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The Principle of Limiting Absorption
for Second-order Differential Equations

with Operator-valued Coefficients*

By

Yoshimi SAITO**

§ 0. Introduction

Let us consider differential operators of the form

(0.1) L=-_Jl_ + 5(r) + C(r) (0<r<oo),

where for each r6(0, oo) B(r) and C(r) are operators in a Hilbert space

X. L acts on X-valued funcitons on (0, oo).

The purpose of the present paper is to justify the principle of

limiting absorption for the equation

(0.2) (L-U+ »»)«=/.

The essence of the above principle consists in the following: Let u^+i^

be the solution of (0.2), where / is a given X-valued function on (0, oo).

Then a solution u^ of the equation

(0.3) (L-X)u=f

is given by MX = liniHx+i> The meaning of the limit is to be determined
/*-»o

suitably. For the literature of the principle of limiting absorption see, for

example, Eidus £1].

Jager Q5] considers the differential operator L and gives, among

others, the following result: Let 5(r) be a non-negative self-adjoint
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q

operator in X and let C(r) behave like 0(r~2~£) (e>0) at infinity. Then

with some other conditions imposed on B(f) and C(r) the principle of

limiting absorption holds for equation (0.2) with boundary condition

(0.4) n(0) = 0

and the "radiation condition"

(0.5)

where | | means the norm of X. He uses the above results to con-

struct an eigenfunction expansion associated with L.

We shall extend Jager's results to L with C(r) which behaves like

0(r~1-£) (e>0) at infinity. In our case the radiation condition (0.5) will

be replaced by

(0.6)

which is weaker than (0.5).

As an application we shall prove the principle of limiting absorption

for the Schrodinger operator — A + q(y) in W (n^>3) with q(y)

= Q(\y\-l-£) at infinity. In this case X=L2(Sn~l) and

(0.7)

where Sn l is (ra —1)-sphere, and An is the Laplace-Beltrami operator

on 5""1.

In § 1 we state conditions imposed on B(f) and C(r) and prove some

inequalities which will be used to obtain various a priori estimates for the

solution of equation (0.2) in §3. §2 and §3 are devoted to showing the

existence and uniqueness of the solution u of the equation

(0.8) (L-k2)u=f
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which satisfies the boundary condition (0. 4) and the radiation condition

(0.6). Moreover we show that the solution u continuously depends on

k. Thus the principle of limiting absorption is justified. We discuss in

§ 4 the dependency on C(r) of the solution of equation (0.8). In § 5 we

apply these results to the Schrodinger operator in W1 (^^3).

Using the results obtained in this paper we can develop a spectral

and scattering theory for the differential operator L with an application

to Schrodinger operators — J + g(y) in RW
3 where q(y) = Q(\ y\~~l~6) at

infinity. We shall discuss these elsewhere.^

Recently we have been informed by Prof. T. Ikebe that the follow-

ing very extensive results have been obtained by S. Agmon: Let

(0.9) L= 2 aaD
a = L0 + B

\a\^m

be an elliptic operator in Rn which has a unique self-adjoint extension in

L2(RW), where LQ= 2 aQ
aD

a is an elliptic operator with constant coefficients,
lai^ro

and B=% baD
a is a differential operator with 6(#) = 0(| x \ ~1~e) as | x \

\a\^m

—> oo. Assume that /I > 0 does not belong to an exceptional set which is

discrete in (— oo? oo) and contains all the eigenvalues of L. Then the

principle of limiting absorption holds good for /I, i.e., we have

^x±i>-^x±*o as /U 0 in

(0.10)

where Vx±i/J, — ( L — ( ^ ^ i i / j t ) ) f. In his method any radiation condition is

unnecessary. These results are used to construct an eigenfunction ex-

pansion for L.

§ 1. Assumptions and Preliminary Lemmas

Let X be a Hilbert space with the norm | | and inner product ( , ).

For an open interval / in R2) and 0 G R we denote by H^(Jy X) the

1) See Y. Saito [7].
2) R is the set of all real numbers.
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Hilbert space of all (equivalence classes of) X-valued function on / with

the norm and inner product

(i.D

Let F be a linear topological space, let m be a non-negative integer, and

let /=(ai, 03) be an open interval in R. £"*(/, F) denotes the set of all

F-valued functions on / having m strong continuous derivatives. We

denote by COT(J, F)3) the set of all F- valued functions /(r) such that
djf

/G Cw(/, F) and J. (j = 0, 1, • • - , TTI) can be extended to continuous

functions on /. C^fl.(/, F) (i = l, 2) denotes the set of all f€Cm(J, F)

satisfying f(r) = Q in some neighborhood of a,-. We put C™(J, F)
— f^m (J V\r\r'm (J ~V\ Tf V—P1 ^) ixr<=» ri-mif P1 QC in C'm( J\ — C*m( T f^— c/Q> a i^j , i ji \LIQ>a2\j) i ). II J.—1-<, we omit \jt as in u \j) — o ^j, i^y.

Let /=(0, cx>) and let 5(r) and C(r) be operator-valued functions on

/. For local properties of B(r) and C(r) we make the following

Assumption 1.1. (a) For each r € I B(r) is a non-negative^ self-

adjoint operator in X such that its domain @(B(r)) = D5^ does not depend

on r, and B(r)x€C\I, X) for any x€D.

(b) Let x, yeD. Then (B(r) x, y) E C2(/) and for any compact

interval MCI there exists a constant ci(M)>0 satisfying

(1.2)

where r, s €. M and j= 1, 2.

(c) For each r €E / C(r) is a symmetric operator in X with

= D such that C(r)x£C\I, X) for any x€D.

(d) Let M be a compact interval in /. Then there exists a constant

c2(M)>0 such that

3) J means the closure of /.
4) C is all complex numbers.
5) <&(T) means the domain of T,
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d yr>/ \

(L3) dr

holds for any x £ D and any r^M.

We introduce the norm || \\B,j and inner product (( , ))B,J by

(1.4)

(1.5)

We denote by C2'fl(/, X) (Cg;?//, Jf), £ = 1, 2) the linear space spanned

by the set of all #>€C2(/, X) having the form <p = </>x, where x G D,

06C2(/) (0€CJU(/), £-1,2) and |Mk7<<*>. We denote Cg;*(/, X)

nC§;?2(/5^) by C2'S(/,Z). We define Hilbert spaces Hl-B(J, X\

H\'B(J, X) and Hl'^.(J, X) (£ = 1,2), respectively, by the completion of

C2>B(J,X\ Cl>B(J,X) and C2;f//, X) (£-1,2) in the norm || \\BiJ.

