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Absolute Continuity of Hamiltonian Operators
with Repulsive Potentials

By
Masaharu ARrar*

1. Imtroduction

The purpose of the present note is to improve the results of R.B.
Lavine [ 3] on the absolute continuity of a Hamiltonian operator H=—4
4V in Ly(R") with repulsive potential 7 (where 4 is the Laplacian and
V' is the operation of multiplication by a real function V(x)). If the
potential ¥V (x) satisfies

1) oV /or<o0

where r=|x|, then it is said to be repulsive.

Lavine [37] shows that if the potential V satisfies not only the assump-
tion (1) but also

(2) oV Jor < —ar—3*¢ for large r

for some positive constants ¢ and e, then H=—4-+V is absolutely con-
tinuous for n=1, 3. Our aim is to extend his results in two directions:
One is to remove the restriction on the dimension n of the space, and the
other is to remove the assumption (2). This will be accomplished
except for the cases n=1 and 2, where we must impose an assumption
somewhat weaker than (2).

Our method is that of Lavine [ 3] which is based on an abstract

theory of Putnam [4] on commutators of pairs of selfadjoint operators.
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2. Notations and Results

Let T be a selfadjoint operator in a Hilbert space © and E(1) be
the spectral family associated with 7. Denote by 9,.(T) the set of all
vectors ¢ such that [|E(A)@||? is absolutely continuous with respect to the
Lebesgue measure. Then 9,.(T) is a closed subspace which reduces T
cf. [ 2], Chapter X, Theorem 1.5. Denote by T,. the restriction of T in
94:(T). The spectrum of T, is called the absolutely continuous spectrum
of T. If T=T,., that is, ,.(T)=9, then we say that 7T is absolutely
continuous.

Let a=(ay, ag, ---, @,) be a vector with nonnegative integral co-
ordinates and |a|=a;+a;+ - +a, We denote by D*@ the partial deri-
vative

a!al¢

0% x,0%%5...0%x,

Dag =

in the distribution sense.

Let X be a set of functions defined in a domain 2 CR”. We denote
by &%(2) the set of all functions ¢ such that all the derivatives D% in
the distribution sence for 0=_|a|<p belong to the set X." In case 2=
R”, we sometimes write &% instead of E%(R™).

Let §=L,(R") be the Hilbert space with the ordinary inner product

@, )= 60" dx,

where the asterisk means the complex conjugate. Let H, be the self-
adjoint operator Hy= —4 with domain D(H,)=¢3,.
Let Q.(ax>0) be the set of real functions ¥V (x) satisfying the

assumption

[ ronray=M e=1,23
lx—yl=1

S,x_m'VU)lzlx—yl“*"-“dng (n=4)

1) In the sequel, we shall use this notation in the case X=L,, L, and Q,.
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for some positive constant M dependent on V. Let V&€Q,. Then it is
known (cf. [ 6], Satz 4.2) that for any given €>0, there exists a constant
C; such that

3) [V gll<el|Hop|| + Celigll ~ for any ¢ CT,

where the notation ¢& CT means that ¢ is infinitely differentiable and
has a compact support. By virtue of this inequality, the operator —4+V
defined on C7 is essentially selfadjoint, that is, its closure, which will be
denoted by H, is selfadjoint. Moreover its domain D(H) coincides with
D(H,), (3) holds for ¢ € D(H), and the graph norms of H, and H are
equivalent; cf. [ 2], Chap. V, Theorem 4.5.

We shall prove the following

Theorem 1. Let V be a real function of class €} _ and repulsive. In

oo

case n=1 and 2, we assume in addition that there exist constanis a, b and
m such that 0<a<b,

4) m>a ' (b—a)7?,
and
oV/or<—m in a<r<b
(5) (n=1)
oV/or<o in Zr
1 3 1 .
0V/0r+7r g—-—z—m in e<r=<b
(6) { (n=2)

aV/0r+%r“3<O in b<r.
Then H is absolutely continuous.

Corollary 1. Let V satisfy the assumptions of Theorem 1 and

%) lim Slx-yél P (3)|? dy=o.

|z |0

Then the spectrum of the absolutely continuous operator H is the interval
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[0, o).

Corollary 2. Assume that V=V,+V, satisfies the following condi-
tions;

i) Each V; is of class EX*V, where k is an integer strictly larger
than n/4.

ii) For large r, say for r =R, V, is of class €}_ and 0V,/0r<0

(nx2), 8V1/0r+%r_3_£__0 (n=2).

iii) ¥V, satisfies (7) with V replaced by V.
iV) Vz € Ll.
Then the absolutely continuous spectrum of H=—A4+V is [0, o).

