
the convergence of {w,} in loc HY'B(I, X) that w,, converges to w in
H~'"%(1, X). Therefore, taking note of (3.61) and k,—k, m— oo, we
see that w is a radiative function for {L, k, (k*—i)I[g], 0} and we have

(3.64) Wy, —>w (> 00)
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both in loc H}B(I, X) and H *~¢(1, X).
Finally put v, = gm,+wn. Then we obtain from (3.60) and (3.64)

(3.65) Uy, v (j>0)

both in loc HyB(I, X) and H '"%(I, X), where v=g+w is a radiative
function for {L, k, [, 0}. Since v is unique by the uniqueness of the
radiative function (Theorem 2.2), it follows from (3.65) that the original
sequence {v,} itself converges to v both in H~'7¢(I, X) and loc H}B(I, X).

Q.E.D.

We can now prove the existence theorem of the radiative function
for {L, k, I, 0}, where k€C*, le#, ().

Theorem 3.7. Let us assume Assumptions 1.1 and 1.2. Let k€ C*
and 1 €U, (I). Then there exists a unique radiative function v=v(+, k, 1)
for {L, k, 0} in H'"¢(I, X). If k belongs to a compact set K in C*
then we have

3.66) il set o= iEollye+ Bl e SOuMll e
with a constant 05,>0, depending only on K. Denote by 2, the mapping
(3.67) S Crxau  (I)>k, 1)

—v(, k, [)e H 141, X)Nloc HYB(I, X).

Then X, is continuous as a mapping from C' XU, .(I) into H'~4(1, X)

and is also continuous as a mapping from C* XUy, (I) into loc HB(I, X).

Proof. First assume that Imk>0. Then from Lemma 3.5 we
obtain a unique radiative function wv(-, k, I) for {L, k, [, 0} such that
veEHYe(I, X)NH}B(I, X). Next assume that Imk=0. Then, putting
for m=1, 2, ...

f i
J kp=k+—
(3.68) 1 m
U =0m(*s km, 1),
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we see from Lemma 3.6 that the radiative function v=v(:, k, [) for
{L, k, I, 0} is obtained as v=Ilimv,. The other statements follow from

m—rco

Lemma 3.4 and Lemma 3.6. Q.E.D.

Finally we prove the existence of the radiative function for {L, k, [,

u}.

Let v=v(-, k, I, u) be a radiative function for {L, k, [, u}, where
keClew,,(I) and u€ H*B(I, X). We define 1, €E%,,.(I) by
(3.69) <y, p>=<Il, 0>—((gu, L—EkD ) (pECFE, X)),
where ¢ € C*(I), 0<¢ <1 and

1 0<r<1),
(3.70) O(r)=
0 r=2).

Then it is easy to see that voy=v—¢u is a radiative function for
{L,k,1;,0}. Thus we can reduce the equation with the boundary value
v(0)=u(0) to the equation with the boundary value vo(0)=0. Therefore,
noting that I,=1[(u) is a #,,.(I)-valued continuous function on
HYB(I, X), we obtain from Theorem 3.7 the following

Theorem 3.8. Let us assume Assumptions 1.1 and 1.2. Let E€CH,
l€Uy.e(I) and u€ H“B(I, X). Then there exists a unique radiative
function v=v(s, k, I, u) for {L, k, I, u} in H'"°(I, X). Denote by X
the mapping
(3.71) 2:C xUy (1) x HYB(I, X)>(k, I, u)

— (e, ky 1, w) € H175(I, X)N\loc HB(I, X).
Then X is continuous as a mapping from C*x U1 .(I)x HYB(I, X) into

H-'"%(I, X) and is also continuwous as a mapping from C* XUy, .(I)
x HYB(I, X) into loc HVB(I, X).

§4. The Dependency of Radiative Functions on C(r)

Let C,(r), m=1,2,..., be a sequence of operator-valued functions on
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I. Let C(r) be as above. In this section we study the relations between

@ LB

radiative functions for L and radiative functions for Lmz——ﬁ
r

+ Cu(r) when C,(r)— C(r) as m— co.