Let us denote by locHQ(I, X) the set of all X- valued functions /(r) on

I such that /e#°((0, 6), jf) for any 6>0. In a similar way

locHl'B(I, X) and locHl
Q'B(I, X} are also defined.

Assumption 1.2. 7) (a) There exist constants Pi>0 «wJ ci>l

(1.6)

holds for any x^D and any r^> PI.

(b) For g«c/z yzwzYg 6 E / ^/z^ natural imbedding

(1.7) ^J'B((0, 6), Z) -*

£5 compact.

(c) T/x^g gm^5 c 2>0 5wc/z that

6) Here and in the sequel u' and w" mean —^— and 9 , respectively.
dr dr1

7) The conditions imposed on B(r) and C(r) are the same as in Jager [5] except (c)
of Assumption 1.2. Jager [5] assumes that

\C(T)x ~ ~ e

instead of (1.8).
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(1.8) \C(r)x\^c2(l + r')-l-€(\x + | JT5~(r) * | ), (r G /, * G /?)

with some 0<£<1.

For an open interval /C I ^(/) denotes the set of all linear, con-

tinuous functionals on Hl'B(J, X). ^(/) is a Banach space with the

norm

(1.9) l l l / l l l /=sup{|<Z, <p> | ; ve Cl-B(J, X),

For example, for g & H°(J, X) we define / [#] e W(J) by

(1.10) < C£

Then we can easily see

(i.n)

Definition 1.3. Let /€#(/), u€Hl-B(I,X) and A;eC+ be given,

where

(1.12) C+-{A;|A;eC, ImA;>0 and

Then t; € locHl>B(I, X) is called a radiative function for {L, &, Z, &}, if

the following three conditions hold:

(a) i;-i*e locHl
Q>B(I, X\

(b) v-ikv€H-l+€(I,X) (the "radiation condition")9)

(c) For all ^eCg'B(/, JST) we have

(1.13) ((t;,(£-

We shall give a lemma which will be used to prove the existence

theorem of the radiative fucntion.

Lemma 1.4.10) Let IQ = (b, oo)? &>0. Eor each r€ 70 5(r) /s assumed

8) Im A; and Re k mean the imaginary and real, respectively.
9) In Jager [5] the radiation condition is defined by v' — ikv&H0^, X).

10) Cf. Jager [3], Hilfssatz 4 (p. 68).
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to be a non-negative, self -adjoint operator in X with ^(5(r)) — D constant

in r. Suppose that (B(r)x^ ^)€C1(/0) for any x^D and that we have

(1.14) —

with constants 60>6 fi^d e0>l. Let C(r) 3 r€/o , &0 0 symmetric operator

with &(C(r)) = D. Let v(r) be an X-valued function on 70 which satisfies

the following (i) ~~ (iii) :

(i) v e C2(/0, /)),n) 5v, Cv €

(1.15)

+ and

(ii) vr-ikv€H-l+e(IQ,X) and veIf-l-£(I0, X}.

(iii) We have

(1.16) |C(r)

with constants ei>0, 0<s<l.

T/2^7^ there exist constants 80>Q and r 0 ^>&o + l which do not depend

on v(r) flwc? (r) 5^c/2 that

(1.17)

r0-l

Moreover SQ and r0, «5 functions of &, cr^ bounded on any bounded set in

For the proof of this lemma we need the following lemma due to

Jager Q5] (Lemma 4.1).

Lemma 1.5. Let — °° ^a2<«i<&i<6 2 ^ °° and put /,• = (&/, 6,-),

11) Cz(/0, />) is the set of all ^(r)eC2(/05 Z) such that (p(r)^D for any re/0.
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i = l, 2. Let B(r) be a non-negative^ self -adjoint operator in X for each

r€ /2 with @(B(r)) = D constant in r. Let C(r) be a symmetric operator

in X with 0(C(r)) = ,D for each r€ / 2 . Suppose that v €.Hl>B(I2, X)

satisfies for any #?G CQ'B(IZ, -X")

(1.18)

where & G C + and /e<^(/2). Suppose, further, that v satisfies

(1.19) | C(r) t,(r) | ̂  c2( | v'(r) | + | 5*(r) v(r) \ + | i;(r) | ),

with a constant c2 = c2(/2)>0. Then there exists a constant K=K(Ii, J2, k)

>0 such that

(1.20) IklU.A^^dkllo./. + IIIZlll / , )

holds. Further if we assume v^H^2(I29 X) and az> — °° then the con-

clusion is valid for a2<Jai.

Proof of Lemma 1.4. Take r0^6o + l5 where bQ is given in (1.14).

Let 0eCl(I0) such that 0^0^1, 0'fr)^0, and

(0 for re(63r0],
(1.21) ^(r) = j

ll for re[r0 + l, oo).

Then we have for r2>r0

(1.22) ^(rf0(r)|^(r)-^(r)|2)

= £r-1+£0(r) | ̂ (r)- iii;(r) | 2 + r£0'(0 I v'fr)- **»(r) I 2

+ 2re0(r) Re (t;/x(r) - ikv'(r), v'(r} - i

since we have assumed that <I>r(f) ^ 0. Noting that Im k 2> 0 we have

(1.23)
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-Re (»"(r) - 5(r) »(r) + k2 v(r), »'(r) - »

+ (Im *){ | w'(0 - i 2

^ Re (»"(r) - S(r) »

+ Re(S(r)w(r),t;'(r)).