3. Preliminaries

In this section we assume that V' €&}_ so that V€Q,.
Let P/’s (j=1, 2, ..., n) be the differential operators given by

Pip=—i0¢/0x;
with domain D(P;)=¢€},. Then P; maps its domain into L, and
H0= Z P?.
i=1

Let [ A4, B be the commutator 4B— BA in the strict operator theore-

tical sense. If f€€&}_, then we have

(®) i[Py, f1¢6=0f/0x)¢  for €&,
Let g/’s(j=1, 2, ..., n) be real valued functions of class €}_(R") and
put
) A=(H—i)™" (.Zi (g:iP;+Pigs)) (H+i)™.
i=

Since (g;P;+P;g;) (H+ i)~! is bounded by the closed graph theorem,
A and HA are bounded so that AH C(HA)* is also bounded on D(H).
Thus the operator i[ H, A] is defined on D(H) and bounded. Put C=
i(HA—(HA)*). Then it is bounded and selfadjoint and the closure of
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i H, A]. Since [H, A]=—iC on D(H) and A is bounded, the follow-

ing lemma is a special case of a theorem of Putnam [ 4, Theorem 2.13.27].

Lemma 1. If there exists an operator A such that the operator C
is nonnegative and 0 is not an eigenvalue of C, then H is absolutely con-

tinuous.

In the next section we shall construct such g;’s that the operator A4

defined by (9) satisfies the assumptions of Lemma 1.

Lemma 2. Let g(r) be a real function defined on the half line r=0
of class €3_(0, o) such that g(r)=constr for small r. Put

(10) gi(x)=g(lx)x;/|x|.

Then we have for ¢ € Lo,

n

an Cp=4 ZI(H— i)' Pixxeg 1 Py(HA-1) T+

k=

4 3 (H—i) POp—imar ) gr Pu(H+i) g—

k=1

—(H—i)7'6(x) (H+1)™',
where r=|x]|,
12) Gx)=g"+2(n—rtg"+(n—1) (n—3)0r3(rg’—g)+2g0V/or,
g=g(lx|) and '=d/dr.
Proof. We note thet g;€&3_. Let ¢€Cy. Then (g;P;+P;gj)$ are

of class &%_ and have compact supports so that they belong to D(H,),
and we have

i[Ho, JZI (giPi+Pig)le = z; 1i [P} gPi+Piglé
= i

=2 i {PiL Pr, 8P+ P; g 1+ P, giP;+Pigi1Pe} ¢

=2 i {Pe ([ Pr, g1 P;+ gi[ P, Pi]+[Ps, P;] gi+P;[ Py g5 )+
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+((Pr, gi1P;+ gi[[Pry Pi]+[Ps, Pl gi+ Pi[ P, gi]) P} &
=21 i {Pe[Ps, g1 P;~+ PeP;[ Pr, g+ [ Pr & PiPrt+ P;[ Py, g1 Pi}o,

where we used the identities [ P;, P,]=0. Using (8) with f replaced by

&i» we have
i [Ho, 2 (giP;+ Pig))]lé
=3,{P,0g;/0x,P;+ P0g;/0% 1Py + P;P,0g;/0x,+0g;/0x:Pr P} ¢
=21{2(Pydg;/0xP;+ P;j0 g;j/0x:Pr) + P;[ P, 0g;/0x1]—
— [Py, 0g;/0x |P;} ¢
= 21{2(Pu0g;/0x4P;+ Pi0g;/ 0% P) + [ Pj, [Pr, 08;/0xx 11} ¢
=22 {P:0g;/0x:P;+ Pi0g;/0x:Pr} ¢ —{A(;ng/axj)} ¢
On the other hand
iV, X (gPi+PigHle =—2( 2 gdoV/0x;) .
Thus we have
13) i [H, ; (giPs+ Pigp=
= 2 3 {Pdg)/0mP;+ Pogi/0x. P} =
—{4( ; (0gi/0x;)+2 ,Z &0V /0x;} ¢
for ¢€Cy.