Assumption 4.1. (a) For each rcl C,(r) is a symmetric operator
in X with 2(Cx(r)=D such that C,(r)x€C'(I, X) for any x€&D.
Moreover for any compact interval M in I there exists a constant c¢™ (M)
>0 such that

(4.1) ‘i

D) x| ™D (] + [ B0

holds for any x €D and any r€ M.
(b) There exists a constant co>0 such that

42)  |Cax|Z o407 (x| + B z]) (€D, rel)

for any m=1, 2, ..., where c, does not depend on m, and 0<e<1l is as
given in (1.8).
(c) We have

(4.3) Hm|C(r) x— Cr(r) x| =0
for any x €D and any r€ L.

Since C, is assumed to satisfy (a) and (b) of Assumption 4.1 for
each m=1, 2, ..., C,(r) is so smooth and tends to zero at r=oo so

rapidly that the results of §2 and §3 can be applied to the operator

__ d
(4.4) Lp=——75+ B(r) + Cu(r),

i.e., there exists a unique radiative function v,(r, k, I, u) for {Ln, k, I, u},
where (k, I, u) €C* x ¥, (1) x H“B(I, X).

Theorem 4.2. Let B(r) and C(r) satisfy Assumptions 1.1 and 1.2.
Let Cu(r), m=1,2,..., satisfy Assumption 4.1. Let K be a compact set
such that KCC* and let vu=vu(r, kmy lm), m=1,2, ..., be the radiative
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Sfunction for {Lp, kmy lm, 0}, where k, €K and 1, €#1.e(I). Then there

exists a constant 09 >0 such that

1
(4'5) va”—l—s + l|v,’,,— ikmvm||-1+6+ ||B2 ”m”—1+6 gaomlmmh(&-

0o depends only on K.

Proof. Denote by g the radiative function for {L, Vi, s, 0}. We
see from Lemma 3.5 that g, € H'**(1, X) for each m=1, 2, .... We denote
by wn, the radiative function for {Lm, km, (k4—i)I[ gm], 0}. Obviously
we have v,= gn+wn Proceeding as in the proof of Lemma 3.5, from

(4.2) we obtain uniformly for m=1, 2, ...,

4.6)  allellz=Ie, LntD el ZBllellf (9 CHE, X)),

with constants «, >0, whence follows that we obtain uniformly for

m=1, 2, ...

4.7)
Hgm”1+6 é 770”]lm[”1+6

with a constant %,>0. Re-examining the proof of Lemma 1.6, we can

see from (4.2) that we obtain uniformly for m=1, 2, ...

1
(48) ”w;n_ ikwm”—1+£+ [[BZ wm||—1+€ g”l(”“’m”—l—e + Hgm”1+£),

with a constant 7;=%,(K)>0. Finally, proceeding as in the proof of
Lemma 3.1, we can show by reduction to absurdity that we have

uniformly for m=1, 2, ...

(4.9) [1wm]]~1-¢ Z 72/l @mll1+e

with a positive comstant 7;=72(K). Thus we have (4.5) from (4.7),
(4.8), (4.9) and (3.22) as follows:

1
(4.10) ”UMH-1—5+ ””r;f_ ikmvmn—ue‘l' ”BZ ’UmH—1+e
1
<lwm||-1-& +||wp— ikmwm||—1+6+ HBZWMH—H&

1
+11gmllo+ Il gmllot+ | &m ||l gmllo + 1| B2 gnllo
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g”wmlLl-s+771(me“-—1—5+”gm“1+5)+(3+ |km|)”gm”B
{72+ 711+ 72 i gnll1+e + @+ [ kn D gnll5
é[{"?2+771(1+772)}+(3+ T)a()] llllmllll+6 (mzla 27 )>

where we put T=sup |k,|, and a, is given as in (3.22). Q.E.D.
m=1,2,...

Theorem 4.3. Let B(r) and C(r) satisfy Assumptions 1.1 and 1.2.
Let C,(r), m=1, 2, ..., satisfy Assumption 4.1.
(i) Let kn,eC* and 1, €. .(I) such that
limk,=k

‘ M-—s00

(4.11)
| Hm = Lally e =0

\ M—roo

with k€C* and (€% . ¢(I). Denote by vu(, km, ln) the radiative func-
tion for {Lm, km, lmy 0} for each m=1, 2, .... Then we have
(4‘12) Um(” km, lm)—)”('y k, l)
both in H ' (I, X) and in loc HYB(I, X), where v(-, k, 1) is the radia-
tive function for {L, k, I, 0}.