We estimate 2r£Re(v"— 5t; + A2j;, v'—ikv) as follows:

(1.24) 2r£ Re (»"(r) - 5(r) »(r) + fc2 »(r), v'(r) - i

^ - 2r£ | w"(r) - £(r) »(r) + k2 «(r) | | t>'(r

_2,9
(r) - 5(r) i;(r) + k2 »(r) | 2 -

since we have by (1.15) and (1.16)

(1.25) |«"(r)-B(r)t;

with a constant ^i = 5"i(A;)>0. We obtain from (1.14)

H ?fi"> ?Rpf#(VU>M ii'(r\\— (~R(r\v(r\ <n(r\\ — —— (Tt(r\ <r *}\j.f£i\JJ <GlvC {JJ^I J U\l )} V \i )) ~—\J-J\T)V\T)) V\ljj —-j—\^4J\J }J\>) Jb)

r

(1.22), (1.23), (1.24) and (1.26) are combined to give

(1.27) --(T*0<r)\v'(r)

| v' (T} - ikv(r} \
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+ ( e 0 r 1+f—-fr 2 2 f + 2

-

Putting 7?= -y- (-1 + s), /J = _L(l+e) and a = -~ e, we inte-

grate (1.27) from r0 to R (R^>r0 + 2) to obtain

(1.28) R£\v'(R~)-ikv(R)\z

where we have made use of the estimate

(1.29) 0(r)--(S(r) «(,-), v(r)} dr
dr

Now we take r0 (^io + 1) so large that we have with a constant

2 £
(1.30)

_ j. Jt T- «- •»• —
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for all rj>r0. On the other hand, using Lemma 1.5 with /i = (r0, r0 + l)

and I2 = (ro — 1, r0 + 2), we obtain the following estimate with constants

K>0 and 53>0:

S
rQ + l

r£<f,'
ro

max ^(^(Btfvtf, v(r)) dr

max

Jr0-l

where we used (1.11). It follows from (1.28), (1.30) and (1.31) that

(1.32) 82(* r-l^{\v'(r)-ikv(r}\2 + (B(r)v(r\ v(r}}}dr
J r 0 + l

) dr.
/ J TQ— 1

Since r~
l+€ \vf(r)~ ikv(r}\ 2 is integrable on 70, we have

(1.33) Rj | v'(Rj)-ikv(Rj) | 2-^ 0, ;-> oo

for some sequence J?y->oo. Thus we obtain (1.17) from (1.32). Q.E.D.

Lemma 1.6. Let us assume Assumption 1.1 and (a) and (c) 0/

Assumption 1.2. L^ A-£EC + <2^d /g£ v(r) be a radiative function for

{£,MM,0} with ve\ocHl
Q'B(I,X)rMI-l-£(I,X) and g£locHl>B(I, X)

r\H1+£(I, X). Then there exists a constant d>0 such that

(1.34) ll^-^^Ui^

where d depends only on k and is bounded on any bounded set in C+.

12) Here and in the sequel we put || | | p f /= I IU and || 15,1=1 |U f°r the sake of
simplicity.
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Proof. It follows from Assumption 1.1 that we can apply the

regularity theorem of Jager [5] (Satz 3.1, p. 76) to see that v€C2(I,D),

Bv, Cv€C°(I, X), and v satisfies (1.15) for all r€/ . From Lemma 1.4

we obtain

(1.35) (" (l+rYl+e{\vr(r}-ikv(r}\2 + (B(r}v(r\ v(r))}dr

with constants r0I>pi + l and Ki>Q. Since v£locHl'B(I, X), we can

use the last statement of Lemma 1.5 with /i = (0, r0 + l) and /2

= (0, r0 + 2) to obtain

(1.36)

+

with a constant K2>0. (1.34) follows from (1.35) and (1.36). Q.E.D.

§2. The Uniqueness Theorem

We shall show the uniqueness of the radiative function using

arguments due to Jager

Lemma 2.1. Let B(r) satisfy (a) and (b) of Assumption 1.1. Let

C(r) be a symmetric operator in X for each r G / such that C(r) satisfies

(c) and (d) of Assumption 1.1. and

(2.1) |C(r)

with a constant c>0. Let v€ \ocHl'B(I, X) satisfy

(2.2) ((«,(£- t2)«0)o = ((#?))o (<p£Cl-

with g€locHl-B(I,X) and k<=C+, where

(2.3)
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Then we have for all r 6 /,

(2.4) |t>'(r)-iAt>00|2

i) »(r) | 2 + (Re &)2 | w(r) | 2

Proof. As we have seen in the proof of Lemma 1.6, it follows from

the regularity theorem of Jager []5j (p. 76) that

(v e C2(I, D) and Bv, Cv 6 C°(I, X)
(2.5)

On the other hand we obtain from the fact that v 6 locH J'S(I,

(vec\i,x)
(2.6)

U(o)=o.

From (2.5) and (2.6) we see that

(2.7)

holds for any <p e Cg'B(/, JT). Since z; E loc£TJ'B(/, Jf), for any r>0 there

is a sequence {cpn} in Co'5(/3 X) such that

(lb»-Hk(0,r+l)-*0,

(2.8)
U>»(0->u(0 in Z (^[0,r+l])

as TI->OO. Replacing ^? by ^w in (2.7) and letting ra->co5 we have

13) Note that Hl>B(I, X) is continuously imbedded in C°(I, X). See Jager [5], p. 69.
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(2.9)

Hence we obtain

(2.10)

Using (2.10), we calculate \v'(r) — ikv(r)\z as follows:

(2.11) \v'(r~)-ikv(r~)\2

-2(Re*)Im(i;'(0,

= | »'(r) + (Im k) v(r) \ 2 + (Re k? \ v(r) \ 2

Q.E.D.

Theorem 2.2. Z-ei MS assume Assumption 1.1 awd (a) awJ (c) of

Assumption 1.2. Le< le<%(I), k€C+ and u,eHl'B(I,X) be given. Then

the radiative function for {L, k, I, it} is unique.

Proof. Let v be a radiative function for {L, k, 0, 0}, where

What we want to show is that v is identically zero.

We start with the relation

(2.12) »'(r) - ikv(r) \ 2 = | t/(r) + (Im A:) »(r) | 2

which follows from Lemma 2.1.

If ImA;>0, then we obtain from (2.12) and the fact that v' — ikv

(2.13) 0<:|H|U.^
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for some sequence r/— >°o. Hence we have \\v \% = 0, i.e., t; = 0.

Next let us assume that Imk = Q. Then we have from (2.12) and

the radiation condition vf—ikv£H~l+£(I,X)

(2.14)

By the regularity theorem of Jager £5] (p. 76) and (1.8) we have

ivec\i,D)
(2.15)

^ 2ci(l + r)-2~2f { | v(r) \ 2 + (S(r) v(r\ i;(r))} (r 6 /),

where c2>0 is given in (1.8). (2.14) and (2.15) enable us to apply

Hilfssatz 1 of Jager Q3] (p. 66) on the growth property of solutions of

the equation (L — k2)v = 0 to show that the carrier of v is compact in /.

Hence, using Satz 3 of Jager Q4] (p. 32), a unique continuation theorem

for solutions of the equation (L — k2)v = Q, we see that t; = 0 on /.