Let ¢ and ¢ be such that (H+i)"l¢, (H+i)"'¢ €Cy. Then ¢ and
¢ run over a dense set since H restricted on Cj7 is essentially selfadjoint.
Noting that ] (g;P;+P;g;) (H+i) ‘¢ € D(H) and using formula (13), we

have
(Co, 9)=i (HA)—(HA)*)$, ¢)

=i (H—i)"' H( L (gPi+P;gy) (H+i)™'¢, §)
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—i (¢, (H=i)" H( X (gP+Pig)) (H+)™ )
=i ((H, X (giP+PgnlH+i) g, (H+i)™" ¢)
=((H—i)"' 2 5 (Pidg;/0x:P;+ P0 g;/0x:Py) (H+1)"" ¢, §)
—((H—i)"{4( L 0g;/0x,)+2 3 gdV/0x;} (H+i)™" ¢, ).

The operator C is bounded as was noted above. Since 0g,/0x;€ &%

and 4( ) 0g;/0x;)+2 . g0V/0x;€ L., the two operators in the last
member of this formula:

Ci=2(H—i)"{ ) (P:dg;/0x+ P;0 g;/0x,Pp)} (H+1) "
Co=(H—i)"'{4(L 0g;/0x))+2 L g0V /0x;} (H+i)™"
are also bounded. Thus since ¢ and ¢ run over a dense set, we have
(14) Co=C19p—Ca¢ for @& L,.
Now since gj(x)=g(r)x;/r, we have
0gi/0xr=xj2,g 172+ (Ojn—xjxpr™ %) gr !
and
4( X 0g;/0x)=(d*/dr*+(n—1)r" " d/dr) (g'+(n —L)r''g)=
=g"+2(n—Drtg"+(n—1)(n—3)*g'—r 3 g).
Thus we have

Ci=4 3 (H—i) Y Pix;xpg 1 2P+ PO —x;xir %) gr ' P} (H+1)7,
(15)
Co=(H-){g" +2(n—r ' g"+(n=1) (n—3)r*(rg'—g)+

+2g0V/0r} (H+i)~*
=(H—i)"'6(x) (H+i),

which with (14) proves the lemma.
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Lemma 3. Let g(r) satisfy the assumptions of Lemma 2. Assume
also that

(16) 320, g/ZO,Géo (TAFO),
an g'>0 =b), G<L0 (r=a),

for some constants a and b (0<a<b). Then the operator C is nonnegative

and zero is not an eigenvalue of C.

Proof. First we show that C=>0. We note the formula (15). We
have C;=<0 since G0 and C;=>0 since g, g'=0 and the matrices (x;x4)
and (0jz— x;xsr~ %) are nonnegative. Thus we have C=C;—C;=>0.

Next we show that zero is not an eigenvalue of C. If C¢$=0, then
since the second term of (11) is nonnegative as was shown above, we

have
0=(C¢, §) =4 2 (H—i) ' Pix;xsg r*Py(H+1)"" ¢, ¢)
—((H—=)'G(H+)™ ¢, ¢)
—4{| B P H+ ) 81 g dut 61+ 91 dx 20,
so that by virtue of (17), u(x)=((H+i) '¢) (x) satisfies
0u/0r(x)=1i(3 z;7'P;(H+i)"'¢) (x)=0 for almost all |x|=<b,

and

u(x)=0 for almost all |x|=a.

allx|
Thus u(x)=0 for almost all x since u(x)=—g1 ﬂgidt=0 for

0<|x|=<a. Thus we have ¢=0, which shows that zero is not an eigen-

value of the operator C.

4. Proof of Theorem 1

Now let us construct the function g satisfying the assumptions of
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Lemma 3. Then by virtue of Lemma 1, the proof of Theorem 1 will be
completed.

First we treat the case n=3. Let a and b be some constants such
that 0<a<b. Let k£ be a number such that 2<k<2(n—1). Put

[0 0<r<a)
§'O=1 4 —a) @=r=b)
L _r_k (b§r>a

g'rnN=— gjg”(r) dr

and
gr)= S;g’(r)dr.
Then
[0 (0r<a)
1 _ _ b_k
p <r>—1 o (a<r<b)
kr*t (=S))

is bounded. g is bounded and nonpositive. g’(r) is bounded and posi-
tive since g” € L1(0, o) and g’ <0. g(r) is positive since g’>0, and
bounded since
b
gO={ g'dr—G—D G2 -5 in b=,
and k> 2.