(i) Let K be a compact set in C* and let M be a compact metric

space. For each m=1, 2, ..., L (k,s) is assumed to be a U,.:(I)-valued,

continuous function on KX M such that

(4.13) im 1Lk, 8)— (ks $)l1+e=0

uniformly on Kx M with a %1.¢(I)-valued, continuous function l(k, s) on
Kx M. Denote by vu(s, k, s) the radiative function for {Lm, k, l,(k,s), 0}.
Then we have

(4.14) limvy,(e, &, s)=v(s, k, 5)

both in H™'~%(I, X) and in loc HyB(I, X) uniformly on Kx M, where
v(+, k, s) is the radiative function for {L, k, l(k, s), 0}.

Proof. First let us prove (i). Let g, be the radiative function for
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{L,Vi, 1, 0} and let w, be the radiative function for {L, k, (B2—1) [ gnls
0}. Then we have vy,=gn+wn. Similarly we have v=g+w, where g
is the radiative function for {L, Vi, [, 0} and w is the radiative function
for {L, k, (k*—i)I[ g],0}. It follows from Lemma 3.5 and the regularity
theorem of Jager [5] that g, g.€ H'**(I, X)NH}3(I, X)NC*(I, D). We

can show that

(4.15) lim||(C— Cn) g ll1+e =0

In fact we obtain from (4.3) and the fact that g(r)€D

(4.16) lim| (CE)—Ca()) g =0 (e D),

and also obtain from (1.8) and (4.2)

417)  |(C)—Calr)g()|*
<[(cate) A+n)4(| g() | + | B2 () g (1) )T
<2(cz+ o) A+ 22 (| g |*+ | B2 (g ()|
€ L'(Z, A +r)**4dr).

(4.15) directly follows from (4.16) and (4.17). Noting that g— g, satis-

fies the equation

(4.18) (= &m (LAD)o=<Il—Ilm ¢>+(((C—Cn)g ¢))o
(pe €U, X)),

We see from (4.7) and (4.15) that

lg— gnlla = 70{lll—Lull +]|(C— Cn) gllo}— 0,

(4.19)
Hg— gm”1+e é 770‘{“”_ Lllise+ H(C— Cm)g”1+€}_)0

as m—>oco, Using (4.19) and Theorem 4.2, we can proceed as in the
proof of Lemma 3.6 to show that the sequence w, converges to w both
in H'~%(I, X) and in loc H}®(I, X). Thus we have shown that v,=gu
+w, converges to v=g+w both in H™'"(I, X) and in loc H}?(1, X)
which completes the proof of (i).
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Next let us prove (ii). It follows from (i) that for each pair (%, s)
€KXM vn(+ k,s) converges to v(-, k, s) both in H '7%(1, X) and in
loc H}B(I, X). Assume that the convergence of v, in H-'%(I, X) is not
uniform on KX M. Then there exists € >0 and the set of positive

integers {m;}7-; and (kj, s;) € Kx M such that m;— oo as j—co and
(4.20) llo (e, kjs Sj)—’Umj(', kjy spll-1-e = 0.

Since the set {(k;, s;)| j=1,2,..-} has at least an accumulating point
(koy s0) €KX M, we can assume k;—ko and s;—s, without loss of
generality. Then, using the continuity of I(k, s) and the uniform con-

vergence of [,(k, s), we obtain
421) ko, 50)— Im,Chy, 3)llrec
S WiCkoy s0)— Lk spllvse +UECRs 87)— L (Kjy s)ll14e =0,
J—>oo.
Therefore it follows from (i) that
(4.22) loCe Eos 50)—vm, (25 sy s)I|-1-6— 0, j—> oo,
On the other hand we obtain from Lemma 3.6

(423) H‘U(', kO: SO)_'U(', kja SJ')H—l——E_)Oa ]_’ .

(4.22) and (4.23) are combined to give [[v(+, &j, 5;)—vm,(+, kjy )il-1- =0,
j—> oo, which contradicts (4.20). Hence v,(-, k, s) converges to v(:, &, s)
in H~'"¢(I1, X) uniformly for (k,s)€ Kx M. Similarly we can show that
vm(s, k, 5) converges to v(s, k, s) in loc H}B(I, X) uniformly for (%, s)
€EKx M. Q.E.D.