Q.E.D.

§ 3. The Existence Theorems

This section is devoted to showing the existence of the radiative

function v for {L, /c, /, u}, where &£C, u^Hl>B(I,X\ and I belongs

to a subspace <^i+£(/) of ^(/). We shall first prove a priori estimates

for radiative functions v for {L, fc, /, 0}, &6C + and Ze#i+ e ( / ) (Lemma

3.1 and Lemma 3.4). This corresponds to Satz 5.3 of Jager L5]. But

it seems that we have to modify its proof in order to obtain the a priori

estimates needed in our case. Lemma 3.2 is necessary for this modifica-

tion. Next we shall prove the existence theorems using our a priori

estimates (Theorem 3.7 and Theorem 3.8). At the same time we shall

see that the radiative function v for {L, &, Z, u} depends continuously on

/c, I and u.
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Lemma 3.1. Let us assume Assumptions 1.1 and 1.2. Let K be a

compact set in C". Let k^K and g£ H1+£(I, X)r\\vcHl>B(I, X). Let

v be a radiative function for {I/, fc, ^Cgl 0} such that

(3.1) v e ioc#J'B(/, x)r\H-l-£(i, x).

Then we have

(3.2) |HI-i-£+i|f'-^il-i+, + l!5H -1+

with a constant #i>0, where di depends only on K and L.

To prove this lemma we prepare

Lemma 3.2. Let K, g, k and v be as in Lemma 3.1. Then there

exists a positive number a0 such that

(3.3)

where aQ depends only on K and L.

Proof. From Lemma 2.1 we obtain

(3.4)

whence we have

(3.5) |t,(r)|a^

Multiplying both sides of (3.5) by r~l~€ and integrating from p to

we have
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(3.6) V-e | »(r) | 2 dr ̂  - ^__ 1- | v'(r) - ikv(r) \

(3.3) follows from (3.6) and Lemma 1.6. Q.E.D.

Proof of Lemma 3.1. It follows from Lemma 1.6 that it is enough

to show

with a constant a>0 depending only on K and L. Let us assume that

(3.7) is false. Then for each positive integer n we can find kn € K,

hn€HocH1>B(I, X\ and radiative functions un for {L, kn, ZE&»j, 0} sucn

that

(3.8) l l i ^H_ i_ f >ra j | / y i i + £ .
Since we see | |& w | [_ i_ £ >0 from (3.8), we obtain radiative functions vn

= J\—IT for ^L> kn> ^#J> °}> 8« = T\—if ' with
\\Un\\-l-e \\Un\\-l-s

(3.9)

Let {knm} be a subsequence of {kn} satisfying

(3.10) knm—>£o, m—>oo

with kQ € K. Without loss of generality we can assume

(3.11) kn—>&09 n—»°o.

In view of (3.9) we have for any R 6 /
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fsup ||t;w | |o>(o,j?+i)<00
5

(3.12)
fn l l f l , (0 ,12+1) <°°-

Therefore it follows from Lemma 1.5 that

(3.13) sup|H|s,(0,K)<°o
n

for all R>0. Since for all 0<jR<oo the imbedding #J'5((0, K), J5T)->

JfiT°((0, -R), JC) is compact by (b) of Assumption 1.2, we obtain a

subsequence of {vn} which is a Cauchy sequence in jff0((0, R\ X) for
all R € /. Without loss of generality we can assume that {vn} itself is

a Cauchy sequence in #°((0, /?), Jf) for all R€ I. The sequence {#w} is

a Cauchy sequence in £TJ'B((0, J?), X) for all .R £ /, too. In fact for

each pair (ra, TTI) t;w — i;OT is the radiative function for {£, A;, ZE^^I], 0},

where

and kQ is given as in (3.11). From (3.9) and (3.11) we obtain gnm-+Q,

n, m-> co in #°((0, R + l\ X) for any R>Q. Hence, noting that {z;w}

is a Cauchy sequence in £T°((0, J?+l), X), we can apply Lemma 1.5 to

show

where /9>0 depends only on R, k and L. Therefore there exists

v€locH%'B(I, X) satisfying

(3.16) vn—>#, n—>co

both in Hl'B((^ R\ X} and in H°((0, R), JT) for any R € /.

Letting TI-»OO in the relation

(3.17) ((!;„, (L-

we obtain from (3.16), (3.9) and (3.11)
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(3.18) ((*,(£- £8) ?))o = o.

Using (3.9), (3.16) and Lemma 1.6 we estimate \\v' — i^0^| |-i+£,(o,^) as

follows :

(3.19) v—

<^sup \\v'n — ikQvn\\-i+£

where £>0 is as in Lemma 1.6. Since the last member of (3.19) does

not depend on n and R, we have v' — ikQv 6 H~l+£(I, JQ, i.e., v satisfies

the radiation condition. Thus v is a radiative function for {Z, &o, 0, 0,},

and hence t; = 0 by Theorem 2.2.

From Lemma 3.2 we obtain for

(3.20) MI^IIV. ̂ lim \\vn |2-1-,,(0,p)+ sup

where we have noted (3.9) and the fact v = Q. Since p^>l is arbitrary,

we obtain lim| | t ;w | |_i_£ = 0, which contradicts the assumption that | |vn | |_i_£

= 1. n Q.E.D.

Now we introduce a subspace of

Definition 3.3. Let #i+£(/) be the set of all Ze^r(I) such that

(3.21) |||Z|||1+£

^i+£(J) is a Banach space with the norm

It is easy to see that we have

(3.22) iHZ
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with a constant a0>0.

We shall show that the inequality (3.2) also holds for the radiative

function for {L, k, I, 0}, where

Lemma 3.4. Let us assume Assumptions 1.1 and 1.2. Let K be as

in Lemma 3.1. Let k£K and l€Wi+£(I). Let v be a radiative function

for {£, &, Z, 0} such that veH~l-£(I, X)rMocH%'B(I, X).

Then there exists a constant dz>Q such that

(3.23) l i v l U i - e + l lv ' - iAwlUi^ + l l^wlUi+^WI/ll l i^

where dz depends only on K and L.