Thus g€&€}_ and g satisfies (16) and (17) except the assertions on
G. Now let us show that G satisfies the assertions (16) and (17). We
note that the third term (n—1)(n—3)r3(rg’—g) of G in (12) is non-
positive since (rg’—g)'=rg” <0 and (rg’—g)(0)=0. In 0<r=<a, the
first three terms in (12) are zero so that G=2gdV/0r<0 by the
assumption (1). In a<{r=<|b, the first term g’” is negative and the
other terms are nonpositive so that G<0. In 6,
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CZg"+2(n—Vr g’ =kr*1—2(n—1)r %!
=(k—2(n—1)r*1<o0

since £<2(n—1). Thus we have shown that this function g is desired
one in case n=>3.
Next we treat the case n=1, 2. Let a and b be the numbers in the

assumption of Theorem 1 and ¢ be such that a<<c<b. Put

)(%@—a)(b—c)r 0=r=<a)

l(c—a)(b—c)r—g(r——a)s (@<r=<c)
()= 2 6(b—a) = =
8\r)= 1 .

| ~6—(a+b+c)(c——a)(b—c) 6(b )(r—b) (c<r<b)

[%(a—i—b—}-c)(c—a)(lr—c) b<n).

Then g€é3 (0, ) and g, g, —g”" =0 for r=0 and g'>0 for r<b.
Let us show that G0 (r==0) and G<0 (r=a) for ¢ sufficiently near

to a.
First let n=1. Then G=g"""+2g0V/0r and

0 0<r<a)
] —G=a/-a<0 (a<r<c)
© (c—a)/(b—a)>0 (c=r=b)

L0 (b=r)

so that G0 in 0<r=<¢ and G<0 in e<r=<c and b<r by the second
assertion (5). In ¢<r=b, using the estimate g(r)= g(a)z%(c-—a)(b—c)a
and the assumption (5), we have

G=(c—a)/(b—a)+2g0V/0r <(c—a)/(b—a)—(c—a)(b—c)am

=—(c—a)(b—c)a{m—a(b—c) Y (b—a)'},
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which is negative for ¢ sufficiently near to a by the assumption (4). Thus
(16) and (17) are verified for n=1.

Next let n=2. Since
G=g"+2r'g"—r g +r3g+2g0V/or,
using the assumptions of Theorem 1, we have
=2g0V/0r<0 (0=r<a),
<gr3+20V/0n<—-mg<0 (a=<r=c),
G <g"+gr3+2V/or)<—(c—a) (b—cla{m—a ' (b—c) "(b—a) '}

<0 (e=r=b),

=r%g+20V/0r<0 (b<r),

for c¢ sufficiently near to a. Thus (16) and (17) are now verified for
n=2.
Thus we have ccnstructed the function g which have the desired

properties, which yields Theorem 1.

5. Proof of Corollaries

Proof of Corollary 1. Since the potential V' belongs to @, and satis-
fies the assumption (7), the essential spectrum of H=Hy,+V is [0, co)
(cf.[5]). On the other hand, by virtue of Theorem 1, H is absolutely
continuous. Thus the spectrum of H is [0, oo).

For the proof of Corollary 2, we use the following theorem due to
Birman [17:

Let H; (i=1, 2) be selfadjoint operators in a Hilbert space O with the
same domain. If the operator (Hy~+i) *(H,—H,)(H,+i)™* is of trace
class for some positive number k, then the complete wave operators
W.i(H,, Hy) exist so that the absolutely continuous spectrum of H, and H,
coincide with each other. (For the definition and natures of the wave

operators, see e.g. [ 2], Chapter X.)
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Proof of Corollary 2. Let V=V +V, satisfy the assumptions of this
corollary. First we note that we may assume without loss of generality
that the function V) satisfies the assumptions of Corollary 1 with V re-
placed by V;. Indeed, let A,(r) and hy(r) be sufficiently smooth real
functions of r==0 such that A;(r)=0 (+=<<R); =1 (r=2R), and hy(r)=1

(rgiR ) hy(r) <0 (—%R<r§3R> and hy(r)=e~" (r=3R), where R is

taken sufficiently large <R>%> so that the assmption (ii) of this corollary

is satisfied. Put
VlzhlVl—i—Chz, VZ=V2+<1—h1)V1—Ch2.

Then the assmptions of Corollary 2 with ¥, and ¥V, replaced by ¥, and
V,, respectively, are satisfied and those of Theorem 1 with ¥V replaced by
V1, are also satisfied for sufficiently large c.

Put Hi=Hy+V; and H;=Hy,+ V. Then by virtue of the theorem
of Birman stated above, it is sufficient to show that the operator (H:+
i)V, (Hy+i)7* is of trace class for some k since H; is absolutely con-
tinuous with spectrum [0, o) by Corollary 1.

A~

We denote by & the Fourier transform of u. Since
((Ho+0)"*u) (O)=(l€|2+ ) *a (),
we have

((Hy+1)~* u) (x)=(27)""? S exp (i€x)a (&) (|&]+ i) de.