By an argument similar to the one used in obtaining Theorem 3.8

from Theorem 3.7, we can show the following

Theorem 4.4. Let B(r), CGd) and C,(), m=1,2,..., be as in
Theorem 4.3. Let ue HYB(I, X).

(i) Let kncC and lu€U1,:(I) satisfy (4.11). Denote by vn(+, kp,
lmy, u) the radiative function for {Lm, km, lm, u} for each m=1, 2, ....
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Then we have vy(ey kny Lmy u) > v(e, k, I, u), m—> oo, both in H 17¢(I, X)
and in locHYB(I, X), where v(-, k, 1, u) is the radiative function for
{L, k, I, u}.

(i) Let ky, M, 1,(k, s) and I(k, s) be as in (i) of Theorem 4.3. Let
(4.13) be satisfied. Then we have

(424‘) lim")m('s kmy Sms U'):U('s ky s, u)

M— o0

both in H ' °(I, X) and in loc HVB(I, X) uniformly on Kx M, where
Uiy kmy Smy u) and v(s, k, s, u) are the radiative functions for {Lp, kn,
In(ky $)y u}y and {L, k, I(k, s), u}, respectively.

§5. The Schrodinger Operator in R" (n=>3)

In this section we apply the results obtained in the preceding sections
to the Schrodinger operator in R” (n = 3).

Let X=L%(S"1'), S" ! being (n—1)-sphere. We define a unitary
operator U from L*(R") onto H°(I, X) by

(5.1) (UF)()=r"7 FGro)  (F(y)€LXR"),

where r=|y| and w="_¢g§"1,
r

Let us consider the Laplacian on R”

t 9°F
5.2 —dF(y)=—2 = .
( ) ( ) j=10 ?

We denote by H, the restriction of —4 to C7(R"), i.e.,
2(Hy)=C3(R"),'®

(5.3)
H,0=—40.

As is well known, we have for @€ C3(R")

(5.4) UH,0=L, U0,

16) C3(R») is the set of all infinitely continuously differentiable functions on R» with
compact carrier.
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where
__ d
L() == EZ— + B(r)
(5-5) Q(B(r)):DZQ(An)a

B =~ ay+ (2=

r

and 4, is the Laplace-Beltrami operator on S”°!. As is well-known —4,
is a non-negative, self-adjoint operator in L?(S™* 1), and hence we can
easily see that B(r) satisfies (a) and (b) of Assumptions 1.1 and 1.2.
We obtain from (5.4)

U2}(R")=Hg?(I, X)'"
(5.6)

I1Fllqy=IUF|l5 (Fe 25:(R")).

Let #°(R™) be the set of all linear continuous functionals « on
2%:(R"). v (R") is a Banach space with the norm

(5.7) |a|=sup{|<a, F>|; F€ 21:(R), ||F||1=1}.
Then a linear mapping U from ¥ (R") into #(I) is defined by
(5.8) <Ua, p>=<a, Ulp> (pe HYB(I, X)).
We have

Uy R =u(),
(5.9) _

|| =11TUall.

Denote by g(y) a real-valued function on R”. ¢(y) is assumed to

satisfy the following conditions:

Q) q(y) is continuously differentiable on R” and behaves like
O(| y|717%) (¢>0) at infinity, i.e., there exist constants ¢>0, 0>0 such
that

17) The Hilbert space @}.(R") is defined as the completion of C5(R™) in the norm

t=f 4 s
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(5.10) lgpi=clyl™*  (yl=0)

with 0<e<1.
Let us define C(r) by

{ C(r)=¢q(ro) x
(5.11)

2(C("))=D.

It is easy to see that C(r) satisfies Assumptions 1.1 and 1.2.

Define a differential operator H by
2(H)=C7(R")
(5.12)
HO=—40+q(y)0.

Then we have

(5.13) UHO=LU® (e C3(R™),
where

2
(5.14) L=——%+B(r)+€(r).

Denote by 771.:(R") the set of all @ €7 (R") such that

(5.15)  |ale=sup{|<a, (1+)'7 F>|; FEDLR, ||Fllq,=1}<co.