To prove this lemma we need

Lemma 3.5.14) Let B(r) satisfy (a) of Assumption 1.1 and let C(r)

(r€E/) be a symmetric operator in X with the domain ^(C(r)) = D such

that

(3.24) |C(r)*|^c(|*| + |fi*(r)*|) (r € = / , *

with a constant c>0. Let k0eC+ and lmkQ>Q. Let I £<%(!). Then

the equation

(3.25) ((B, (L

has a unique solution u in H\'B(I, X) with the estimate

(3.26)

where @i = @i(ko)>Q is a constant. Further, if ZG^i^J), then we have

ueHl+e(I,X) and

(3.27)

with a constant /?2 =

Proof. Let us define a bilinear form ^z-^[-3
eJ on Hl'B(I> -X")

14) Cf. Jager [5], Lemma 2.3 (p. 75) and the proof of Satz 5.3 (p. 86).
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x #'•*(/, X) by

(3.28) #L-*;|>I, W2] = ((wi, W2))s + (((C(r)-Ag-l)u;i, w2))0.

Then we shall show

(3.29) diNU^ #*-*;!>, uT| | ̂ dzNH («;6ffS'B(J,Z)),

where dj=dj(k0)>Q (y'=l, 2) are constants. Since CfrB(I, X) is dense

in Hg'B(I, X\ and we have by integration by parts

(3.30) @L-kl[_<P

it is sufficient to show (3.29) that we show

(3.31) ( < p e C I ' B ( I , Z)).

Let us prove (3.31). From (3.24) we see that

(3.32)

whence follows for all <p€C%'B(I, X)

(3.33)

Thus we have shown the first inequality of (3.31) with ^i =

+ | k0 1
 2). On the other hand we have

(3.34)

where A = ReA;§ and ft = Imkg^Q. Hence, using (3.32) again, we have

(3.35)
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with a>0. Take 0<a<l in (3.35). Then, noting that we obtain

from (3.32)

(3.36)

GS>0),0
we arrive at

(3.37)

where we put ci = 2c2 + (U I+1)2 . Putting /9 = -^- and taking 1 — a > 0
2c!

small enough, we obtain from (3.37)

(3.38) l((p,(i

whence follows the second inequality of (3.31) with d2 = i/- -.

Since (3.29) has been justified, we can make use of the Lax-Milgram

theorem15) to show that there exists a unique solution of u in H\'B(I, X)

of the equation

(3.39) 0i-klLu, "]=<*, ^> (w€H$-B(I, Z))

for /€#(/). Since aL-k\\Ju>, <?! = ((», (L-k$(p}\ for ( p £ C l > B ( I , X\

it follows from (3.38) that u is a unique solution of (3.25). (3.29)

and (3.39) are combined to give

(3.40) \\u\\l^\aL-k\lu,u^\=±\<

which implies (3.26) with #x= ,=— .

15) See, for example, Yosida [6], p. 92.
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Next let us show (3.27). Let </>eCl(K) such that 0<:0(r)<;i,

and

(3.41)

0 for r:>2,

1 for r<
1

= 2 '

For each 771 = !, 2, ... we define

(3.42) m

where u is the solution of the equation (3.38). Then we obtain from (3.39)

and (3.28)

(3.43) 0L-kltum, un^=\\um\\

It follows from (3.43) and (3.29)

(3.44) \\um\\l^\@L_kllum,

<-

where we note
771 771 \ 771

and
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(3-45) |0;(r) ^

for any r*S.I and for any m = l, 2, •••. Taking account of (3.26)

and (3.22), we obtain from (3.44)

(3.46) l!"JB^-

#i0oj

which implies with-—— (l + (—i^- + 3 ) 0 i a 0 J = 02

(3.47)

Thus, letting 7?i->oo in (3.47), we obtain (3.27). Q.E.D.

m 1 + 6

Proof of Lemma 3.4. Since ZE^i+^ /X it follows from Lemma 3.5

that the equation

(3.48) ((# (i+i»)o = <J, ^> (<P£CI>B(I, Z))

has a solution g£ H^B(I, X)rMfl+£(I, X}. Put w=g—v, where t; is a

radiative function for {£, A:, Z, 0}, i.e., t; satisfies

(3.49) (

and

(3.50)

From (3.48) and (3.49) we see that

(3.51) ((w, (i-S2)«?))0 = (*2-

Noting geHl
0-

B(I, X~) and (3.50), we have

(3.52) ||u/



PRINCIPLE OF LIMITING ABSORPTION 605

Hence w is a radiative function for {L, k, (k2 — i) l\ig}} . We make use

of Lemma 3.1 to obtain

(3.53) ||w||-i-£+i!t«/-£M-i^

where 8i = 8i(K) is given in (3.2). It is implied by (3.26) and (3.22)

that

(3.54)

Since v = g+w, (3.23) follows from (3.53), (3.54) and (3,27). Q.E.D.

Lemma 3.6. Let us assume Assumptions 1.1 and 1.2. Let km£C+,

lm€Wi+£(I) for each m = l, 2, • • - . Let vm, m = I, 2, ••• be radiative func-

tions for {L, km, lm, 0} such that

(3.55) vm€H-l-£(I9 X} (m = l, 25 ...).

Let us assume

(3.56)

with & E C + and /E^i+ £(/). Then there exists the radiative function v

for {jL, A;, Z3 0} satisfying

(3.57) vm-^v both in H~l-£(I, X) and in locHl
0'

B(I, X) as m-^oo.

Proof. As in the proof of Lemma 3.4 we put vm = gm + wm, where

gm€Hl'B(I, X)r^Hl+£(I, X) is the solution of the equation

(3.58) ((gm, (L + i)^))o = </m, <P> (pGC§'*(7, Z)),

and wm is the radiative function for {L, &W5 (k^— i)l\^gm^ 0} for each

m = l, 2, • • - . For each pair (TTI, n) we have



606 YOSHIMI SAITO

(3.59) ((gm~gn,(L + i')<p}\=<l

and hence we obtain, using Lemma 3.5,

{\\gm- gn\\
(3.60)

as m, ra-»-oo. We put g=limgm. Then g€ H\-B(I, Z)n#1+£(7, X\
m-*°°

and g is the solution of equation (3.48).

Now we turn to the sequence {wm}. Since the sequence {lm} is

uniformly bounded in ^i+£(/), it follows from Lemma 3.4 and Lemma
i

3.5 that the sequence {||^JI-i-£ + IK~ ikvm\\-i^e + \\B*vm\\-i+E}, {\\gm\\a}

and { || gin II i+£ } are also uniformly bounded. Therefore, noting that wm =

Vm~ gm> we obtain the uniform estimate

(3.61) \\wm\\.^£ + \\w^-ikmwm\\^l+£

with a constant a>Q. From (3.61) we have

(3.62) sup \\wm\\Bt(Q>R)<°o

for any R 6 /. Hence, proceeding as in the proof of Lemma 3.1, we obtain

a subsequence {wmj} of {wm} which converges to w in \ocH\'B(I, X).