Let k£ be the integer in the assumption (i), that is, £>n/4. Then
exp (i€x)(|€|%+i)*€ L, so that we can apply the Parseval formula with
the result that

((Ho+i)*u) ()= K(x—y) u() dy,

where K(x)=(2m) "2 S exp (i€x) (|€|%+i)™* dé € L,. Thus the operator

1
V,2 (Hy+i)"* is of the Hilbert-Schmidt class with the Hilbert-Schmidt
norm ||Ve||z, ||K||z, since V3 €L, by the assumption (iv).
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As will be shown later (in Lemma 4), the operators (Hy+i)*(Hy+i)~*
and (Ho+i)*(H,—i)™* are bounded. Thus the operators

VT, + i) P =V 2 (Hy+ i) (Hy+ i) (Hy+ i)
and
(Hy+ i)V, C (V8 (Hy— i) = (V3 (Ho -+ i) *(Ho+ i) (Hy— i)*)*

are of the Hilbert-Schmidt class so that (H;+i)™* Vo(Hy+i)™* is of trace
class. Thus we can complete the proof of Corollary 2 if we prove the
following

Lemma 4. Let V €&¥* Y and H=H,+V. Then the operators
(Hy+i)Y(H=+1i)"* are bounded.

Before proving this lemma, we prepare the following

Lemma 5. Let V;€€¥i™Y and ¢ € D(HE)=E3. Then for any €>0

there exists a constant Cg such that the inequality
(8) 1LVl el Higl|+ C.l g
holds.
Proof. In case k=1, the inequality (18) is obvious by the inequality
(8) and the assertion just after it. Let ¢ & D(HE). Since

(=D V= 2. Ca,s(D*V}) (DP@)+ V, HE ¢,

1DV )X(DF$)||< const (|| HoD?g| +|¢ll)

(laf=2(k—1), 18] <2(k—1))

and
WVeHE il <cllH§ 8|l + Cel|[HE gli,

by virtue of (18) with k=1, we have that ¥V, ¢ € D(HE™')
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and
(19) |HE TV gl ZellHE ¢+ 2 Cel|DPgl.
1BI=2k—1

Now we assume that the lemma holds with k=1, 2, ..., k—1 by the

assumption of induction. Since V, ¢ € D(HE:™ '), we have

@0) (LY dl=ICTL V73 gl SellHS Vi ol +ColVi o]
<ellH;7 W, ll+ Co(I Ho 81|+ 161D,

by (18) with k=k—1 and k=1. The well known inequality

(21) IDPgl| <ellH gli+ Cellgll  (181=2k—1)

and the inequalities (19) and (20) show that (18) holds with k=k, which

yvields the result by the induction method.

Proof of Lemma 4. Let ¢ €Cy. Then we have

(—4+V)'¢= T Cos(1DV) DP4= Wo+HES,

=k i=
Zla; [+ Bi=2k-j)

where

j k . X
We= Cos( 11 D*V)D?¢+ 3 V'HE 4,
0<j= i=1 i=1
Zla, | +(8]
a;l

2(k—j)
Zl 0

.2
Z
and «; and /A are multi-indices. Since
Dd;VE gz(f—l)—lail ng(ak—ll——zlaﬂ zgg(aj—l)+|/3| Ce?o(:'-l),
using (18) with k=j, we have
7 .
IIC _I=11D‘”V) (DPP)|| Zel|[H{D?g||+ Co|lD?gll  (2j+ |B|=2k—1),
and
WV HE ¢l| <el|H] HE 7 ¢+ Cl|HE ¢l (1=j=<k).

By virtue of the inequality (21), we have
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(22) | Wl <ellHE gll+ Cellgll  for g€ C3.

Since H'¢p=Ht ¢+ W¢ for ¢ € Cy and (22) holds, it holds that D(H*)=
D(H?%) and

(23) | HE 31|+ I¢l = const (|H*gl[+ 4], ¢ € D(HE),

by virtue of the assertion just after the inequality (3).

The well known inequalities

|(Ho+)* ¢l| < const (|lH§ 4[| +I4]D

and

1 H* gl + llgll = const [|(H=1)" ||
and the inequality (23) show that

II(Ho+ )" ¢ll < const [[(H=1)*¢ll,

which shows that the operators (Hy-+i)*(H=+i)"* are bounded.
In conclusion, the author wishes to express his sincere gratitude to

Professor T. Ikebe for his enduring encouragements and valuable discus-

sions.
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