We have U# 1.:R")=%1,¢(I) and |a|i,e=lUcll,e for a€ Uy, (R").
We now give the definition of the radiative function for H as fol-

lows:

Let k€C* and a€v (R"). Then Feloc2L:(R™'™® is called the
radiative function for {H, k, a}, if F satisfies the following conditions;

(1) For any 0 CFR") we have

(5.16) (F, (H— EZ) m)LZ(Rn): <a, o>,

18) loc 7}.(R™) is the set of all F(y) on R™ such that ¢,Feg}l.(R*) for any n=1,
2, ---, where ¢nEC';'(R"), 0<¢,=<1 and

1 for |x|Z n,

‘Mx)Z{ 0 for |x|=n+l.
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(2) The “radiation condition”

el OF 2
5.17 S 1 vel OF _ pn| d
(517) A D P ()| dy<es

holds.

Let F be the radiative function for {H, k, 0}, k€ C*. Then, putting
v=UF€loc H}E(I, X), we have

(5.18) (v, (L—E)9))=0  (p€C}?(, X)),
and
(5.19) y'—n—1 v—ikv’ oo,

2r —~1+46,(1,e)

Modifying slightly the proof of Lemma 2.1, we obtain

(5.20) v'(r)—

v(r) — Lkv(r)

+Rek)?[v(r)|?

v —I—(I E—" >v(r)

—2(Re k) Im (v'(r), v(r))

+(Rek)?|ov(r)|?

v (r)+<Imk—— >v(r)

+4(Rek)* (Imk)|[v]13, 0,7

If Imk=~0, then we see from (5.20)

621 lim|lo]ff .1,
e

lim

= 4(Rek)2(Imk) s |” )=

Lot —iko(r)| =0

along some sequence {r;}7-;, and hence [lv|l,=0, i.e., v=0. If Imk=0,
then we obtain from (5.20)

(5.22) V' (r)—

v(r) —ikv (r)

VO—=""Lo)| + (Rek)? lo()]*
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= Lo+ (k- oD e

z{lvor+een),  (rz21),

whence follows 1i_m(|v'(r)|z+k2|v(r)|2)=0. Therefore, proceeding as in
the proof of Thrg(;*em 2.2, we have v=0. Thus the uniqueness of the
radiative function for H has been proved.

Next let « €% 1..(R") and k€C*. Since we have Ua€%,..(I), it
follows from Theorem 3.7 that there exists the radiative function v
=v(, k, Ua) for {L, k, U, 0}. Put

(5.23) F=U"%v(, k, U).

Then F€loc2}:(R") and it follows from (5.23) that

(5.24)  (F, (H—E* 0)12(zny=((v, (L—E)UD))o= < U, UD>=<a, D>
holds for any @€ Cy(R"). Since ve H'7¢(I, X) and 0<e<1, we have

”2';11;61{-“6((1, o), X). This together with v'—ikv€H- (I, X)

implies that v'—ikv— nz—rl vE H'*4((1, o), X). Hence we obtain

oF . Iz
O kR d
oyl * ()| 4y

(5.25) [, a+ine

L. n—1
lv ikv 7}—0

oo,

|—1+6,(1,eo)

Therefore it has been shown that F=U v is the radiative function for
{H, k, a}. 1t follows from v € H~'~%(I, X) that F€ L*(R", (14| y|) ' "*dy).

Thus we obtain

Theorem 5.1. Let n be an integer such that n=3. Let q(y)
satisfy the condition (Q). Then for given k€ C* and a € v (R") the radia-
tive function F(-, k, o) for {H, k, a} is unique. For given k€ C* and
€Y 1, :(R") there exists the radiative function F(-, k, @) for {H, k, a}
such that F(-, k, @) € L*(R", (1+ | y|)"'"%dy). Denote by 0 the mapping
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(5.26) 0:C"xv, R34, )
- F(e, k,) € L*(R", 1+ | y1) " *d y)Nloc 2} :(R").

Then o0 is continuous as a wmapping jfrom C*xX¢1,.R" into
L*R", 1+ | y|)"'"%dy) and is also continuous as a mapping from C*
XY 1R into loc 21:(R").
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