On the other hand, using Lemma 3.2 and the uniform boundedness of

s}) we have uniformly with respect to m

(3.63)

where we have noted that {km} is uniformly bounded and wm is a radia-

tive function for {Z, k, (A^— O^CgmHj 0}- It is implied by (3.63) and

the convergence of {wnij} in locHl'B(I, X) that wm converges to iv in

H~l~£(I, X). Therefore, taking note of (3.61) and km-+k, m-> co5 we

see that w is a radiative function for {!/, k, (k2 — i)l[^g^, 0} and we have

(3.64) wmj-+w (y-*°°)
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both in locHl
Q'B(I, X) and H-l~£(I, X).

Finally put vm=gm+wm. Then we obtain from (3.60) and (3.64)

(3.65) vmj-+v (/-><*>)

both in locHl'B(I, X) and H~l~~e(I> X\ where v = g+w is a radiative

function for {£, &, Z, 0}. Since v is unique by the uniqueness of the

radiative function (Theorem 2.2), it follows from (3.65) that the original

sequence {vm} itself converges to v both in H~l~£(I9X) and locffJiB(/, X).

Q.E.D.

We can now prove the existence theorem of the radiative function

for {L, k, Z, 0}, where k€C+,

Theorem 3.7. Let us assume Assumptions 1.1 and 1.2. Let

and ZE^i+ £( /) . Then there exists a unique radiative function v = v(',k,l)

for {L, &, 0} in H~l~6(I, X}. If k belongs to a compact set K in C+

then we have

(3.66) \\v\\^£ + \\vf-ikv\\_l+6 + \v\\^l

with a constant (?2>0, depending only on K. Denote by 2$ the mapping

(3.67) 2Q: C+x^1+£(/)B(M)

-l~£(I, X)rMocHl
Q'B(I, X).

Then 2Q is continuous as a mapping from CH x^1+6(/) into H~l~£(I, X)

and is also continuous as a mapping from C+X<%i+£(I) into locHl'B(I^ X).

Proof. First assume that Im&>0. Then from Lemma 3.5 we

obtain a unique radiative function v(-, k, Z) for {I/, k, Z, 0} such that

v£Hl+£(I, X)rMIl'B(I, X). Next assume that Imi = 0. Then, putting

for 7^ = 1, 2, ...

(3.68) j m

m = Vm(; km, Z),
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we see from Lemma 3.6 that the radiative function v = v(',k,l) for

{L, k, Z, 0} is obtained as v = limvm. The other statements follow from
m-*00

Lemma 3.4 and Lemma 3.6. Q.E.D.

Finally we prove the existence of the radiative function for {L, k, Z,

u}.

Let v = v(', k, I, u) be a radiative function for {L, k, I, u}, where

k€C+, Ze#i+£(/) and u€Hl'B(I,X). We define Zi e<2fi+e(/) by

(3.69) </

where 0 <= C\I\ O^^^l and

(1
(3.70) 0(r) =

Then it is easy to see that VQ = V — </>U is a radiative function for

{Z,, k, 1 1, O}. Thus we can reduce the equation with the boundary value

v(0) = u(Q) to the equation with the boundary value #o(0) = 0. Therefore,

noting that li = li(u} is a ^i+£(/)- valued continuous function on

Hl>B(I, X\ we obtain from Theorem 3.7 the following

Theorem 3.8« Let us assume Assumptions 1.1 and 1.2. Let

e(/) and u €:Hl>B(I, X). Then there exists a unique radiative

function v = v(°, k, Z, u} for {L, &, Z, &} m H~l~£(I, X). Denote by 2

the mapping

(3.71) 2 : C+ x #1+e(7) x ^^(J, X} B (k, Z, zi)

->t/(-, ft, Z5 u)

Then 2 is continuous as a mapping from C+ x^i+£(/) xHl>B(I, X) into
H~l~£(I, X) and is also continuous as a mapping from C+x^i+£(/)
xHl'B(I, X) into \vcHl>B(l X}.

§48 The Dependency of Radiative Functions on C(r)

Let Cm(r\ 77i = 1,2,..-, be a sequence of operator-valued functions on
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/. Let C(r) be as above. In this section we study the relations between
d2

radiative functions for L and radiative functions for Lm=— 2 +B(r)

+ Cm(r) when Cm(r)-*C(r} as 771->°o.

Assumption 4.1. (a) For each r E / Cm(f) is a symmetric operator

in X with &(Cm(r)) = D such that Cm(r) x 6 C\I, X) for any xeD.

Moreover for any compact interval M in I there exists a constant c(w)(M)

>0 such that

(4.1) d
dr

Cm(f) X

holds for any x^D and any r 6 M.

(b) There exists a constant c0>0 such that

(4.2) \Cm(r)X\<,c,(l + rY^e(\X\ + \B^(r)X\} (*€0 , r€ / )

for any 771 = 1, 2, • .-, where c0 does not depend on m, and 0<£<1 is as

given in (1.8).

(c) We have

(4.3) lim|C(r)*-Cm(r)*|=0
m-»oo

for any x^D and any r € /.

Since Cm is assumed to satisfy (a) and (b) of Assumption 4.1 for

each 77i = l, 2, • - . , Cm(r) is so smooth and tends to zero at r=oo so

rapidly that the results of § 2 and § 3 can be applied to the operator

(4.4)

i.e., there exists a unique radiative function vm(r^ k, I, u) for {Lm, &, Z, &},

where (A, Z, u) e C+ x®l+e(I}xHl'B(I, X}.

Theorem 4.2. L^ S(r) ^w^ C(r) satisfy Assumptions 1.1 «^J 1.2.

L^ COT(r), 77i = l, 2 , . . - , satisfy Assumption 4.1. L^ K be a compact set

such that KCC+ and let vm = vm(r, km, ZOT), /ra = l, 2, • • • , ^ ^^ radiative
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function for {Lm, km, Zw, 0}, where km£K and lm€<%i+€(I). Then there

exists a constant 50>0 such that

(4.5) |W|-i-^K-**mt;J-i^

SQ depends only on K.

Proof. Denote by gm the radiative function for {Lm, Vi, lm, 0}. We

see from Lemma 3.5 that gmeHl+£(I, X) for each 771 = !, 2, .... We denote

by wm the radiative function for {Lm, km, (&^— O^Cgvl 0}- Obviously

we have vm=gm + wm. Proceeding as in the proof of Lemma 3.5, from

(4.2) we obtain uniformly for 771 = !, 2, • ••,

(4.6) a l l^ l l l^KC^C^ + O ^ o l ^ / J I I ^ I I J (<peCl>B(I,X}\

with constants a, /5>0, whence follows that we obtain uniformly for

771=1, 2, ...

(4.7)

with a constant ^o>0- Re-examining the proof of Lemma 1.6, we can

see from (4.2) that we obtain uniformly for m = l, 2, ...

(4.8) ||w;-iAwJ_i+e + ||S2^

with a constant 7]i = 7]i(K)>0. Finally, proceeding as in the proof of

Lemma 3.1, we can show by reduction to absurdity that we have

uniformly for 771 = 1, 2, ...

(4.9) \\Wm\\-\-e^y2\\gm\\l + e

with a positive constant ^2 = ^2(^0- Thus we have (4.5) from (4.7),

(4.8), (4.9) and (3.22) as follows:

(4.10)
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11ZJ1]1+, (m = l, 2, ...),

where we put T= sup km , and a0 is given as in (3.22). Q.E.D.
m=l,2,...

Theorem 4.3. Let B(r) and C(f) satisfy Assumptions 1.1 and 1.2.

Let Cm(r\ 7?i = l5 2, • • • , satisfy Assumption 4.1.

(i) L0f & W € C

(4.11)

lim km =

M;#/Z A;€C+ flw^ Z6^i+£(/). Denote by vm(^ km, lm) the radiative func-

tion for {Lm, km, lm, 0} for each 771=!, 2, • • • . Then we have

(4.12) »«(-,*.,/»)-»•»(•,*,/)

both in H~l~£(I, X) and in locHl'B(I, X), where v(-, fc, Z) zs ^e radia-

tive function for {L, k, Z, 0}.

(ii) Let K be a compact set in C+ and let M be a compact metric

space. For each m = l, 23 • • - , lm(k, 5) is assumed to be a Wi+€(I)-valued,

continuous function on Kx M such that

(4.13) lim|||Z(A, s)-lm(k, 5)|||i+e = 0
m-^oo

uniformly on KxM with a <%i+e(I} -valued, continuous function l(k, 5) on

KxM. Denote by vm(*, k, 5) the radiative function for {Lm, k, lm(k, s\ 0}.

Then we have

(4.14) limvw(-, k, s) = v(-, k, 5)
7W->oo

both in H~l~6(I, X) and in locJyj>5(/? X) uniformly on KxM, where

#(", k, s) is the radiative function for {L, A, Z(&, 5), 0}.

Proof. First let us prove (i). Let gm be the radiative function for
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{L, Vi, lm, 0} and let wm be the radiative function for {£, &, (&^— O

0}. Then we have vm=gm + wm. Similarly we have v = g+w, where g

is the radiative function for {L, V&, Z, 0} and w; is the radiative function

for {L,k,(k2 — i ) l ^ g ^ ] , Q } . It follows from Lemma 3.5 and the regularity

theorem of Jager [5] that g, gm€Hl+£(I, X)r\Hl
0'

B(I, X)nC2(/, D). We

can show that

(4.15) ]im\\(C-Cm)g\\l+6 = 0.
m—*oo

In fact we obtain from (4.3) and the fact that g(r) 6 D

(4.16) lim | (C(r)- £„(!•)) £(r) |=0 (r6/),
m— »oo

and also obtain from (1.8) and (4.2)

(4.17)

(4.15) directly follows from (4.16) and (4.17). Noting that g— gm satis-

fies the equation

(4.18)

We see from (4.7) and (4.15) that

f ll*-«-j
(4.19)

as m— >eo. Using (4.19) and Theorem 4.2, we can proceed as in the

proof of Lemma 3.6 to show that the sequence wm converges to w both

in H~l~£(I,X) and in loc#J'B(/, Z). Thus we have shown that vm— gm

+ wm converges to v — g+w both in H~^S(I, X) and in locH^B(I, X)

which completes the proof of (i).
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Next let us prove (ii). It follows from (i) that for each pair (&, 5)

vm(*9 k, s) converges to #(•, &, 5) both in H~l~£(I, X) and in

locHl>B(I, X). Assume that the convergence of vm in H~l~6(I,X) is not

uniform on KxM. Then there exists £0>0 and the set of positive

integers {mj}j=l and (&/, Sj)^KxM such that m/— > °° as /— >°o and

(4.20) |K«, *y, «/)-!;«/•, kh ay)||-i_^e0.

Since the set {(&/, 5/)| y = l, 2, ...} has at least an accumulating point

(&o3 s0)£KxM, we can assume kj-*kQ and s/->s0 without loss of

generality. Then, using the continuity of Z(£, 5) and the uniform con-

vergence of lm(k, 5), we obtain

(4.21)

Therefore it follows from (i) that

(4.22) ||t7(-, to, 50) — t7my(-, fcy, 5;-)||-l-£->0, /->OO.

On the other hand we obtain from Lemma 3.6

(4.23) ||t;(., kQ, SQ)-V(; kh ^OIU^^O, ;-^oo.

(4.22) and (4.23) are combined to give ||t;(-, kh sf) — vmj(; kh 5y)||_1_£->0J

/->°°, which contradicts (4.20). Hence vm(*, k, s) converges to #(•, k, 5)

in H~l~~£(I, X) uniformly for (k,s)€KxM. Similarly we can show that

vm('j k, 5) converges to v(-, k, s) in locHl>B(I, X) uniformly for (A, 5)

. Q.E.D.

By an argument similar to the one used in obtaining Theorem 3.8

from Theorem 3.7, we can show the following

Theorem 4.4. Let B(r\ C(r) and COT(r)3 7H = 1, 2, ..., be as in

Theorem 4.3. Let u£Hl>B(I,X).

(i) Let km£C+ and lm£Wl+e(I} satisfy (4.11). Denote by vm(-,km,

lm, u) the radiative function for {Lm, km, lm, u} for each m = l, 2, ....
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Then we have vm(*, km, lm, u)->t;(-3 fc, Z, u\ /7i->oo3 both in H~l~£(I,X)

and in locHl>B(I, X), where v(', k, I, u) is the radiative function for

{L, k, I, u}.

(ii) Let k, M, lm(k, s) and l(k, s) be as in (ii) of Theorem 4.3. Let

(4.13) be satisfied. Then we have

(4.24) limt;w(-, km, sm, u) = v(; k, s, u}
7W-»oo

both in H~1~£(I^ X) and in locHl'B(I, X) uniformly on KxM, where

^w( e j km, sm, u) and !;(•, &, 5, u) are the radiative functions for {Lm km,

lm(k, s\ u} and {L, k, l(k, s\ u}, respectively.

§5. The Sehrodinger Operator in Rn (n^>3)

In this section we apply the results obtained in the preceding sections

to the Sehrodinger operator in E.n (ral>3).

Let Z=L2(Sn"1), Sn-1 being (n — l)-sphere. We define a unitary

operator U from £2(IT) onto H\I, X) by

(5.1) (KF) (r) = r^F(ro>) (F(y) e L\W)\

where r=\y\ and a) = -^~e Sn"1.

Let us consider the Laplacian on Rw

n i
(5-2)

We denote by ^o the restriction of — A to Q"(RM), i.e.,

( ^(#0) = Co(R"),16)

(5.3)
( H0$=-4®.

As is well known, we have for 0 6

(5.4)

16) C~(Rn) is the set of all infinitely continuously differentiable functions on R71 with
compact carrier.
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where

(5.5)

and An is the Laplace-Beltrami operator on Sn l. As is well-known — An

is a non-negative, self -adjoint operator in L2(Sn~l\ and hence we can

easily see that J5(r) satisfies (a) and (b) of Assumptions 1.1 and 1.2.

We obtain from (5.4)

(5.6)
I \\F\\(l^\\UF\\B

Let i^(Rn) be the set of all linear continuous functionals a on
n) is a Banach space with the norm

(5.7) \a =sup{\<a,F>

Then a linear mapping [7 from y(Rw) into ^(/) is defined by

(5.8) <Ua, (p> = <a, U~lcp>

We have

(5.9)

Denote by gr(j) a real-valued function on Rw. q(y) is assumed to

satisfy the following conditions:

(Q) q(y) is continuously differentiable on W1 and behaves like

0(| j|"x"£) (e>0) «^ infinity ) i.e., there exist constants c>0, p>0

that

17) The Hilbert space ^ri2(R
71) is defined as the completion of C£(RB) in the norm
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(5-10) \q(y)\^c

with 0<£<1.

Let us define C(r) by

(
(5.11)

It is easy to see that C(r) satisfies Assumptions 1.1 and 1.2.

Define a differential operator H by

( ®(H}= Co (RB)
(5.12)

Then we have

(5.13) UH0) = LU® (0e<

where

(5.14) L=—f

Denote by yi+£(R") the set of all a€f(R") such that

+ e
(5.15) |a|1^

We have £/^1+£(R
w) = ̂ i+£(/) and |a|i+6 = |||J7a||li+e for a£ Ul+£(R

n).

We now give the definition of the radiative function for H as fol-

lows:

Let keC+ and aG^(IT). Then FeiocSi2(Rw)18> is called the

radiative function for {H, k, a}, if F satisfies the following conditions',

(1) For any 0 € C7(R") we have

(5.16) (F, (H-

18) loc^iXR") is the set of all F(y) on Rn such that ^Fe^izCR71) for any n = l,
2, ..., where ^neC~(Rn), 0 ̂  ^n ^ 1 and

r 1 for | x I ^ n,
«M*)=<1 0 for | a;
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(2) The "radiation condition"

(5.17) dF
~d\y\

holds.

-ikF(y) dy<(

Let F be the radiative function for {H, k, 0}, k G C+. Then, putting

v=UF€locHl
Q'B(I, Jf), we have

(5.18) ((v,(L-,

and

n — 1(5.19) .7^ — ikv <oo.
2r

Modifying slightly the proof of Lemma 2.1, we obtain

t-1(5.20) v(r) — ikv(r)
2

2 + (Re k)2 | v(r}\2

If Im&^O, then we see from (5.20)

(5.21)

= 4(ReA;)2(ImAO

along some sequence {r/}J=l3 and hence H ^ H o ^ O , i.e., # = 0. If Imk-

then we obtain from (5.20)

(5.22)
2r
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r>
' T \

whence follows lim(|v'(r) 2 + k2 \ v(r) \ 2) = 0. Therefore, proceeding as in

the proof of Theorem 2.2, we have # = 0. Thus the uniqueness of the

radiative function for H has been proved.

Next let a£^i.r£(irO and k£C+. Since we have Ua£<%i+€(I), it

follows from Theorem 3.7 that there exists the radiative function v

= t;(-, k, Ua) for {L, k, Ua, 0}. Put

(5.23) F=U~lv(; k, Ua).

Then F€ loc^KR") and it follows from (5.23) that

(5.24) (F,

holds for any 0£C^(Rn). Since v € H l £(/, X) and 0<£<1, we have
n~~l -^H~l+£((l, oo), Jf). This together with v'- ikv e H'1+£(I, X)

2r

implies that v'—ikv— ri~ L v^H'l+£((l, oo), A"). Hence we obtain

(5.25)
d\y\

-ikF(y) dy

= \v'—ikv — —-——v
2

<oo.

Therefore it has been shown that F= U l v is the radiative function for

{#, k, a}. It follows from v E H~l-£(I, X) that Fe L\W, (1 + | y\ Yl~edy).

Thus we obtain

Theorem 5.1. Let n be an integer such that nl>3. Let q(y)

satisfy the condition (Q). Then for given k&C+ and a 6 ^(W1) the radia-

tive function F(-, k, a) for {H, k, a} is unique. For given k£C+ and

a€ii/'i+€(W
t) there exists the radiative function F(*, k, a) for {H, k, a}

such that F(; k, a)£L2(Rn, (1+ | y\Yl-£dy). Denote by 6 the mapping
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(5.26) ff : C+ X wi+£(R") 9 (k, a)

Then 6 is continuous as a mapping from C+x^1 + £(Rw) into

jL2(Rw, (1+ j y\ )~l~€dy) and is also continuous as a mapping from C+

X^1+£(R") into loc^HJ?11).
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